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Abstract. We investigate the physics of black hole formation from the head-on collisions of
boosted equal mass Oscillatons (OS) in full numerical relativity, for both the cases where the
OS have equal phases or are maximally off-phase (anti-phase). While unboosted OS collisions
will form a BH as long as their initial compactness C = GM/R is above a numerically
determined critical value C > 0.035, we find that imparting a small initial boost counter-
intuitively prevents the formation of black holes even if C > 0.035. If the boost is further
increased, at very high boosts v > 1/12C, BH formation occurs as predicted by the hoop
conjecture. These two limits combine to form a “stability band” where collisions result
in either the OS “passing through” (equal phase) or “bouncing back” (anti-phase), with a
critical point occurring around C = 0.07. We argue that the existence of this stability band
can be explained by the competition between the free fall and the interaction timescales of
the collision.
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1 Introduction

Astronomy has moved into a new golden era with the historic measurements of gravitational
waves (GW) from the binary coalescence of black holes [1-5] and neutron stars [6]. The
detection of GW170817 further pushed our understanding with the first multimessenger de-
tection of GWs and electromagnetic signals [7, 8]. These signals have renewed the interest in
the search for signals from exotic compact objects (ECO; see e.g. [9-15]) which are strongly
gravitating objects which are made out of exotic matter.

Self gravitating scalar field solitons are known to have highly compact cores [16-18] and
provide a family of ECO candidates including Wheeler’s “geons” [19, 20], boson stars [21],
and oscillatons [22-26]. These are closely related to a family of objects known as axion
stars [27-42].

Recent work with scalar compact objects head on mergers [11, 13, 43, 43, 44] as well as
mixed mergers [45-47], indicates distinctions in the gravitational wave signal with respect to
black holes. If these distinctions also exist in binary coalescence (see [48-50] for boson star
inspirals), a single GW event could be a smoking gun for the existence of ECOs.

In this paper, we study the relativistic head-on collisions of a class of real relativistic
scalar fields solitons called oscillatons (OS) [18] using full (3+1) dimensional numerical rela-
tivity simulations with GRCHOMBO [51]. OS are stable on cosmological time scales [52] and
could be realised as an axion star where the leading order ¢* interaction is negligible due to
having a high axion decay constant, f,. Formation of such objects have been studied in both
non-relativistic [53, 54] and relativistic cases [42].

One of the key features of an OS is that its scalar field configuration is not static. Instead
it oscillates with the characteristic frequency w ~ m where m is the effective mass of the
field which is inversely related to the axion decay constant m o 1/f,. Thus the interactions
of any pair of OS will depend not only on their respective masses and the geometry of the
interactions, but also on their relative oscillation phase A6.
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Figure 1. Final states of equal mass head-on OS-OS mergers as a function of compactness C and boost
velocity v, for equal phase (left) and anti-phase cases (right). Dots indicate numerical simulations
which end either in black hole formation (black) or dispersal/bounce (orange). Shown are approximate
regions indicating the final states of the collisions for the given initial conditions. The black line is
the reduced hoop conjecture line eq. (3.2), while the red (equal phase) and orange (anti-phase) lines
are numerically determined estimates where above them black holes do not form. In both cases,
there exists a “stability band” between the black lines and the red/orange lines, in which the OS
either disperse (equal phase) or bounce (anti-phase) post-collision. Comparing the free fall time and
interaction times of the collision yields the blue line (v ~ C'/?), which converges with the reduced
hoop conjecture line of v ~ /1 — 144C? at C ~ 0.07.

In the case of relativistic OS where gravity is strong, the OS can exhibit very high
compactness on the order of tens of percent of the Schwarzschild radius. In this regime,
gravity back-reacts strongly on the configuration of the scalar field and sufficiently compact
OS can interact to form black holes. In [43], we showed that the head-on collisions of
unboosted OS in this regime can produce gravitational wave signals which are distinct and,
at high compactness, more energetic than equivalent equal mass black hole mergers.

In this paper, we extend our work into two different directions. First, we consider the
collisions of OS with different phases, in particular collisions in which their relative phase
is maximal Af = 7w, dubbed “anti-phase” OS collisions, confirming the perturbative gravity
results of [54-56]. We will show that anti-phase OS collisions experience a mutual repulsive
force, confirming previous results obtained in perturbative gravity. Secondly, we consider
the collisions of boosted OS, with relativistic initial center of mass frame velocities, for both
equal phase and anti-phase pairs of OS. While at high initial velocities, black holes formed as
expected from the hoop conjecture argument [44, 57, 58|, surprisingly and counter-intuitively,
we show that at low velocities, collisions are less likely to form black holes when compared to
the equivalent configuration with zero initial velocity. This effect is seen in both equal and
anti-phase cases, indicating the possible existence of a “critical point” (see figure 1).

2 Oscillatons and initial set-up

We use units h = ¢ = 1 and My = 1/+/87Gy which is the reduced Planck mass. Consider
the action of a massive scalar field minimally coupled to gravity

S = /d4x\/_ [ﬁ - 58 PP — %ngbQ (2.1)
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Figure 2. Spherically symmetric unperturbed OS solutions are spanned by a single parameter, here
chosen to be the compactness C = GM, /R, as found in [9]. OS with C > 0.14 are unstable to
perturbations, with perturbations either dissipating leading to a final state of C < 0.14 or collapsing
into a black hole.

where ¢ is the determinant of the metric, R is the Ricci scalar and m is the mass of the
real scalar field ¢. Such a potential suppports self-gravitating quasi-stable equilibrium
OS [18], and it has been shown in [9] that unexcited spherical symmetric solutions span
a one-parameter family most conveniently represented by its compactness, C, defined as

G M,

="k

(2.2)

where M, is the total mass and R is the radius. Note that for a given C the radius R(M,) of
unexcited OS is completely determined by its mass M,. It has also been shown in [9] that
low compactness OS with C < 0.14 are stable and typically migrate to other stable OS with
C < 0.14 when strongly radially perturbed. On the other hand, high compactness OS with
C > 0.14 are unstable, and under radial perturbations may either migrate to a stable lower
mass OS with C < 0.14 via scalar radiation or collapse into a black hole (figure 2).

A key property of OS is that it oscillates along a characteristic frequency w ~ m, and
thus interactions of OS depend on their relative phase difference Af. In particular, the field
configuration ¢(z,t) of a head-on collision of equal phase Af = 0 (anti-phase Af = 7) OS
is symmetric (anti-symmetric) at the plane of collision parallel to the axis of motion. In
between these two limits 0 < Af < 7, the collisions are said to be “off-phase”. Figure 3
illustrates this further.

The special case for initially static, equal phase A = 0 head-on collisions of OS was
investigated in [43]. There, we showed that the end state of any such collision depends on the
compactness C. For C < 0.035 subcritical collisions, the collision results in an excited more
massive oscillaton, while for 0.035 < C < C, critical collisions, the collision results in the
formation of a black hole. For C > C, degenerate collisions, since the OS are in the unstable
branch (figure 2), mutual perturbations cause the OS to collapse into individual black holes
before merging as a standard head on black hole collision.

In this paper, we will study both equal phase and anti-phase boosted head-on OS
collisions.
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Figure 3. One dimensional plot of the ¢ profile along the axis of collision of two OS for two different
phases shown at fixed ¢ when the amplitude of ¢ for the left OS is maximised, with x = 0 being the
point of collision. The symmetry and anti-symmetry of the equal phase pair of OS (Af = 0) and an
anti-phase pair of OS (A6 = 7) respectively are constants of motion.

3 Boosted OS collisions

According to the hoop conjecture [59], a quantity of matter/energy E compressed into a
spherical region such that a hoop of proper circumference 2w R completely encloses the matter
in all directions, will form a black hole if the corresponding Schwarzschild radius, Ry = 2GE
is greater then R. The collisions of two solitons with individual rest mass M, boosted to
v=(1- v2)_1/ 2 will result in a system with an effective mass of E = 2yM, in the center of
mass frame. Applying the conjecture, if Ry > Rg where Ry is the rest frame radius of the
soliton, then a black hole will form. Using eq. (2.2), we obtain the following condition for
black hole formation

1
> 1
7200 (3.1)

Such relativistic collisions of scalar solitons have been studied numerically before in the
context of “boson stars'” of C = 0.025 [44] and fluid packets of C = 0.0125 [57]. In both cases,
it was found that black hole formation occurs at the “reduced” hoop conjecture condition

>y = L 3.2

Y Z Y= m ) ( . )

which is roughly about 1/3 of what is predicted by the hoop conjecture. As we will soon see,
we find this to be consistent with our simulations of relativistic OS collisions.

We simulated the collisions of two equal mass and hence equal C OS in numerical general
relativity, using GRCHOMBO [51] for both equal phase and anti-phase cases. Their initial
separation are set at d = 60m~!'. We vary the initial velocities of the OS from v = 0 to
v = 0.8 relative to the rest frame, with corresponding Lorentz factors v = 1 to v = 1.4.
In all cases except for v = 0, the initial velocities are sufficiently high such that the OS
are not initially bounded. To construct initial data with unexcited OS, we use a modified

'Boson stars are configurations of a complex scalar field with a U(1) potential. In contrast with the real
scalar field OS which are stabilized by field oscillations, boson stars are stabilized by their charges. For a
review please see [60].



superposition of single OS solutions (see appendix A.2 for the details of the construction of
initial data).

We track the OS positions following [42] by locating the value and location of maximum
density pmax, which we identify as its center. While the OS started out initially spherical,
during the collision process the OS becomes an ellipsoid due to the gravitational attraction
along the axis of collision. The major and minor axes of the ellipsoid are then identified
by the distance from the center to the point where the density is 5% of peenter- Black hole
formation is identified with a horizon finder. The results of our simulations is presented in
figure 1.

3.1 Equal phase Af = 0 collisions

For equal phase Af = 0 case, at v = 0 we recover the result of [43] whereby black hole
formation occured when C > 0.035. At sufficiently high v, black holes form due to the
additional energy imparted by the boost, as we expected. We found that they roughly obey
the “reduced” hoop conjecture argument eq. (3.2) (as opposed to eq. (3.1)), providing another
data point to add to those of [44, 57, 58].

However, at low v, intriguingly, black hole formation occurs only at higher compactness.
For example, for C = 0.04, black holes will form at v = 0 but will not form at v > 0.2 (until
it meets the hoop conjecture line). In other words, initial non-zero velocities hinder the
formation of black holes. The velocity required to prevent black hole formation increases with
increasing C, with the curve of transition sloping upwards until it meets the line defined by the
“reduced” hoop conjecture argument eq. (3.2), at the “critical” point C ~ 0.068 and v ~ 0.55.
Beyond this point C > 0.068, black holes form regardless of velocities. In figure 4, we show
the black hole formation process of C = 0.065 OS collisions for the v = 0.7, 0.5, 0.3 cases.

The existence of this “stability band” for non-black hole end states can be explained
by the fact that higher collisional velocities imply a shorter collision timescale. Since the
boosted OS are not energetic enough to form black holes from the hoop conjecture alone,
they must interact during the collision to form a sufficiently deep gravitational potential
well to generate infall for a collapse into a black hole — this defines an interaction/collapse
timescale (see eq. (4.1) and (4.2) for estimates). However, in a sufficiently relativistic collision,
the collision timescale may be shorter than the interaction/collapse timescale, resulting in the
two OS “passing through” (or bouncing off) albeit with large perturbations to their initial
configuration and at a slower velocity due to the inelastic nature of the collisions.

This collision timescale vs interaction timescale behaviour has been seen in non-linear
dynamics without gravity in the studies of relativistic collisions of non-linear solitons [64—67],
where the relative coherence of the solitons post-collisions can be explained by the fact that
the collision timescale is much shorter than the interaction timescale. We will discuss this in
greater detail in the following section 4.

We find that the initial formation of black holes is more efficient for the v = 0.3 case
when compared to the v = 0.7 case? — the black hole mass grow more rapidly for the v = 0.3
case during the collision. This could be due to the fact that the collision is “messier” when
collisions are more energetic, and hence it takes longer for the excited debris to fall back into
the nascent black hole. Unfortunately, our initial conditions are not sufficiently precise to
enable long term tracking of the apparent horizon, leading to instabilities first seen in [68].

2The mass extracted from the apparent horizon is a gauge-dependent measure, but since we are using the
same gauge-evolution (see eq. (A.2) and (A.3)) we can make a fair comparison.
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Figure 4. In-phase A0 = 0 collisions: three different slices of energy density p with C =
0.065 with v = 0.3 (https://youtu.be/mOPzPxIaDVg), 0.5 (https://youtu.be/ZyYhJIYN3dS),
0.7 (https://youtu.be/66uwXSIY8tI) from top to bottom. The slices for the (i) infall, (ii) merger
and (iii) post-merger. Black holes form in the v = 0.3 (https://youtu.be/mOPzPxIaDVg) (top)
and v = 0.7 (https://youtu.be/66uwXSIY8tI) (bottom) cases, with black lines indicating cur-
vature contours at x = 0.2 and x = 0.4. In the v = 0.5 (https://youtu.be/ZyYhJIYN3d8)
(middle) case, the OS “pass through” each other and then dissipate. Link to movies
https://www.youtube.com/playlist ?list=PLSkfizpQDrcZJRY _vYHmp820IfLwscNx8 [61-63].

3.2 Anti-phase Af = 7 collisions

At high v, black hole formation again occurs beyond the reduced hoop conjecture line eq. (3.2)
— reinforcing the point that in this regime “matter does not matter” and it is the gravita-
tional dynamics that dominate [44]. Similar to the equal phase case above, at low v black hole
formation is impeded, although the transition line does not coincide, and is shifted slightly to
the right (towards higher compactness). This line meets the reduced hoop conjecture line at
the “critical point” C = 0.071 and v = 0.5, indicating that there is an additional “repulsion”
between the two OS when compared to the equal phase case. This repulsion is particularly
notable in the v = 0 case, where the transition from no black hole formation to black hole
formation occurs at C ~ 0.05 (compared to C =~ 0.035 for equal phase collisions).
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Figure 5. Anti-phase A0 = 7 collisions: three different slices of energy density p with C =
0.065 with v = 0.3 (https://youtu.be/NyaB3zjtaQ4), 0.5 (https://youtu.be/uACT8INESHw), 0.7
(https://youtu.be/bdYYbXSgUcY) from top to bottom. The slices for the (i) infall, (ii) merger
and (iii) post-merger. Black holes form in the v = 0.3 (https://youtu.be/NyaB3zjtaQ4) (top) and
v = 0.7 (https://youtu.be/bdYYbXSgUcY) (bottom) cases, with black lines indicating curvature
contours at xy = 0.2 and x = 0.4. In the v = 0.5 (https://youtu.be/uACT8INESHw) (middle)
case, the OS “bounces back” post-collision (with black arrows indicating the direction of travel).
Notice that in both cases where black holes form, the OS collapse into black holes before merg-
ing. Link to movies https://www.youtube.com/watch?v=mOPzPxlaDVg&list=PLSkfizpQDrcZJRY
~vYHmp820IfLwscNx8 [69-71].

This repulsion can be explained as follows. Crucially, for anti-phase collisions, the anti-
symmetry of the ¢ configuration is a constant of motion, and hence at the point of collision
d(x4,t) = 0 at all times where z, is the plane of anti-symmetry. This is in contrast with
the equal phase pair where ¢(x,,t) is free to evolve as the two OS approach each other
— the symmetry of this case imposes the condition 0,¢ (x4, t) = 0 instead. In particular,
in [54-56], it was shown that in the weak gravity and non-relativistic limit, OS will “bounce
back” instead of merging for Af < 77/8 [56]. In this limit, [56] argues that since the
oscillaton equation of motion is linear, in equal phase (anti-phase) collisions, the OS tend to
constructively (destructively) interfere, at least at the collision plane z.,.



In strong gravity, gravitational back-reaction is non-linear, muddling this picture some-
what. Nevertheless, the anti-symmetry of the field configuration is still conserved, so ¢ (., t)
and its time derivative ¢(z,,t) both remain at zero for all ¢. This means that the time av-
eraged (over a period of oscillation) kinetic energy density of the field configuration (Ex) ~
(1/2)$? must vanish as z — x,. As the OS approach each other, energy conservation forces
the time averaged gradient energy (Eg) ~ (1/2)(V¢)? to absorb this energy, resulting in a
rapid increase in the gradient energy and thus a spiking of the scalar field spatial configura-
tion.> Note that the metric and stress tensor remain symmetric in the diagonal components
and anti-symmetric in the off-diagonal components throughout for both equal phase and

anti-phase cases, which means that gravitational energy can still dominate near z..

To check this dependence, we ran a series of collisions with C = 0.028 with zero boost for
both OS, and an initial separation of d = 40m~'. For this compactness, we have previously
shown in [43] that their mergers will lead to a highly excited OS in the limit of Af = 0, and
hence we do not expect any black hole formation.

Since these are initially bound states, we expect that due to loss to scalar and grav-
itational wave radiation, the final state of such collisions will be a merged oscillaton. The
key question is whether this merger occurs in the first collision as in the equal phase case,
or will the off-phase repulsion generate pre-merger “bounces”. We scan through Af =
[0,7/8,7/4,3n/8,7/2,5m/8,3m /4, Tr/8,157/16, 7], and found that only for the cases of Af >
77/8, the OS bounces once before merger — in agreement with [56] that this repulsion is
only dominant when the phase difference is near maximal.

Figure 7 illustrates the comparison of the energy densities of equal phase and anti-
phase collisions. At large distances, the two cases evolve similarly as they do not yet interact
strongly. Their evolution begin to deviate around d ~ 15m™~!, as the OS begin to overlap
and interact with each other. In the equal phase case, the OS merge and form a large central
density spike at d = 0. On the other hand, in the anti-phase case, the OS repulse each other
— note that the energy density drop at d = 0 — “compressing” to a smaller size but higher
energy densities before bouncing back.

This repulsion and subsequent compression leads to a dramatically different black hole
formation process when compared to the equal phase case. Instead of BH forming from the
collapse of scalar matter after merger, the repulsion stops the motion of the OS and prevents
the direct merger of the OS from occurring. The accompanying compression of both OS leads
to a subsequent individual collapse of the OS into separate black holes. These distinct black
holes, shorn of the repulsive scalar field, then gravitate towards each other and finally form
a final black hole. This general mechanism is seen in both the high velocity (i.e. above the
reduced hoop conjecture line) and low velocity BH formation processes (see figures 6 and 7).

In between these two velocity limits, again as in the equal phase case, the collision
does not yield a final black hole. Instead, it results in the two OS bouncing back, and then
dispersal. While the OS experience compression during the bounce, the compression is not
sufficient to push the OS into an unstable regime that led to collapse — instead it led to
a dispersion of the OS into scalar waves. While oscillatons have been shown to be stable
under large spherically symmetric (and shell-like) perturbations [9], the perturbations that
OS here experience post-bounce are both highly asymmetric and non-shell-like. Thus our

3While it is natural to desribe this repulsion as a force, its behaviour is not described by a 1/r potential
nor is it conservative. The anti-symmetric origin of the repulsion is reminiscent of the degenerate pressure of
the anti-symmetric wavefunctions of fermions.
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Figure 6. The central location of a OS/BH vs time for an anti-phase OS collision with ¢ = 0.068
and v = 0.4. The repulsiveness of the anti-phase OS rapidly slows the initial velocity down to a full
stop, before rebounding slightly at ¢ ~ 80m~' and then collapsing into a BH. The location of the
center of the OS is taken to be the point of maximum density.
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Figure 7. The time evolution of the profile of the energy density p measured along the axis of collision
for both equal phase (dotted line) and anti-phase (continuous line) collisions of OS with C = 0.053.
The time evolution is indicated by colour, chronologically increasing from deep red to blue. Note that
anti-phase collisions experience a repulsion due to the anti-symmetry of the field configuration, and
the centers (i.e. maximum density point) of the OS remain distinct. As a result, the OS experience
a compression which may lead to individual formation of black holes before final merger, or the OS
“bouncing back”.

results strongly suggests that there exist unstable non-radial perturbation modes of OS even
at low compactness, although a more detailed study is needed to confirm this conjecture.

4 Discussion

The most striking result of our simulations is the existence of a “stability band” of velocities
whereby collisions of OS do not form black holes. We can gain a qualitative understanding
as follows. The free fall time scale is given by ¢ ~ 1/4/Gp, and using p ~ M/R? combined
with eq. (2.2) gives

GM

i~ c3/2 (4.1)



Meanwhile the interaction timescale can be estimated by the time the two OS overlap since
the scalar field configuration of the OS drop off exponentially away from its characteristic
size R. If we assume that OS “pass through” (or bounce back after contact), then roughly
the interaction timescale is

2R 2GM
Tint ~ —— = .

yw o yC

(4.2)

This a conservative (i.e. lower) bound on Ty since interactions do slow down the collision —
as we saw especially in the anti-phase case the repulsion slows the collision down significantly,
saturating only in the high v limit.

To prevent black hole formation, as we argued in section 3 the interaction timescale
has to be shorter than the free-fall timescale Ty > 7. At low v, v ~ 1, we obtained the
following bound

v > 2012 (4.3)

Since Ty is an underestimate, we expect eq. (4.3) to be a lower bound on v. Combining this
with the reduced hoop conjecture limit at high v eq. (3.2), we obtain the following bound

when BHs will not form
2C1% < v < /1 —144C2 . (4.4)

The two lines intersect at C ~ 0.07 or v ~ 0.5, which is what we found numerically (see
figure 1). On the other hand, the lower bound does not track the numerical results accurately
— this is not surprising since such timescales arguments do not capture the full range of
physics involved.

An interesting question is whether this point is a “critical point”, in the sense that the
two different regimes v > 2C'/2 and v < /1 — 144C2? constitute different phases and this
point is where they meet as they transition into the final black hole phase.

Since the two regimes exhibit different post collision behavior, it is interesting to ask
whether their respective end states are the same or are they different? In other words, is there
a transition in the end states between the high v BH formation and low v BH formation in
the black hole phase when C 2 0.077 The natural end state for these collisions are spherical,
non-rotating black holes, hence the no-hair theorem implies that their end states are fully
quantified by their final BH masses. To obtain these values require running the simulations to
sufficiently long timescales to achieve these final states in addition to removing the unwanted
reflection of scalar and tensor waves from the boundary of the simulation domain. We
are currently exploring absorptive boundary conditions to overcome this problem. We will
leave this, and the computation of gravitational waves signal from such collisions to a future
publication.
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A  Numerics

A.1 Gauge choice

GRCHOMBO uses the BSSN formalism [75-77] of the Einstein equation in 341 dimensions
using the ADM variables. The 4 dimensional spacetime metric is decomposed into a spatial
metric on a 3 dimensional spatial hypersurface, v;;, and an extrinsic curvature Kj;;, which are
both evolved along a chosen local time coordinate ¢. The line element of the decomposition is

ds® = —a® dt* + ~ij(da’ + 5" dt) (dz + B/ dt), (A1)

where a and 3% are the lapse and shift, the gauge parameters which must be specified. These
parameters are specified on the initial hypersurface (see below) and then allowed to evolve
using gauge-driver equations in order to response dynamically to the physical system to
ensure stable numerical evolution. In this work, we employ a slight modification of the usual
puncture gauge [78, 79]

O = — paK + Bo;a

€1 (Oé — (analytic (t)) t < tmerger (A2)

)

t—tmerger

( 2
T\ tdec: )
62<Oz - aconstant)e ecay t > tmerger

for the lapse and
3 .
o = T = (A.3)

for the shift.

Note that for eq. (A.2), we return to the usual puncture gauge driver when €; = e = 0,
with the constants n ~ 1/Mapy and p ~ 1 usually chosen simulation-wise to improve
stability. The additional terms with €; = €3 = 1 are added in to control the presence of O(1)
gauge waves which propagate in the direction of the boost from each OS. This effect caused
unwanted adapative mesh refinement of the grid, increasing inaccuracy.

To eliminate these gauge waves, we drive « as close to (analytic; Which is the initial func-
tional form of «, but evaluated at time ¢. This is done by adding the €; friction term. After
merger at tyerger, the system is quickly driven back into the standard puncture gauge form,
and hence we switch from the €; friction term to the ey friction term which will exponentially
drive this additional contributions « into zero. The rate of this decay can be set, and we
found tgecay = 7 gives stable results.
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Finally, we have chosen to use the first order “integrated” shift driver condition [80, 81]
eq. (A.3) (as opposed to the usual puncture gauge driver condition which is 2nd order in
time [78, 79]). We find that this condition eliminates static imprints of initial values with
Vij # 0;; which remain even after the OS has moved from its initial position.

A.2 Constructing initial data

We construct our initial data by solving for a single oscillaton (OS) profile [9, 18, 82, 83],
boosting it and then superimposing them as per the methodology presented in [43].

To obtain the radial OS profiles we use the ansatz for the spherically symmetric line
element:

ds? = —a?dt® + a®dr® + Tz(d92 + Sin2(9)d¢2)> (A-4)

from which we can define A = a? and C = a?/a?. Solutions are then obtained by expanding
the metric functions and the scalar field in their Fourier components:

]max

Z¢J cos (jwt)

]max

Z Aj(r)cos (jwt), (A.5)

]max

Z Cj(r) cos (jwt) ,

where w is a coherently oscillating base frequency and jpax is the maximum order in the
Fourier expansion to which the solution is obtained. We substitute the Fourier expansion
into the Einstein-Klein-Gordon system of equations with V(¢) = m?2¢?/2. The Fourier
coefficients, and w, can be found numerically, using a shooting technique. To generate these
solutions, we iteratively solve this hierarchical set of equations up to jmax = 12 following [84].

To apply a boost in the positive x-direction with some velocity, v, we define a Lorentz
transformation of

t =yt +va'),

z=~(z +ot'), (A.6)

1

where v = (1 — v?)72 is the Lorentz factor. We denote (t,7,y,2) as the “lab” frame co-
ordinates (the coordinates that relate to the Cartesian coordinates in GRCHOMBO, and
ultimately what we construct our initial conditions in), and (¢, 2’3/, 2') as the coordinates
in the OS “rest” frame.

We Lorentz boost both A, C, ¢, as well as the metric components. For an OS pair at
rest the solutions for A, C, ¢ are taken on a hyperslice at t; = 6/w, where we define 6 as = 0
for one OS, and # = A# for the second. For boosted OS we define the symmetry between
them during superposition, and we choose that A, C, and ¢ are taken on a hyperslice with
t=0.
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Given this single OS profile, we generate static OS-OS initial data by superposing two
single OS solutions:

¢t0t - ¢|x—x0 + ¢|x+zo
Ttot = ﬂ-’$+x0 + 7T|x—xo s (A7)

Vijtot = Yijla+zo + Vijlo—zo — Pij

where £z are the locations of the centers of the two OS, and h;; is a constant metric.
The =+ relates the the overall symmetry of the OS pair, with + relating to a symmetric
arrangement and a — relating to an antisymmetric configuration. For unboosted OS, as
stated before, the symmetry is defined by which initial ¢ is chosen for each star, and a +
is used when superimposing. We then define h;; = 7;j|22, such that each OS is unchanged
from its isolated case such that we obtained two unexcited initial OS. If instead we had used
hij = d;;, the constructed OS possess significant radial modes which will lead to premature
collapse of the OS into BH. See [43] for a full discussion.

The linear superposition of the metric causes some violation of the Hamiltonian con-
straint. We quantify this violation using the relative constraint violation

Hcenter
= — A.8
1677Gpcenter ( )

and find values of 0(0.02)% for an unboosted symmetric OS pair. The relative momentum
constraint violation can be defined in a similar way. When an OS pair is boosted we use a
relaxation routine in x and A;; to reduce the relative violation in the Hamiltonian constraint
and momentum constraint violation, as without this relaxation, the relative constraints would
be O =~ 1%.

A.3 Convergence and stability

We use the following to measure the volume averaged Hamiltonian constraint violation:

L*(H) = /% /V |H2|dV, (A.9)

where V is the box volume with the interior of the apparent horizon excised. The volume
averaged momentum constraint violation is calculated in a similar manner:

L*(M) = /% /V | M2|dV, (A.10)

We have good control over the constraint violation throughout our simulations, with a bounc-
ing unboosted antisymmetric OS collision achieving a maximum value of O(107%) at the
beginning of the simulation and then decaying throughout the remainder of the simulation.

We test the convergence of our simulations by measuring the value of p along the
collision axis of an unboosted antisymmetric OS pair with initial compactness of C = 0.028,
that results in a bounce. The spatial coordinates for the value to be measured at was chosen
such that the OS passes through it before and after it bounces. We used fixed grid for the
convergence test with resolutions of 1.0m™!, 0.5 m~! and 0.25 m~!. Figure 8 shows the value
of p for this test, and when calculated we obtain an order of convergence between 3rd and
4th order.
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Figure 8. The value of p for a point along the collision axis of an antisymmetric OS pair that bounces.
The test was done with fixed grid with three different resolutions of 1.0m™!, 0.5m~! and 0.25m—*.
We obtain an order of convergence between 3rd and 4th order for this test.
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