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Abstract. We investigate the physics of black hole formation from the head-on collisions of
boosted equal mass Oscillatons (OS) in full numerical relativity, for both the cases where the
OS have equal phases or are maximally off-phase (anti-phase). While unboosted OS collisions
will form a BH as long as their initial compactness C ≡ GM/R is above a numerically
determined critical value C > 0.035, we find that imparting a small initial boost counter-
intuitively prevents the formation of black holes even if C > 0.035. If the boost is further
increased, at very high boosts γ > 1/12C, BH formation occurs as predicted by the hoop
conjecture. These two limits combine to form a “stability band” where collisions result
in either the OS “passing through” (equal phase) or “bouncing back” (anti-phase), with a
critical point occurring around C ≈ 0.07. We argue that the existence of this stability band
can be explained by the competition between the free fall and the interaction timescales of
the collision.
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1 Introduction

Astronomy has moved into a new golden era with the historic measurements of gravitational
waves (GW) from the binary coalescence of black holes [1–5] and neutron stars [6]. The
detection of GW170817 further pushed our understanding with the first multimessenger de-
tection of GWs and electromagnetic signals [7, 8]. These signals have renewed the interest in
the search for signals from exotic compact objects (ECO; see e.g. [9–15]) which are strongly
gravitating objects which are made out of exotic matter.

Self gravitating scalar field solitons are known to have highly compact cores [16–18] and
provide a family of ECO candidates including Wheeler’s “geons” [19, 20], boson stars [21],
and oscillatons [22–26]. These are closely related to a family of objects known as axion
stars [27–42].

Recent work with scalar compact objects head on mergers [11, 13, 43, 43, 44] as well as
mixed mergers [45–47], indicates distinctions in the gravitational wave signal with respect to
black holes. If these distinctions also exist in binary coalescence (see [48–50] for boson star
inspirals), a single GW event could be a smoking gun for the existence of ECOs.

In this paper, we study the relativistic head-on collisions of a class of real relativistic
scalar fields solitons called oscillatons (OS) [18] using full (3+1) dimensional numerical rela-
tivity simulations with GRChombo [51]. OS are stable on cosmological time scales [52] and
could be realised as an axion star where the leading order φ4 interaction is negligible due to
having a high axion decay constant, fa. Formation of such objects have been studied in both
non-relativistic [53, 54] and relativistic cases [42].

One of the key features of an OS is that its scalar field configuration is not static. Instead
it oscillates with the characteristic frequency ω ∼ m where m is the effective mass of the
field which is inversely related to the axion decay constant m ∝ 1/fa. Thus the interactions
of any pair of OS will depend not only on their respective masses and the geometry of the
interactions, but also on their relative oscillation phase ∆θ.
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superposition of single OS solutions (see appendix A.2 for the details of the construction of
initial data).

We track the OS positions following [42] by locating the value and location of maximum
density ρmax, which we identify as its center. While the OS started out initially spherical,
during the collision process the OS becomes an ellipsoid due to the gravitational attraction
along the axis of collision. The major and minor axes of the ellipsoid are then identified
by the distance from the center to the point where the density is 5% of ρcenter. Black hole
formation is identified with a horizon finder. The results of our simulations is presented in
figure 1.

3.1 Equal phase ∆θ = 0 collisions

For equal phase ∆θ = 0 case, at v = 0 we recover the result of [43] whereby black hole
formation occured when C ≥ 0.035. At sufficiently high v, black holes form due to the
additional energy imparted by the boost, as we expected. We found that they roughly obey
the “reduced” hoop conjecture argument eq. (3.2) (as opposed to eq. (3.1)), providing another
data point to add to those of [44, 57, 58].

However, at low v, intriguingly, black hole formation occurs only at higher compactness.
For example, for C = 0.04, black holes will form at v = 0 but will not form at v > 0.2 (until
it meets the hoop conjecture line). In other words, initial non-zero velocities hinder the

formation of black holes. The velocity required to prevent black hole formation increases with
increasing C, with the curve of transition sloping upwards until it meets the line defined by the
“reduced” hoop conjecture argument eq. (3.2), at the “critical” point C ≈ 0.068 and v ≈ 0.55.
Beyond this point C > 0.068, black holes form regardless of velocities. In figure 4, we show
the black hole formation process of C = 0.065 OS collisions for the v = 0.7, 0.5, 0.3 cases.

The existence of this “stability band” for non-black hole end states can be explained
by the fact that higher collisional velocities imply a shorter collision timescale. Since the
boosted OS are not energetic enough to form black holes from the hoop conjecture alone,
they must interact during the collision to form a sufficiently deep gravitational potential
well to generate infall for a collapse into a black hole — this defines an interaction/collapse
timescale (see eq. (4.1) and (4.2) for estimates). However, in a sufficiently relativistic collision,
the collision timescale may be shorter than the interaction/collapse timescale, resulting in the
two OS “passing through” (or bouncing off) albeit with large perturbations to their initial
configuration and at a slower velocity due to the inelastic nature of the collisions.

This collision timescale vs interaction timescale behaviour has been seen in non-linear
dynamics without gravity in the studies of relativistic collisions of non-linear solitons [64–67],
where the relative coherence of the solitons post-collisions can be explained by the fact that
the collision timescale is much shorter than the interaction timescale. We will discuss this in
greater detail in the following section 4.

We find that the initial formation of black holes is more efficient for the v = 0.3 case
when compared to the v = 0.7 case2 — the black hole mass grow more rapidly for the v = 0.3
case during the collision. This could be due to the fact that the collision is “messier” when
collisions are more energetic, and hence it takes longer for the excited debris to fall back into
the nascent black hole. Unfortunately, our initial conditions are not sufficiently precise to
enable long term tracking of the apparent horizon, leading to instabilities first seen in [68].

2The mass extracted from the apparent horizon is a gauge-dependent measure, but since we are using the
same gauge-evolution (see eq. (A.2) and (A.3)) we can make a fair comparison.
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In strong gravity, gravitational back-reaction is non-linear, muddling this picture some-
what. Nevertheless, the anti-symmetry of the field configuration is still conserved, so φ(x∗, t)
and its time derivative φ̇(x∗, t) both remain at zero for all t. This means that the time av-
eraged (over a period of oscillation) kinetic energy density of the field configuration 〈EK〉 ∼
(1/2)φ̇2 must vanish as x → x∗. As the OS approach each other, energy conservation forces
the time averaged gradient energy 〈EG〉 ∼ (1/2)(∇φ)2 to absorb this energy, resulting in a
rapid increase in the gradient energy and thus a spiking of the scalar field spatial configura-
tion.3 Note that the metric and stress tensor remain symmetric in the diagonal components
and anti-symmetric in the off-diagonal components throughout for both equal phase and
anti-phase cases, which means that gravitational energy can still dominate near x∗.

To check this dependence, we ran a series of collisions with C = 0.028 with zero boost for
both OS, and an initial separation of d = 40 m−1. For this compactness, we have previously
shown in [43] that their mergers will lead to a highly excited OS in the limit of ∆θ = 0, and
hence we do not expect any black hole formation.

Since these are initially bound states, we expect that due to loss to scalar and grav-
itational wave radiation, the final state of such collisions will be a merged oscillaton. The
key question is whether this merger occurs in the first collision as in the equal phase case,
or will the off-phase repulsion generate pre-merger “bounces”. We scan through ∆θ =
[0, π/8, π/4, 3π/8, π/2, 5π/8, 3π/4, 7π/8, 15π/16, π], and found that only for the cases of ∆θ ≥
7π/8, the OS bounces once before merger — in agreement with [56] that this repulsion is
only dominant when the phase difference is near maximal.

Figure 7 illustrates the comparison of the energy densities of equal phase and anti-
phase collisions. At large distances, the two cases evolve similarly as they do not yet interact
strongly. Their evolution begin to deviate around d ∼ 15 m−1, as the OS begin to overlap
and interact with each other. In the equal phase case, the OS merge and form a large central
density spike at d = 0. On the other hand, in the anti-phase case, the OS repulse each other
— note that the energy density drop at d = 0 — “compressing” to a smaller size but higher
energy densities before bouncing back.

This repulsion and subsequent compression leads to a dramatically different black hole
formation process when compared to the equal phase case. Instead of BH forming from the
collapse of scalar matter after merger, the repulsion stops the motion of the OS and prevents
the direct merger of the OS from occurring. The accompanying compression of both OS leads
to a subsequent individual collapse of the OS into separate black holes. These distinct black
holes, shorn of the repulsive scalar field, then gravitate towards each other and finally form
a final black hole. This general mechanism is seen in both the high velocity (i.e. above the
reduced hoop conjecture line) and low velocity BH formation processes (see figures 6 and 7).

In between these two velocity limits, again as in the equal phase case, the collision
does not yield a final black hole. Instead, it results in the two OS bouncing back, and then
dispersal. While the OS experience compression during the bounce, the compression is not
sufficient to push the OS into an unstable regime that led to collapse — instead it led to
a dispersion of the OS into scalar waves. While oscillatons have been shown to be stable
under large spherically symmetric (and shell-like) perturbations [9], the perturbations that
OS here experience post-bounce are both highly asymmetric and non-shell-like. Thus our

3While it is natural to desribe this repulsion as a force, its behaviour is not described by a 1/r potential
nor is it conservative. The anti-symmetric origin of the repulsion is reminiscent of the degenerate pressure of
the anti-symmetric wavefunctions of fermions.
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Meanwhile the interaction timescale can be estimated by the time the two OS overlap since
the scalar field configuration of the OS drop off exponentially away from its characteristic
size R. If we assume that OS “pass through” (or bounce back after contact), then roughly
the interaction timescale is

τint ∼
2R

γv
=

2GM

γvC . (4.2)

This a conservative (i.e. lower) bound on τint since interactions do slow down the collision —
as we saw especially in the anti-phase case the repulsion slows the collision down significantly,
saturating only in the high v limit.

To prevent black hole formation, as we argued in section 3 the interaction timescale
has to be shorter than the free-fall timescale τint > τff . At low v, γ ∼ 1, we obtained the
following bound

v > 2C1/2 . (4.3)

Since τint is an underestimate, we expect eq. (4.3) to be a lower bound on v. Combining this
with the reduced hoop conjecture limit at high γ eq. (3.2), we obtain the following bound
when BHs will not form

2C1/2 < v <
√

1 − 144C2 . (4.4)

The two lines intersect at C ∼ 0.07 or v ∼ 0.5, which is what we found numerically (see
figure 1). On the other hand, the lower bound does not track the numerical results accurately
— this is not surprising since such timescales arguments do not capture the full range of
physics involved.

An interesting question is whether this point is a “critical point”, in the sense that the
two different regimes v > 2C1/2 and v <

√
1 − 144C2 constitute different phases and this

point is where they meet as they transition into the final black hole phase.

Since the two regimes exhibit different post collision behavior, it is interesting to ask
whether their respective end states are the same or are they different? In other words, is there
a transition in the end states between the high v BH formation and low v BH formation in
the black hole phase when C & 0.07? The natural end state for these collisions are spherical,
non-rotating black holes, hence the no-hair theorem implies that their end states are fully
quantified by their final BH masses. To obtain these values require running the simulations to
sufficiently long timescales to achieve these final states in addition to removing the unwanted
reflection of scalar and tensor waves from the boundary of the simulation domain. We
are currently exploring absorptive boundary conditions to overcome this problem. We will
leave this, and the computation of gravitational waves signal from such collisions to a future
publication.
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A Numerics

A.1 Gauge choice

GRChombo uses the BSSN formalism [75–77] of the Einstein equation in 3+1 dimensions
using the ADM variables. The 4 dimensional spacetime metric is decomposed into a spatial
metric on a 3 dimensional spatial hypersurface, γij , and an extrinsic curvature Kij , which are
both evolved along a chosen local time coordinate t. The line element of the decomposition is

ds2 = −α2 dt2 + γij(dx
i + βi dt)(dxj + βj dt) , (A.1)

where α and βi are the lapse and shift, the gauge parameters which must be specified. These
parameters are specified on the initial hypersurface (see below) and then allowed to evolve
using gauge-driver equations in order to response dynamically to the physical system to
ensure stable numerical evolution. In this work, we employ a slight modification of the usual
puncture gauge [78, 79]

∂tα = − µαK + βi∂iα

−















ǫ1(α− αanalytic(t)) t < tmerger

ǫ2(α− αconstant)e
−

(

t−tmerger

tdecay

)2

t ≥ tmerger

,
(A.2)

for the lapse and

∂tβ
i =

3

4
Γi − ηβi , (A.3)

for the shift.

Note that for eq. (A.2), we return to the usual puncture gauge driver when ǫ1 = ǫ2 = 0,
with the constants η ∼ 1/MADM and µ ∼ 1 usually chosen simulation-wise to improve
stability. The additional terms with ǫ1 = ǫ2 = 1 are added in to control the presence of O(1)
gauge waves which propagate in the direction of the boost from each OS. This effect caused
unwanted adapative mesh refinement of the grid, increasing inaccuracy.

To eliminate these gauge waves, we drive α as close to αanalytic, which is the initial func-

tional form of α, but evaluated at time t. This is done by adding the ǫ1 friction term. After
merger at tmerger, the system is quickly driven back into the standard puncture gauge form,
and hence we switch from the ǫ1 friction term to the ǫ2 friction term which will exponentially
drive this additional contributions α into zero. The rate of this decay can be set, and we
found tdecay = 7 gives stable results.
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Finally, we have chosen to use the first order “integrated” shift driver condition [80, 81]
eq. (A.3) (as opposed to the usual puncture gauge driver condition which is 2nd order in
time [78, 79]). We find that this condition eliminates static imprints of initial values with
γ̃ij 6= δij which remain even after the OS has moved from its initial position.

A.2 Constructing initial data

We construct our initial data by solving for a single oscillaton (OS) profile [9, 18, 82, 83],
boosting it and then superimposing them as per the methodology presented in [43].

To obtain the radial OS profiles we use the ansatz for the spherically symmetric line
element:

ds2 = −α2dt2 + a2dr2 + r2(dθ2 + sin2(θ)dφ2), (A.4)

from which we can define A ≡ a2 and C ≡ a2/α2. Solutions are then obtained by expanding
the metric functions and the scalar field in their Fourier components:

φ(t, r) =

jmax
∑

j=1

φj(r) cos (jωt)

A(t, r) =

jmax
∑

j=0

Aj(r) cos (jωt) ,

C(t, r) =

jmax
∑

j=0

Cj(r) cos (jωt) ,

(A.5)

where ω is a coherently oscillating base frequency and jmax is the maximum order in the
Fourier expansion to which the solution is obtained. We substitute the Fourier expansion
into the Einstein-Klein-Gordon system of equations with V (φ) = m2φ2/2. The Fourier
coefficients, and ω, can be found numerically, using a shooting technique. To generate these
solutions, we iteratively solve this hierarchical set of equations up to jmax = 12 following [84].

To apply a boost in the positive x-direction with some velocity, v, we define a Lorentz
transformation of

t = γ(t′ + vx′),

x = γ(x′ + vt′),

y = y′,

z = z′,

(A.6)

where γ ≡ (1 − v2)−
1
2 is the Lorentz factor. We denote (t, x, y, z) as the “lab” frame co-

ordinates (the coordinates that relate to the Cartesian coordinates in GRChombo, and
ultimately what we construct our initial conditions in), and (t′, x′, y′, z′) as the coordinates
in the OS “rest” frame.

We Lorentz boost both A, C, φ, as well as the metric components. For an OS pair at
rest the solutions for A, C, φ are taken on a hyperslice at ti = θ/ω, where we define θ as = 0
for one OS, and θ = ∆θ for the second. For boosted OS we define the symmetry between
them during superposition, and we choose that A, C, and φ are taken on a hyperslice with
t = 0.

– 12 –
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Given this single OS profile, we generate static OS-OS initial data by superposing two
single OS solutions:

φtot = φ|x−x0
± φ|x+x0

πtot = π|x+x0
± π|x−x0

γij,tot = γij |x+x0
+ γij |x−x0

− hij

, (A.7)

where ±x0 are the locations of the centers of the two OS, and hij is a constant metric.
The ± relates the the overall symmetry of the OS pair, with + relating to a symmetric
arrangement and a − relating to an antisymmetric configuration. For unboosted OS, as
stated before, the symmetry is defined by which initial t is chosen for each star, and a +
is used when superimposing. We then define hij = γij |2x0

such that each OS is unchanged
from its isolated case such that we obtained two unexcited initial OS. If instead we had used
hij = δij , the constructed OS possess significant radial modes which will lead to premature
collapse of the OS into BH. See [43] for a full discussion.

The linear superposition of the metric causes some violation of the Hamiltonian con-
straint. We quantify this violation using the relative constraint violation

H ≡ Hcenter

16πGρcenter
(A.8)

and find values of O(0.02)% for an unboosted symmetric OS pair. The relative momentum
constraint violation can be defined in a similar way. When an OS pair is boosted we use a
relaxation routine in χ and Aij to reduce the relative violation in the Hamiltonian constraint
and momentum constraint violation, as without this relaxation, the relative constraints would
be O ≈ 1%.

A.3 Convergence and stability

We use the following to measure the volume averaged Hamiltonian constraint violation:

L2(H) =

√

1

V

∫

V
|H2|dV , (A.9)

where V is the box volume with the interior of the apparent horizon excised. The volume
averaged momentum constraint violation is calculated in a similar manner:

L2(M) =

√

1

V

∫

V
|M2|dV , (A.10)

We have good control over the constraint violation throughout our simulations, with a bounc-
ing unboosted antisymmetric OS collision achieving a maximum value of O(10−6) at the
beginning of the simulation and then decaying throughout the remainder of the simulation.

We test the convergence of our simulations by measuring the value of ρ along the
collision axis of an unboosted antisymmetric OS pair with initial compactness of C = 0.028,
that results in a bounce. The spatial coordinates for the value to be measured at was chosen
such that the OS passes through it before and after it bounces. We used fixed grid for the
convergence test with resolutions of 1.0 m−1, 0.5 m−1 and 0.25 m−1. Figure 8 shows the value
of ρ for this test, and when calculated we obtain an order of convergence between 3rd and
4th order.
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