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Abstract
The phenomenon of shear-induced jamming is a factor in the complex rheological behavior of dense suspensions. Such 
shear-jammed states are fragile, i.e., they are not stable against applied stresses that are incompatible with the stress imposed 
to create them. This peculiar flow-history dependence of the stress response is due to flow-induced microstructures. To 
examine jammed states realized under constant shear stress, we perform dynamic simulations of non-Brownian particles 
with frictional contact forces and hydrodynamic lubrication forces. We find clear signatures that distinguish these fragile 
states from the more conventional isotropic jammed states.

Keywords  Shear jamming · Suspension rheology · Granular physics

1  Introduction

Suspensions, in which solid particles are dispersed in a vis-
cous liquid, are a class of complex fluids found frequently 
in nature, industry, and consumer applications [1, 2]. To 
predict flows of suspensions with arbitrary macroscopic 
boundary conditions, it is necessary to develop continuum 
models based on particle-scale physics; it is too expensive to 
simulate individual motions of particles and interstitial flows 

for macroscopic problems. Dilute suspensions, in which the 
solid volume fractions � are less than about 5%, are well 
described with the Newtonian constitutive model with a 
modified viscosity [3, 4]. However, constitutive models for 
denser suspensions exhibiting more complex rheological 
properties are still not available [5, 6].

Suspensions are always liquid-like fluids below a cer-
tain volume fraction, i.e., there is no possibility to realize 
states exhibiting rigidity by any protocols. Conversely, it is 
possible to induce rigidity in suspensions above a certain 
solid volume fraction. Shear jamming is the phenomenon 
when shear strains yield such a rigidity [7–9]. Fragile mat-
ter as a constitutive class of complex fluids was introduced 
to describe emergence of rigidity in flowing suspensions 
[10, 11]. First, it is helpful to emphasize that there are only 
three possible states in non-Brownian suspensions of rigid 
particles regarding mechanical responses (see Fig. 1a):

	 (i)	 liquid-like state, that cannot statically bear any shear 
stress.

	 (ii)	 solid-like state, that can statically bear stresses in all 
directions.

	 (iii)	 fragile state, that can statically bear stresses only 
within a certain range of directions.

We assume sufficiently weak stresses (or infinitely rigid 
particles) in these classifications to exclude yielding. The 
unjammed states are liquid-like, and isotropically jammed 
states are solid-like. A number of processes may lead to 
these two states. On the other hand, fragile states are usually 
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associated with particular processes leading to fragile con-
figurations. Let us consider an idealized system of rigid-par-
ticle suspensions. If we randomly pick a relaxed state (i.e., 
without flow-induced microstructure) below the isotropic 
jamming point, it should be liquid-like and flow under arbi-
trary shear stress �′ . In the schematic configuration space 
shown in Fig. 1b, such an initial state is expressed as a point 
� . The trajectory (dashed line) indicates the shearing pro-
cess due to �′ , which passes through different particle con-
figurations. The flow induces some microstructure to resist 
the applied stress, which slows down the flow, eventually 
bringing it to a stop; i.e., the system reaches a jammed state, 
� . This jammed state statically supports the stress �′ , like 
an elastic or rigid solid; unlike deformed elastic materials, 
however, it is able to maintain the strain even after the stress 
is no longer applied. This jammed state is unstable against a 
change in the applied stress. Since we reached the jammed 
state � with the stress �′ , we may reverse the deformation 
with the opposite stress −�� , at least to some extent. Thus, 
jammed states encountered in shearing processes under con-
stant stresses seem to always be fragile. (In general, such 
jammed states may be able to support stress reoriented at a 
small angle of shear direction [12] or stress with the princi-
pal axes rotated in a small angle. However, the existence of 
one incompatible stress is enough to judge fragility; thus, we 
consider only shear stress reversal here.) If a different stress 
were to be applied to the initial state � from the beginning, 
the system would reach another jammed state. Such jammed 
states from � with different applied stresses form a surface, 
beyond which configurations are unreachable from �.

A shear-jammed state is one which is reached by shear but 
is then able to statically bear the shear stress (or ‘load’). As 
this state is not statically stable for applied stresses incom-
patible with the jammed state, it is termed fragile in the 
terminology of Cates et al. [11], and we follow that terminol-
ogy here; Fig. 1a (iii) illustrates the concept. Upon reversal 
of the shear stress from a fragile shear-jammed state, the 
suspension will flow, i.e., undergo some finite strain, before 
possibly reaching a jammed state in the new direction.

The occurrence of shear jamming under quasi-statically 
imposed strain was experimentally elucidated in frictional 
grains by Bi et al. [13], and its connection to Reynolds dila-
tancy was elaborated in Ren et al. [14]. Two types of shear-
jammed states were identified at a given � : states created at 
lower strains, which could not sustain shear reversal, and 
states at strains higher than a characteristic value, which 
could. In [13], the former were referred to as fragile and 
the latter as shear-jammed. Sarkar et al. [15–17] developed 
a theoretical framework to describe the transition between 
the two types of jammed states identified in [13]. Recent 
numerical work by Otsuki and Hayakawa [18] showed that 
this transition could be detected through imposition of oscil-
latory shear. It should be noted that those previous studies 
on shear jamming were performed with strain-controlled 
protocols, in which deformation is forced regardless of 
whether jammed or not. In contrast, we investigate shear 
jamming with a stress-controlled protocol; once a system is 
jammed, no further deformation occurs in the same direc-
tion. This stress-controlled approach seems, in this way, 
more natural to capture shear jamming than the previous 
works. (Very recently, Srivastava et al. [19] also investigated 
“shear-arrested states” using constant-stress discrete element 
simulations.) In this article, we examine fragility of shear 
jammed states by performing particle dynamics simulations 
with idealized conditions: inertialess, non-Brownian, and 
monolayer systems.

2 � Simulation model

We consider suspended particles in a viscous liquid. The 
particles are sufficiently small for all inertial effects to be 
negligible, i.e., the Stokes number St ≡ 𝜌a2𝛾̇∕𝜂0 (with � and 
a being the density and radius of particles, respectively, 𝛾̇ 
being the shear rate, and �0 being the viscosity of the sus-
pending fluid) is vanishingly small. We also omit Brownian 
motions, which are relevant for smaller particles. Stokesian 
Dynamics (SD) is an efficient method to reproduce particle 
dynamics in this Stokes regime [20]. The viscosity diver-
gence predicted by the original SD is a dynamic effect due 
to the singularity of hydrodynamic lubrication [21, 22]. 
Recently, the SD approach (with only hydrodynamic lubri-
cation) was extended to be coupled with frictional contact 

b

a

Fig. 1   a Three possible states of non-Brownian suspensions: (i) liq-
uid-like, (ii) solid-like, and (iii) fragile, are defined according to dis-
tinct stress responses. Different directions indicate stresses of differ-
ent compression/traction axes in this representation. b  A schematic 
“phase space” of microstates (structures) of a suspension. A suspen-
sion is initially in a liquid-like state, represented by the point A. It 
flows under constant stress �′ and reaches a jammed state � . The gray 
domain is unreachable with constant stresses from �
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mechanics to reproduce discontinuous shear thickening 
[23]. In this work, we employ an algorithm to mimic stress-
controlled rheology [24]. The viscosity divergence under a 
constant shear stress is just a consequence of a static force 
balance of the contact forces. In contrast to the original 
SD, the hydrodynamic contributions vanish at the viscosity 
divergence. Therefore, the results shown in this article would 
share some common features with dry granular systems in 
the quasi-static limit.

2.1 � Stress‑controlled quasi‑static dynamics

Particles with negligible inertia suspended in a viscous liq-
uid obey the force and torque balance equations of hydrody-
namic and non-hydrodynamic interactions,

where U represents the many-body linear and angular 
velocities of particles. In the zero-Reynolds number limit, 
the hydrodynamic interactions can be expressed as a linear 
resistance, Fh(U) = −�FU ⋅ U , where �FU is the resistance 
matrix [20]. Thus, particles are moved with U = �

−1
FU
Fnh . 

For the case of very dense suspensions, �FU can be approxi-
mately constructed with the pair-wise hydrodynamic lubri-
cation [25, 26]. The lubrication coefficients are known to 
diverge when two spherical particles approach, but we regu-
larize these interactions with a cutoff length [27].

With a background flow gradient of ∇u , the hydrody-
namic interactions are modified to the sum of the linear 
resistances to the particle velocity deviations U − u and to 
the rate-of-deformation tensor � ≡ (∇u + ∇u�)∕2,

where �FD is also a resistance matrix [28]. Furthermore, the 
simulation cell with periodic boundary conditions needs to 
be deformed according to ∇u (for more details see [29]).

As a consequence of the linearity of the governing equa-
tions, particle velocities U and the flow rate of a fixed flow 
type can be simultaneously determined under a given shear 
stress �xy . Here, we fix the flow type to simple shear flows, 
u(r) = 𝛾̇yex , with shear rate 𝛾̇ , which is the only degree of 
freedom to be determined in ∇u . The stress tensor can be 
expressed as the sum of the deformation contribution and 
contributions by non-hydrodynamic interactions,

in which the unknown shear rate 𝛾̇ is explicitly factored out 
from the first term. The rest is independent of 𝛾̇,

(1)Fh(U) + Fnh = 0,

(2)Fh(U) = −�FU ⋅ (U − u) + �FD ∶ �,

(3)� = 𝛾̇�̂D + �nh,

(4)�̂D =
1

V

∑

i

(
�SD ∶ �̂ + �SU ⋅ ÛD

)(i)
,

with ÛD = �
−1
FU

⋅ �FD ∶ �̂ and the normalized rate-of-
deformation tensor �̂ ≡ �∕𝛾̇ . The non-hydrodynamic 
contribution,

is also independent of 𝛾̇ , where Unh = �
−1
FU

⋅ Fnh . From the 
xy component of (3), we can determine 𝛾̇ for the given shear 
stress �xy,

Now, we can also determine the particle velocities with the 
obtained 𝛾̇ : U = 𝛾̇ÛD + Unh.

2.2 � Contact force model

In many stable suspensions used in practice, some repulsive forces 
act between non-contacting particles, preventing flocculation due 
to short-range van der Waals attractions. However, in this article, 
we focus on a simple model system in which the non-hydrody-
namic interaction consists only of contact forces: Fnh = Fc.

To model Fc , we employ a soft-constraint approach. The 
first geometrical constraint is the volume excluding force of 
solid particles. Hard-sphere particles will have zero overlap. 
To mimic this, we introduce a harmonic penalty function 
(kn∕2)(ai + aj − rij)

2 , which generates a force along the nor-
mal direction. Here, ai and aj are radii of particles i and j, and 
rij the distance between them.

When rough or bumpy solid surfaces are in contact, their slid-
ing displacements are also restricted by friction or interlocking; 
here, we introduce another harmonic penalty function (kt∕2)�

2 
of the relative sliding displacement � , which is determined with 
translations and rotations of contacting particles [30]. This gener-
ates tangential forces acting at the contact point. Regarding the 
maximum tangential force, we employ a simple Coulomb friction 
law, where the upper bound is proportional to the normal force 
with a proportionality coefficient � . In this work, we mainly study 
an infinite friction coefficient, implying that sliding displacements 
are constrained as long as the particles are pushed inward.

This soft-constraint approach is fundamentally different 
from hard-sphere algorithms, which impose strict geometrical 
constraints. To make the constraints stricter, we would need to 
set sufficiently large values for the penalty parameters kn and 
kt . The values which we selected keep the maximum overlap 
and tangential displacement less than 2% of the particle radius 
below the isotropic jamming point.

(5)�nh =
1

V

{
∑

i>j

(ri − rj)F
(ij)

nh
−
∑

i

(�SU ⋅ Unh)
(i)

}
,

(6)𝛾̇ =
𝜎xy − 𝜎

xy

nh

𝜎̂
xy

D

.
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3 � Results and discussion

We study monolayer bidisperse systems of 1000 spheri-
cal particles, with a size ratio of 1.4 and a volume ratio 
of approximately 1. To generate initial configurations, we 
used Brownian simulations to relax randomly placed particle 
configurations.

3.1 � Shear reversal test

We start by confirming the concept of fragile matter with our 
simulation model for dense suspensions. To understand the 
roles of shear-induced structure, Gadala-Maria and Acrivos 
[31] performed shear reversal tests using a rate-controlled 
setup. Here, we simulate a stress-controlled shear reversal 
test.

We apply a constant stress �xy = �� to an equilibrated 
suspension of � = 0.77 (Fig. 2a). The strain evolution is 
relatively fast at the beginning of the simulation and even-
tually slows down (Fig. 2b). The slowly flowing state, say 
|𝛾̇| > 10−4𝛾̇0 , lasts for a while. Fluctuation of 𝛾̇ in the flow-
ing state indicates some restructuring of the stress-bearing 
contact network (Fig. 2c).

The system is shear-jammed when all particles are in 
static force balance F(i)

C
= 0 and a contact network to sup-

port all stress is formed such that �xy

C
= �xy . According to 

(1) and (6), these conditions lead to U(i) = 0 and 𝛾̇ = 0 . We 
consider states to be jammed with the following criteria: 
max |V(i)| < 10−3a𝛾̇0 and |𝛾̇| < 10−8𝛾̇0 ; the characteristic 
shear rate 𝛾̇0 ≡ 𝜎�∕𝜂0 is used. Here, V(i)

≡ U
(i) − u(r(i)) are 

non-affine particle velocities. � (1)
J

 denotes the total strain to 
the shear-jammed (SJ) states from the relaxed initial con-
figuration. Jamming occurs above the isostatic condition 
Z > Z

𝜇=∞

iso
= 3 [32], where Z is the average contact number 

with non-rattlers. Particles that have fewer than two contacts 
with non-rattlers are called rattlers, and thus we need some 
iteration to determine them. As seen in Fig. 2d, the isostatic 
condition does not immediately lead to the SJ state.

Now, we reverse the shear stress to �xy = −�� , corre-
sponding to a rotation of the principal stress axes by �∕2 . 
Since the previously formed contact network cannot support 
this new stress, the suspension unjams. The contact num-
ber drops to a value Zmin , being below the isostatic condi-
tion (Fig. 2d). Thus, the stress-reversal simulation confirms 
that the SJ state is fragile. We continue the simulation with 
−�� . The particle dynamics is not reversible, and the state 
does not return to the initial configuration; rather, it reaches 
another SJ state after strain � (2)

J
.

After reaching the second jammed state, we stop apply-
ing the stress �xy = 0 to confirm the smallness of the elastic 
recovery strain (Fig. 2b). This small recovery is due to the 
finite values of the penalty parameters kn and kt in the soft-
constraint contact model. In the ideal hard-sphere limit, the 
recovery strain will be zero. If stress is applied in the same 
direction again, the system will not flow because the contact 
network remains.

3.2 � Features of shear‑jammed states

The SJ state is realized due to formation of a stress-bearing 
contact network. The particle movements obey the force and 
torque balance equations (1), and rearrangements continue 
until static balances are globally achieved. The structural 
evolution to reach the global balance is not monotonic. As 
seen in the movie in Supplementary Material, a static force 
balance, which is roughly indicated by vanishing velocities 
(dark colors), is locally achieved in advance of other parts, 
but the local stress axes may change due to rearrangements 
of other parts. Thus, the local domains, which achieved 
a  force balance once, need to be restructured again (cf. 
“micro-fragility” in [10]).

The strain �J to reach a SJ state reflects the difficulty in 
realizing the global force balance. Fig. 3a shows the area 
fraction dependence of � (1)

J
 from relaxed initial configura-

tions to the first jammed states, and � (2)
J

 from the first to 
the second jammed states. Particle contacts to build a 
network are more accessible at higher area fractions, and 
shear jamming accordingly occurs at smaller strain. All 

d

c

b

a

Fig. 2   Time series of a shear stress �xy , b shear strain � , c absolute 
value |𝛾̇| of shear rate, and d contact number Z with non-rattlers in 
a stress-controlled shear reversal test at � = 0.77 with � = ∞ . The 
shear stress is reversed after reaching the jammed state. After reach-
ing the second jammed state, shearing is stopped. The unit of shear 
rate 𝛾̇

0
≡ 𝜎�∕𝜂

0
 is used for the nondimensionalization
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simulations for � ≥ 0.77 indeed end up in jammed states, 
but require larger �J for lower � . Only one of ten simulations 
at � = 0.76 , and none at � = 0.75 , were jammed within the 
given maximum strain �max = 5 . Thus, the threshold area 
fraction �SJ to realize SJ states is expected to be in the range 
0.75 < 𝜙SJ < 0.76 , although based on the results available 
we cannot rule out the possibility of eventual shear jamming 
at � = 0.75 or even lower.

Though the isostatic condition Z = Ziso ( = 3 for � = ∞ ) 
alone does not determine whether or not shear jamming 
occurs, shear jamming was realized at slightly larger Z ≈ 3.1 
in all of our simulations for � ≤ 0.84 (Fig. 3b). If we were to 
run more simulations with larger �max , the minimum line of 
Z might approach the isostatic condition. (The SJ state at the 
lowest possible � may be close to random loose packing [33, 
34], but is anisotropic owing to the shearing by which it is 
accessed.) We can confirm fragility with the minimum value 
(red downtriangle) of Z after the stress reversal. If Z goes 
below Ziso , the system must experience liquid-like states no 
matter how short their duration.

3.3 � Isotropic jamming

Strains to achieve jammed states become progressively 
lower at higher area fractions (Fig. 3a). The strains � (1)

J
 are 

less than 0.01 at � ≥ 0.85 , and higher penalty parameters for 
the contact model, kn and kt , can make them even lower (data 
are not shown). The vanishing value of � (2)

J
 suggests that the 

state does not flow in any direction, i.e., the jammed state 
is solid-like. As seen in Fig. 3c, the stresses of these states 
indeed become more isotropic (The ratio �xy∕P is one way to 
represent the stress anisotropy, where P is the particle pres-
sure [35]). We can also see the sudden increase in Z above 
� = 0.85  (Fig.  3b). These observations suggest that the 
solid-like jammed states are obviously distinguishable from 
the SJ state, but similar to the conventional isotropically 

jammed state despite the presence of friction. The transition 
point �IJ seems to be in the range 0.84 < 𝜙IJ < 0.85 , which 
agrees with the known value (about 0.84) for frictionless 
2D systems [36].

3.4 � Stress‑bearing structure

Figure 4a shows stress transmission patterns bearing �′ 
in the first jammed states (upper) and − �� in the second 
jammed states (lower), respectively. The superposition of 
stressed particles in the first and second jammed states 
(Fig. 4b) displays how stress bearing structures are differ-
ent at � = 0.77 and 0.83 but more similar at � = 0.85 . The 
anisotropy, which may be noticed at � = 0.77 and 0.83 in 
Fig. 4a, is confirmed with the angular distributions for the 
orientation of contacting stressed particles (Fig. 4c). In this 
way, fragile SJ states require some compatible anisotropic 
structures; thus they are renewed to adapt to the opposite 
direction of the applied stress.

3.5 � Friction

So far we have focused on the theoretical limit of frictional 
systems with � = ∞ . We briefly discuss the � dependence 
of our results. As seen in Fig. 5a, the shear jamming was 
achieved only when � ≥ 0.5 at � = 0.8 , which indicates that 
�SJ shifts to higher values with a weaker friction � as we 
already saw [28, 9]. The strain �J to reach SJ states increases 
with smaller � . More contacts Z are required to realize jam-
ming (Fig. 5b). We also notice that the contact number Z of 
unjammed states increases with � ; particles tend to contact 
in frustrated flows due to friction.

Even when friction is completely absent ( � = 0 ), we 
obtained a similar shear-jamming phenomenology; the 
systems are shear-jammed after some flow (Fig. 6a), and 
the contact numbers Z of jammed states drop to below the 

a b c

Fig. 3   a The larger is � , the smaller is the average strain �
J
 to reach 

a SJ state. � (1)
J

 (circle) and � (2)
J

 (red diamond) are strains to reach the 
first jammed states from the initial states and the second jammed 
states after stress reversals, respectively. Only jammed results of ten 
simulations are plotted. b Mean contact number Z with non-rattlers of 
SJ states (circle) are almost constant for � ≤ 0.84 . The lowest value 
of the SJ states is Z ≈ 3.07 (dashed line). These SJ states can be con-

firmed as fragile with the minimum values Z
min

 after the shear rever-
sals (red downtriangle) (see Fig.  2d), which are below the isostatic 
condition Z

iso
= 3 for � ≤ 0.84 . Z of unjammed states (blue ×’s) are 

below but close to the plateau value near the boundary. c The sharp 
decrease of the stress anisotropy �xy∕P of jammed states (circle) 
above � = 0.84 indicates the transition from shear jamming to iso-
tropic jamming [15–17] (color figure online)
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isostatic condition ( Z�=0

iso
= 2d ) after the stress reversal 

(Fig. 6b). However, this occurs in a narrow range just below 
the isotropic jamming. Our particles seem too soft to see 
a clear transition from the shear jamming to the isotropic 
jamming. As discussed elsewhere [37], the shear jamming 
observed in frictionless particles can be just due to a finite 
size effect. Thus, our current simulation cannot confirm the 
existence of shear jamming without friction.

4 � Conclusions

We confirmed that dense suspensions with frictional inter-
actions between particles can behave as fragile matter. In a 
flowing dense suspension under stress, a contact network is 
formed. The suspension becomes jammed when the shear-
induced contact network statically supports the entire stress. 
However, this jammed state is not stable; a change of stress 
axes makes it flow. This fragile instability is the most impor-
tant feature of shear jamming to be distinguished from the 
solid-like isotropic jamming. Furthermore, we found various 
signatures to distinguish the two different states in the aver-
age contact number Z, the drop of Z after the stress reversal, 
and the stress anisotropy �xy∕P . It is also worth noting that 
SJ states near the lower bound are truly “fragile.” We need 
to set a sufficiently short time step to capture such SJ states 
in simulations with the soft-constraint contact model.

In this article, we did not investigate the dependence on 
the strength |�xy| of the shear stress. Ideal inertialess hard-
sphere suspensions do not possess any internal force scale; 
thus, the states must be independent of the stress scale. 
Therefore, in the phase diagram with stress and area fraction, 
shear jamming lies in the vertical boundaries: 𝜙SJ < 𝜙 < 𝜙IJ . 
If some interparticle repulsive forces or Brownian forces act 
on particles, they tend to hinder the formation of a contact 
network. This competition introduces a stress dependence. 

 0  0.1  0.2  0.3 0  0.1  0.2  0.3  0  0.1  0.2  0.3

a

b

c

Fig. 4   a Stress transmission patterns of the first jammed states under 
�xy = �� (upper) and the second jammed states under �xy = −�� 
(lower) are shown. Stressed particles, P(i) > ⟨P⟩ , are in black, 
where P(i) ≡ −Tr�(i)∕2 is particle pressure of the i-th particle. b 
Stressed particles in the first (blue) and second (red) jammed states 
are imposed. Overlapping particles appear in purple. c The polar 
plots show the probabilities of the orientation between two contact-
ing stressed particles in the first (blue) and the second (red) jammed 
states. The distributions are obtained from 10 simulations. The polar 
plots grow more anisotropic from � = 0.77 to 0.83, but become more 
isotropic at � = 0.85 (color figure online)

a b

Fig. 5   a  Friction coefficient � dependence of the shear jamming 
strain �

J
 (circle) at � = 0.8 . Suspensions with lower frictions ( � = 0.2 

and below) did not reach jamming at this area fraction. b The contact 
number Z (blue ×’s) of unjammed states increases with the friction 
coefficient � . However, lower Z (circle) is required to realize jammed 
states with higher � (color figure online)

a b

Fig. 6   a Strains �
J
 to reach jammed states for frictionless suspensions 

( � = 0 ). b The average contact numbers Z (circle) monotonically 
increase as the volume fraction � . SJ states may be indicated by the 
minimum values after the shear reversal (red downtriangle) which are 
below the isostatic condition Z

iso
= 4 . However, the observed range 

of area fractions is rather narrow. Z of unjammed states are time-aver-
aged values (blue ×’s) (color figure online)
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Deformability of particles also causes a similar stress 
dependence; contact deformation can enhance tangential 
constraints restricting sliding and rolling degrees of freedom 
[11]. It is worth noting the distinction between shear thicken-
ing and Reynolds dilatancy here [38]. Shear thickening does 
require such an internal force scale besides tangential con-
straints; this makes the rheology of suspensions rate depend-
ent [23]. Shear jamming is relevant to shear thickening but 
is a more basic phenomenon; it can occur just due to shear 
strain without the internal force scale, as demonstrated in 
this article. Since the volume of a suspension is constrained, 
shear jamming of dense suspensions can be considered as a 
confined Reynolds dilatancy [39].
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