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Abstract

- Abhinendra Singh?3 . Bulbul Chakraborty* - Morton M. Denn®

- Jeffrey F. Morris®

The phenomenon of shear-induced jamming is a factor in the complex rheological behavior of dense suspensions. Such
shear-jammed states are fragile, i.e., they are not stable against applied stresses that are incompatible with the stress imposed
to create them. This peculiar flow-history dependence of the stress response is due to flow-induced microstructures. To
examine jammed states realized under constant shear stress, we perform dynamic simulations of non-Brownian particles
with frictional contact forces and hydrodynamic lubrication forces. We find clear signatures that distinguish these fragile

states from the more conventional isotropic jammed states.
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1 Introduction

Suspensions, in which solid particles are dispersed in a vis-
cous liquid, are a class of complex fluids found frequently
in nature, industry, and consumer applications [1, 2]. To
predict flows of suspensions with arbitrary macroscopic
boundary conditions, it is necessary to develop continuum
models based on particle-scale physics; it is too expensive to
simulate individual motions of particles and interstitial flows
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for macroscopic problems. Dilute suspensions, in which the
solid volume fractions ¢ are less than about 5%, are well
described with the Newtonian constitutive model with a
modified viscosity [3, 4]. However, constitutive models for
denser suspensions exhibiting more complex rheological
properties are still not available [5, 6].

Suspensions are always liquid-like fluids below a cer-
tain volume fraction, i.e., there is no possibility to realize
states exhibiting rigidity by any protocols. Conversely, it is
possible to induce rigidity in suspensions above a certain
solid volume fraction. Shear jamming is the phenomenon
when shear strains yield such a rigidity [7-9]. Fragile mat-
ter as a constitutive class of complex fluids was introduced
to describe emergence of rigidity in flowing suspensions
[10, 11]. First, it is helpful to emphasize that there are only
three possible states in non-Brownian suspensions of rigid
particles regarding mechanical responses (see Fig. 1a):

(1) liquid-like state, that cannot statically bear any shear
stress.
(i) solid-like state, that can statically bear stresses in all
directions.
(iii) fragile state, that can statically bear stresses only
within a certain range of directions.

We assume sufficiently weak stresses (or infinitely rigid
particles) in these classifications to exclude yielding. The
unjammed states are liquid-like, and isotropically jammed
states are solid-like. A number of processes may lead to
these two states. On the other hand, fragile states are usually
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Fig.1 a Three possible states of non-Brownian suspensions: (i) lig-
uid-like, (ii) solid-like, and (iii) fragile, are defined according to dis-
tinct stress responses. Different directions indicate stresses of differ-
ent compression/traction axes in this representation. b A schematic
“phase space” of microstates (structures) of a suspension. A suspen-
sion is initially in a liquid-like state, represented by the point A. It
flows under constant stress ¢’ and reaches a jammed state B. The gray
domain is unreachable with constant stresses from A

associated with particular processes leading to fragile con-
figurations. Let us consider an idealized system of rigid-par-
ticle suspensions. If we randomly pick a relaxed state (i.e.,
without flow-induced microstructure) below the isotropic
jamming point, it should be liquid-like and flow under arbi-
trary shear stress ¢’. In the schematic configuration space
shown in Fig. 1b, such an initial state is expressed as a point
A. The trajectory (dashed line) indicates the shearing pro-
cess due to 6’, which passes through different particle con-
figurations. The flow induces some microstructure to resist
the applied stress, which slows down the flow, eventually
bringing it to a stop; i.e., the system reaches a jammed state,
B. This jammed state statically supports the stress o’, like
an elastic or rigid solid; unlike deformed elastic materials,
however, it is able to maintain the strain even after the stress
is no longer applied. This jammed state is unstable against a
change in the applied stress. Since we reached the jammed
state B with the stress ¢’, we may reverse the deformation
with the opposite stress —¢’, at least to some extent. Thus,
jammed states encountered in shearing processes under con-
stant stresses seem to always be fragile. (In general, such
jammed states may be able to support stress reoriented at a
small angle of shear direction [12] or stress with the princi-
pal axes rotated in a small angle. However, the existence of
one incompatible stress is enough to judge fragility; thus, we
consider only shear stress reversal here.) If a different stress
were to be applied to the initial state A from the beginning,
the system would reach another jammed state. Such jammed
states from A with different applied stresses form a surface,
beyond which configurations are unreachable from A.

@ Springer

A shear-jammed state is one which is reached by shear but
is then able to statically bear the shear stress (or ‘load’). As
this state is not statically stable for applied stresses incom-
patible with the jammed state, it is termed fragile in the
terminology of Cates et al. [11], and we follow that terminol-
ogy here; Fig. 1a (iii) illustrates the concept. Upon reversal
of the shear stress from a fragile shear-jammed state, the
suspension will flow, i.e., undergo some finite strain, before
possibly reaching a jammed state in the new direction.

The occurrence of shear jamming under quasi-statically
imposed strain was experimentally elucidated in frictional
grains by Bi et al. [13], and its connection to Reynolds dila-
tancy was elaborated in Ren et al. [14]. Two types of shear-
jammed states were identified at a given ¢: states created at
lower strains, which could not sustain shear reversal, and
states at strains higher than a characteristic value, which
could. In [13], the former were referred to as fragile and
the latter as shear-jammed. Sarkar et al. [15-17] developed
a theoretical framework to describe the transition between
the two types of jammed states identified in [13]. Recent
numerical work by Otsuki and Hayakawa [18] showed that
this transition could be detected through imposition of oscil-
latory shear. It should be noted that those previous studies
on shear jamming were performed with strain-controlled
protocols, in which deformation is forced regardless of
whether jammed or not. In contrast, we investigate shear
jamming with a stress-controlled protocol; once a system is
jammed, no further deformation occurs in the same direc-
tion. This stress-controlled approach seems, in this way,
more natural to capture shear jamming than the previous
works. (Very recently, Srivastava et al. [19] also investigated
“shear-arrested states” using constant-stress discrete element
simulations.) In this article, we examine fragility of shear
jammed states by performing particle dynamics simulations
with idealized conditions: inertialess, non-Brownian, and
monolayer systems.

2 Simulation model

We consider suspended particles in a viscous liquid. The
particles are sufficiently small for all inertial effects to be
negligible, i.e., the Stokes number St = pa’y /5, (with p and
a being the density and radius of particles, respectively, ¥
being the shear rate, and #, being the viscosity of the sus-
pending fluid) is vanishingly small. We also omit Brownian
motions, which are relevant for smaller particles. Stokesian
Dynamics (SD) is an efficient method to reproduce particle
dynamics in this Stokes regime [20]. The viscosity diver-
gence predicted by the original SD is a dynamic effect due
to the singularity of hydrodynamic lubrication [21, 22].
Recently, the SD approach (with only hydrodynamic lubri-
cation) was extended to be coupled with frictional contact
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mechanics to reproduce discontinuous shear thickening
[23]. In this work, we employ an algorithm to mimic stress-
controlled rheology [24]. The viscosity divergence under a
constant shear stress is just a consequence of a static force
balance of the contact forces. In contrast to the original
SD, the hydrodynamic contributions vanish at the viscosity
divergence. Therefore, the results shown in this article would
share some common features with dry granular systems in
the quasi-static limit.

2.1 Stress-controlled quasi-static dynamics

Particles with negligible inertia suspended in a viscous lig-
uid obey the force and torque balance equations of hydrody-
namic and non-hydrodynamic interactions,

F,(U)+F, =0, (D)
where U represents the many-body linear and angular
velocities of particles. In the zero-Reynolds number limit,
the hydrodynamic interactions can be expressed as a linear
resistance, F(U) = — Ry - U, where Ry is the resistance
matrix [20]. Thus, particles are moved with U = RI;IIJF oh-
For the case of very dense suspensions, Rg;; can be approxi-
mately constructed with the pair-wise hydrodynamic lubri-
cation [25, 26]. The lubrication coefficients are known to
diverge when two spherical particles approach, but we regu-
larize these interactions with a cutoff length [27].

With a background flow gradient of Vu, the hydrody-
namic interactions are modified to the sum of the linear
resistances to the particle velocity deviations U — u and to
the rate-of-deformation tensor D = (Vu + Vu')/2,

F,(U)=—-Rgy - (U—-u)+ Ry, : D, 2)
where Ry is also a resistance matrix [28]. Furthermore, the
simulation cell with periodic boundary conditions needs to
be deformed according to Vu (for more details see [29]).
As a consequence of the linearity of the governing equa-
tions, particle velocities U and the flow rate of a fixed flow
type can be simultaneously determined under a given shear
stress 6. Here, we fix the flow type to simple shear flows,
u(r) = yye,, with shear rate y, which is the only degree of
freedom to be determined in Vu. The stress tensor can be
expressed as the sum of the deformation contribution and
contributions by non-hydrodynamic interactions,

o =y6p+ 0y, 3)
in which the unknown shear rate y is explicitly factored out
from the first term. The rest is independent of 7,

N 1
6 =

D VZ(RSD . |5+RSU -UD)(i), (4)

A

with U = R;ﬁ] *Rgp : D and the normalized rate-of-
deformation tensor D = D/j. The non-hydrodynamic
contribution,

Oy = 11/{2(% _rj)ngl) - Z(RSU ‘ Unh)(i)}’ )

i>j i

is also independent of 7, where U, = R;I]J - F.;,. From the
xy component of (3), we can determine y for the given shear
stress o7,
, xy
L ¥ — O-nh
V= (6)
D

Now, we can also determine the particle velocities with the
obtained y: U = yUp + Uy,

2.2 Contact force model

In many stable suspensions used in practice, some repulsive forces
act between non-contacting particles, preventing flocculation due
to short-range van der Waals attractions. However, in this article,
we focus on a simple model system in which the non-hydrody-
namic interaction consists only of contact forces: F,, = F .

To model F., we employ a soft-constraint approach. The
first geometrical constraint is the volume excluding force of
solid particles. Hard-sphere particles will have zero overlap.
To mimic this, we introduce a harmonic penalty function
(ky/2)(a; + a; — r[j)z, which generates a force along the nor-
mal direction. Here, ¢; and a; are radii of particles i and j, and
r;; the distance between them.

‘When rough or bumpy solid surfaces are in contact, their slid-
ing displacements are also restricted by friction or interlocking;
here, we introduce another harmonic penalty function (k,/ 2)&?
of the relative sliding displacement &, which is determined with
translations and rotations of contacting particles [30]. This gener-
ates tangential forces acting at the contact point. Regarding the
maximum tangential force, we employ a simple Coulomb friction
law, where the upper bound is proportional to the normal force
with a proportionality coefficient u. In this work, we mainly study
an infinite friction coefficient, implying that sliding displacements
are constrained as long as the particles are pushed inward.

This soft-constraint approach is fundamentally different
from hard-sphere algorithms, which impose strict geometrical
constraints. To make the constraints stricter, we would need to
set sufficiently large values for the penalty parameters &, and
k.. The values which we selected keep the maximum overlap
and tangential displacement less than 2% of the particle radius
below the isotropic jamming point.

@ Springer
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3 Results and discussion

We study monolayer bidisperse systems of 1000 spheri-
cal particles, with a size ratio of 1.4 and a volume ratio
of approximately 1. To generate initial configurations, we
used Brownian simulations to relax randomly placed particle
configurations.

3.1 Shear reversal test

We start by confirming the concept of fragile matter with our
simulation model for dense suspensions. To understand the
roles of shear-induced structure, Gadala-Maria and Acrivos
[31] performed shear reversal tests using a rate-controlled
setup. Here, we simulate a stress-controlled shear reversal
test.

We apply a constant stress ¢ = ¢’ to an equilibrated
suspension of ¢ = 0.77 (Fig. 2a). The strain evolution is
relatively fast at the beginning of the simulation and even-
tually slows down (Fig. 2b). The slowly flowing state, say
|7] > 10~*7,, lasts for a while. Fluctuation of 7 in the flow-
ing state indicates some restructuring of the stress-bearing
contact network (Fig. 2c¢).

The system is shear-jammed when all particles are in
static force balance F' g) = 0 and a contact network to sup-
port all stress is formed such that 6. = ¢*. According to

A0

o
=
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117y

Fig.2 Time series of a shear stress ¢, b shear strain y, ¢ absolute
value |y| of shear rate, and d contact number Z with non-rattlers in
a stress-controlled shear reversal test at ¢p = 0.77 with y = co. The
shear stress is reversed after reaching the jammed state. After reach-
ing the second jammed state, shearing is stopped. The unit of shear
rate y, = o’ /1, is used for the nondimensionalization
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(1) and (6), these conditions lead to U” = 0 and j = 0. We
consider states to be jammed with the following criteria:
max |[V?| < 1073ay, and || < 107%},; the characteristic
shear rate j, = 6’ /1, is used. Here, V¥ = U? — u(r®) are
non-affine particle velocities. yJ( ! denotes the total strain to
the shear-jammed (SJ) states from the relaxed initial con-
figuration. Jamming occurs above the isostatic condition
Z > 77 = 3[32], where Z is the average contact number
with non-rattlers. Particles that have fewer than two contacts
with non-rattlers are called rattlers, and thus we need some
iteration to determine them. As seen in Fig. 2d, the isostatic
condition does not immediately lead to the SJ state.

Now, we reverse the shear stress to o = —¢’, corre-
sponding to a rotation of the principal stress axes by 7 /2.
Since the previously formed contact network cannot support
this new stress, the suspension unjams. The contact num-
ber drops to a value Z;,, being below the isostatic condi-
tion (Fig. 2d). Thus, the stress-reversal simulation confirms
that the SJ state is fragile. We continue the simulation with
—o’'. The particle dynamics is not reversible, and the state
does not return to the initial configuration; rather, it reaches
another SJ state after strain yJ(Z) .

After reaching the second jammed state, we stop apply-
ing the stress 0 = 0 to confirm the smallness of the elastic
recovery strain (Fig. 2b). This small recovery is due to the
finite values of the penalty parameters k, and k, in the soft-
constraint contact model. In the ideal hard-sphere limit, the
recovery strain will be zero. If stress is applied in the same
direction again, the system will not flow because the contact
network remains.

3.2 Features of shear-jammed states

The SJ state is realized due to formation of a stress-bearing
contact network. The particle movements obey the force and
torque balance equations (1), and rearrangements continue
until static balances are globally achieved. The structural
evolution to reach the global balance is not monotonic. As
seen in the movie in Supplementary Material, a static force
balance, which is roughly indicated by vanishing velocities
(dark colors), is locally achieved in advance of other parts,
but the local stress axes may change due to rearrangements
of other parts. Thus, the local domains, which achieved
a force balance once, need to be restructured again (cf.
“micro-fragility” in [10]).

The strain y; to reach a SJ state reflects the difficulty in
realizing the global force balance. Fig. 3a shows the area
fraction dependence of yj(l) from relaxed initial configura-
tions to the first jammed states, and yj(z) from the first to
the second jammed states. Particle contacts to build a
network are more accessible at higher area fractions, and
shear jamming accordingly occurs at smaller strain. All
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Fig.3 a The larger is ¢, the smaller is the average strain y; to reach
a SJ state. yJ(” (circle) and 7/1(2) (red diamond) are strains to reach the
first jammed states from the initial states and the second jammed
states after stress reversals, respectively. Only jammed results of ten
simulations are plotted. b Mean contact number Z with non-rattlers of
SJ states (circle) are almost constant for ¢p < 0.84. The lowest value
of the SJ states is Z ~ 3.07 (dashed line). These SJ states can be con-

simulations for ¢p > 0.77 indeed end up in jammed states,
but require larger y; for lower ¢. Only one of ten simulations
at ¢ = 0.76, and none at ¢ = 0.75, were jammed within the
given maximum strain y,,,, = 5. Thus, the threshold area
fraction ¢g; to realize SJ states is expected to be in the range
0.75 < ¢pg; < 0.76, although based on the results available
we cannot rule out the possibility of eventual shear jamming
at ¢ = 0.75 or even lower.

Though the isostatic condition Z = Z; ., (= 3 for y = o)
alone does not determine whether or not shear jamming
occurs, shear jamming was realized at slightly larger Z ~ 3.1
in all of our simulations for ¢ < 0.84 (Fig. 3b). If we were to
run more simulations with larger y,,,, the minimum line of
Z might approach the isostatic condition. (The SJ state at the
lowest possible ¢ may be close to random loose packing [33,
34], but is anisotropic owing to the shearing by which it is
accessed.) We can confirm fragility with the minimum value
(red downtriangle) of Z after the stress reversal. If Z goes
below Z,,, the system must experience liquid-like states no
matter how short their duration.

3.3 Isotropic jamming

Strains to achieve jammed states become progressively
lower at higher area fractions (Fig. 3a). The strains yj(l) are
less than 0.01 at ¢ > 0.85, and higher penalty parameters for
the contact model, k, and k,, can make them even lower (data
are not shown). The vanishing value of yj(z) suggests that the
state does not flow in any direction, i.e., the jammed state
is solid-like. As seen in Fig. 3c, the stresses of these states
indeed become more isotropic (The ratio ¢ /P is one way to
represent the stress anisotropy, where P is the particle pres-
sure [35]). We can also see the sudden increase in Z above
¢ = 0.85 (Fig. 3b). These observations suggest that the
solid-like jammed states are obviously distinguishable from
the SJ state, but similar to the conventional isotropically

firmed as fragile with the minimum values Z_;, after the shear rever-

sals (red downtriangle) (see Fig. 2d), which are below the isostatic
condition Z, = 3 for ¢p < 0.84. Z of unjammed states (blue X’s) are

1S0
below but close to the plateau value near the boundary. ¢ The sharp
decrease of the stress anisotropy ¢ /P of jammed states (circle)
above ¢ = 0.84 indicates the transition from shear jamming to iso-
tropic jamming [15-17] (color figure online)

jammed state despite the presence of friction. The transition
point ¢y seems to be in the range 0.84 < ¢;; < 0.85, which
agrees with the known value (about 0.84) for frictionless
2D systems [36].

3.4 Stress-bearing structure

Figure 4a shows stress transmission patterns bearing ¢’
in the first jammed states (upper) and — ¢’ in the second
jammed states (lower), respectively. The superposition of
stressed particles in the first and second jammed states
(Fig. 4b) displays how stress bearing structures are differ-
ent at ¢ = 0.77 and 0.83 but more similar at ¢ = 0.85. The
anisotropy, which may be noticed at ¢ = 0.77 and 0.83 in
Fig. 4a, is confirmed with the angular distributions for the
orientation of contacting stressed particles (Fig. 4c). In this
way, fragile SJ states require some compatible anisotropic
structures; thus they are renewed to adapt to the opposite
direction of the applied stress.

3.5 Friction

So far we have focused on the theoretical limit of frictional
systems with y = co. We briefly discuss the u dependence
of our results. As seen in Fig. 5a, the shear jamming was
achieved only when ¢ > 0.5 at ¢ = 0.8, which indicates that
@gy shifts to higher values with a weaker friction u as we
already saw [28, 9]. The strain y; to reach SJ states increases
with smaller y. More contacts Z are required to realize jam-
ming (Fig. 5b). We also notice that the contact number Z of
unjammed states increases with yu; particles tend to contact
in frustrated flows due to friction.

Even when friction is completely absent (4 = 0), we
obtained a similar shear-jamming phenomenology; the
systems are shear-jammed after some flow (Fig. 6a), and
the contact numbers Z of jammed states drop to below the

@ Springer
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Fig.4 a Stress transmission patterns of the first jammed states under
o = ¢’ (upper) and the second jammed states under o = —¢’
(lower) are shown. Stressed particles, P® > (P), are in black,
where PO = —Tro®/2 is particle pressure of the i-th particle. b
Stressed particles in the first (blue) and second (red) jammed states
are imposed. Overlapping particles appear in purple. ¢ The polar
plots show the probabilities of the orientation between two contact-
ing stressed particles in the first (blue) and the second (red) jammed
states. The distributions are obtained from 10 simulations. The polar
plots grow more anisotropic from ¢ = 0.77 to 0.83, but become more
isotropic at ¢p = 0.85 (color figure online)
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Fig.5 a Friction coefficient y dependence of the shear jamming
strain y; (circle) at ¢ = 0.8. Suspensions with lower frictions (4 = 0.2
and below) did not reach jamming at this area fraction. b The contact
number Z (blue X’s) of unjammed states increases with the friction
coefficient . However, lower Z (circle) is required to realize jammed
states with higher u (color figure online)
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Fig.6 a Strains y; to reach jammed states for frictionless suspensions
(u=0). b The average contact numbers Z (circle) monotonically
increase as the volume fraction ¢. SJ states may be indicated by the
minimum values after the shear reversal (red downtriangle) which are
below the isostatic condition Z;,, = 4. However, the observed range

iso
of area fractions is rather narrow. Z of unjammed states are time-aver-
aged values (blue X’s) (color figure online)

isostatic condition (Z{::O = 2d) after the stress reversal
(Fig. 6b). However, this occurs in a narrow range just below
the isotropic jamming. Our particles seem too soft to see
a clear transition from the shear jamming to the isotropic
jamming. As discussed elsewhere [37], the shear jamming
observed in frictionless particles can be just due to a finite
size effect. Thus, our current simulation cannot confirm the
existence of shear jamming without friction.

4 Conclusions

We confirmed that dense suspensions with frictional inter-
actions between particles can behave as fragile matter. In a
flowing dense suspension under stress, a contact network is
formed. The suspension becomes jammed when the shear-
induced contact network statically supports the entire stress.
However, this jammed state is not stable; a change of stress
axes makes it flow. This fragile instability is the most impor-
tant feature of shear jamming to be distinguished from the
solid-like isotropic jamming. Furthermore, we found various
signatures to distinguish the two different states in the aver-
age contact number Z, the drop of Z after the stress reversal,
and the stress anisotropy ¢ /P. It is also worth noting that
SJ states near the lower bound are truly “fragile.” We need
to set a sufficiently short time step to capture such SJ states
in simulations with the soft-constraint contact model.

In this article, we did not investigate the dependence on
the strength |6*'| of the shear stress. Ideal inertialess hard-
sphere suspensions do not possess any internal force scale;
thus, the states must be independent of the stress scale.
Therefore, in the phase diagram with stress and area fraction,
shear jamming lies in the vertical boundaries: ¢g; < ¢ < ¢y;.
If some interparticle repulsive forces or Brownian forces act
on particles, they tend to hinder the formation of a contact
network. This competition introduces a stress dependence.
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Deformability of particles also causes a similar stress
dependence; contact deformation can enhance tangential
constraints restricting sliding and rolling degrees of freedom
[11]. It is worth noting the distinction between shear thicken-
ing and Reynolds dilatancy here [38]. Shear thickening does
require such an internal force scale besides tangential con-
straints; this makes the rheology of suspensions rate depend-
ent [23]. Shear jamming is relevant to shear thickening but
is a more basic phenomenon; it can occur just due to shear
strain without the internal force scale, as demonstrated in
this article. Since the volume of a suspension is constrained,
shear jamming of dense suspensions can be considered as a
confined Reynolds dilatancy [39].
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