
Extracting Archival-Quality Information from
Software-Related Chats

Preetha Chatterjee
Department of Computer and Information Science, University of Delaware, USA

Advisor: Lori Pollock
preethac@udel.edu

ABSTRACT
Software developers are increasingly having conversations about
software development via online chat services. Many of those chat
communications contain valuable information, such as code de-
scriptions, good programming practices, and causes of common
errors/exceptions. However, the nature of chat community content
is transient, as opposed to the archival nature of other developer
communications such as email, bug reports and Q&A forums. As a
result, important information and advice are lost over time.

The focus of this dissertation is Extracting Archival Information
from Software-Related Chats, specifically to (1) automatically iden-
tify conversations which contain archival-quality information, (2)
accurately reduce the granularity of the information reported as
archival information, and (3) conduct a case study to investigate
how archival quality information extracted from chats compare to
related posts in Q&A forums. Archiving knowledge from developer
chats that could be used potentially in several applications such
as: creating a new archival mechanism available to a given chat
community, augmenting Q&A forums, or facilitating the mining of
specific information and improving software maintenance tools.

CCS CONCEPTS
• Software and its engineering → Maintaining software; •
Information systems → Social networking sites;

KEYWORDS
online software developer chats, archival quality social content
ACM Reference Format:
Preetha Chatterjee. 2020. Extracting Archival-Quality Information from
Software-Related Chats. In 42nd International Conference on Software Engi-
neering Companion (ICSE ’20 Companion), May 23–29, 2020, Seoul, Republic of
Korea. ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3377812.
3381391

1 INTRODUCTION
More than ever, software developers are having conversations about
software development via online chat services. In particular, devel-
opers are turning to public chat communities hosted on services

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE ’20 Companion, May 23–29, 2020, Seoul, Republic of Korea
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7122-3/20/05. . . $15.00
https://doi.org/10.1145/3377812.3381391

such as Slack, IRC, Gitter, Microsoft Teams, and Freenode to dis-
cuss specific programming languages or technologies. Developers
use these communities to ask and answer specific development
questions, with the aim of improving their own skills and helping
others.

Our preliminary study [6, 7] shows that chat communications
contain valuable information, such as descriptions of code snip-
pets and specific APIs, good programming practices, and causes of
common errors/exceptions. Researchers have demonstrated that
various software engineering tasks can be supported by mining
similar information from emails and bug reports [5], tutorials [16],
and Q&A forums [3, 17, 19]. Thus, availability of all these types of
information in software related chats shows promise for mining
those information in building and improving software maintenance
tools.

The nature of chat community content is transient, as opposed
to the archival nature of other developer communications such as
email, bug reports and Q&A forums. Developers participate in infor-
mal conversations, where information is shared in short messages
and in an unstructured manner. Multiple questions are discussed
and answered in parallel by different participants. Due to the in-
formal and unstructured nature of the medium, chat conversations
also often contain both noise and useful information. As a result,
it becomes difficult to find relevant information in a large chat
history, and important advice is lost over time. Hence, identifying
and preserving useful information from chats in the form of an
archive, would serve as a source of knowledge for both software
developers and researchers.

Assessing the quality of information is important, so that we
can extract useful information when archiving. There has not been
much analyses of developer chat communities to assess or improve
the quality of the content, however, researchers have focused on
assessing the quality of information in Q&A forums beyond built-in
mechanisms of the websites [4, 9, 18, 22]. We observed that rela-
tive to other developer communications such as Stack Overflow,
where quality feedback is explicitly signaled (in forms of accepted
answers, vote counts, or duplicate questions), in chats quality feed-
back is signaled in the flow of the conversation. In developer chat
communities, conversations contain mostly textual and emoji clues
from other participants to reward good answers. Our hypothe-
ses are: (1) Implicit quality indicators (e.g. emojis, textual clues) in
chat communities do not insure archival worthiness. The quality
indicators in Q&A forums could be adapted to assess the archival-
worthiness in chat communications. However, since the structure
and format of chat communications vary significantly from Q&A fo-
rums, identifying additional quality indicators specific to developer
chat communications might be necessary. (2) Text and program

https://doi.org/10.1145/3377812.3381391
https://doi.org/10.1145/3377812.3381391
https://doi.org/10.1145/3377812.3381391

ICSE ’20 Companion, May 23–29, 2020, Seoul, Republic of Korea Preetha Chatterjee

analysis techniques can be leveraged to automatically identify and
curate archival-quality information shared in written developer
chat communications.

To evaluate our hypothesis, this dissertation will focus on an-
swering the following research questions (RQs):

• RQ0: How much archival-quality information exist in developer
chat communications?
• RQ1: How accurately can we automatically identify conversa-
tions containing archival-quality information?
• RQ2: How much can we accurately reduce the granularity of
archival-quality information?
• RQ3: Case Study: How can extracted archival-quality informa-
tion from Slack chats compare to related Stack Overflow posts?

My research will focus on Slack as the targeted chat platform due
to its increasing popularity [23] and potential of a mining source
for software engineering tools [6].

Expected Contributions:

• A technique to automatically disentangle conversations in soft-
ware developer chats.
• Identification of properties of archival-quality information or
quality metrics for developer chat communications.
• An approach based on text processing and machine learning to
extract archival-quality information in chats.
• A knowledge archive of conversations in developer chat commu-
nications, suitable for research beyond this project.
• A case study to compare the archived information from developer
chat conversations to another archival-based software artifact,
specifically Q&A forums.

2 BACKGROUND AND RELATED WORK
2.1 Background
The most popular chat communities used by software developers
include Slack, IRC, Microsoft Teams, and Flowdock. Slack, with over
8 million daily active users [23], is easily accessible to users as a
mobile application as well as a web-based and OS-based application.
Public chats in Slack are comprised of multiple communities focused
on particular topics such as a technology (e.g., Python or Ruby-on-
Rails), with specific channels within a given community assigned
to general discussion or to particular subtopics [24]. Within each
channel, users participate in chat conversations, or chats, by posting
messages. Across all messaging options, users can send text, emojis,
and/or multimedia (image and video) messages. Chats in some
channels follow a Q&A format, with information seekers posting
questions and others providing answers, possibly including code
snippets or stack traces.

2.2 Related Work
Recent studies have focused on learning about how chat commu-
nities are used by development teams and the usefulness of the
conversations for learning about developer behaviors. Shihab et
al. [20, 21] analyzed developer Internet Relay Chat (IRC) meeting
logs to analyze the content, participants, their contribution and
styles of communications. Yu et al. [26] conducted an empirical
study to investigate the use of synchronous (IRC) and asynchronous

Process

Extracting Archival-Quality Information from Software-Related Chats

RQ3: Case Study: How
extracted archival

quality information from
Slack chats compare to
Stack Overflow posts?

Investigate duplicate
information

Investigate
contradictory
information

Investigate
complementary

information

RQ2: How much can
we accurately reduce

the granularity of
archival quality

information?

Identify seeds of
archival quality

information

Expand seeds with
necessary context

Determine nuggets
of archival quality

information

RQ0: How much
archival-quality

information exist in
developer chat

communications?

Investigate
prevalence of

archival quality
information in chats

Investigate
characteristics that
inhibit automatic
mining in chats

Developer Chat History Chat
Archive

RQ1: How accurately
can we automatically

identify conversations
containing archival
quality information?

Disentangle chat
conversations

Identify properties of
archival quality

information

Determine
conversations

containing archival
quality information

Figure 1: Overview of Dissertation Research Questions and
Corresponding Research Problems

(mailing list) communication mechanisms in global software devel-
opment projects. Elliott and Scacchi [10] showed that open source
communities use IRC channels, email discussions and community
digests to mitigate and resolve conflicts. Lin et al. [13] conducted an
exploratory study to learn how Slack impacts development team dy-
namics. Lebeuf et al. [12] investigated how chatbots can help reduce
the friction points that software developers face when working col-
laboratively. Paikari et al. [14] characterized and compared chatbots
related to software development in six dimensions (type, direction,
guidance, predictability, interaction style, and communication chan-
nel). Panichella et al. [15] investigated how collaboration links vary
and complement each other by analyzing communication data from
mailing lists, issue trackers, and IRC chat logs of seven OSS projects.

Chowdhury and Hindle [8] proposed an approach to automati-
cally filter out off-topic IRC discussions by exploiting Stack Over-
flow programming discussions and YouTube video comments. Alka-
dhi et al. [1, 2] conducted exploratory studies to examine the fre-
quency and completeness of available rationale in chat messages,
contribution of rationale by developers, and the potential of auto-
matic techniques for rationale extraction. The automation in these
analyses was used to learn about behavior, frequency and the po-
tential of machine learning techniques to extract specific types of
information, but not to assess their quality to extract only archival
worthy information from developer chat communications.

3 RESEARCH
This section describes my dissertation research towards archiving
information from developer chat communications. Figure 1 illus-
trates how the individual research projects fit together to form the
proposed research program.

3.1 RQ0: How much Archival-Quality
Information Exist in Developer Chat
Communications?

We conducted an exploratory study [6] to investigate if there is
archival information in developer chat communications. We also

Extracting Archival-Quality Information from
Software-Related Chats ICSE ’20 Companion, May 23–29, 2020, Seoul, Republic of Korea

investigated the potential usefulness and challenges ofmining devel-
oper Q&A chat conversations for supporting software maintenance
and evolution tools.
Methodology. We designed our study to answer the following
study questions (SQs): SQ1: How prevalent is the information that
has been successfully mined from Stack Overflow Q&A forum to sup-
port software engineering tools in developer Q&A chats such as Slack?
SQ2: Do Slack Q&A chats have characteristics that might inhibit au-
tomatic mining of information to support software engineering tools?
To answer SQ1, we focused on information that has been commonly
mined in other software artifacts such as code snippets, links to
code snippets, API mentions, and bad code snippets. To answer
SQ2, we focused on measures that could provide some insights into
the form of Slack Q&A conversations (participant count, questions
with no answer, answer count) and measures that could indicate
challenges in automation (how participants indicate accepted an-
swers, questions with no accepted answer, natural language text
describing code snippets, incomplete sentences, noise within a doc-
ument, and knowledge construction process) that suggest a need
to filter.
Findings. The findings of the study indicate that: (1) Much of the
information mined from Stack Overflow is also available on Slack
Q&A channels. (2) API mentions are available in larger quantities
on Slack Q&A channels. (3) Links are rarely available on both Slack
and Stack Overflow Q&A. (4) The largest proportion of Slack Q&A
conversations discuss software design. (5) Accepted answers are
available in chat conversations, but require more effort to discern.
(6) Participatory conversations provide additional value but require
deeper analysis of conversational context.

3.2 RQ1: How Accurately Can We
Automatically Identify Conversations
Containing Archival-Quality Information?

To answer this research question, I address two research problems:
(1) Disentangle developer chat conversations, and (2) Identify prop-
erties of archival-quality information.

3.2.1 Disentangle Developer Chat Conversations. Messages in chats
form a stream, with conversations often interleaving such that a sin-
gle conversation thread is entangled with other conversations, thus
requiring techniques to separate, or disentangle, the conversations
for analysis.
Methodology. The disentanglement problem has been studied
before by researchers in the context of IRC and similar chat plat-
forms [11, 25]. In a recent study [6], we modified the technique
proposed by Elsner and Charniak [11] to disentangle conversations
on Slack. Specifically we 1) used a significantly larger window of
messages, 2) computed the features on the last five messages re-
gardless of elapsed time, and 3) introduced several features specific
to Slack, for instance, the use of emoji or code blocks within a
message.
Evaluation. The model with the enhancements produced a micro-
averaged F-measure of 0.79; a strong improvement over Elsner
and Charniak approach’s micro-averaged F-measure of 0.57 on
disentangling Slack conversations.

3.2.2 Identify Properties Of Archival-Quality Information. Conver-
sations in public chat conversations may vary significantly in terms
of archival-quality such as conciseness, readability, and correctness
of information. We intuitively define archival-quality information
as knowledge, which on archiving can serve as a good resource for
software engineers and/or mining tools.
Research Strategy. As a first step to assess quality of conversa-
tions, we need to identify the properties of archival worthy knowl-
edge in chat forums. Typically, there are no explicit built-in in-
dicators of quality of information shared on chat forums. Hence,
I plan to explore how well adaptations of the properties of valu-
able information in archival-based Q&A forums (specifically Stack
Overflow), can identify the properties of archival-quality informa-
tion in chat forums (specifically Slack). Additionally, I will also
explore a data-driven approach of analyzing Slack conversations to
understand the characteristics of conversations containing archival-
quality information. The properties of archival-quality information
thus identified could potentially be used as features to build a ma-
chine learning based approach to automatically determine archival
worthiness of a conversation.
Evaluation. The first step in evaluation will be to create a gold
set of conversations with each conversation assigned a quality
score. I plan to recruit human judges with prior experience in
programming and using Slack, to participate in a study and create
the gold set. Next, the evaluation study will focus on addressing
the following evaluation question: “How effective is my approach in
determining conversations that contain archival-quality information?”
Results will be evaluated using precision, recall, and F-measure.
These evaluation measures are widely used for tasks in information
retrieval and classification.

3.3 RQ2: How Much Can We Accurately
Reduce The Granularity Of
Archival-Quality Information?

Developer conversations can often contain extensive details, re-
dundant information, and noise, along with archival-quality infor-
mation. Reading, understanding and reusing the archival-quality
information from those conversations therefore becomes arduous
and time-consuming. Reducing the granularity of archival-quality
information in chats could help in saving time and effort for min-
ing specific information from the archive by both developers and
mining tools.
Research Strategy. I plan to answer this research question through
a research strategy which involves solving three steps: (1) identify
seeds of archival-quality information, (2) expand seeds with nec-
essary context, and (3) construct nuggets of archival-quality infor-
mation. The first step is to identify archival-quality information
seeds, which would be utterances in a conversation that are directly
related to an archival property through the structure, content or
metadata of the utterance. The second step is to identify utterances
related to the archival-quality information seeds that would be
highly likely to also be containing archival-quality information,
but not directly identifiable without the seed utterance. Finally, the
third step is to design an approach to combine the seeds and context
to identify archival-quality nuggets of information.

ICSE ’20 Companion, May 23–29, 2020, Seoul, Republic of Korea Preetha Chatterjee

Evaluation. The first step in evaluation will be to create a gold set
of developer chats tagged with nuggets of archival-quality informa-
tion. The next step of the evaluation study will focus on addressing
the evaluation question: “How accurate is my approach in reduc-
ing granularity of archival-quality information in developer chats?”.
Precision, recall and F-measure will be used as evaluation measures.

3.4 RQ3: Case Study: How Does Extracted
Archival-Quality Information from Slack
Chats Compare to Related Stack Overflow
Posts?

Borrowing from data triangulation used by qualitative researchers,
it is possible to envision a system where software developers’ social
communication channels serve as the multiple sources of evidence
to establish quality of information in each channel. Information in
one social communication channel that complements or contradicts
information in another channel is identified and used to provide
feedback within the social communities. Thus, I plan to conduct a
case study to explore this potential by comparing Slack archival
quality information with another archival-based software artifact,
specifically Q&A forums (e.g. Stack Overflow).
Research Strategy. I plan to answer the following case study ques-
tions (CSQ) through a qualitative study: CSQ1: How much informa-
tion in Slack and Stack Overflow is duplicate? What kinds of informa-
tion is duplicate? CSQ2: How much information in Slack and Stack
Overflow is complementary? What kinds of information is comple-
mentary? CSQ3: Can we determine if information in Slack and Stack
Overflow contradict each other? I plan to investigate an inductive
approach to qualitatively analyze the information in the Slack-Stack
Overflow comparison dataset. Understanding the different kinds of
duplicate, complementary and contradictory information is impor-
tant to understand the potential of improving the quality of shared
information in developer communications.

4 PROPOSED TIMELINE
The author is a fifth year PhD student, who passed her PhD proposal
in May 2019. RQ0 was presented at the International Conference
on Mining Software Repositories (MSR’19). RQ1 is currently under
review at a software engineering conference. She plans to submit
RQ2 and RQ3 in prestigious conferences and journals in Software
Engineering.

REFERENCES
[1] R. Alkadhi, T. Lata, E. Guzmany, and B. Bruegge. 2017. Rationale in Development

Chat Messages: An Exploratory Study. In 2017 IEEE/ACM 14th International
Conference on Mining Software Repositories (MSR). 436–446.

[2] R. Alkadhi, M. Nonnenmacher, E. Guzman, and B. Bruegge. 2018. How do devel-
opers discuss rationale?. In 2018 IEEE 25th International Conference on Software
Analysis, Evolution and Reengineering (SANER), Vol. 00. 357–369.

[3] Alberto Bacchelli, Luca Ponzanelli, and Michele Lanza. 2012. Harnessing Stack
Overflow for the IDE. In Proc. 3rd Int’l Wksp. on Recommendation Systems for
Software Engineering. 26–30.

[4] Antoaneta Baltadzhieva and Grzegorz Chrupala. 2015. Question Quality in
Community Question Answering Forums: A Survey. SIGKDD Explor. Newsl. 17,
1 (Sept. 2015), 8–13.

[5] Gerardo Canfora, Massimiliano Di Penta, Rocco Oliveto, and Sebastiano
Panichella. 2012. Who is Going to Mentor Newcomers in Open Source Projects?.
In Proceedings of the ACM SIGSOFT 20th International Symposium on the Founda-
tions of Software Engineering (FSE ’12). Article 44, 11 pages.

[6] P. Chatterjee, K. Damevski, L. Pollock, V. Augustine, and N.A. Kraft. 2019. Ex-
ploratory Study of Slack Q&A Chats as a Mining Source for Software Engineering
Tools. In Proceedings of the 16th International Conference onMining Software Repos-
itories (MSR’19). https://doi.org/10.1109/MSR.2019.00075

[7] P. Chatterjee, M. A. Nishi, K. Damevski, V. Augustine, L. Pollock, and N. A.
Kraft. 2017. What information about code snippets is available in different
software-related documents? An exploratory study. In 2017 IEEE 24th International
Conference on Software Analysis, Evolution and Reengineering (SANER). 382–386.
https://doi.org/10.1109/SANER.2017.7884638

[8] S. A. Chowdhury and A. Hindle. 2015. Mining StackOverflow to Filter Out Off-
Topic IRC Discussion. In 2015 IEEE/ACM 12th Working Conference on Mining
Software Repositories. 422–425.

[9] Denzil Correa and Ashish Sureka. 2013. Fit or Unfit: Analysis and Prediction of
’Closed Questions’ on Stack Overflow. In Proceedings of the First ACM Conference
on Online Social Networks (COSN ’13). 201–212.

[10] Margaret S. Elliott and Walt Scacchi. 2003. Free Software Developers As an
Occupational Community: Resolving Conflicts and Fostering Collaboration. In
Proceedings of the 2003 International ACM SIGGROUP Conference on Supporting
Group Work (GROUP ’03). 21–30.

[11] Micha Elsner and Eugene Charniak. 2008. You talking to me? A Corpus and Algo-
rithm for Conversation Disentanglement. In Proc. Association of Computational
Linguistics: Human Language Technology. 834–842.

[12] Carlene Lebeuf, Margaret-Anne D. Storey, and Alexey Zagalsky. 2017. How
Software Developers Mitigate Collaboration Friction with Chatbots. CoRR
abs/1702.07011 (2017).

[13] Bin Lin, Alexey Zagalsky, Margaret-Anne Storey, and Alexander Serebrenik. 2016.
Why Developers Are Slacking Off: Understanding How Software Teams Use Slack.
In Proceedings of the 19th ACM Conference on Computer Supported Cooperative
Work and Social Computing Companion (CSCW ’16 Companion). 333–336.

[14] Elahe Paikari and André van der Hoek. 2018. A Framework for Understanding
Chatbots and Their Future. In Proceedings of the 11th International Workshop on
Cooperative and Human Aspects of Software Engineering (CHASE ’18). 13–16.

[15] S. Panichella, G. Bavota, M. D. Penta, G. Canfora, and G. Antoniol. 2014. How
Developers’ Collaborations Identified from Different Sources Tell Us about Code
Changes. In 2014 IEEE International Conference on Software Maintenance and
Evolution. 251–260.

[16] Gayane Petrosyan, Martin P. Robillard, and Renato De Mori. 2015. Discovering
Information Explaining API Types Using Text Classification. In Proceedings of
the 37th International Conference on Software Engineering - Volume 1 (ICSE ’15).
869–879.

[17] Luca Ponzanelli, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and
Michele Lanza. 2014. Mining StackOverflow to Turn the IDE into a Self-confident
Programming Prompter. In Proc. 11th Working Conf. on Mining Software Reposito-
ries. 102–111.

[18] L. Ponzanelli, A. Mocci, A. Bacchelli, M. Lanza, and D. Fullerton. 2014. Improving
Low Quality Stack Overflow Post Detection. In 2014 IEEE International Conference
on Software Maintenance and Evolution. 541–544.

[19] M.M. Rahman, S. Yeasmin, and C.K. Roy. 2014. Towards a context-aware IDE-
based meta search engine for recommendation about programming errors and
exceptions. In Proc. IEEE Conf. on Software Maintenance, Reengineering, and
Reverse Engineering. 194–203.

[20] Emad Shihab, Zhen Ming Jiang, and Ahmed E. Hassan. 2009. On the Use of
Internet Relay Chat (IRC) Meetings by Developers of the GNOME GTK+ Project.
In Proceedings of the 2009 6th IEEE International Working Conference on Mining
Software Repositories (MSR ’09). 107–110.

[21] E. Shihab, Z. M. Jiang, and A. E. Hassan. 2009. Studying the Use of Developer
IRC Meetings in Open Source Projects. In 2009 IEEE International Conference on
Software Maintenance. 147–156.

[22] Jonathan Sillito, Frank Maurer, Seyed Mehdi Nasehi, and Chris Burns. 2012. What
Makes a Good Code Example?: A Study of Programming Q&A in StackOverflow.
In Proceedings of the 2012 IEEE International Conference on Software Maintenance
(ICSM) (ICSM ’12). 25–34.

[23] The Statistics Portal Statista. 2018. https://www.statista.com/statistics/652779/
worldwide-slack-users-total-vs-paid.

[24] Margaret-Anne Storey, Alexey Zagalsky, Fernando Figueira Filho, Leif Singer, and
Daniel M. German. 2017. How Social and Communication Channels Shape and
Challenge a Participatory Culture in Software Development. IEEE Transactions
on Software Engineering 43, 2 (2017).

[25] David C Uthus and DavidWAha. 2013. Multiparticipant Chat Analysis: A Survey.
Artificial Intelligence 199 (2013), 106–121.

[26] Liguo Yu, Srini Ramaswamy, Alok Mishra, and Deepti Mishra. 2011. Commu-
nications in Global Software Development: An Empirical Study Using GTK+ OSS
Repository. Springer Berlin Heidelberg, Berlin, Heidelberg, 218–227.

https://doi.org/10.1109/MSR.2019.00075
https://doi.org/10.1109/SANER.2017.7884638

