
ON THE p-ADIC VARIATION OF HEEGNER POINTS
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Abstract. In this paper, we prove an “explicit reciprocity law” relating Howard’s system of
big Heegner points to a two-variable p-adic L-function (constructed here) interpolating the p-
adic Rankin L-series of Bertolini–Darmon–Prasanna in Hida families. As applications, we obtain
a direct relation between classical Heegner cycles and the higher weight specializations of big
Heegner points, refining earlier work of the author, and prove the vanishing of Selmer groups
of CM elliptic curves twisted by 2-dimensional Artin representations in cases predicted by the
equivariant Birch and Swinnerton-Dyer conjecture.

Contents

1. Introduction 2
2. p-adic Rankin L-series 5
2.1. Geometric modular forms 5
2.2. p-adic modular forms 6
2.3. I-adic modular forms 6
2.4. Modular measures 8
2.5. CM points 8
2.6. Anticyclotomic Hecke characters 9
2.7. A two-variable anticyclotomic p-adic L-function 10
3. Big logarithm maps 12
3.1. Review of p-adic Hodge theory 13
3.2. Ochiai’s map for nearly p-ordinary deformations 13
3.3. Going up the unramified Zp-extension 15
3.4. A two-variable regulator map for p-ordinary deformations 16
4. Big Heegner points 18
4.1. Galois representations associated to Hida families 18
4.2. Howard’s big Heegner points 19
5. Explicit reciprocity law 21
5.1. Regulator map for the anticyclotomic Zp-extension of K 21
5.2. Explicit reciprocity law for big Heegner points 22
6. Arithmetic applications 25
6.1. Preparations 26
6.2. Higher weight specializations of big Heegner points 27
6.3. Proof of Theorem C 29

2010 Mathematics Subject Classification. 11G05 (Primary); 11G40 (Secondary).
Key words and phrases. Heegner points; Hida families; p-adic L-functions; equivariant Birch–Swinnerton-Dyer

conjecture conjecture.
The author was supported in part by NSF grant DMS-1801385. This project received funding from the European

Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant
agreement No. 682152).

1



2 F. CASTELLA

References 30

1. Introduction

Let f =
∑∞

n=1 anq
n ∈ S2r(Γ0(N)) be a newform of weight 2r > 2, fix a prime p - 6N , and let L

be a finite extension of Qp with ring of integers O containing the image of the Fourier coefficients

of f under a fixed embedding ıp : Q ↪→ Qp. Denote by

ρf : GQ := Gal(Q/Q) −→ AutL(Vf (r)) ' GL2(L)

the Kummer self-dual twist of the p-adic Galois representation associated with f . Let K be an
imaginary quadratic field of odd discriminant −DK < −3. Let OK be the ring of integers of K,
and assume that K satisfies the classical Heegner hypothesis relative to N :

(heeg) there is an integral ideal N of K with OK/N ' Z/NZ;

equivalently, every prime q | N either splits or ramifies in K, with q2 - N in the latter case.

The first purpose of this paper is to complete earlier work of the author [Cas13] comparing two
natural constructions of a cohomology class of “Heegner-type” attached to the pair (f,K). For
the first one of these classes, let Sel(K,Vf (r)) ⊂ H1(GK , Vf (r)) be the Bloch–Kato Selmer group
for Vf (r)|Gal(Q/K). By [Nek00], the image under the p-adic étale Abel–Jacobi map of classical

Heegner cycles [Nek95] on the (2r − 1)-dimensional Kuga–Sato variety of level N give rise to a
class

Φét
f,K(∆heeg

r ) ∈ Sel(K,Vf (r)).

For the second class, assume that f is ordinary at ıp, i.e.:

(ord) ap ∈ O×.

Fix a GQ-stable O-lattice Tf ⊂ Vf , let ρ̄f : GQ → GL2(κL) be the associated semi-simple residual
representation, where κL is the residue field of L, and assume that

(irred) ρ̄f is irreducible.

Let Dp ⊂ GQ be a decomposition group at p. By hypothesis (ord), the restriction ρf |Dp can be
made upper-triangular, and we shall assume in addition that

(dist) ρ̄f is Dp-distinguished;

i.e., the semi-simplification of ρ̄f |Dp is the direct sum of two distinct characters. Suppose that
r ≡ 1 (mod p− 1), and let

f =
∞∑
n=1

anq
n ∈ I[[q]]

be the Hida family passing through f . Thus I is a finite flat extension of O[[X]], and for every
continuous O-algebra homomorphism ν : I → Qp satisfying ν(1 + X) = (1 + p)kν−2 for some
integer kν > 2 with kν ≡ 2 (mod p− 1), the q-series fν :=

∑∞
n=1 ν(an)qn is such that

fν = fν(q)− pkν−1

ν(ap)
fν(qp)
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for some p-ordinary newform fν ∈ Skν (Γ0(N)), with f = fν for a unique ν = νf with kν = 2r.
Under the above hypotheses, Howard’s construction of big Heegner points [How07b] produces a
class

Z0 ∈ H1(GK ,T
†),

where T† is a self-dual twist of the big Galois representation associated to f . Under some ad-
ditional hypotheses on ρ̄f when (DK , N) > 1, one can show that Z0 lies in the so-called strict

Greenberg Selmer group SelGr(K,T
†) ⊂ H1(GK ,T

†), and so its image under the specialization
map νf yields a second class νf (Z0) ∈ Sel(K,Vf (r)).

Theorem A (Theorem 6.5). Assume in addition that p = pp splits in K, ρ̄f |GK is irreducible,
and ρ̄f is ramified at every prime q | N which is non-split in K. Then

νf (Z0) =

(
1− pr−1

νf (ap)

)2

·
Φét
f,K(∆heeg

r )

uK(2
√
−DK)r−1

,

where uK = |O×K |/2.

This subsumes the main result of [Cas13], which only implies the equality in Theorem A under
the assumption of Howard’s “horizontal nonvanishing conjecture” [How07b, Conj. 2.2.2] and the
nondegeneracy of the cyclotomic p-adic height pairing. The class Z0 is obtained from Howard’s
big Heegner point X1 of conductor 1, and more generally Theorem 6.5 establishes the relation
between the Selmer classes constructed from clasical Heegner cycles of conductor c > 0 prime
to Np and the corresponding higher weight specializations of the big Heegner point Xc. Thus
Theorem 6.5 answers a question raised by Howard (see [How07b, p. 93]).

As in [Cas13], the proof of Theorem A follows from relating the cohomology classes under con-
sideration to special values of L-functions. More precisely, extending work of Bertolini–Darmon–
Prasanna [BDP13] and Brakočević [Bra11], in [CH18] we constructed an anticyclotomic p-adic
L-function Lp,ψ(f) interpolating central critical values of the L-function of f twisted by certain
Hecke characters of K. Moreover, we constructed a compatible system of cohomology classes
zf interpolating the p-adic étale Abel–Jacobi images of (generalized) Heegner cycles of p-power
conductor, and extending the p-adic Gross–Zagier formula of [BDP13] we obtained an “explicit
reciprocity law”

(1.1) 〈Lp,ψ(zf ), ωf ⊗ t1−2r〉 = −Lp,ψ(f)

relating Lp,ψ(f) to the image of zf under a Perrin-Riou logarithm map. Let Hp∞ =
⋃
nHpn be

the union of the ring class fields of K of p-power conductor. Denote by W the completion of the
ring of integers of the maximal unramified extension of Qp, and set IW := I⊗̂ZpW. In Section 2
of this paper, we construct a two-variable p-adic L-function

Lp,ξ(f) ∈ IW [[Gal(Hp∞/K)]],

where ξ is a certain I-adic anticyclotomic character of GK , interpolating the p-adic L-functions
of [CH18] attached to the different specializations fν of f ; in particular,

(1.2) νf (Lp,ξ(f)) = Lp,ψ(f).

The key new ingredient in our proof of Theorem A is then the connection that we find between
Lp,ξ(f) and the system

Z∞ ∈ H1
Iw(Hp∞/H1,T

†) = lim←−
n

H1(Hpn ,T
†)
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of Howard’s big Heegner points of p-power conductor. To simply state that result, we suppose
that H1 = K in the next paragraph. By ordinarity, for each place v of K above p there is a GKv -
stable I-submodule F+T† ⊂ T† of rank 1, and as shown by Howard, the image of Z∞ under the
restriction map resv : H1

Iw(Hp∞/K,T
†)→ H1

Iw(Hp∞,v/Kv,T
†) lands in the image of the natural

map H1
Iw(Hp∞,v/Kv,F+T†) → H1

Iw(Hp∞,v/Kv,T
†). In particular, the twist Zξ−1

∞ of Z∞ by the

character ξ−1 yields a class

resp(Z
ξ−1

∞ ) ∈ H1
Iw(Hp∞,p/Kp,F

+T),

where F+T := F+T† ⊗ ξ−1. Let

λ = ap · εcycΘξ−1(Frobp)− 1,

where Frobp ∈ GKp is a geometric Frobenius element, and set ĨW := I[λ−1]⊗̂ZpW.

Theorem B (Theorem 5.3). There is a Perrin-Riou big logarithm map

LΓ
ωf

: H1(Hp∞,p/Kp,F
+T) −→ ĨW [[Gal(Hp∞/K)]]

for the local extension Hp∞,p/Kp such that

LΓ
ωf

(resp(Z
ξ−1

∞ )) = Lp,ξ(f) · σ−1,p,

where σ−1,p := recp(−1)|Hp∞ ∈ Gal(Hp∞/K).

The construction of the two-variable Perrin-Riou map LΓ
ωf

is given in Section 3, building upon
work of Ochiai [Och03] and Loeffler–Zerbes [LZ14], and the proof of the “explicit reciprocity law”
of Theorem B is obtained in Section 5 after a suitable extension of the calculations in [Cas13].
With this result in hand, the proof of Theorem A follows easily by specializing the equality in
Theorem 5.3 at νf , using (1.2) and the interpolation property of the map LΓ

ωf
, and comparing it

with the equality in (1.1).

The second purpose of this paper is to exploit the p-adic variation of Heegner points in Hida
families to establish certain new cases of the equivariant Birch–Swinnerton-Dyer conjecture for
rational elliptic curves with complex multiplication. More precisely, let A/Q be an elliptic curve
with CM, and let

% : GQ −→ AutE(V%) ' GL2(E)

be a 2-dimensional odd and irreducible Artin representation factoring through a finite quotient
Gal(F/Q) and with values in a finite extension E ⊂ C of Q. Let Tp(A) be the p-adic Tate
module of A, and set Vp(A) := Qp⊗Zp Tp(A). Associated to the compatible system Vp(A)⊗ ıpV%
of p-adic representations of GQ is a Artin–Hasse–Weil L-function L(A/Q, %, s). This is defined
for Re(s) > 3/2 by an absolutely convergent Euler product of degree 4, and by [Hec27] and
[KW09] it is known to admit analytic continuation to the entire complex plane, with a functional
equation relating its values at s and 2 − s. The equivariant Birch–Swinnerton-Dyer conjecture
predicts that

(1.3) ords=1L(A/Q, %, s)
?
= dimEHomGQ

(V%, A(F )E),

and that

(1.4) HomGQ
(V%,Øp∞(A/F )E)

?
= {0}

for all primes p, where Øp∞(A/F ) is the p-primary component of the Tate–Shafarevich group
of A/F , and for any abelian group M we have set ME := M ⊗Z E. Let NA and N% be the
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conductor of A and %, respectively, and denote by Sel(F, VpA) ⊂ H1(GF , Vp(A)) the Bloch–Kato
Selmer group of Vp(A)|Gal(Q/F ).

Theorem C. Let A/Q be an elliptic curve of conductor NA and with complex multiplication by
an imaginary quadratic field K, let p - 6N%NA be a prime, and let P be a prime of E above p.
Assume that:

• N% and NA are coprime;
• p = pp splits in K;
• K satisfies hypothesis (heeg) relative to N%;
• %(Frobp) has distinct eigenvalues modulo P.

If L(A/Q, %, 1) 6= 0, then

HomGQ
(V%, Sel(F, Vp(A))E) = {0}.

In particular, (1.3) and (1.4) hold.

The conclusion that (1.3) holds under the nonvanishing of L(A/Q, %, s) at s = 1 was already
contained in earlier work of Bertolini–Darmon–Rotger [BDR15, Thm. A], while recent work of
Kings–Loeffler–Zerbes [KLZ17, Thm. 11.7.4] establishes an analog of Theorem C for rational
elliptic curves without complex multiplication (the CM case is excluded in [KLZ17] by the “big
image hypothesis” of [loc.cit., §11.1]). Thus the new content of Theorem C is the vanishing of
the %-isotypical component ofØp∞(A/F )E for “half” of the primes p under the nonvanishing of
L(A/Q, %, 1).

Let us conclude this Introduction with a few words about the proof of Theorem C. Denote by
L(f/K, χ, s) the Rankin–Selberg L-function for the convolution of a cusp form f ∈ Sk(Γ1(N))
with a Hecke character χ of K. From the explicit reciprocity law of Theorem B, we deduce a
proof of the implication

L(fν/K, χNkν/2, 0) 6= 0 =⇒ ν(Z∞)χ
−1 6= 0,

for ν : I → Qp of weight kν > 0 and certain anticyclotomic Hecke characters χ. Since Howard’s
systems of big Heegner points satisfies the compatibilities of an anticyclotomic Euler system, one
can deduce from Kolyvagin’s methods (as extended in [CH18, §7.2] to the anticyclotomic setting)
a proof of the implication

L(fν/K, χNkν/2, 0) 6= 0 =⇒ Sel(K,Vν,χ) = {0},

where Sel(K,Vν,χ) is the Bloch–Kato Selmer group for Vfν (kν/2)|GK ⊗ χ. Since by [KW09] any
Artin representation % as in Theorem C is attached to some g ∈ S1(Γ1(N%)), taking χ so that

χN1/2 corresponds to the grossencharacter of A, f to be a Hida family passing through g, and
specializing the resulting Z∞ to weight one, the proof of Theorem C follows.

Some notations and definitions. For any place v of a number field E, let recv : E×v → Gab
Ev

and recE : E×\A×E → Gab
E be the local and global reciprocity maps, respectively, with geometric

normalizations. If φ : Z×p → C× is a continuous character of conductor pn, the Gauss sum of φ
is defined by

g(φ) =
∑

u∈(Z/pnZ)×

φ(u)e(u/pn),

where e(z) = exp(2πiz), and if χ : Qp → C× is a continuous character of conductor pn, we define
the ε-factor of χ by ε(χ) = pnχ−1(pn)g(χ−1)−1.
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2. p-adic Rankin L-series

In this section, we give the construction of a two-variable anticyclotomic p-adic L-function
Lp,ξ(f) attached to a Hida family f and an imaginary quadratic field K in which p = pp splits.
Such construction closely parallels the one-variable construction by Brakočević [Bra11], and was
essentially contained in [Bra12].

2.1. Geometric modular forms. Fix a prime p, and let N > 3 be an integer prime to p.

Definition 2.1. Let k be an integer and let B be a Z(p)-algebra. A geometric modular form f
of weight k on Γ1(Np∞) defined over B is a rule which assigns, for every B-algebra C and every
triple (A, η, ω)/C consisting of:

• an elliptic curve A/C;
• a Γ1(Np∞)-level structure η on A, i.e., an immersion

η = (η(p), ηp) : µN ⊕ µp∞ ↪→ A[N ]⊕A[p∞]

of group schemes over C;
• a C-basis ω of H0(A,Ω1

A/C),

a value f(A, η, ω) ∈ C depending only on the isomorphism class of (A, η, ω) over C and such that:

(1) For any B-algebra homomorphism ϕ : C → C ′, we have

f((A, η, ω)⊗C C ′) = ϕ(f(A, η, ω));

(2) For all λ ∈ C×, we have

f(A, η, λω) = λ−kf(A, η, ω);

(3) Letting (Tate(q), ηcan, ωcan)/B((q)) be the Tate elliptic curve Gm/q
Z equipped with its

canonical level structure ηcan and differential ωcan, we have

f(Tate(q), ηcan, ωcan) ∈ B[[q]].

Let Ig(N)/Z(p)
be the Igusa scheme parameterizing isomorphism classes of pairs (A, η)/S con-

sisting of an elliptic curve A equipped with Γ1(Np∞)-level structure η over arbitrary locally
Noetherian Z(p)-schemes S. The generic fiber Ig(N)/Q of Ig(N) is given by

(2.1) Ig(N)/Q = lim←−
s

Y1(Nps)/Q,

where Y1(Nps)/Q is the usual open modular curve of level Γ1(Nps), and a geometric modular
form f as in Definition 2.1 can be viewed as a section of a certain sheaf on Ig(N)/Z(p)

.

2.2. p-adic modular forms. For any p-adic ring R (i.e., R ' lim←−mR/p
mR), let Îg(N)/R be the

completion of Ig(N)/R along the closed subscheme Ig(N)/R ⊗R R/pR.

Definition 2.2. Let R be a p-adic ring. A p-adic modular form of tame level N defined over R

is a function on Îg(N)/R. Let Vp(N ;R) be the space of such functions, so that

Vp(N ;R) := H0(Îg(N)/R,OÎg(N)/R
).

Denote by Γwt the group 1 + pZp ⊂ Z×p . For k ∈ Zp and ε : Γwt → µp∞(R), we say that a p-adic
modular form f ∈ Vp(N ;R) has weight (k, ε) if it satisfies

f |〈u〉p(A, η) := f(A, η(p), ηpu) = ε(u)ukf(A, η),
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for all u ∈ Γwt and any point (A, η) = (A, η(p), ηp) of Îg(N)/R valued in a p-adic R-algebra.

Associated with a geometric modular form f on Γ1(Np∞) defined over R there is a p-adic

modular form f̂ ∈ Vp(N ;R) defined by the rule

f̂(A, η) = f(A, η, ω̂(ηp)),

where ω̂(ηp) is the differential on A arising from the isomorphism of formal groups η̂p : Ĝm ' Â
induced by ηp : µp∞ ↪→ A[p∞].

2.3. I-adic modular forms. Let O be the ring of integers of a finite extension of L of Qp, and
set Λwt

O = O[[Γwt]].

Definition 2.3. Let I be a finite flat Λwt
O -algebra, and denote by XO(I) the set of O-algebra

homomorphisms ν : I→ Qp. For any k ∈ Z and ε : Γwt → µp∞ let

νk,ε : Λwt
O −→ Qp

be the O-algebra homomorphism defined by u 7→ ε(u)uk−2 for u ∈ Γwt. We say that ν ∈ XO(I)
has weight (k, ε) if the composition

Λwt
O −→ I ν−→ Qp

is of the form νk,ε, and we say that ν ∈ XO(I) is an arithmetic prime if it has weight (k, ε) for
some k ∈ Z>2 and ε : Γwt → µp∞ .

Denote by X aO(I) the set of arithmetic primes of I, which we may view (just as XO(I) itself)

as a subset of Spec(I)(Qp). For each ν ∈ XO(I), let Fν be the residue field of ker(ν) ⊂ I, and
Oν ⊂ Fν be the valuation ring.

Definition 2.4. Let ψ0 : (Z/NpZ)× → O× be a Dirichlet character modulo Np, and let I be a
finite flat Λwt

O -algebra.

(1) An I-adic modular form of tame level N is a formal q-expansion

f =
∞∑
n=0

anq
n ∈ I[[q]]

such that for all but finitely many ν ∈ X aO(I) of weight (k, ε), the q-series
∑∞

n=0 ν(an)qn

is the q-expansion of a p-adic modular form fν ∈ Vp(N ;Oν) of weight (k, ε). We denote
by G(N ; I) the module of I-adic modular forms of tame level N .

(2) We say that f ∈ G(N ; I) is arithmetic with tame character ψ0 if for all but finitely many

ν ∈ X aO(I) of weight (k, ε), the p-adic modular form fν is the p-adic avatar f̂ν of a classical
modular form

fν ∈Mk(Γ0(Nps), ψ0εω
2−k),

where s = max{1, ordp(cond(ε)}, and ω : (Z/pZ)× → Z×p is the Teichmüller character;
and we say that f is cuspidal if fν is a cusp form for all such ν. Denote by Sa(N,ψ0; I) ⊂
G(N ; I) the submodule of cuspidal arithmetic I-adic modular forms of tame character ψ0.

(3) We say that f ∈ Sa(N,ψ0; I) is ordinary if fν is a Up-eigenvector for all but finitely

many ν ∈ X aO(I), with the Up-eigenvalue being a p-adic unit, and we let Sord(N,ψ0; I) ⊂
Sa(N,ψ0; I) be the corresponding submodule. Finally, we say that f is an ordinary I-adic
newform1 if for all but finitely many ν as above, fν is a p-stabilized newform of tame

1or alternatively, a primitive cuspidal Hida family, or just a Hida family in this paper.
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level N , i.e., either fν is a newform of level Nps, or is the ordinary p-stabilization of a
p-ordinary newform of level N .

Define

(2.2) Vp(N ; I) := Vp(N ;O)⊗̂OI,

and let [z] : Z×p → O[[Z×p ]]× be the natural inclusion as group-like elements. The space Vp(N ; I)
is equipped with two different actions of z ∈ Γwt: one via the diamond operators 〈z〉p acting on
the first factor of (2.2), and the other via multiplication by [z] on the second factor, composed
with the structure map O[[Z×p ]]× → I×.

Proposition 2.5. There is a canonical I-module isomorphism

G(N ; I) = {f ∈ Vp(N ; I) : f |〈z〉p = [z]f , ∀z ∈ Z×p }.

Proof. See [Hid00, Thm. 3.2.16]. �

Thus, in light of Proposition 2.5, we may evaluate any I-adic modular form f ∈ G(N ; I) at a

point x ∈ Îg(N)(I), producing an element f(x) ∈ I such that

(2.3) ν(f(x)) = fν(x)

for all ν ∈ XO(I). (Indeed, this follows from the q-expansion principle, since by definition the
specialization property (2.3) holds when x is coming from a Tate curve.) This will be used in
§2.4 to define measures associated with f which, for appropriate choices of x (defined in §2.5),
interpolate special values of L-functions.

2.4. Modular measures. For a compact totally disconnected topological space X (which in
our application will be X ' ∆ × Zp with ∆ a finite group) and a p-adic ring R, we denote by
Cont(X,R) the space of continuous R-valued functions on X. Let

Meas(X,R) := Homcts(Cont(X,R), R)

be the space of R-valued measures on X. As usual, if µ ∈ Meas(X,R) and φ ∈ Cont(X,R), we
denote by

∫
X φ(z)dµ(z) ∈ R the value of µ at φ. For X = Zp, the Amice transform of a measure

µ ∈ Meas(Zp, R) is the power series Aµ(T ) ∈ R[[T ]] given by

Aµ(T ) =
∞∑
m=0

cm(µ)Tm,

where cm(µ) =
∫
Zp

(
z
m

)
dµ(z). One easily checks that∫

Zp

zndµ(z) =

(
T
d

dT

)n
Aµ(T )

∣∣
T=0

for all n > 0, and by Mahler’s theorem the rule µ 7→ Aµ(T ) defines an isomorphism Meas(Zp, R) ∼=
R[[T ]] of p-adic Banach algebras.

Let d be the operator on Vp(N ;R) given by

d :

∞∑
n=0

anq
n 7→

∞∑
n=0

nanq
n,

and for each m ∈ Z>0 let
(
d
m

)
denote the operator given by

∑
n anq

n 7→
∑

n

(
n
m

)
anq

n.
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Definition 2.6. For g ∈ Vp(N ;R) and x ∈ Ig(N)(R), let µg,x ∈ Meas(Zp, R) be the measure
determined by ∫

Zp

(
z

m

)
dµg,x(z) =

(
d

m

)
g(x),

for all m > 0.

Let U = Up and V be the operators on Vp(N ;R) given by
∑

n anq
n 7→

∑
n anpq

n and∑
n anq

n 7→
∑

n anq
np, respectively, in terms of q-expansions. If g ∈ Vp(N ;R) has q-expansion∑

n anq
n, setting

g[ := g|(1− UV ) =
∑

(n,p)=1

anq
n ∈ Vp(N ;R),

it is easily seen that the associated measure µg[,x is supported on Z×p .

2.5. CM points. Let K be an imaginary quadratic field of odd discriminant −DK < −3, let
p > 2 be a prime split in K, and write

pOK = pp,

where p is the prime of K above p induced by our fixed embedding ıp : Q ↪→ Cp. We shall assume
throughout that K satisfies the following Heegner hypothesis relative to a fixed integer N > 0
prime to p:

(heeg) there is an ideal N ⊂ OK with OK/N ' Z/NZ.

The existence of such N, which will be fixed from now on, amounts to the requirement that every
prime q | N is either split or ramified in K, with q2 - N in the latter case.

For each positive integer c let Oc = Z + cOK be the order of K of that conductor, and let Hc

be the corresponding ring class field, so that Gal(Hc/K) ' Pic(Oc) by the Artin reciprocity map.
For each invertible Oc-ideal a prime to Np, let Aa/Hc be the CM elliptic curve with the complex

uniformization Aa(C) = C/a−1. Let a ∈ K̂× be such that aÔc ∩K = a, and equip Aa with the
Γ1(Np∞)-level structure

ηa : µN ⊕ µp∞ ↪→ Aa[N ]⊕Aa[p
∞]

defined in [CH18, p. 576]. The pair (Aa, ηa) defines a point xa ∈ Ig(N)(V) over the valuation ring

V := ı−1
p (OCp) ∩Kab,

where Kab is the maximal abelian extension of K. For the ease of notation, set xc := xOc .

Write c = cop
n with p - co, and decompose co = c+

o c
−
o with c+

o (resp. c−o ) only divisible by
primes which are split (resp. non-split) in K. We similarly decompose N = N+N−, and set
C+ := c+

o OK and N+ := N+OK . Fix a square-root
√
−DK ∈ K, and set

ϑ := (DK +
√
−DK)/2.

Following [CH18, §2.4], we define the matrix ς(∞) = (ςq) ∈ GL2(Q̂) by

• ςq = 1, if q - c+
o N

+p,

• ςq = (ϑ− ϑ)−1

(
ϑ ϑ
1 1

)
, if qOK = qq with q | C+N+p,

and the matrix γc = (γc,q) ∈ GL2(Q̂) by

• γc,q = 1, if q - cNp,
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• γc,q =

(
qordq(c) 1

0 1

)
, if qOK = qq with q | C+N+p,

• γc,q =

(
1 0

0 qordq(c)−ordq(N)

)
, if q | c−o N−,

and set ξc := ς(∞)γc. Under the complex uniformization

[·] : H×GL2(Q̂) −→ Ig(N)(C)

coming from (2.1) and the complex uniformization of Y1(Nps), we have [(ϑ, ξc)] = xc. Moreover,

by Shimura’s reciprocity law, if a is an invertible Oc-ideal prime to Np and a ∈ K̂(cp)× is such

that a = aÔc ∩K, then

xa = [(ϑ, a−1ξc)] = xσac ∈ Ig(N)(Hc(p
∞)),

where σa = recK(a−1)|Hc(p∞) ∈ Gal(Hc(p
∞)/K) is the Artin symbol of a over the compositum of

Hc with the ray class field of K of conductor p∞, and a 7→ a denotes the action of the non-trivial
automorphism τ ∈ Gal(K/Q) on AK .

2.6. Anticyclotomic Hecke characters. We say that a Hecke character ψ : K×\A×K → C×

has infinity type (`1, `2), with `1, `2 ∈ 1
2Z such that `1 − `2 ∈ Z, if

ψ∞(z) = z`1−`2(zz)`2 ,

where for each place v of K, we let ψv : K×v → C× be the component of ψ at v. The conductor
of ψ is the largest ideal c ⊂ OK such that ψq(u) = 1 for all u ∈ (1 + cOK,q)× ⊂ K×q . If ψ
has conductor cψ and a is any fractional ideal of K prime to cψ, we write ψ(a) for ψ(a), where

a ∈ K̂(cψ)× is such that aÔK ∩K = a. As a function on fractional ideals, ψ satisfies

ψ((α)) = α`2−`1(αα)−`2

for all α ∈ K× with α ≡ 1 (mod cψ).

Definition 2.7. Let ψ = ψfinψ∞ be a Hecke character of K with infinity type (`1, `2). The p-adic

avatar ψ̂ : K×\K̂× → C×p of ψ is defined by

ψ̂(z) = ıpı
−1
∞ (ψfin(z))z`1p z

`2
p .

Via the reciprocity map recK , we shall often regard ψ̂ as a Galois character ψ̂ : GK → C×p .

We say that a Hecke character ψ : K×\A×K → C× is anticyclotomic if ψ|A×Q = 1. The infinity

type of an anticyclotomic ψ is of the form (`,−`), and the correspondence ψ 7→ ψ̂ establishes a
bijection between the set of anticyclotomic Hecke characters of K of conductor dividing p∞ and
the set of locally algebraic Cp-valued characters of Gal(Hp∞/K), for Hp∞ the union of the ring
class fields of K of conductor p-power conductor.

2.7. A two-variable anticyclotomic p-adic L-function. Let f ∈ Sa(N,ψ0; I) be an ordinary
I-adic newform of tame level N and character ψ0 : (Z/NpZ)× → O× as in Definition 2.4. Recall
the Teichmüller character ω : (Z/pZ)× → Z×p , and let εcyc : GQ → Z×p be the cyclotomic
character. By composing it with εcyc mod p, we shall also view ω as a Galois character ω : GQ →
Z×p .

Let λ : K×\A×K → O× be the p-adic avatar of a fixed Hecke character of infinity type (1, 0) and

conductor cp for some ideal c ⊂ OK with (c, Np) = 1. Let O×/tor be the maximal Zp-free quotient
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of O, and let W ⊂ O×/tors be the subset topologically generated by the values of λ. Then W is

isomorphic to Zp, and it naturally contains (the image of) Γwt = 1 + pZp. Write pb = [W : Γwt]

and let J = O[[S]] be the extension of Λwt
O defined by (1 + S)p

b
= 1 + p. Upon enlarging I if

necessary, we shall assume that I ⊃ J.

Definition 2.8.

(1) Let i ∈ Z/(p − 1)Z be such that ψ0|(Z/pZ)× = ωi, and define the critical character

Θ : GQ → Λwt,× by

Θ(σ) := ωi/2(σ) · [〈εcyc(σ)〉1/2],

where 〈·〉1/2 : Z×p → Γwt is the composition of the projection 〈·〉 : Z×p � Γwt with the map

x 7→ x1/2, and [·] : Γwt ↪→ Λwt,× is the inclusion of group-like elements.
(2) Take a finite order Hecke character χ0 of K of conductor dividing N such that

χ0|A×Q = ψ−1
0 |(Z/NZ)× ,

an define the I-adic character χ : K×\A×K → I× by

χ(x) := ψ0(x)Θ(recQ(NK/Q(x))),

where Θ is viewed as taking values in I× by composition with the structure morphism
Λwt → I.

(3) Denote by 〈λ〉 the composition of λ with the projection onto O×/tors. Let w ∈ W be a

topological generator, and define the I-adic character Ξ : K×\A×K → J× → I× by

Ξ(x) = λ(x)(1 + S)l(x), 〈λ(x)〉 = wl(x).

Finally, define ξ : K×\A×K → I× by

ξ(x) = Ξ(x)Ξ−1(x).

Remark 2.9. Recall that we assume p > 2 and note that implicit in Definition 2.8 is the choice of
a lift of i to Z/2(p− 1)Z; we fix either one of the two possible choices, cf. [How07b, Rem. 2.1.3].

Let coOK be the prime-to-p part of the conductor of the anticyclotomic character λ(x)λ−1(x),
and for any Oco-ideal a prime to Np, let xa ∈ Ig(N)(V) be the CM point constructed in §2.5.
Since p - co, the point xa admits a model over the discrete valuation ring

Vur :=W ∩Kab,

where W = W (Fp) is the ring of integers of the completion of the maximal unramified extension
of Qp. Let

IW := I⊗̂ZpW.

In light of Proposition 2.5, extending scalars we view f as an element in Vp(N ; IW). Letting xa
still denote the pullback of the above point xa under the structure map Spec(IW) → Spec(W),
we let µf [,xa ∈ Meas(Zp, IW) be the measure of Definition 2.6, and let µf [a be the measure on Zp
characterized by

Aµ
f[a

(T ) = Aµ
f[,a

((1 + T )N(a)−1
√
−DK

−1

− 1).

Since µf [,xa is supported on Z×p , so is the measure µf [a .

For each integer c > 0, let H̃c denote the composition of the ring class field Hc with the ray

class field of K of conductor N, and set Γ̃ := Gal(H̃p∞/K). Let recK : K×\A×K → Gab
K → Γ̃ and

recp : Q×p = K×p → Gab
K → Γ̃ be the global and local-at-p reciprocity maps, respectively.
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Definition 2.10. The two-variable anticyclotomic p-adic L-function attached to f and ξ is the

IW -valued measure Lp,ξ(f) on Γ̃ given, for all φ : Γ̃→ O×Cp , by

Lp,ξ(f)(φ) =
∑

σ∈Gal(H̃co/K)

ξχ−1(a)N(a)−1

∫
Z×p

(φ|[a])(z)dµf [a (z),

where a corresponds to σ under the Artin map, and φ|[a] is the character on Z×p defined by

φ|[a](z) := φ(σrecp(z)).

Now we describe the interpolation property satisfied by Lp,ξ(f). For the statement, recall that
if f =

∑∞
n=1 anq

n is a normalized newform of weight k and nebentypus εf , χ is a Hecke character

of K with central character χ|A×Q = ε−1
f , and ψ is an anticyclotomic Hecke character of conductor

cOK , the Rankin L-series L(f/K, χψ, s) is given in terms of automorphic L-functions by the
equality

(2.4) L(f/K, χψ, s) = L

(
s− k − 1

2
, πK ⊗ χψ

)
,

where πK is the base change to K of the automorphic representation of GL2(AQ) generated by
f . Thus since πK⊗χψ is self-dual, L(f/K, χψ, s) satisfies a functional equation relating is values
at s and k − s.

By the calculation in [How07a, p. 808] and our definition of the I-adic character χ (which
differs from that in [How07a, §3] by the factor χ0 in order to allow non-trivial N -part of the
nebentypus), for every ν ∈ XO(I) such that fν classical, the specialization χν of the I-adic
character χ in Definition 2.8 is such that χν |A×Q = ε−1

fν
. For such ν, and ψ an anticyclotomic

Hecke character of K of conductor cop
nOK with p - co, define the p-adic multiplier Ep(fν , χνψ)

by

Ep(fν , χνψ) =

{ (
1− ν(ap)(χνψ)p(p)p

−kν/2
)(

1− (χνψ)p(p)p
kν/2−1ν(ap)

−1
)

if n = 0,
ε((χνψ)−1

p )p−n if n > 1,

and set

Lalg(fν/K, χνψ, kν − 1) :=
Γ(kν + `)Γ(`+ 1)

(2π)kν+2`+1(Im ϑ)kν+2`
· L(fν/K, χνψ, kν − 1)

Ω2kν+4`
K

,

where ΩK ∈ C× is a complex period attached to K as in [CH18, §2.5].

Theorem 2.11. Let ν ∈ XO(I) of weight (k,1) with k > 1 be such that fν is classical, and let

φ̂ be the p-adic avatar of an anticyclotomic Hecke character φ of K of infinity type (`,−`) with
` > 0 and conductor cop

nOK with p - co. Then:

ν(Lp,ξ(f))(φ̂)2

Ω2k+4`
p

= Lalg(fν/K, χνξνφ, kν − 1) · Ep(fν , χνξνφ)2 · φ(N−1) · 23 · coε(fν) · w2
K

√
DK ,

where ε(fν) is the global root number of fν , wK := |O×K |, and Ωp ∈ W× is a p-adic period as in
[CH18, §2.5].

Proof. Let ν be as in the statement and set f = fν . Then Θν(z) = zk/2−1 for all z ∈ Z×p , and
hence

(2.5) χν(a) = N(a)k/2−1.
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From (2.3), it follows that ν
((

d
m

)
f(x)

)
=
(
d
m

)
fν(x) for all m > 0, and hence for the measure µfν ,x

of Definition 2.6 we have

ν

(∫
Zp

ρ(z)dµf ,x(z)

)
=

∫
Zp

ρ(z)dµfν ,x(z)

for all ρ : Zp → OCp . Thus specializing Lp,ξ(f) at ν we see that for any ramified character ρ on

Z×p :

ν(Lp,ξ(f))(ρ) =
∑

σ∈Gal(H̃co/K)

ξν(a)N(a)−k/2
∫
Z×p

(ρ|[a])(z)dµ
f̂[a

(z).

where f̂ [ is the p-adic avatar of f [. Let f̂ [ ⊗ (ρ|[a]) be the p-adic modular form f̂ [ twisted by
ρ|[a]. Setting T = t− 1 and tracing through the definitions, we see that

(2.6)

∫
Z×p

(ρ|[a])(z)dµ
f̂[a

(z) = Aµ
f̂[⊗(ρ|[a])

(tN(a)−1
√
−DK

−1

)|t=1.

Since the right-hand side of (2.6) agrees with the expression
(
f̂ [a ⊗ ρ|[a]

)
(Aa, ηa) appearing in

[CH18, Def. 3.7] and ξν is the p-adic avatar of an anticyclotomic Hecke character of infinity type

(k/2,−k/2), the above shows that ν(Lp,ξ(f)) agrees with the W-valued measure Lp,ξν (f) on Γ̃
constructed in [CH18, §3.3] (or rather its immediate extension in the slightly more general setting
considered here). The result this follows from [loc.cit., Prop. 3.8]. (Note that in [CH18] only cusp
form of even weights k > 2 are considered, but the construction of Lp,ξν (f) readily extends to
any k ∈ Z>1, and the results quoted from [Hsi14] are available in this level of generality.) �

Remark 2.12. Note that by (2.5) we have L(fν/K, χνξνφ, kν − 1) = L(fν/K, ξνφ, kν/2), and so
the L-values appearing in Theorem 2.11 are central critical values.

Corollary 2.13. For every ν ∈ XO(I) of weight (k,1) with k > 1 such that fν is classical, the
p-adic L-function ν(Lp,ξ(f)) is not identically zero.

Proof. As shown in the proof of Theorem 2.11, the specialization ν(Lp,ξ(f)) agrees with (the
natural extension of) the p-adic L-function Lp,ξν (f) constructed in [CH18, §3.3] with f = fν ,
and so the result similarly follows from [loc.cit., Thm. 3.9]. �

3. Big logarithm maps

In this section we construct a Perrin-Riou big logarithm map adapted to our global anticy-
clotomic setting. Starting with [PR94], the cyclotomic theory of these maps has been widely
studied in the literature; see e.g. [Ber03] and the references therein. The construction we give
here combines work of Ochiai [Och03] and Loeffler–Zerbes [LZ14].

3.1. Review of p-adic Hodge theory. Let F and L be finite extensions of Qp. For a finite-
dimensional L-vector space V equipped with a continuous linear action of GF , we denote by
DdR,F (V ) the filtered (L⊗Qp F )-module

DdR,F (V ) := (V ⊗Qp BdR)GF ,

where BdR is Fontaine’s ring of p-adic de Rham periods. If V is a de Rham GF -representation (i.e.,
dimFDdR,F (V ) = dimLV ), then for any finite extension E/F there is a canonical isomorphism
DdR,E(V ) ∼= E ⊗F DdR,F (V ). Denote by 〈 , 〉 the de Rham pairing

〈 , 〉 : DdR,F (V )×DdR,F (V ∗(1)) −→ L⊗Qp F −→ Cp,
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where V ∗ = HomL(V,L). Denote by F0 the maximal unramified subfield of F . Let Bcris ⊂ BdR

be the crystalline period ring and define

Dcris,F (V ) := (V ⊗Qp Bcris)
GF ;

this is an (L ⊗Qp F0)-module equipped with the action of a semi-linear crystalline Frobenius Φ.
If V is a crystalline GF -representation (i.e., dimF0Dcris,F (V ) = dimLV ), we have a canonical
isomorphism F ⊗F0 Dcris,F (V ) ∼= DdR,F (V ). Suppose further that

Dcris,F (V )Φ=1 = {0}.

We denote by logp the Bloch–Kato logarithm map

logF,V : H1
f (F, V ) −→

DdR,F (V )

Fil0DdR,F (V )
∼= Fil0DdR,F (V ∗(1))∨,

where H1
f (F, V ) ⊂ H1(F, V ) is the Bloch–Kato finite subspace [BK90, (3.7.2)], which under the

above hypothesis agrees with the image of the Bloch–Kato exponential map

expF,V :
DdR,F (V )

Fil0DdR,F (V )
−→ H1(F, V ),

that we shall denote by expp. Also, let exp∗p denote the dual exponential map

exp∗F,V ∗(1) : H1(F, V ) −→ Fil0DdR,F (V )

obtained by dualizing expF,V ∗(1) with respect to the de Rham and local Tate pairings (see e.g.

[LZ14, §2.4]).
For the ease of notation, we shall write DdR(V ) and Dcris(V ) for DdR,Qp(V ) and Dcris,Qp(V ),

respectively.

3.2. Ochiai’s map for nearly p-ordinary deformations. We keep the notations introduced
in §2.3 and §2.7; in particular, O denotes the ring of integers of finite extension of L of Qp and

I is a finite flat extension of Λwt
O = O[[Γwt]]. We also identify GQp := Gal(Qp/Qp) with the

decomposition group Dp ⊂ GQ determined by our fixed embedding ıp : Q ↪→ Qp.

Definition 3.1. Let T be a free I-module of rank 2 equipped with a continuous linear action of
GQ. We say that T is a p-ordinary deformation if:

(i) the action of GQ on det(T) is given by

Θ−2ε−1
cyc : GQ −→ I×,

where εcyc : GQ → Z×p is the p-adic cyclotomic character, viewed as taking values in I×

by the inclusion of scalars Z×p ⊂ O× ⊂ Λwt,×
O ⊂ I×;

(ii) there exists a filtration as GQp-modules

(3.1) 0 −→ F+T −→ T −→ F−T −→ 0

with F±T free of rank 1 over I, and with the action on F+T being unramified.

Fix a p-ordinary deformation T as in Definition 3.1. Let Γcyc be the Galois group of the
cyclotomic Zp-extension of Qp, and let Λcyc be the free Zp[[Γcyc]]-module of rank 1 where GQp

acts through the tautological character GQp � Γcyc ↪→ Zp[[Γcyc]]
×.
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Definition 3.2. Set I := I⊗̂Zp[[Γcyc]]. The nearly p-ordinary deformation associated to a p-
ordinary deformation T is the I-module

T := T⊗̂ZpΛcyc

equipped with the diagonal GQp-action. From (3.1), T fits in an exact sequence of I[GQp ]-modules

0 −→ F+T −→ T −→ F−T −→ 0

with F±T := F±T⊗̂ZpΛcyc.

Let ε : Γcyc ' 1 + pZp be the isomorphism induced by the p-adic cyclotomic character. We

denote by X aO(Γcyc) the set of continuous characters σ : Γcyc → Q
×
p of the form σ = εwσσo for

some wσ ∈ Z, called the weight of σ, and some finite order character σo. We say that σ has
conductor pn if σo has conductor pn when seen as a character of Z×p .

Recall the set X aO(I) from Definition 2.3. For every pair (ν, σ) ∈ X aO(I)×X aO(Γcyc) let Oν,σ be
the extension of Oν generated by the values of σ, and let Oν,σ(σ) be the free Oν,σ-module of rank
1 where GQp acts via the character σ. For a p-ordinary deformation T define

Tν := T⊗I,ν Oν , Vν := Tν ⊗Zp Qp,

Tν,σ := T ⊗I,(ν,σ) Oν,σ(σ), Vν,σ := Tν,σ ⊗Zp Qp,

F±Tν,σ := F±T ⊗I,(ν,σ) Oν,σ(σ), F±Vν,σ := F±Tν,σ ⊗Zp Qp,

and for every finite extension F of Qp let

(3.2) Spν,σ : H1(F,F+T ) −→ H1(F,F+Tν,σ) −→ H1(F,F+Vν,σ)

be the induced maps on cohomology.

Definition 3.3. Let T be a p-ordinary deformation, and set

(3.3) D := (F+T⊗̂ZpẐ
ur
p )GQp ,

where the GQp-action on F+T⊗̂ZpẐ
ur
p is the diagonal one. Also set

D := D⊗̂ZpZp[[Γcyc]].

Let F be a finite unramified extension of Qp with ring of integers OF . Since F+Vν is an

unramified GQp-representation, we have DdR(F+Vν) ∼= (F+Vν ⊗ Q̂ur
p )GQp . Let

(3.4) Spν : D⊗Zp OF −→ DdR,F (F+Vν)

be the specialization map induced by the GF -invariants of the natural map F+T⊗̂ZpẐ
ur
p →

F+Tν⊗̂ZpẐ
ur
p . Fix a compatible system ζ = (ζpn)n of p-power roots of unity; this defines a

basis vector e of Qp(1) and an element t ∈ BdR (Fontaine’s p-adic analogue of 2πi), so that
δQp(1) := t−1 ⊗ e gives a Qp-basis of DdR(Qp(1)). For σ ∈ X aO(Γcyc) of weight w and conductor
pn, let Spσ : Zp[[Γcyc]]→ DdR(Kσ(σ)) be defined by

Spσ : Zp[[Γcyc]] −→ DdR(Qp(w))⊗Qp Qp(µpn) ∼= DdR(Qp(w)⊗Qp Qp[(Z/p
nZ)×])

σ0−→ DdR(Qp(w)⊗Qp Kσ(σ0)) = DdR(Kσ(σ)),
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where the first arrow is given by g 7→ δ⊗wQp(1) ⊗ ζ
g
pn and the isomorphism is given by Shapiro’s

lemma. For every pair (ν, σ) ∈ X aO(I)×X aO(Γcyc) we thus obtain the specialization map

Spν,σ : D ⊗Zp OF
Spν⊗1−−−−→ DdR,F (F+Vν)⊗̂ZpZp[[Γcyc]]

1⊗Spσ−−−−→ DdR,F (F+Vν)⊗Qp DdR(Kσ(σ)) ∼= DdR,F (F+Vν,σ).
(3.5)

Theorem 3.4. Let T be a p-ordinary deformation, and define

J := (Ψ(Frp)− 1, γo − 1) ⊆ I,

where Ψ : GQp → I× is the unramified character by which GQp acts on F+T and γo ∈ Γcyc be a
topological generator. Then for every finite unramified extension F of Qp there exists an injective
I-linear map

EΓcyc

F : J (D ⊗Zp OF ) −→ H1(F,F+T )

with pseudo-null cokernel and such that for every ν ∈ X aO(I) and σ ∈ X aO(Γcyc) of weight w > 0
and conductor pn, the following diagram commutes:

J (D ⊗Zp OF )
EΓcyc
F //

Spν,σ
��

H1(F,F+T )

Spν,σ
��

DdR,F (F+Vν,σ) // H1(F,F+Vν,σ),

where the bottom horizontal map is given by

(−1)w−1(w − 1)! · expp ×

{ (
1− pw−1

Ψν(Frp)

)(
1− Ψν(Frp)

pw

)−1
if n = 0;

g(σ−1
o )
( pw−1

Ψν(Frp)

)n
if n > 1,

with Ψν(Frp) ∈ Fν the image of Ψ(Frp) ∈ I under ν.

Proof. See [Och03, Prop. 5.3]. �

3.3. Going up the unramified Zp-extension. Let F be a finite unramified extension of Qp,
and let F∞/F be an infinite unramified p-adic Lie extension with Galois group U (so U is isomor-
phic to Z×p ×∆ with ∆ finite). Write F∞ =

⋃
m>0 Fm with F0/F a finite extension and Fm/F0

having degree pm. Set Um := Gal(F∞/Fm). Let ym : OFm → OFm [U/Um] be the Zp-linear map
defined by

ym(x) =
∑

σ∈U/Um

xσ[σ−1],

and let Sm ⊂ OFm [U/Um] be the image of ym.

For any x ∈ OFm+1 , it is readily seen that the image of ym+1(x) in OFm+1 [U/Um] agrees with
the image of ym(TrFm+1/Fm(x)), and hence passing to the inverse limits with respect to the trace
maps, we obtain an isomorphism

(3.6) lim←−
m

ym : lim←−
m

OFm
'−−→ S∞ := lim←−

m

Sm.

Let ÔF∞ be the completion of the ring of integers of F∞.
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Proposition 3.5. The module S∞ is free of rank 1 over Zp[[U ]], and it is identified with

{g ∈ ÔF∞ [[U ]] : gu = [u]g for all u ∈ U},

where gu denotes the action of u on the coefficients ÔF∞ and [u]g denotes the action of u via
multiplication as group-like element.

Proof. See [LZ14, Prop. 3.2, Prop. 3.6]. �

3.4. A two-variable regulator map for p-ordinary deformations. Let F/Qp and F∞/F
be unramified extensions as in §3.3, set L∞ := F∞(µp∞), and let G := Gal(L∞/F ) ∼= U × Z×p .

As in §3.2, we let T be a p-ordinary deformation in the sense of Definition 3.1, and let Ψ :
GQp → I× be the unramified character giving the GQp-action on the subspace F+T ⊂ T.

Definition 3.6. An arithmetic prime ν ∈ X aO(I) is exceptional for T if ν has weight (k, ε) = (2,1),
and Ψν(Frp) = 1.

For any finite extension F ′ of Qp contained in L∞ and any subquotient M of T define

H1
Iw(L∞/F

′,M) := lim←−
L

H1(L,M),

where L runs over the finite extensions of F ′ contained in L∞, and the transition maps are given
by corestriction. By Shapiro’s lemma, we have H1

Iw(L∞/F,F+T) ∼= H1(F,T⊗̂ZpZp[[G]]), and in
the same manner as in (3.2) and (3.5), for every ν ∈ X aI (I) and Hodge–Tate character φ of G we
have specialization maps

Spν,φ : H1
Iw(L∞/F,F

+T) −→ H1(F,F+Vν,φ)

and
Spν,φ : D⊗̂ZpZp[[G]] −→ DdR,F (F+Vν,φ).

Note that if φ has weight Hodge–Tate weight2 w > 0, then Fil0DdR,F (F+Vν,φ) = {0}, and the
Bloch–Kato logarithm becomes an isomorphism

logp : H1
f (F,F+Vν,φ) = H1(F,F+Vν,φ)

'−−→ DdR,F (F+Vν,φ).

Theorem 3.7. Let T be a p-ordinary deformation, and set λ := Ψ(Frp) − 1 ∈ I. Then there is
an injective I[[G]]-linear map

LG : H1
Iw(L∞/F,F

+T) −→ λ−1 · J (D⊗̂ZpÔF∞ [[G]])

such that for every non-exceptional ν ∈ X aO(I) and every Hodge–Tate character φ : G → L× of
conductor pn and Hodge–Tate weight w > 0, the following diagram commutes

H1
Iw(L∞/F,F+T)

LG //

Spν,φ
��

λ−1 · J (D⊗̂ZpÔF∞ [[G]])

Spν,φ
��

H1(F,F+Vν,φ) // DdR,F (F+Vν,φ),

where the bottom horizontal map is given by

(−1)w−1

(w − 1)!
· logp ·

{ (
1− Ψν(Frp)

pw

)(
1− pw−1

Ψν(Frp)

)−1
if n = 0,

ε(φ)Ψν(Frp)
n if n > 1.

2In this paper, we adopt the convention that the Hodge–Tate weight of εcyc is +1. Thus the Hodge–Tate weights
of a p-adic de Rham representation V are the integers w such that Fil−wDdR(V ) ) Fil−w+1DdR(V ).
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Proof. For each m > 0, let

EΓcyc

Fm
: J (D ⊗Zp OFm) −→ H1(Fm,F

+T )

be the big exponential map of Theorem 3.4 for the unramified extension Fm/Qp, and using (3.6)
define

EG := lim←−
m

EΓcyc

Fm
: J (D⊗̂ZpS∞) −→ H1

Iw(F∞/F,F
+T ).

By Shapiro’s lemma, we view EG as taking values in H1
Iw(L∞/F,F+T). Since each EΓcyc

Fm
has

cokernel killed by λ, it is readily seen that EG is an injective I[[G]]-linear map with cokernel killed
by λ, and hence given any Y∞ ∈ H1

Iw(L∞/F,F+T), the product

LG(Y∞) := λ−1 · (EG)−1(λ ·Y∞)

is a well-defined element in

λ−1 · J (D⊗̂ZpS∞) ↪→ λ−1 · J (D⊗̂ZpÔF∞ [[U ]]) ' λ−1 · J (D⊗̂ZpÔF∞ [[G]]).

Thus constructed, the claimed interpolation properties of LG for each non-exceptional ν ∈ X aO(I)
follow as in [LZ14, Thm. 4.15]. �

Next we consider the specialization of the map LG of Theorem 3.7 at Hodge–Tate characters
of φ of G of weight w 6 0.

Definition 3.8. Let f ∈ I[[q]] be an ordinary I-adic newform of tame level N (prime to p). We
say that an arithmetic prime ν ∈ X aO(I) is p-old if fν is the p-stabilization of a p-ordinary newform
of level N .

If ν ∈ X aO(I) has weight (k,1) with k > 2, then ν is p-old (see [How07b, Lem. 2.1.5]). Note also
that any p-old arithmetic prime is necessarily non-exceptional. For any p-old ν ∈ X aO(I) and any
Hodge–Tate character φ of G of weight w 6 0, the Bloch–Kato dual exponential map becomes
an isomorphism

exp∗p : H1(F,F+Vν,φ)
'−−→ Fil0DdR,F (F+Vν,φ) = DdR,F (F+Vν,φ).

Corollary 3.9. Let ν ∈ X aO(I) be a p-old arithmetic prime. If φ : G → L× is a Hodge–Tate
character of weight w 6 0 and conductor pn, then the following diagram commutes

H1
Iw(L∞/F,F+T)

LG //

Spν,φ
��

λ−1 · J (D⊗̂ZpÔF∞ [[G]])

Spν,φ
��

H1(F,F+Vν,φ) // DdR,F (F+Vν,φ),

where the bottom horizontal map is given by

(−w)! · exp∗p ·

{ (
1− Ψν(Frp)

pw

)(
1− pw−1

Ψν(Frp)

)−1
if n = 0,

ε(φ)Ψν(Frp)
n if n > 1.

Proof. Since ν is non-exceptional, the composition of the map LG of Theorem 3.7 with the
specialization map (3.4) at ν factors through H1

Iw(L∞/F,F+T) → H1
Iw(L∞/F,F+T) ⊗I Fν

giving rise to an Fν [[G]]-linear map

LGν : H1
Iw(L∞/F,F

+T)⊗I Fν −→ DdR,F (F+Vν)⊗Zp ÔF∞ [[G]].
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By Theorem 3.7, this map enjoys the same interpolation properties at a dense set of characters
of G as the restriction via

H1
Iw(L∞/F,F

+T)⊗I Fν ↪→ H1
Iw(L∞/F,F

+Vν)

of the map LGV constructed in [LZ14, Thm. 4.7] for V = F+Vν . (Note that since ν is assumed
to be p-old, F+Vν is a “good crystalline” GF -representation in the sense of [LZ14, Def. 4.1].)
Since LGF+Vν

is uniquely determined by its values at such characters (for every given class in

H1
Iw(L∞/F,F+Vν)), the result follows from [LZ14, Thm. 4.15]. �

4. Big Heegner points

Fix a prime p > 3, and let f =
∑∞

n=1 anq
n ∈ Sk(Γ1(N)) be a p-ordinary newform of weight

k > 1, level N prime to p, and nebentypus εf . Let K be an imaginary quadratic field as in §2.5.
(However, note that the assumption that p splits in K will not needed in this section.) Let L be
a finite extension of Qp with ring of integers O containing the Fourier coefficients of f . In this
section, we briefly recall Howard’s construction of big Heegner points associated to the ordinary
I-adic newform passing through f .

4.1. Galois representations associated to Hida families. Denote by X̃s/Q the compactified
modular curve whose non-cuspidal points classify isomorphism classes of triples (E, tN , tp) with:

• E an elliptic curve over an arbitrary Q-scheme S;
• tN a point of E of exact order N ;
• tp a point of E of exact order ps.

For any field extension M/Q, set

J̃s(M) := Jac(X̃s)(M)⊗Z O,

where Jac(X̃s) is the Jacobian variety of X̃s. Denote by hs the O-algebra generated by the Hecke
operators T` for ` - Np), the operators U` for ` | Np, and the diamond operators 〈a〉Np for

a ∈ (Z/NpsZ)×, acting on J̃s(C) by Albanese functoriality, and let

eord := lim
m→∞

Um!
p

be Hida’s ordinary projector. Following the convention in [How07b, §2.1], we make hs into a
O[[Z×p ]]-algebra via [z] 7→ 〈z〉p, where [z] ∈ O[[Z×p ]]× is the group-like element corresponding to

z ∈ Z×p and 〈·〉p denotes the p-part of the diamond operator 〈·〉Np. By [Hid86b, Thm. 3.1], the

algebra hord := lim←−s e
ordhs is finite flat over Λwt

O ; in particular, hord is a semi-local ring equal to
the product of its localizations at its maximal ideals. Our fixed newform f defines an algebra
homomorphism λf : hord → O, and we let hord

m be the direct summand of hord through which λf
factors.

Definition 4.1. Let αp and βp be the roots of the Hecke polynomial X2− apX + εf (p)pk−1. We
say that f is regular at p if αp 6= βp.

Of course, since f is assumed to be ordinary at p, it can be non-regular at p only if k = 1.

Lemma 4.2. Assume that either:

(a) k > 2;
(b) k = 1 and f is regular at p.

Then the localization of hord
m at ker(λf ) is a discrete valuation ring.
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Proof. In case (a), this is a classical result of Hida (see [Hid86a, Cor. 1.4]). The result in case (b)
is recent work of Belläıche–Dimitrov [BD16, Thm. 1.1]. �

Assume from now on that one of the conditions in Lemma 4.2 holds. Thus there is a unique
minimal prime a ⊂ hord

m containing ker(λf ), and we set

I := hord
m /a.

For each i ∈ Z/(p − 1)Z, let ei be the idempotent of O[[Z×p ]] projecting onto the ωi-isotypical

component for the action of (Z/pZ)× ⊂ Z×p , and note that hord
m = ek−2h

ord
m . Letting an ∈ I be

the image of Tn, the formal q-expansion

f =
∞∑
n=1

anq
n ∈ I[[q]]

is an ordinary I-adic newform of tame level N and character εfω
k−2 in the sense of Definition 2.4.

Let κL be the residue field of L and denote by ρ̄f : GQ → GL2(κL) the semi-simple residual
representation associated with f .

Theorem 4.3. Assume that ρ̄f is irreducible and p-distinguished. Then the following hold:

(1) The module

T :=

(
lim←−
s

eord(Tap(Js)⊗Zp O)

)
⊗hord I

is free of rank 2 over I, and the resulting Galois representation

ρf : GQ −→ AutI(T) ' GL2(I)

is unramified outside Np with

trace ρf (Fr−1
` ) = a`, det ρf (Fr−1

` ) = εf (`)[`]`,

for all ` - Np, where Fr−1
` is an arithmetic Frobenius.

(2) There is an exact sequence of I[GQp ]-modules

(4.1) 0 −→ F+T −→ T −→ F−T −→ 0

with F±T ' I, and with the action of GQp on F−T given by the unramified character

α : GQp → I× sending Fr−1
p to ap.

Proof. Part (1) follows from [MT90, Thm. 7], and part (2) from [Wil88, Thm. 2.2.2]. �

4.2. Howard’s big Heegner points. Fix a positive integer co prime to Np. For n > s, the CM

points xcopn ∈ Ig(N)(C) constructed in §2.5 descend to points Pcopn,s ∈ X̃s(H̃copn(µps)), where

H̃copn is the composition of Hcopn with the ray class field of K of conductor N.

Proposition 4.4. The following hold:

(1) Let n > s > 0. For all σ ∈ Gal(H̃copn(µps)/H̃copn), we have

P σcopn,s = 〈ϑ(σ)〉p · Pcopn,s,

where ϑ : Gal(H̃copn(µps)/H̃copn)→ Z×p /{±1} is such that ϑ2 = εcyc.
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(2) If n > s > 1, then ∑
σ∈Gal(H̃copn (µps )/H̃copn−1 (µps ))

α̃s(P
σ
copn,s) = Up · Pcopn,s−1,

where α̃s : X̃s → X̃s−1 is the degeneracy map given by (E, tN , tp) 7→ (E, tN , p · tp) on
non-cuspidal moduli.

(3) If n > s > 1, then ∑
σ∈Gal(H̃copn (µps )/H̃copn−1 (µps ))

P σcopn,s = Up · Pcopn−1,s.

Proof. Let Xs be the compactified modular curve for the congruence subgroup Γ0(N) ∩ Γ1(ps),

and consider the degeneracy map βN : X̃s → Xs given by (E, tN , tp) 7→ (E,CN , tp) on non-
cuspidal moduli, where CN denotes the cyclic subgroup of E[N ] generated by tN . From the
construction of xcopn given in §2.5, it is immediate to see that for n > s the image βN (Pcopn,s)
agrees with the point hcopn−s,s ∈ Xs(C) constructed in [How07b, §2.2], i.e., corresponding to the
triple (Acopn−s,s, ncopn−s,s, πcopn−s,s) with:

• Acopn−s,s(C) = C/Ocopn ;
• ncopn−s,s = Acopn−s,s[N ∩ Ocopn ];
• πcopn−s,s a generator of the kernel of the cyclic ps-isogeny C/Ocopn → C/Ocopn−s .

Thus properties (1), (2), and (3) follow immediately from Corollary 2.2.2, Lemma 2.2.4, and
Proposition 2.3.1 of [How07b], respectively. �

Set L̃c,s := H̃cps(µps), and keep the notations from Proposition 4.4. As in [How07b, p. 100],

one easily checks that for t > 0 and σ ∈ Gal(L̃copt,s/H̃copt+s) we have the equality Θ(σ) = 〈ϑ(σ)〉p
as endomorphisms of ek−2e

ordJ̃s(L̃copt,s), and so (using that Up has degree p and we are taking

ordinary parts) the points ek−2e
ordPcopt+s,s define classes

ycopt,s ∈ e
ordJ̃s(L̃copt,s)

which satisfy

(4.2) yσcopt,s = Θ(σ) · ycopt,s

for all σ ∈ Gal(L̃copt,s/H̃copt+s).

Definition 4.5. For any Λwt
O -module M equipped with a linear GQ-action, we let M † denote its

twist by the character Θ−1.

Thus (4.2) amounts to the statement that

ycopt,s ∈ H
0(H̃copt+s , e

ordJ̃s(L̃copt,s)
†).

For any number field F let GF be the Galois group of the maximal extension of F unramified
outside the primes above Np. By Proposition 4.4, the image of ycopt,s under the composite map

H0(H̃copt+s , e
ordJ̃s(L̃copt,s)

†)
Cor−−→ H0(H̃copt , e

ordJ̃s(L̃copt,s)
†)

Kum−−−→ H1(G
H̃copt

, eordTap(J̃s)
†)

defines a class Xcopt,s satisfying

αs∗Xcopt,s = Up · Xcopt,s−1
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under the map

α̃s∗ : H1(G
H̃copt

, eordTap(J̃s)
†) −→ H1(G

H̃copt
, eordTap(J̃s−1)†)

induced by α̃s : X̃s → X̃s−1 by Albanese functoriality.

Definition 4.6. Let c > 0 be an integer prime to N . The big Heegner point of conductor c is
the class

Xc ∈ H1(G
H̃c
,T†)

defined as the image of lim←−s U
−s
p · Xc,s under the natural map

lim←−
s

H1(G
H̃c
, eordTap(J̃s)

†) −→ H1(G
H̃c
,T†).

By inflation, we shall view Xc as a class in H1(H̃c,T
†).

As in [How07b, Prop. 2.3.1], it follows easily from Proposition 4.4 that the classes

(4.3) Zco,t := U1−t
p · Xcopt ∈ H

1(H̃copt ,T
†)

are compatible under the corestriction maps, thus defining a class

Zco,∞ := lim←−
t

Zco,t ∈ H1
Iw(H̃cop∞/H̃co ,T

†) = lim←−
t

H1(G
H̃copt

,T†).

We conclude this section by recalling some of the local conditions satisfied by these classes.

Lemma 4.7. Let F be a finite extension of K, and let v be a prime of F above a prime ` dividing
(DK , N). If ρ̄f is ramified at `, then H1(F ur

v ,T
†) is I-torsion free.

Proof. This is well-known; see e.g. [Büy14, Lem. 3.12]. �

For F a finite extension K, let SelGr(F,T
†) ⊂ H1(GF ,T

†) be the strict Greenberg Selmer
group of [How07b, Def. 2.4.2].

Proposition 4.8. If ρ̄f is ramified at every prime ` dividing (DK , N), then Xc ∈ SelGr(H̃c,T
†)

for all positive integers c prime to N .

Proof. The proof of [How07b, Prop. 2.4.5] shows that the localization locv(Xc) of Xc at any place

v of Hc lies in the local subspace H1
Gr(H̃c,v,T

†) ⊂ H1(H̃c,v,T
†) defining SelGr(H̃c,T

†), except
possibly at primes v | ` | N which are non-split in K, in which case it is shown that

locv(Xc) ∈ ker

(
H1(H̃c,v,T

†) −→
H1(H̃ur

c,v,T
†)

H1(H̃ur
c,v,T

†)tors

)
,

where H1(H̃ur
c,v,T

†)tors ⊂ H1(H̃ur
c,v,T

†) is the I-torsion submodule. In light of Lemma 4.7, the
result follows. �

5. Explicit reciprocity law

In this section is we prove Theorem 5.3, the main technical result of this paper. We keep the
setting introduced at the beginning of Section 4.
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5.1. Regulator map for the anticyclotomic Zp-extension of K. Recall the I-adic Hecke
character ξ : K×\A×K → I× introduced in Definition 2.8. With a slight abuse of notation, we also
let ξ : GK → I× be corresponding Galois character, and set

(5.1) T := T|GK ⊗Θ−1ξ−1.

Since p = pp splits in K, by Theorem 4.3 the restriction of T to a decomposition group at p
takes the form

(5.2) T|GKp
:

(
α−1εfεcycΘξ−1 ∗

0 αΘ−1ξ−1

)
on a suitable I-basis. Since

(5.3) Ψ := α−1εfεcycΘξ−1

is an unramified character of GKp ,the local representation (5.2) is a p-ordinary deformation in

the sense of Definition 3.1, and so associated with it we may consider the regulator map LG of
Theorem 3.7. Here, we take F to be the completion at a prime above p of the ring class field Hco

of K of conductor co (prime-to-p), F∞/F an infinite unramified extension as in §3.3, and

G = Gal(L∞/F ), where L∞ = F∞(µp∞).

Recall the I-module D of Definition 3.5, which by [Och03, Lem. 3.3] is free of rank 1.

Lemma 5.1. There exists a canonical isomorphism of I-modules ωf : D→ I such that for every
ν ∈ X aO(I) and every Hodge–Tate character φ of G of weight 0 < w < kν−1 the following diagram
commutes

D⊗̂ZpOF [[G]]
ωf⊗1 //

Spν,φ
��

I⊗̂ZpOF [[G]]

Spν,φ
��

DdR,F (F+Vν,φ) // Fν,φ ⊗Qp F,

where the bottom horizontal map is given by pairing with the differential ωfν ⊗ φ−1 under the
canonical identification

DdR,F (F+Vν,φ) ∼=
DdR,F (Vν,φ)

Fil0DdR,F (F+Vν,φ)
∼= Fil1DdR,F (V ∗ν,φ)∨.

Proof. The first isomorphism in the last part of the statement is explained in [Och03, Lem. 3.2]
and the second isomorphism is given by the de Rham pairing 〈, 〉dR. The result thus follows from
[KLZ17, Prop. 10.1.1(1)]. �

Set λ := Ψ(Frp)− 1 ∈ I, and define ĨW := I[λ−1]⊗̂ZpW.

Proposition 5.2. Let K∞/F be a Z×p -extension contained in L∞ obtained by adjoining the
torsion points of a relative Lubin–Tate formal group over F/Qp, and let Γ = Gal(K∞/F ) be the

corresponding quotient of G. There exists an injective ĨW [[Γ]]-linear map

LΓ
ωf

: H1
Iw(K∞/F,F+T) −→ ĨW [[Γ]]
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with pseudo-null cokernel such that for every Hodge–Tate character φ of Γ of weight w > 0 and
conductor pn, if Y∞ ∈ H1

Iw(K∞/F,F+T) then

Spν,φ(LΓ
ωf

(Y∞)) =
ε(φ)p−n

ν(anp )εf (pn)χνξ
−1
ν (pnp )

·

{
(1−ν(ap)χνξ

−1
ν φ−1(p))

(1−pν(ap)−1χνξ
−1
ν φ(p))

if n = 0,

1 if n > 1.

× (−1)w−1

(w − 1)!
· 〈logp(Spν,φ(Y∞)), ωfν ⊗ φ−1〉dR.

Proof. By (5.2), the action of GQp on F+T is given by the unramified character sending Frp to

ap · εfεcycΘξ−1(Frp) = ap · χξ−1(pp)εf (p)p, where pp is the idèle of K with p-component equal

to p and 1 everywhere else. Thus the map LG of Theorem 3.7 can be applied to F+T, and we

define LGωf
: H1

Iw(L∞/F,F+T)→ ĨW [[G]] by the composition

LGωf
: H1

Iw(L∞/F,F
+T)

LG−−→ λ−1 · J (D⊗̂ZpÔF∞ [[G]])
ωf⊗1−−−→ ĨW [[G]],

where ωf ⊗ 1 is given by Lemma 5.1. Let J be the kernel of the natural projection I[[G]]� I[[Γ]].
The corestriction map

H1
Iw(L∞/F,F

+T)/J −→ H1
Iw(K∞/F,F+T)

is injective, and its cokernel is contained in the J-torsion submodule of H2(L∞,F+T), which
vanishes since H0(K∞,F+T) = {0} (as one can see e.g. by the argument right before [CH18,
Lem. 5.5]). Quotienting LGωf

by J we thus obtain a map

LΓ
ωf

: H1
Iw(K∞/F,F+T) ∼= H1

Iw(L∞/F,F
+T)/J −→ ĨW [[Γ]]

having the desired properties by virtue of Theorem 3.7 and Corollary 3.9. �

5.2. Explicit reciprocity law for big Heegner points. Recall the character λ used in the
construction of ξ, and let coOK be the prime-to-p part of the conductor of λ(x)λ−1(x). Let

Zco,∞ ∈ H1
Iw(H̃cop∞/H̃co ,T

†) be Howard’s system of big Heegner points, as recalled in §4.2. Since

T† ⊗ ξ−1 = T by (5.1), the twist Zξ−1

co,∞ lies in H1
Iw(H̃cop∞/H̃co ,T).

Let F be the completion of H̃co at a prime v above p (so F is a finite unramified extension

of Qp), and let H̃cop∞,v be the completion of H̃cop∞ at the unique prime above v. By [How07b,

Prop. 2.4.5], the class resv(Z
ξ−1

co,∞) goes to zero under the second arrow in the exact sequence

H1
Iw(H̃cop∞,v/F,F

+T) −→ H1
Iw(H̃cop∞,v/F,T) −→ H1

Iw(H̃cop∞,v/F,F
−T)

induced by (4.1); since the first arrow is injective by [How07b, Lem. 2.4.4], we naturally have

resv(Z
ξ−1

co,∞) ∈ H1
Iw(H̃cop∞,v/F,F

+T).

The extension H̃cop∞,v/F is totally ramified and is well-known to agree with the Z×p -extension
obtained by adjoining the torsion points of a Lubin–Tate formal group relative to the extension
F/Qp (see e.g. [Shn16, Prop. 39]). Thus for Γ = Gal(Hcop∞,v/F ) we have the regulator map LΓ

ωf

of Proposition 5.2, and we may let LΓ
ωf

(resp(Z
ξ−1

co,∞)) ∈ ĨW [[Γ̃]] be the image of resv(Z
ξ−1

co,∞) under
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the composition

H1
Iw(H̃cop∞,v/F,F

+T)
LΓ
ωf−−→ ĨW [[Γ]] ∼= ĨW [[Gal(H̃cop∞/H̃co)]]

cor
H̃co/K−−−−−−→ ĨW [[Gal(H̃cop∞/K)]]

res
H̃p∞−−−−−→ ĨW [[Γ̃]],

where Γ̃ = Gal(H̃p∞/K). We can now state and prove the explicit reciprocity law for Howard’s
big Heegner points, where we let Lp,ξ(f) be the two-variable p-adic L-function constructed in
§2.7.

Theorem 5.3. The following equality holds in ĨW [[Γ̃]]:

LΓ
ωf

(resp(Z
ξ−1

co,∞)) = Lp,ξ(f) · σ−1,p,

where σ−1,p := recp(−1)|Hp∞ ∈ Γ̃.

We shall deduce Theorem 5.3 easily after the proof of the following result.

Proposition 5.4. Let ν ∈ X aO(I) be an arithmetic prime of weight (2, ε) with ε : Γwt → µp∞ of

conductor ps, and let φ̂ : Γ̃→ L× be the p-adic avatar of an anticyclotomic Hecke character φ of
K of infinity type (1,−1) and conductor pn with n > s Then

Lp,ξ(f)(ν, φ̂−1) =
φp(−1)ε(φp)

ν(anp )εfχνξ
−1
ν (Frnp )

· 〈logp(resp(Spν,φ−1(Zξ−1

co,∞))), ωfν ⊗ φ〉dR.

Proof. Our hypotheses imply that the character ξνφ
−1 has finite order and it factors through the

Gal(Hcopn+1/K). By the same calculation as in the proof of [CH18, Thm. 4.9] (see esp. [loc.cit.,
(4.8)]) we obtain

(5.4) Lp,ξ(f)(ν, φ̂−1) = g(φ−1
p )p−nφp(p

n)
∑

σ∈Gal(H̃copn+1/K)

ξ−1
ν φ(σ)χ−1

ν (σ) · d−1f̂ [ν(xσcopn+1,s),

where d−1f̂ν is the p-adic modular form of weight 0 given by

d−1f̂ [ν := lim
t→−1

dtf̂ [ν =
∑

(n,p)=1

ν(an)n−1qn.

To proceed with the proof, we need to recall the definition of the Frobenius operator Frob on
the space Vp(N ;R) of p-adic modular forms, where we take R to be a complete discrete valuation

ring containing Oν . If x = [(A, η(p), ηp)] is a point in Îg(N)/R with

(η(p), ηp) : µN ⊕ µp∞ ↪→ A[N ]⊕A[p∞],

then ηp amounts to giving an isomorphism η̂p : Ĝm ' Â of formal groups, and we set

Frob(x) := (A0, η
(p)
0 , η0,p),

where:

• A0 := A/ηp(µp) is the quotient of A by its canonical subgroup, and we let λ0 : A → A0

is the natural projection;

• η(p)
0 := λ0 ◦ η(p) : µN ↪→ A0[N ];
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• η0,p : µp∞ ↪→ A0[p∞] induces η̂0,p := η̂p ◦ µ̂0, where µ̂0 : Â0 ' Â is the isomorphism of
formal groups induced by the dual isogeny µ0 = λ∨0 .

The action of Frob on Vp(N ;R) is then defined in the obvious manner, setting

Frob(g)(x) := g(Frob(x)),

for every g ∈ Vp(N ;R) and x ∈ Îg(N)/R.
Now let Fωfν be the Coleman primitive of the differential ωfν , normalized so that it vanishes

at the cusp ∞; this is a locally analytic p-adic modular form (as defined in [BDP13, p. 1083]) of
weight 0 satisfying

dFωfν = ωfν
and characterized by the further requirement that

(5.5) Fωfν −
ν(ap)

p
Frob(Fωfν ) = d−1f̂ [ν

(cf. [Cas13, Cor. 2.8]). In particular, note that UpFωfν =
ν(ap)
p Fωfν .

Let Fn,s be a finite extension of ıp(L̃copn+1,s) in Qp such that the base-change of X̃s/Qp
to Fn,s

admits a stable model. The calculation in [Cas13, Prop. 2.9] applies to f and the classes

∆copn+1,s := (Pcopn+1,s)− (∞), ∆copn+1+s,s := (Pcopn+1+s,s)− (∞)

in J̃s(Fn,s), yielding the formulae

logωfν (∆copn+1,s) = Fωfν (Pcopn+1,s), logωfν (∆copn+1+s,s) = Fωfν (Pcopn+1+s,s),(5.6)

where logωfν : J̃s(Fn,s)→ Cp is the formal group logarithm associated with ωfν .

Now define Qcopn+1,s ∈ J̃s(L̃copn+1,s)⊗Z Fν by

(5.7) Qcopn+1,s =
∑

σ∈Gal(H̃copn+1+s/H̃copn+1 )

∆σ̃
copn+1+s,s ⊗ χ

−1
ν (σ̃),

where for each σ ∈ Gal(H̃copn+1+s/H̃copn+1), σ̃ is an arbitrary lift of σ to Gal(L̃copn+1,s/H̃copn+1);
by (4.2), the point Qcopn+1,s does not depend on the particular choice of lift. Taking lifts σ̃ in (5.7)

which act trivially on µps (as we may, since H̃copn+1+s ∩ H̃copn+1(µps) = H̃copn+1) and extending
the map logωf by Fν-linearity, we deduce from (5.6) that

logωfν (Qcopn+1,s) =
∑

τ∈Gal(L̃copn+1,s/H̃copn+1 (µps ))

Fωfν (P τcopn+1+s,s)

= Fωfν (U sp · Pcopn+1+s,s)

=

(
ν(ap)

p

)s
· Fωfν (Pcopn+1,s),

(5.8)

using Proposition 4.4 for the second equality. Since as noted at the beginning of §4.2 the points

xcopn,s ∈ Ig(N)(C) descend to the points Pcopn,s ∈ X̃s(H̃copn(µps)) for n > s, substituting (5.8)
into (5.4) and using (5.5) we thus arrive at

Lp,ξ(f)(ν, φ̂−1) = g(φ−1
p )p−nφp(p

n)

×
(

p

ν(ap)

)s ∑
σ∈Gal(H̃copn+1/K)

ξ−1
ν φχ−1

ν (σ) · logωf (Qσcopn+1,s).
(5.9)
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Recall that T† denotes the twist T ⊗ Θ−1, and note that T† ⊗I Fν ' T ⊗I Fν as GQ(µps )-

representations. By Hida’s control theorem (see e.g. [Hid86a, Thm. 3.1(i)]), the natural map
T→ T⊗I Fν factors as

T −→ eordTap(J̃s) −→ T⊗I Fν ,

and tracing through the definition of Xcopn+1 in §4.2 we see that the image of Qcopn+1,s under the
induced map

J̃s(L̃copn+1,s)⊗ Fν
Kum◦eord

−−−−−−→ H1(L̃copn+1,s, e
ordTap(J̃s)⊗ Fν) −→ H1(L̃copn+1,s,T⊗I Fν)

agrees with the image of U sp · ν(Xcopn+1) under the restriction

H1(H̃copn+1+s ,T† ⊗I Fν) −→ H1(L̃copn+1,s,T
† ⊗I Fν) ' H1(L̃copn+1,s,T⊗I Fν),

and hence

(5.10) logωf (Qcopn+1,s) =

(
ν(ap)

p

)s
· logωf (resp(ν(Xcopn+1))).

Note that ε(φp) = g(φ−1
p )φp(−pn). Thus substituting (5.10) into (5.9) and using (4.3) for the

second equality, we conclude that

Lp,ξ(f)(ν, φ̂−1) = φp(−1)ε(φp)p
−n

∑
σ∈Gal(H̃copn+1/K)

ξ−1
ν φ(σ) · logωf (resp(ν(Xcopn+1)σ))

=
φp(−1)ε(φp)p

−n

ν(anp )εf (pn)χνξ
−1
ν (pnp )

· 〈logp(resp(Spν,φ−1(Zξ−1

co,∞))), ωf ⊗ φ〉dR,

as was to be shown. �

Proof of Theorem 5.3. In light of Proposition 5.2, the content of Proposition 5.4 amounts to the
equality

LΓ
ωf

(resp(Z
ξ−1

co,∞))(ν, φ̂−1) = (Lp,ξ(f) · σ−1,p)(ν, φ̂
−1),

for all pairs (ν, φ) as in the statement of that result. Since an element in ĨW [[Γ̃]] is uniquely
determined by values at such a collection of pairs, the result follows. �

An immediate consequence of Theorem 5.3 is the following nontriviality statement for the
classes Zco,∞. For co = 1 and under the additional hypotheses that (DK , N) = 1 and p - ϕ(N)
(Euler’s totient function), this result was first shown by Howard (see [How07b, §3.1]) building on
the methods of Cornut–Vatsal.

Corollary 5.5. Let co be a positive integer prime to p, and let Γ̃co = Gal(H̃cop∞/H̃co). Then the

class Zco,∞ is not I[[Γ̃co ]]-torsion.

Proof. Note that it suffices to show the nontriviality statement for a character twist of Zco,∞.
Let ν ∈ XO(I) have weight (k,1) with k > 1 and be such that fν is classical, and let P be the

kernel of the map I[[Γ̃co ]] → I[[Γ̃co ]] ⊗I Fν . Then P is a height 1 prime of I[[Γ̃co ]] at which the

specialization of Zξ−1

co,∞ is nontrivial by Theorem 5.3 and Corollary 2.13. Since there are infinitely

many such P, it follows that Zξ−1

co,∞ is not I[[Γ̃co ]]-torsion, whence the result. �
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6. Arithmetic applications

In the following, for a prime p > 3, we let f ∈ Sk(Γ1(N)) be a p-ordinary newform of weight
k > 1 and level N prime to p with associated Galois representations

ρf : GQ −→ AutL(Vf ) ' GL2(L),

where L is a finite extension of Qp with ring of integers O. Also, we let K be an imaginary
quadratic field of odd discriminant −DK < 0 satisfying hypothesis (heeg) relative to N and in
which p = pp splits.

6.1. Preparations. Let χ be the p-adic avatar of an anticyclotomic Hecke character of K of
infinity type (j,−j) with j − k/2 ∈ Z, and set

Vf,χ := Vf (k/2)|GK ⊗ χ.
For S a finite set of places of K containing the primes above Np, and for every finite extension F
of K, let GF,S be the Galois group of the maximal extension of F unramified outside the places
above S. Recall that the Bloch–Kato Selmer group Sel(F, Vf,χ) is defined by

(6.1) Sel(F, Vf,χ) = ker

(
H1(GF,S , Vf,χ)→

∏
v

H1(Fv, Vf,χ)

H1
f (Fv, Vf,χ)

)
,

where v runs over all places of F , and

H1
f (Fv, Vf,χ) :=

{
ker
(
H1(Fv, Vf,χ)→ H1(F ur

v , Vf,χ)
)

if v - p;
ker
(
H1(Fv, Vf,χ)→ H1(Fv, Vf,χ ⊗Qp Bcris)

)
if v | p.

Fix a GQ-stable O-lattice Tf ⊂ Vf and set Tf,χ := Tf (k/2)|GK ⊗ χ. We define Sel(F, Tf,χ) by
the same recipe (6.1), replacing H1

f (Fv, Vf,χ) by their natural preimages in H1(Fv, Tf,χ). Let Fp

denote the completion of F at any place above p, and similarly for Fp.

Lemma 6.1. If the infinity type of χ is (j,−j) with j − k/2 ∈ Z and j > k/2, then:

H1
f (Fp, Vf,χ) = {0}, H1

f (Fp, Vf,χ) = H1(Fp, Vf,χ).

In particular, the classes in the Bloch–Kato Selmer group Sel(F, Vf,χ) are trivial at all primes
above p and satisfy no local condition at the primes above p.

Proof. From our conventions (see the footnote in Theorem 3.7), we find that the Hodge–Tate
weights of Vp := Vf,χ|GFp are k/2− j and 1− k/2− j; since these are non-positive integers under

the above hypotheses, it follows that Fil0DdR,Fp
(Vp) = DdR,Fp

(Vp). Similarly, the Hodge–Tate

weights of Vp := Vf,χ|GFp are the strictly positive integers k/2 + j and 1− k/2 + j, and therefore

Fil0DdR,Fp(Vp) = {0}. The result thus follows from [BK90, Thm. 4.1(ii)]. �

We will also have use for the following generalized Selmer groups obtained by changing in
definition (6.1) the local condition at the places above p. For v | p and Lv ∈ {∅,Gr, 0}, set

(6.2) H1
Lv(Fv, Vf,χ) :=

 H1(Fv, Vf,χ) if Lv = ∅;
H1(Fv,F+Vf,χ) if Lv = Gr;
{0} if Lv = 0,

and for L = {Lv}v|p, define

H1
L(F, Vf,χ) := ker

(
H1(GF,S , Vf,χ)→

∏
v-p

H1(Fv, Vf,χ)

H1
f (Fv, Vf,χ)

×
∏
v|p

H1(Fv, Vf,χ)

H1
Lv(Fv, Vf,χ)

)
.
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In addition, we define H1
L(Fv, Tf,χ) taking preimages just as before.

Remark 6.2. By Lemma 6.1 we have

(6.3) Sel(F, Vf,χ) = H1
∅,0(F, Vf,χ).

Remark 6.3. Taking Lv = Gr for all v | p we get

(6.4) H1
L(F, Vf,χ) = SelGr(F, Vf,χ),

where SelGr(L, Vf,χ) is the Greenberg Selmer group considered in [How07b, Def. 2.4.2].

6.2. Higher weight specializations of big Heegner points. In this section we relate the
higher weight specializations of Howard’s big Heegner points to the étale Abel–Jacobi images
of classical Heegner cycles [Nek95]. A first result in this spirit was obtained in [Cas13] under a
certain nonvanishing hypothesis (see [loc.cit., Thm. 5.11]). In Theorem 6.5 below we remove that
hypothesis, and find a relation between the global cohomology classes themselves, rather than
just their cyclotomic p-adic heights.

Assume that f has even weight k = 2r > 2 and trivial nebentypus. Fix an integer co prime to
p, and set

SelGr(Hcop∞/Hco , Tf (r)) := lim←−
n

SelGr(Hcopn , Tf (r)),

where SelGr(Hcopn , Tf (r)) = H1
L(Hcopn , Tf (r)) as in Remark 6.3. In particular, for every place v

of Hcopn above p, the restriction map resv : SelGr(Hcopn , Tf (r)) → H1(Hcopn,v, Tf (r)) has image
contained in H1(Hcopn,v,F

+Tf (r)) ⊂ H1(Hcopn,v, Tf (r)).
Let f be the ordinary I-adic newform of tame level N passing through f , and let

Zco,∞ ∈ H1
Iw(Hcop∞/Hco ,T

†)

be Howard’s system of big Heegner points attached to f and K. (Note that since we assume here
that f has trivial nebentypus, the classes Zco,t are defined over the ring class fields Hcopt rather

than their extensions H̃copt considered in §4.2.)

Lemma 6.4. Assume that ρ̄f |GK is irreducible. Then for every place v of Hco above p the
restriction map

resv : SelGr(Hcop∞/Hco , Tf (r)) −→ H1
Iw(Hcop∞,v/Hco,v,F

+Tf (r))

is injective.

Proof. Let ΛO = O[[Gal(Hcop∞/Hco)]]. Since SelGr(Hcop∞/Hco , Tf (r)) is ΛO-torsion-free by our
irreducibility hypothesis (see [How04, Lem. 2.2.9] and [PR00, §1.3.3]), it suffices to show that
the kernel of resv is ΛO-torsion; for this, it will suffice to show that for infinitely many φ :
Gal(Hcop∞/Hco)→ O×Cp , the φ-specialized map

resv : SelGr(Hco , Vf (r)⊗ φ) −→ H1(Hco,v,F
+Vf (r)⊗ φ)

is injective. By considering twists for each of the characters of Gal(Hco/K), it will suffice to show

that for infinitely many φ : Γ̃ = Gal(Hp∞/K)→ O×Cp , the restriction map

(6.5) resp : SelGr(K,Vf (r)⊗ ξ−1
ν φ) −→ H1(Kp,F

+Vf (r)⊗ ξ−1
ν φ)

is injective. Let ν ∈ X aO(I) be such that fν is the ordinary p-stabilization of f . By Corollary 2.13,

we have ν(Lp,ξ(f))(φ) 6= 0 for all but finitely many characters φ of Γ̃, and by Theorem 5.3 this
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shows that resp(Spν,φ(Zξ−1

co,∞)) 6= 0 for every such φ, where Spν,φ(Zξ−1

co,∞) is the image of Zξ−1

co,∞
under the composition

H1
Iw(Hcop∞/Hco ,T

† ⊗ ξ−1)
Spν−−→ H1(Hcop∞/Hco , Tf (r)⊗ ξ−1

ν )
φ−→ H1(K,Tf (r)⊗ ξ−1

ν φ),

and we view φ as a character on Gal(Hcop∞/Hco) via Gal(Hcop∞/Hco) ⊂ Gal(Hcop∞/K)� Γ̃. By

the results of [How07b, §2.3], the class Spν,φ(Zξ−1

co,∞) is the base class of an anticyclotomic Euler

system for Tf (r) ⊗ ξ−1
ν φ with the Bloch–Kato local condition (see [CH18, Def. 7.2]), and so by

[CH18, Thm. 7.7] we have the implication

Spν,φ(Zξ−1

co,∞) 6= 0 =⇒ SelGr(K,Vf (r)⊗ ξ−1
ν φ) = L.Spν,φ(Zξ−1

co,∞),

noting the equality between the Greenberg and the Bloch–Kato Selmer groups in our setting (see
e.g. [How07b, Eq. (23)]). We thus conclude that (6.5) is injective, whence the result. �

We are now ready to prove Theorem A in the Introduction, the strenghtening of the main
result of [Cas13] advanced in [CH18, §1].

For a p-ordinary newform g = fν of even weight kν = 2rν > 2, let

zfν ,co,α ∈ H1
Iw(Hcop∞/Hco , Tg(rν))

be the ΛO-adic class constructed in [CH18, §5.2], which by its geometric construction and the
equality (6.4) lands in SelGr(Hcop∞/Hco , Tfν (rν)). We refer the reader to [Cas13, p. 1250] and
[CH18, Eq. (4.6)] for the definition of the p-adic étale Abel–Jacobi images

(6.6) Φét
fν ,Hco

(∆heeg
co,rν ), Φét

fν ,Hco
(∆BDP

co,rν ) ∈ Sel(Hco , Tfν (rν))

of classical [Nek95] and generalized [BDP13] Heegner cycles, respectively, attached to fν and K.
On the other hand, as before let Zco,∞ ∈ H1

Iw(Hcop∞/Hco ,T
†) be Howard’s system of big Heegner

points attached to K and the Hida family f =
∑∞

n=1 anq
n ∈ I[[q]] passing through f .

Theorem 6.5. Assume that:

• k ≡ 2 (mod p− 1);
• ρ̄f is ramified at every prime q | (DK , N);
• ρ̄f p-distinguished;
• ρ̄f |GK is irreducible.

Then for all ν ∈ X aO(I) of weight 2rν > 2 with 2rν ≡ k (mod 2(p− 1)) and trivial character, we
have

ν(Zco,∞) · crν−1
o = zfν ,co,α

as elements in SelGr(Hcop∞/Hco , Tfν (rν)), where α = ν(ap). In particular, for all such ν we have

(6.7) ν(Zco,0) =

(
1− prν−1

ν(ap)

)2

·
Φét
fν ,Hco

(∆heeg
co,rν )

uco(2
√
−DK)rν−1

,

where uco = |O×co |/2.

Proof. Let ψ := ξν be the specialization of ξ as ν, and let

Lψ
−1

ν,p :=
〈
Lp,ψ(−), ωfν ⊗ t1−2rν

〉
: H1

Iw(Hcop∞/Hco ,F
+Vfν (rν)⊗ ψ−1) −→ ΛW [[Γ̃]]

be the map introduced in [CH18, §5.3]. By construction, the map LΓ
ωf

in Proposition 5.2 special-

izes at ν to the map Lψ
−1

ν,p , and using Theorem 5.3 for the second equality we have

(6.8) Lψ
−1

ν,p (ν(Zξ−1

co,∞)) = ν(LΓ
ωf

(resp(Z
ξ−1

co,∞))) = ν(Lp,ξ(f) · σ−1,p).
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On the other hand, as shown in the proof of Theorem 2.11, Lp,ξ(f) specializes at ν to the p-adic
L-function Lp,ψ(fν) of [CH18, §3.3], and so by the explicit reciprocity law of [loc.cit., Thm. 5.7]
we have

(6.9) ν(Lp,ξ(f) · σ−1,p) = Lp,ψ(fν) · σ−1,p = Lψ
−1

ν,p (zfν ,co,α ⊗ ψ−1) · c1−rν
o ,

where α = ν(ap), since this is the Up-eigenvalue of the p-stabilized newform fν .
Comparing (6.8) and (6.9), the proof of the first statement in Theorem 6.5 follows from

Lemma 6.4 and the injectivity of Lψ
−1

ν,p . (The injectivity of this map is not explicitly stated in
[CH18, §5.3], but it follows from the construction in [loc.cit., Thm. 5.1] and [LZ14, Prop. 4.11].)
In particular, by the construction of zfν ,co,α in [CH18, §5.2] (see [loc.cit., Def. 5.2]), we obtain
the relation

ν(Zco,0) =
1

uco

(
1− prν−1

ν(ap)

)2

· Φét
fν ,Hco

(∆BDP
co,rν ) · c1−rν

o ,

where uco = |O×co |/2, and by [BDP17, Prop. 4.1.2] (with r1 = 2rν − 2, r2 = 0, and so u = rν − 1)
the equality of classes (6.7) follows. �

Remark 6.6. For fν of weight 2 and trivial character, the classes (6.6) both reduce to Kummer
images of classical Heegner points, and if fν is the ordinary p-stabilization of fν , the argument in
the proof of Theorem 6.5 applies verbatim, yielding the same relation between classes. This ex-
cludes the case of arithmetic primes ν of weight 2 and trivial character for which fν has conductor
divisible p, which is the subject of [Cas18].

6.3. Proof of Theorem C. Keeping the notations as in the statement of Theorem C in the
Introduction, let V ∨% br the contragredient of the representation V%, and let g ∈ S1(Γ1(N%)) be
an eigenform whose associated Deligne–Serre representation Vg is isomorphic to V ∨% . (Note that
the existence of g is a consequence of the proof [KW09] of Serre’s modularity conjecture.) For P
a prime of E above p, we shall view g and Vg as defined over the finite extension of Qp given by
the completion L := EP, and let Tg ⊂ Vg be any GQ-stable O-lattice.

Let gp ∈ S1(Γ0(p) ∩ Γ1(N%)) be a p-stabilization of g. By [Wil88, Thm. 3], there exists a
ordinary I-adic newform f of tame conductor N% such that ν(f) = gp for some ν ∈ XO(I) of
weight 1. Note that our hypotheses on % guarantee that the associated residual representation ρ̄f
is irreducible and p-distinguished; in particular, f is unique by Lemma 4.2.

Let λ be the grossencharacter of K associated to A by the theory of complex multiplication,
and let Lp,ξ(f) be the two-variable p-adic L-function of §2.7 constructed with the corresponding
I-adic character ξ. As usual, let coOK be the prime-to-p conductor of λ(x)λ−1(x), and let
Zco,∞ ∈ H1

Iw(Hcop∞/Hco ,T
†) be Howard’s system of big Heegner points attached to f and K. As

already noted (see the comments right before the statement of Theorem 2.11), the specialization
of the I-adic character χ at ν has central character χν |A×Q = ε−1

g . Noting that λ(a)λ(ā) = N(a),

we thus see from Theorem 2.11 and Theorem 5.3 that

L(A/Q, %, 1) 6= 0 =⇒ L(g/K, χνξνN
−1/2, 0) 6= 0

=⇒ ν(Lp,ξ(f))(1) 6= 0

=⇒ resp(Spν,1(Zξ−1

co,∞)) 6= 0,

(6.10)

and so resp(Spν,1(Zξ
co,∞)) 6= 0 by the action of complex conjugation.

Let φ := ξν . The Euler system relations established in [How07b, §2.3] imply that Spν,1(Zξ−1

co,∞)
is the base class of an anticyclotomic Euler system for Tg,φ := Tg(1/2) ⊗ χνφ in the sense of
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[CH18, Def. 7.2] for the local conditions defining the generalized Selmer group H1
Gr,Gr(K,Vg,φ) of

(6.2), where Vg,φ = Tg,φ[1/p]. Thus as in the proof of [CH18, Thm. 7.9] the last nonvanishing in
(6.10) implies that

H1
Gr,Gr(K,Vg,φ) = L · Spν,1(Zξ−1

co,∞)τ = L · Spν,1(Zξ
co,∞),

and since resp(Spν,1(Zξ
co,∞)) 6= 0, this implies that

(6.11) H1
Gr,0(K,Vg,φ) = {0}.

From Poitou–Tate duality we obtain the exact sequence

0 −→ H1
0,∅(K,Vg,φ−1) −→ H1

Gr,∅(K,Vg,φ−1)
resp−−→ H1(Kp,F

+Vg,φ−1)

−→ H1
∅,0(K,Vg,φ)∨ −→ H1

Gr,0(K,Vg,φ)∨,

and since H1(Kp,F+Vg,φ−1) is one-dimensional, combining (6.10) and (6.11) we conclude that

(6.12) H1
∅,0(K,Vg,φ) = {0},

and so Sel(K,Vp(A)⊗ V ∨% ) vanishes by Lemma 6.1.
Now let F be the splitting field of %, and set H = Gal(F/Q). Since HomGQ

(V%, Sel(F, Vp(A))L)
is naturally identified with the space of H-invariant classes in Sel(F, Vp(A))⊗V ∨% = Sel(F, Vp(A)⊗
V ∨% ) and the restriction map

Sel(Q, Vp(A)⊗ V ∨% ) −→ Sel(F, Vp(A)⊗ V ∨% )H

is as isomorphism, the proof of Theorem C follows immediately from (6.12).
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