ON THE p-ADIC VARIATION OF HEEGNER POINTS
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ABSTRACT. In this paper, we prove an “explicit reciprocity law” relating Howard’s system of
big Heegner points to a two-variable p-adic L-function (constructed here) interpolating the p-
adic Rankin L-series of Bertolini-Darmon—Prasanna in Hida families. As applications, we obtain
a direct relation between classical Heegner cycles and the higher weight specializations of big
Heegner points, refining earlier work of the author, and prove the vanishing of Selmer groups
of CM elliptic curves twisted by 2-dimensional Artin representations in cases predicted by the
equivariant Birch and Swinnerton-Dyer conjecture.
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1. INTRODUCTION

Let f=>7" ang" € S2,(I'o(IN)) be a newform of weight 27 > 2, fix a prime p { 6N, and let L
be a finite extension of Q,, with ring of integers O containing the image of the Fourier coefficients
of f under a fixed embedding 12, : Q — Qp. Denote by

pf: GQ = Gal(Q/Q) — AutL(Vf(r)) ~ GLy(L)

the Kummer self-dual twist of the p-adic Galois representation associated with f. Let K be an
imaginary quadratic field of odd discriminant —Dg < —3. Let O be the ring of integers of K,
and assume that K satisfies the classical Heegner hypothesis relative to N:

(heeg) there is an integral ideal M of K with O /N ~ Z/NZ;
equivalently, every prime ¢ | N either splits or ramifies in K, with ¢>{ N in the latter case.

The first purpose of this paper is to complete earlier work of the author [Cas13] comparing two
natural constructions of a cohomology class of “Heegner-type” attached to the pair (f, K). For
the first one of these classes, let Sel(K, V;(r)) C H' (G, V¢(r)) be the Bloch-Kato Selmer group
for V¢(r)lgaq k). BY [Nek00], the image under the p-adic étale Abel-Jacobi map of classical

Heegner cycles [Nek95] on the (2r — 1)-dimensional Kuga—Sato variety of level N give rise to a
class

0% (ABE) € Sel (K, Vi (r)).
For the second class, assume that f is ordinary at 1y, i.e.:
(ord) a, € O%.
Fix a Gq-stable O-lattice Ty C V¢, let py : Gq — GLa(kr) be the associated semi-simple residual
representation, where xy, is the residue field of L, and assume that

(irred) py is irreducible.

Let D, C Gq be a decomposition group at p. By hypothesis (ord), the restriction py| D, can be
made upper-triangular, and we shall assume in addition that

(dist) py is D,-distinguished;

i.e., the semi-simplification of py¢|p, is the direct sum of two distinct characters. Suppose that
r=1 (mod p— 1), and let

£= aug" e Ifg]

be the Hida family passing through f. Thus I is a finite flat extension of O[[X]], and for every
continuous O-algebra homomorphism v : I — Q,, satisfying v(1 + X) = (1 + p)*~2 for some
integer k, > 2 with k, =2 (mod p — 1), the g-series f, := >, v(a,)g" is such that

phv=1
v(ap)

£, = fulq) — fu(d®)
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for some p-ordinary newform f, € Sy, (I'g(N)), with f = f, for a unique v = vy with k, = 2r.
Under the above hypotheses, Howard’s construction of big Heegner points [How07b] produces a
class
30 € H' (G, TY),

where TT is a self-dual twist of the big Galois representation associated to f. Under some ad-
ditional hypotheses on py when (Dg, N) > 1, one can show that 3¢ lies in the so-called strict
Greenberg Selmer group Selg: (K, TT) ¢ H'(Gg,T'), and so its image under the specialization
map vy yields a second class v¢(3¢) € Sel(K, Vi(r)).

Theorem A (Theorem 6.5). Assume in addition that p = pp splits in K, pf|g, is irreducible,
and py is ramified at every prime q | N which is non-split in K. Then

R P
vf(30) = <1 - Vf<ap>> ur(2y =Dy

where ug = |05|/2.

This subsumes the main result of [Cas13], which only implies the equality in Theorem A under
the assumption of Howard’s “horizontal nonvanishing conjecture” [How07b, Conj. 2.2.2] and the
nondegeneracy of the cyclotomic p-adic height pairing. The class 3¢ is obtained from Howard’s
big Heegner point X; of conductor 1, and more generally Theorem 6.5 establishes the relation
between the Selmer classes constructed from clasical Heegner cycles of conductor ¢ > 0 prime
to Np and the corresponding higher weight specializations of the big Heegner point X.. Thus
Theorem 6.5 answers a question raised by Howard (see [How07b, p. 93]).

As in [Casl13], the proof of Theorem A follows from relating the cohomology classes under con-
sideration to special values of L-functions. More precisely, extending work of Bertolini-Darmon—
Prasanna [BDP13] and Brakocevi¢ [Brall], in [CH18] we constructed an anticyclotomic p-adic
L-function %, (f) interpolating central critical values of the L-function of f twisted by certain
Hecke characters of K. Moreover, we constructed a compatible system of cohomology classes
zy interpolating the p-adic étale Abel-Jacobi images of (generalized) Heegner cycles of p-power
conductor, and extending the p-adic Gross—Zagier formula of [BDP13] we obtained an “explicit
reciprocity law”

(1.1) (Lo(zp),wp @t 72) = =%, 4 (f)

relating %}, (f) to the image of z; under a Perrin-Riou logarithm map. Let Hpeo = J,, Hp» be
the union of the ring class fields of K of p-power conductor. Denote by W the completion of the
ring of integers of the maximal unramified extension of Q,, and set Iy := ]I@sz. In Section 2
of this paper, we construct a two-variable p-adic L-function

Zpe(f) € Iy[[Gal(Hpe /K],

where £ is a certain [-adic anticyclotomic character of G, interpolating the p-adic L-functions
of [CH18] attached to the different specializations f, of f; in particular,

(1.2) vi(Zpe(f) = Loy ()
The key new ingredient in our proof of Theorem A is then the connection that we find between
2, ¢(f) and the system

300 € Hiy(Hpoe /H1, TT) = lim H' (Hpn, T")
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of Howard’s big Heegner points of p-power conductor. To simply state that result, we suppose
that H; = K in the next paragraph. By ordinarity, for each place v of K above p there is a G, -
stable I-submodule .Z+TT C T of rank 1, and as shown by Howard, the image of 3., under the
restriction map res, : Hi (Hyeo /K, TT) — H} (Hpeo ./ Ky, TT) lands in the image of the natural
map HY (Hpe /Ky, FTT) — HE (Hpyo /Ky, TT). In particular, the twist 35;1 of 30 by the
character £ yields a class

resy(3%, ) € Hiy (Hyoe p/ Ky, Z5T),
where ZF1T := FTTT @ €71, Let
A =a, - £cyeO& ! (Frob,) — 1,
where Frob, € Gk, is a geometric Frobenius element, and set Ty := ]I[)Fﬂ@zpw.
Theorem B (Theorem 5.3). There is a Perrin-Riou big logarithm map
L, H' (Hyo /Ky, FTT) — Tyy[[Gal(Hpe / K)]]
for the local extension Hpe /K, such that

-1
Lop(resy(35, ) = Loe(f) - o1y,
where 01 := recy(—1)[n 00 € Gal(Hpe/K).

The construction of the two-variable Perrin-Riou map ££f is given in Section 3, building upon
work of Ochiai [Och03] and Loeffler—Zerbes [LZ14], and the proof of the “explicit reciprocity law”
of Theorem B is obtained in Section 5 after a suitable extension of the calculations in [Casl3].
With this result in hand, the proof of Theorem A follows easily by specializing the equality in
Theorem 5.3 at vy, using (1.2) and the interpolation property of the map ££f, and comparing it
with the equality in (1.1).

The second purpose of this paper is to exploit the p-adic variation of Heegner points in Hida
families to establish certain new cases of the equivariant Birch—-Swinnerton-Dyer conjecture for
rational elliptic curves with complex multiplication. More precisely, let A/Q be an elliptic curve
with CM, and let

0:Gq — Autg(V,) ~ GL2(E)

be a 2-dimensional odd and irreducible Artin representation factoring through a finite quotient
Gal(F/Q) and with values in a finite extension £ C C of Q. Let T),(A) be the p-adic Tate
module of A, and set V,,(A) := Q, ®z, Tp(A). Associated to the compatible system V,(A) ®1,V,
of p-adic representations of Gq is a Artin-Hasse-Weil L-function L(A/Q, o, s). This is defined
for Re(s) > 3/2 by an absolutely convergent Euler product of degree 4, and by [Hec27] and
[KW09] it is known to admit analytic continuation to the entire complex plane, with a functional
equation relating its values at s and 2 — s. The equivariant Birch—Swinnerton-Dyer conjecture
predicts that

(1.3) ords—1 L(A/Q, 0, 5) = dimgHomeq (Vo, A(F) ),
and that
(1.4) Homgg (Vy, = (A/F) ) = {0}

for all primes p, where lI,~(A/F) is the p-primary component of the Tate-Shafarevich group
of A/F, and for any abelian group M we have set Mg := M ®z E. Let N4y and N, be the
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conductor of A and g, respectively, and denote by Sel(F,V,A) C H'(GF, V,(A)) the Bloch-Kato
Selmer group of Vp(A)|Ga1(6/F)'

Theorem C. Let A/Q be an elliptic curve of conductor N4 and with complex multiplication by
an imaginary quadratic field K, let p{ 6N,Na be a prime, and let B be a prime of E above p.
Assume that:

N, and Ny are coprime;

p = pp splits in K;

K satisfies hypothesis (heeg) relative to Ny;

o(Froby) has distinct eigenvalues modulo B.

If L(A/Q. 0,1) # 0, then

Homg, (V,, Sel(F, V,,(A))r) = {0}
In particular, (1.3) and (1.4) hold.

The conclusion that (1.3) holds under the nonvanishing of L(A4/Q, 0,s) at s = 1 was already
contained in earlier work of Bertolini-Darmon—Rotger [BDR15, Thm. A], while recent work of
Kings—Loeffler—Zerbes [KLZ17, Thm. 11.7.4] establishes an analog of Theorem C for rational
elliptic curves without complex multiplication (the CM case is excluded in [KLZ17] by the “big
image hypothesis” of [loc.cit., §11.1]). Thus the new content of Theorem C is the vanishing of
the o-isotypical component of Iy~ (A/F)g for “half” of the primes p under the nonvanishing of
L(A/Q,0,1).

Let us conclude this Introduction with a few words about the proof of Theorem C. Denote by
L(f/K,x,s) the Rankin—Selberg L-function for the convolution of a cusp form f € Si(I'1(V))
with a Hecke character y of K. From the explicit reciprocity law of Theorem B, we deduce a
proof of the implication

L(f, /K, XN"/20) £0 = 1v(3.0)" #0,

forv:I— Qp of weight k, > 0 and certain anticyclotomic Hecke characters x. Since Howard’s
systems of big Heegner points satisfies the compatibilities of an anticyclotomic Euler system, one
can deduce from Kolyvagin’s methods (as extended in [CH18, §7.2] to the anticyclotomic setting)
a proof of the implication

L(fo/ K, xN"72,0) #£0 = Sel(K, Vi) = {0},
where Sel(K,V,, ) is the Bloch-Kato Selmer group for V¢, (k,/2)|q, ® x. Since by [KW09] any
Artin representation o as in Theorem C is attached to some g € S1(I'1(NN,)), taking x so that

¥IN1/2 corresponds to the grossencharacter of A, f to be a Hida family passing through g, and
specializing the resulting 3., to weight one, the proof of Theorem C follows.

Some notations and definitions. For any place v of a number field E, let rec, : E — G%‘Z

and recy : E*\Aj — G?Eb be the local and global reciprocity maps, respectively, with geometric
normalizations. If ¢ : Z; — C* is a continuous character of conductor p", the Gauss sum of ¢
is defined by
ao)= > olwelu/p"),
ue(Z/pZ)*
where e(z) = exp(2miz), and if x : Q, — C* is a continuous character of conductor p", we define

the e-factor of x by e(x) = p"x ' (p")a(x 1)L
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2. p-ADIC RANKIN L-SERIES

In this section, we give the construction of a two-variable anticyclotomic p-adic L-function
2, ¢(f) attached to a Hida family f and an imaginary quadratic field K in which p = pp splits.
Such construction closely parallels the one-variable construction by Brakocevi¢ [Brall], and was
essentially contained in [Bral2].

2.1. Geometric modular forms. Fix a prime p, and let N > 3 be an integer prime to p.

Definition 2.1. Let k be an integer and let B be a Z,)-algebra. A geometric modular form f
of weight k on I'; (Np™) defined over B is a rule which assigns, for every B-algebra C' and every
triple (A, n,w) ¢ consisting of:

e an elliptic curve 4/C;

e a I';(Np>)-level structure n on A, i.e., an immersion

n= ", mp) : by © pye > AIN] @ Ap™]
of group schemes over C;

e a C-basis w of H'(A, 9}4/0),

a value f(A,n,w) € C depending only on the isomorphism class of (A, n,w) over C' and such that:
(1) For any B-algebra homomorphism ¢ : C'— C’, we have

f((A7777w) ®c C,) = (,D(f(A,??,W));
(2) For all A € C*, we have
f(A7 UR )‘w) = )‘_kf(A? R w);

(3) Letting (Tate(q), Ncan; Wean) /B((g)) be the Tate elliptic curve G.n/q? equipped with its
canonical level structure nc., and differential wean, we have

f(Tate(q), Nean, Wean) € Bl[q]]-

Let Ig(N),z » be the Igusa scheme parameterizing isomorphism classes of pairs (A,7) /s con-

sisting of an elliptic curve A equipped with I';(Np*°)-level structure 7 over arbitrary locally
Noetherian Z,)-schemes S. The generic fiber Ig(N) q of Ig(NN) is given by

(2.1) 15(N) )@ = lm Yi(Np") q.

where Y1(Np®)/q is the usual open modular curve of level I'; (Np®), and a geometric modular
form f as in Definition 2.1 can be viewed as a section of a certain sheaf on Ig(N) 7 .

2.2. p-adic modular forms. For any p-adic ring R (i.e., R ~ lim R/p™R), let IAg(N)/R be the
completion of Ig(N),r along the closed subscheme Ig(N), r ®r R/pR.

Definition 2.2. Let R be a p-adic ring. A p-adic modular form of tame level N defined over R
is a function on Ig(N),r. Let V(N5 R) be the space of such functions, so that

Vo(IV: R) = H'(Ig(N)/r. Oy )

Denote by I'* the group 1+ pZ, C Z;. Yor k € Z, and ¢ : r“t — Moo (R), we say that a p-adic
modular form f € V,(N; R) has weight (k, ¢) if it satisfies

f|<u>p(A7 77) = f(A) n(p)v npu) = E(u)ukf(Av 77)7
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for all w € TV and any point (A4,7) = (4,7®),n,) of IAg(N)/R valued in a p-adic R-algebra.

Associated with a geometric modular form f on I'y(Np*>) defined over R there is a p-adic
modular form f € V,(N; R) defined by the rule

~

f(A ) = f(A,n,0(mp)),

where &(n,) is the differential on A arising from the isomorphism of formal groups 7, : G, ~ A
induced by 7, : pryee — A[p™].

~

2.3. I-adic modular forms. Let O be the ring of integers of a finite extension of L of Q,, and
set AFE = O[[T]].

Definition 2.3. Let I be a finite flat A%f-algebra, and denote by Xo(I) the set of O-algebra
homomorphisms v : T — Qp. For any k € Z and ¢ : TV — Moo let

. _
Vpet Ay — Qp

be the 9-algebra homomorphism defined by u — e(u)u*~2 for u € IT"*. We say that v € Xp(1)
has weight (k,¢) if the composition

A —1-5Q,

is of the form v} ., and we say that v € Xp(I) is an arithmetic prime if it has weight (k,¢) for
some k € Zzp and € : TV" — pt 0.

Denote by X&(I) the set of arithmetic primes of I, which we may view (just as Xo(I) itself)
as a subset of Spec(I)(Q,). For each v € Xp(I), let F, be the residue field of ker(v) C I, and
O, C F, be the valuation ring.

Definition 2.4. Let ¢g : (Z/NpZ)* — O be a Dirichlet character modulo Np, and let I be a
finite flat A*-algebra.

(1) An I-adic modular form of tame level N is a formal g-expansion

£= ang" € 1[lq]
n=0

such that for all but finitely many v € X§(I) of weight (k,¢), the g-series > ° jv(a,)q"
is the g-expansion of a p-adic modular form f, € V,(N;O,) of weight (k,e). We denote
by G(N;1I) the module of I-adic modular forms of tame level N.

(2) We say that f € G(N;1) is arithmetic with tame character g if for all but finitely many
v € X§(I) of weight (k,¢), the p-adic modular form f, is the p-adic avatar fy of a classical
modular form

fl/ € Mk(FO(NpS)7 ¢0€w2_k)7
where s = max{1, ord,(cond(¢)}, and w : (Z/pZ)* — Z, is the Teichmiiller character;
and we say that f is cuspidal if f, is a cusp form for all such v. Denote by S%(N, ;1) C
G(N;I) the submodule of cuspidal arithmetic [-adic modular forms of tame character .

(3) We say that £ € S*(N,vo;I) is ordinary if f, is a Up-eigenvector for all but finitely
many v € X§(I), with the U,-eigenvalue being a p-adic unit, and we let SN apg; T) C
S%(N,1p;1) be the corresponding submodule. Finally, we say that f is an ordinary I-adic
newform® if for all but finitely many v as above, f, is a p-stabilized newform of tame

Lor alternatively, a primitive cuspidal Hida family, or just a Hida family in this paper.
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level N, i.e., either f, is a newform of level Np®, or is the ordinary p-stabilization of a
p-ordinary newform of level V.

Define
(2.2) Vo (N;T) := Vi, (N; O) &0,

and let [2] : Z — O[[Z)]]* be the natural inclusion as group-like elements. The space V;,(V;1I)
is equipped with two different actions of z € I'™": one via the diamond operators (z), acting on
the first factor of (2.2), and the other via multiplication by [z] on the second factor, composed
with the structure map O[[Z;]]* — I*.

Proposition 2.5. There is a canonical I-module isomorphism
G(N;I) = {f € V,(N;I) : f|(z), = [2]f, VzEZ;}.
Proof. See [Hid00, Thm. 3.2.16]. O

Thus, in light of Proposition 2.5, we may evaluate any I[-adic modular form f € G(N;1I) at a
point = € Ig(N)(I), producing an element f(z) € I such that

(2.3) v(f(x)) =1f,(x)

for all v € Xp(I). (Indeed, this follows from the g-expansion principle, since by definition the
specialization property (2.3) holds when z is coming from a Tate curve.) This will be used in
§2.4 to define measures associated with f which, for appropriate choices of = (defined in §2.5),
interpolate special values of L-functions.

2.4. Modular measures. For a compact totally disconnected topological space X (which in
our application will be X ~ A x Z, with A a finite group) and a p-adic ring R, we denote by
Cont (X, R) the space of continuous R-valued functions on X. Let

Meas(X, R) := Homgs(Cont(X, R), R)

be the space of R-valued measures on X. As usual, if 4 € Meas(X, R) and ¢ € Cont(X, R), we
denote by [y ¢(2)du(z) € R the value of p at ¢. For X = Z,, the Amice transform of a measure
i € Meas(Zy, R) is the power series #7,(T") € R[[T]] given by

o

,(T) = Z em ()T,

m=0

where ¢, (1) = fzp (7)du(z). One easily checks that

/Z p Z"dp(z) = <TjT> ' F(T)| g

for all n > 0, and by Mahler’s theorem the rule 1 — 7,(T") defines an isomorphism Meas(Z,, R)
R][T]] of p-adic Banach algebras.

I

Let d be the operator on V,(N; R) given by
o0 oo
d: Zanq” — Z nanq",
n=0 n=0

and for each m € Z~ let ( ) denote the operator given by > anq" — >, (;ZL) anqg™.

d
m
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Definition 2.6. For g € V,(N;R) and = € Ig(NV)(R), let pg, € Meas(Zy, R) be the measure

determined by
z d
[, () awasr= (7)o

Let U = U, and V be the operators on V,(N;R) given by > anq" — ) anpq" and
Donang™ = Y, anq™, respectively, in terms of g-expansions. If g € V,,(N; R) has g-expansion
> onang", setting

for all m > 0.

g =gl1-UV)= 3" anq" € Vu(N; R),
(n,p)=1
it is easily seen that the associated measure p . , is supported on Z;.

2.5. CM points. Let K be an imaginary quadratic field of odd discriminant —Dg < —3, let
p > 2 be a prime split in K, and write

pOK = pﬁ?
where p is the prime of K above p induced by our fixed embedding 2, : Q < C,,. We shall assume

throughout that K satisfies the following Heegner hypothesis relative to a fixed integer N > 0
prime to p:

(heeg) there is an ideal M C Ok with O /N ~ Z/NZ.

The existence of such 91, which will be fixed from now on, amounts to the requirement that every
prime ¢ | N is either split or ramified in K, with ¢? { N in the latter case.

For each positive integer ¢ let O, = Z + cOg be the order of K of that conductor, and let H,
be the corresponding ring class field, so that Gal(H./K) ~ Pic(O,) by the Artin reciprocity map.
For each invertible O.-ideal a prime to Np, let A,/ H. be the CM elliptic curve with the complex
uniformization A4(C) = C/a~!. Let a € K> be such that a0, N K = a, and equip A, with the
'y (Np)-level structure

Nt BN D Hyoo > Ag[N] & Aq[p™]
defined in [CH18, p. 576]. The pair (Aq,7,) defines a point z, € Ig(N)(V) over the valuation ring

-1 b
V= U (Ocp)ﬂKa ,
where K?P is the maximal abelian extension of K. For the ease of notation, set z, := 0,

Write ¢ = ¢,p™ with p { ¢,, and decompose ¢, = c¢f ¢, with ¢l (resp. ¢, ) only divisible by

primes which are split (resp. non-split) in K. We similarly decompose N = N*N~, and set
€t :=cr Ok and M+ := NTOk. Fix a square-root v/—Df € K, and set

Y= (DK + —DK)/2
Following [CH18, §2.4], we define the matrix ¢(>) = (g,) € GL2(Q) by
e ¢, =1,ifgtcINTp,
R (119 f), if Ok = qq with q | €N Tp,
and the matrix v, = (7.,4) € GLQ(Q) by
® Yeq = 17 ifQTCN]%
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ordg(c)
® Yeg= (q Oq i), if Ok = qq with q | €t Tp,

1 0 . o
® Yeq = <0 qordq(c)ordq(N)>a if ¢ ‘ Co N—,

and set &, := ¢(®)y,. Under the complex uniformization

[]: 9 x GL2(Q) — Ig(N)(C)
coming from (2.1) and the complex uniformization of Y;(Np®), we have [(9,£.)] = .. Moreover,
by Shimura’s reciprocity law, if a is an invertible O.-ideal prime to 9tp and a € K()* is such
that a = a0, N K, then

o = [(9,a &) = 27" € Ig(N)(He(p™)),

where 0 = reci(a™!)| g (po) € Gal(Hc(p*>)/K) is the Artin symbol of a over the compositum of
H_. with the ray class field of K of conductor p*°, and a — @ denotes the action of the non-trivial
automorphism 7 € Gal(K/Q) on Ag.

2.6. Anticyclotomic Hecke characters. We say that a Hecke character ¢ : K*\Ap — C*
has infinity type (¢1,¥2), with (1,42 € %Z such that ¢1 — ¢y € Z, if

Voo(2) = 211702(27) %2,
where for each place v of K, we let 9, : K — C* be the component of ¢ at v. The conductor

of ¢ is the largest ideal ¢ C Ok such that 1q(u) = 1 for all u € (1 + ¢Ogq)* C K. If ¥
has conductor ¢y, and a is any fractional ideal of K prime to ¢y, we write 1 (a) for ¢(a), where

a € K()% is such that aOx N K = a. As a function on fractional ideals, v satisfies

Y((a)) = a2 (am) "
for all @« € K* with a =1 (mod c¢y).

Definition 2.7. Let ¢ = g1 be a Hecke character of K with infinity type (¢1,¢2). The p-adic
avatar ¢ : K*\K* — CJ of ¢ is defined by

D(2) = i (Yan(2)) 7' 22
Via the reciprocity map recg, we shall often regard 1Z as a Galois character 1Z :Gg — CJ.

We say that a Hecke character ¢ : K*\Ax — C* is anticyclotomic if WAE = 1. The infinity

type of an anticyclotomic % is of the form (¢, —¢), and the correspondence ¢ — 12 establishes a
bijection between the set of anticyclotomic Hecke characters of K of conductor dividing p* and
the set of locally algebraic Cp-valued characters of Gal(Hpe/K), for Hpe the union of the ring
class fields of K of conductor p-power conductor.

2.7. A two-variable anticyclotomic p-adic L-function. Let f € S*(N,;I) be an ordinary
I-adic newform of tame level N and character v : (Z/NpZ)* — O as in Definition 2.4. Recall
the Teichmiiller character w : (Z/pZ)* — Z), and let ecye : Gq — Z, be the cyclotomic
character. By composing it with €.y mod p, we shall also view w as a Galois character w : Gq —
Zx.
P
Let A : K*\Ax — O be the p-adic avatar of a fixed Hecke character of infinity type (1,0) and

conductor cp for some ideal ¢ C Ok with (¢, Np) = 1. Let D/Xtor be the maximal Z,-free quotient
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of O, and let W C D/Xtors be the subset topologically generated by the values of A. Then W is

isomorphic to Z,, and it naturally contains (the image of) T'"* = 1 + pZ,. Write p® = [W : I'"!]
and let J = O[[S]] be the extension of A" defined by (1 + S)?" =1+ p. Upon enlarging I if
necessary, we shall assume that T D J.
Definition 2.8.
(1) Let i € Z/(p — 1)Z be such that to|z/,z)x = w', and define the critical character
O: GQ — AVEX by
O(0) := w"*(0) - [(cye(0)) /7],
where (-)1/2 Zjs — T is the composition of the projection (-) : Z} — I'* with the map
z+— z%/2 and [] : TV < A¥Y is the inclusion of group-like elements.
(2) Take a finite order Hecke character yo of K of conductor dividing 9t such that

XO’Aé =¥y (z/Nz) s
an define the I-adic character x : K*\Aj — I* by
x(x) = 1o(z)O(recq(Ng/q(2))),

where © is viewed as taking values in I* by composition with the structure morphism
AV — T

3) Denote by ()\) the composition of A with the projection onto O . Let w € W be a
/tors

topological generator, and define the I-adic character Z: K*\Ax — J* — I* by
E(z) = Az)(1+ 9@, (A\)) = '@,
Finally, define € : K*\Aj — I* by
&(x) = E(x)E7(@).

Remark 2.9. Recall that we assume p > 2 and note that implicit in Definition 2.8 is the choice of
a lift of i to Z/2(p — 1)Z; we fix either one of the two possible choices, c¢f. [How07b, Rem. 2.1.3].

Let ¢,Of be the prime-to-p part of the conductor of the anticyclotomic character A\(z)A\~(Z),
and for any O, -ideal a prime to 9Mp, let x4 € Ig(N)(V) be the CM point constructed in §2.5.
Since p 1 ¢,, the point x4 admits a model over the discrete valuation ring

V=W N K,
where W = W (F,) is the ring of integers of the completion of the maximal unramified extension
of Qp. Let
Iy := IRz, W.
In light of Proposition 2.5, extending scalars we view f as an element in V,(N;Iyy). Letting zq
still denote the pullback of the above point z; under the structure map Spec(Iy) — Spec(W),

we let pgs , € Meas(Zy,I)y) be the measure of Definition 2.6, and let g be the measure on Z,

characterized by
1

Sy, (T) = sy, (14 T)NOTVED ),

£ Pep o
. . % .
Since Wb 5, 18 supported on Z7, so is the measure Iigs -

For each integer ¢ > 0, let PNIC denote the composition of the ring class field H. with the ray
class field of K of conductor M, and set I' := Gal(Hp /K). Let recg : KX\A% — G% — T and

recy : Q; = pr — G"}P — T be the global and local-at-p reciprocity maps, respectively.
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Definition 2.10. The two-variable anticyclotomic p-adic L-function attached to f and & is the
Iyy-valued measure .7, ¢(f) on [ given, for all ¢ : I — o5 Lo by

Ze®@) = Y ex {aN@ /Z (lla]) (:)dugy (=),

oceGal(H., /K)

where a corresponds to o under the Artin map, and ¢|[a] is the character on Z defined by

¢lla](2) := ¢(orecy(2)).

Now we describe the interpolation property satisfied by .} ¢(f). For the statement, recall that
if f =37 anq" is a normalized newform of weight k and nebentypus ey, x is a Hecke character
of K with central character x| AL T 5;1, and 1) is an anticyclotomic Hecke character of conductor

cOf, the Rankin L-series L(f/K,x,s) is given in terms of automorphic L-functions by the
equality

(2.4 L/ cs) = £(s = 5 e ),

where 7 is the base change to K of the automorphic representation of GL2(Aq) generated by
f. Thus since mx ® x¥ is self-dual, L(f/K, x1, s) satisfies a functional equation relating is values
at s and k — s.

By the calculation in [HowOT7a, p. 808] and our definition of the I-adic character x (which
differs from that in [HowOT7a, §3] by the factor o in order to allow non-trivial N-part of the
nebentypus), for every v € Xo(I) such that f, classical, the specialization x, of the I-adic
character x in Definition 2.8 is such that y,| A% = EJIVI. For such v, and ¥ an anticyclotomic

Hecke character of K of conductor c,p"Og with p { ¢,, define the p-adic multiplier &,(f,, x,%)
by

—ky/ _ _ ku/*ya B iftn=
£ Ft) _{ ((Wg):g)(xm s(p)p /%) (1 = ()5 (p)pP/2 1w (ay) ) iin;l’:

and set

Lk +OV(+1)  L(fu/ K xwth, by — 1)
1 — ) )

Lag(fu/K7 Xv, ky — 1) = (27T)k”+2£+1(1m ﬁ)kV—"—QZ ’ QQku-FM )
K

where Qp € C* is a complex period attached to K as in [CH1S8, §2.5].

Theorem 2.11. Let v € Xo(I) of weight (k,1) with k > 1 be such that f, is classical, and let
¢ be the p-adic avatar of an anticyclotomic Hecke character ¢ of K of infinity type (¢, —{) with
£ >0 and conductor c,p" Ok with ptc,. Then:

Ze(£))(9)?
V( g§)£+)ll)é(¢) = Lalg(fu/K7 xv€v @, ky — 1) ) é‘;,(f,,, Xu£u¢)2 ’ Qﬁ(‘ﬁ_l) 2% Cog(fl/) ’ w%(@a

where e(f,) is the global root number of f,, wik = 0|, and Q, € W* is a p-adic period as in
[CHIS, §2.5].

Proof. Let v be as in the statement and set f = f,. Then 0,(z) = 2K/21 for all z € Z;, and
hence

(2.5) Xo(a) = N(a)"/27,
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From (2.3), it follows that V((;i)f(:z:)) = (gl)f,,(a:) for all m > 0, and hence for the measure py, ;
of Definition 2.6 we have

u( / p p(z)duf,m) -/ 2

for all p: Z, — Oc,. Thus specializing .Z, ¢(f) at v we see that for any ramified character p on
Zx:
P

WG = Y G@N@ ™ [ (plla))dup ).

oceGal(H,, /K) Zp
where f° is the p-adic avatar of f’. Let f’ ® (p|[a]) be the p-adic modular form 7 twisted by
pl|[a]. Setting T'=t — 1 and tracing through the definitions, we see that

(2.6) | Gl = =

Hp@(plla)
Since the right-hand side of (2.6) agrees with the expression (fg ® plla]) (Aq,na) appearing in
[CH18, Def. 3.7] and &, is the p-adic avatar of an anticyclotomic Hecke character of infinity type
(k/2,—k/2), the above shows that v(.Z, ¢(f)) agrees with the W-valued measure %, ¢, (f) on r
constructed in [CH18, §3.3] (or rather its immediate extension in the slightly more general setting
considered here). The result this follows from [loc.cit., Prop. 3.8]. (Note that in [CH18] only cusp
form of even weights k > 2 are considered, but the construction of %, ¢, (f) readily extends to
any k € Z>1, and the results quoted from [Hsil4] are available in this level of generality.) ]

Remark 2.12. Note that by (2.5) we have L(f,/K,x,&¢,k, — 1) = L(f,/K, &0, k,/2), and so
the L-values appearing in Theorem 2.11 are central critical values.

_ —1
(N(a) 1 /=Dx )|t:1‘

X
p

Corollary 2.13. For every v € Xo(I) of weight (k,1) with k > 1 such that f, is classical, the
p-adic L-function v(.Z, ¢(f)) is not identically zero.

Proof. As shown in the proof of Theorem 2.11, the specialization v(.Z, ¢(f)) agrees with (the
natural extension of) the p-adic L-function %, ¢, (f) constructed in [CH18, §3.3] with f = f,,
and so the result similarly follows from [loc.cit., Thm. 3.9]. O

3. BIG LOGARITHM MAPS

In this section we construct a Perrin-Riou big logarithm map adapted to our global anticy-
clotomic setting. Starting with [PR94], the cyclotomic theory of these maps has been widely
studied in the literature; see e.g. [Ber03] and the references therein. The construction we give
here combines work of Ochiai [Och03] and Loeffler—Zerbes [LZ14].

3.1. Review of p-adic Hodge theory. Let F' and L be finite extensions of Q,. For a finite-
dimensional L-vector space V equipped with a continuous linear action of G, we denote by
Dgr,7(V) the filtered (L ®q, F')-module

Dar,r(V) = (V ®q, Bar)“",

where Bgg is Fontaine’s ring of p-adic de Rham periods. If V' is a de Rham G p-representation (i.e.,
dimpDgr, r(V) = dimz V'), then for any finite extension F/F there is a canonical isomorphism
Dar,e(V) = E ®F Dgr,#(V). Denote by (, ) the de Rham pairing

() :Dar,rp(V) x Dar,r(V*(1)) — L ®q, F' — C,,
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where V* = Homp(V, L). Denote by Fj the maximal unramified subfield of F'. Let Bcs C Bgr
be the crystalline period ring and define

Dcris,F(V) = (V ®Qp Bcris)GF;

this is an (L ®q, Fp)-module equipped with the action of a semi-linear crystalline Frobenius ®.
If V is a crystalline Gp-representation (i.e., dimpg Deis, (V) = dimy V), we have a canonical
isomorphism F' ®@ gy Deyis, (V) = Dgr, (V). Suppose further that

Dois, (V) *=! = {0}.
We denote by log, the Bloch-Kato logarithm map

Dgr,r(V)
Fil’Dgg r(V)

where H} (F,V) C HY(F,V) is the Bloch-Kato finite subspace [BK90, (3.7.2)], which under the
above hypothesis agrees with the image of the Bloch—Kato exponential map

Dgr,r(V)
Fil’Dgg p(V)

that we shall denote by exp,,. Also, let exp;, denote the dual exponential map

logpy : Hf (F,V) — = Fil'Dgr (V*(1))",

eXppy —>H1(F,V),

exXphy-(py : H' (F,V) — Fil'Dggr,r (V)

obtained by dualizing exppy«(1) with respect to the de Rham and local Tate pairings (see e.g.
[LZ14, §2.4]).

For the ease of notation, we shall write Dgr(V') and Deis(V) for Dgr,q, (V) and Deis q, (V),
respectively.

3.2. Ochiai’s map for nearly p-ordinary deformations. We keep the notations introduced
in §2.3 and §2.7; in particular, O denotes the ring of integers of finite extension of L of Q, and
I is a finite flat extension of AF" = O[[I™"]]. We also identify Gq, := Gal(Q,/Q,) with the

decomposition group D, C Gq determined by our fixed embedding 2, : Q— Qp.
Definition 3.1. Let T be a free I-module of rank 2 equipped with a continuous linear action of
Gq. We say that T is a p-ordinary deformation if:

(i) the action of Gq on det(T) is given by

O %eye : Gq — I,
where ecye 1 Gq — Z,; is the p-adic cyclotomic character, viewed as taking values in 1*

by the inclusion of scalars Z; C 9™ C Agt’x c I
(ii) there exists a filtration as G'q,-modules

(3.1) 0—FT—T—FT—0
with .Z*T free of rank 1 over I, and with the action on .Z T being unramified.

Fix a p-ordinary deformation T as in Definition 3.1. Let I'cyc be the Galois group of the
cyclotomic Zy-extension of Q,, and let Acyc be the free Zy[[I'cyc]]-module of rank 1 where Gq,
acts through the tautological character Gq, — I'cye = Zp[[[eyc]]™-
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Definition 3.2. Set 7 := H@Zp[[FCyC]]. The nearly p-ordinary deformation associated to a p-
ordinary deformation T is the Z-module

T = T®z, Acyc
equipped with the diagonal Gq,-action. From (3.1), T fits in an exact sequence of Z[Gq,]-modules
0—F'T —>T—FT—0
with F*T = ﬁiT(@szcyc.

Let € : I'cyc ~ 1 + pZ, be the isomorphism induced by the p-adic cyclotomic character. We

denote by XS(F cyc) the set of continuous characters o : I'cye — Q; of the form o = e%o g, for
some w, € Z, called the weight of o, and some finite order character o,. We say that o has
conductor p" if 0, has conductor p" when seen as a character of Z,.

Recall the set X&(I) from Definition 2.3. For every pair (v,0) € X(I) x X§(Leyc) let Oy 5 be
the extension of O, generated by the values of o, and let O, (o) be the free O, ,-module of rank
1 where Gq, acts via the character o. For a p-ordinary deformation T define

T,=T (02 % Ol/a V=1, ®Zp Qpa
Tu,cr =T ®I,(V,0) OV,U(U)a Vu,a = Tl/,a ®Zp Qp7
yiTy,a = yiT ®I,(V,cr) 01,70-(0'), <gfﬂ:‘/l/,a = ﬁiTu,a ®Zp Qpa

and for every finite extension I’ of Q,, let
(3.2) Sp,, : H'(F,.Z*T) — H'(F,7"T,,) — H'(F,.Z1V, ,)
be the induced maps on cohomology.
Definition 3.3. Let T be a p-ordinary deformation, and set
(3-3) D= (FT8g,Z) %,
where the Gq, -action on & +T<§>zp Z;r is the diagonal one. Also set
D= D®Zp Zp[[Teye]]-

Let F be a finite unramified extension of Q, with ring of integers Op. Since .Z1V, is an
unramified Gq,-representation, we have Dqr(FV,) = (F1V, ® Q;r)GQP. Let

(3.4) Sp, : D ®z, O — Dar.#(FV,)

be the specialization map induced by the Gg-invariants of the natural map % *T@zngr —

3?+T,,®zp2;f. Fix a compatible system ( = ((pn), of p-power roots of unity; this defines a
basis vector e of Qp,(1) and an element ¢t € Byr (Fontaine’s p-adic analogue of 27i), so that
0Q,(1) = t7! ® e gives a Q-basis of Dar(Q,(1)). For o € X&(Teyc) of weight w and conductor
p", let Sp, : Zp[[Leye]] = Dar (K4 (o)) be defined by

Spg : ZpHFcycH N DdR(Qp(w)) ®Qp Qp(,up") = DdR(Qp(w) ®Qp Qp[(Z/an)X])
90, DdR(Qp(w) ®Qp KU(O'())) = DdR(KU(J))7
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where the first arrow is given by g — 5®w(1) ® C » and the isomorphism is given by Shapiro’s

lemma. For every pair (v,0) € X&(I) x X§(I'cyc) we thus obtain the specialization map

Sp, ®1 ~
Spy., : D ®z, OF —“— Dar,r(ZV,)®z, Zp[[Teycl]

(3.5)
1®Sp, ~
— D ar,r(FV,) ®q, Dar(Kq(0)) = DdR,F(ﬁJer,o)-

Theorem 3.4. Let T be a p-ordinary deformation, and define
J = (B(Fr,) — 1,79~ 1) C T,

where ¥ : Gq, — I is the unramified character by which Gq, acts on FTT and v, € Teye be a
topological generator. Then for every finite unramified extension F' of Q) there exists an injective
Z-linear map

Ep7: T(D @z, Op) — H'(F,F*T)

with pseudo-null cokernel and such that for every v € X§(I) and 0 € X3(Leye) of weight w > 0
and conductor p", the following diagram commutes:

grcyc

J(D ®z, OF) L HY(F,.77*T)

lspwo lSpua

Dyr,r(F*V,,) HYF,7%V,,),

where the bottom horizontal map s given by

1— pY ! 1— ‘I’u(grp) -1 : =0-
(-1 (w — 1)1 - exp, x { U mag)(l - ) In=0
)(xp (Frp) ifn=1,

with ¥, (Fr,) € F, the image of V(Fry,) € I under v.
Proof. See [Och03, Prop. 5.3]. O

3.3. Going up the unramified Z,-extension. Let F' be a finite unramified extension of Q,,
and let Fiy,/F be an infinite unramified p-adic Lie extension with Galois group U (so U is isomor-
phic to Z; x A with A finite). Write Fl, = Um>0 F,, with Fy/F a finite extension and F,,/Fy
having degree p™. Set Up, = Gal(Foo/Fy). Let yp, : OF,, = OF,,[U/Uy] be the Z,-linear map
defined by

ym(@) = Y o],

O’EU/Um
and let S;, C Of,,[U/Uy,] be the image of yy,.

For any = € Op,,,,, it is readily seen that the image of y,11(z) in Op,, ., [U/Uy,] agrees with
the image of y,,(Trr,, ., /F,, (z)), and hence passing to the inverse limits with respect to the trace
maps, we obtain an isomorphism

(3.6) lim g Lim OF,, — Seo :=limS

Let O r., be the completion of the ring of integers of Fi.
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Proposition 3.5. The module Sy is free of rank 1 over Zpy[[U]], and it is identified with
{g€Or.[IU]] : g"=[ulg foralluecU},

where g* denotes the action of u on the coefficients @Foo and [u]g denotes the action of u via
multiplication as group-like element.

Proof. See [LZ14, Prop. 3.2, Prop. 3.6]. O

3.4. A two-variable regulator map for p-ordinary deformations. Let F//Q, and F/F
be unramified extensions as in §3.3, set Lo 1= Fuo(f1p), and let G := Gal(Loo/F) = U x Z,.

As in §3.2, we let T be a p-ordinary deformation in the sense of Definition 3.1, and let ¥ :
Gq, — I be the unramified character giving the Gq,-action on the subspace .7 TTCT.

Definition 3.6. An arithmetic prime v € X§(I) is exceptional for T if v has weight (k,e) = (2, 1),
and ¥, (Fr,) = 1.

For any finite extension F’ of Q,, contained in L, and any subquotient M of T define

Hiy (Lo /F', M) := lim H'(L, M),
L

where L runs over the finite extensions of F’ contained in L., and the transition maps are given
by corestriction. By Shapiro’s lemma, we have H{, (L/F, Z+T) = H(F, T@zpzp[[G]]), and in
the same manner as in (3.2) and (3.5), for every v € A7 (I) and Hodge-Tate character ¢ of G we
have specialization maps

SPu.g : Hiy(Loo/F, FTT) — H'(F, F "V, 4)

and
SPug D®Zp Z,[[G]] — DdR,F(ﬁ+VV7¢).

Note that if ¢ has weight Hodge-Tate weight® w > 0, then Fil"Dggr p(F*V, 4) = {0}, and the
Bloch—Kato logarithm becomes an isomorphism

log, : HH (F, 7V, 4) = HY(F, 7'V, 4) — Dar,r(F TV, 4).
Theorem 3.7. Let T be a p-ordinary deformation, and set \ := ¥(Fr,) — 1 € I. Then there is
an injective 1[|G]]-linear map
LG Hl (Loo/F, FTT) — \71. (D&, OF. [[G]])

such that for every non-exceptional v € X§(I) and every Hodge—Tate character ¢ : G — L™ of
conductor p"* and Hodge—Tate weight w > 0, the following diagram commutes

EG

Hi (Loo/ F, ZFT) AL T (DB2,0r. [[G])

lSpVﬂﬁ iSpV@

H\(F, Z+V, ) Dur,r(F1V,,).

where the bottom horizontal map is given by
_1\w-1 W, (Frp) w-l \—1 ..
L-lo . (1- pwp)(l_\lfpu(Frp)) ifn =0,
(w11 5\ 2(o)w, ()" ifn>1

2In this paper, we adopt the convention that the Hodge-Tate weight of ecyc is +1. Thus the Hodge-Tate weights
of a p-adic de Rham representation V are the integers w such that Fil=*Dgr(V) 2 Fil"* ' Dgr (V).
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Proof. For each m > 0, let
£ 1 T(D @z, OF,) — H (Fy, Z+T)

be the big exponential map of Theorem 3.4 for the unramified extension Fj,,/Q,, and using (3.6)
define
£9 = lm > J(DBg,S8u0) — Hiy(Foo/ F,. 7T,
m

By Shapiro’s lemma, we view £¢ as taking values in H{ (Loo/F, #TT). Since each S}I;ch has
cokernel killed by ), it is readily seen that £ is an injective I[[G]]-linear map with cokernel killed
by A, and hence given any 9 € Hi (Le/F, #ZTT), the product

L9(o) 1= A7 (E)THA - D)
is a well-defined element in

AL T (D87,8x) «+ AL T (D&z,0p. [[U]]) ~ A7t - T (DBz,0F.. [[G]]).

Thus constructed, the claimed interpolation properties of £ for each non-exceptional v € X3 (I)
follow as in [LZ14, Thm. 4.15]. O

Next we consider the specialization of the map £& of Theorem 3.7 at Hodge Tate characters
of ¢ of G of weight w < 0.

Definition 3.8. Let f € I[[g]] be an ordinary I-adic newform of tame level N (prime to p). We
say that an arithmetic prime v € X§(I) is p-old if f, is the p-stabilization of a p-ordinary newform
of level N.

If v € X&(I) has weight (k, 1) with k& > 2, then v is p-old (see [How07b, Lem. 2.1.5]). Note also
that any p-old arithmetic prime is necessarily non-exceptional. For any p-old v € X§(I) and any
Hodge—Tate character ¢ of G of weight w < 0, the Bloch-Kato dual exponential map becomes
an isomorphism

expy: H'(F,. 71V, 4) — Fil'Dar, p(F V,.4) = Dar,r(F Vi, 0).

Corollary 3.9. Let v € X§(I) be a p-old arithmetic prime. If ¢ : G — L* is a Hodge-Tate
character of weight w < 0 and conductor p™, then the following diagram commutes

G

H{ (Loo/F, Z+T) AL T (D&z, Op, [[G])

\L Spl’y‘ﬁ l Sp%d)

H(F, FV,) DdR,F(9+VV7¢),
where the bottom horizontal map is given by
_ W (Frp)y g et N e
(—w)! - exp, - (1 T )(1 \I!V(Frp)) z.fn =0,
e(¢) 0, (Frp)" ifn > 1.

Proof. Since v is non-exceptional, the composition of the map £ of Theorem 3.7 with the
specialization map (3.4) at v factors through Hi (Loo/F,F'T) — H} (Loo/F, Z1T) @1 F,
giving rise to an F),[[G]]-linear map

LS HY (Loo/F, Z7T) @1 Fy — Dar #(FV,) @z, Or._ [[G]].
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By Theorem 3.7, this map enjoys the same interpolation properties at a dense set of characters
of G as the restriction via

H} (Loo/F, F'T) @1 F, — Hi (Lo /F,. Z1V,)

of the map L constructed in [LZ14, Thm. 4.7] for V = ZV,. (Note that since v is assumed
to be p-old, F1V, is a “good crystalline” G p-representation in the sense of [LZ14, Def. 4.1].)
Since ﬁgﬂ/y is uniquely determined by its values at such characters (for every given class in

Hl (Loo/F, F%V,)), the result follows from [LZ14, Thm. 4.15]. a

4. B1G HEEGNER POINTS

Fix a prime p > 3, and let f = >~ anq™ € Sp(I'1(N)) be a p-ordinary newform of weight
k> 1, level N prime to p, and nebentypus e¢. Let K be an imaginary quadratic field as in §2.5.
(However, note that the assumption that p splits in K will not needed in this section.) Let L be
a finite extension of Q, with ring of integers O containing the Fourier coefficients of f. In this
section, we briefly recall Howard’s construction of big Heegner points associated to the ordinary
[-adic newform passing through f.

4.1. Galois representations associated to Hida families. Denote by X s/q the compactified
modular curve whose non-cuspidal points classify isomorphism classes of triples (E,ty,t),) with:

e F an elliptic curve over an arbitrary Q-scheme S
e tx a point of E of exact order IV;
e ¢, a point of I of exact order p®.

For any field extension M/Q, set
Jo(M) = Jac(X,)(M) ®z O,
where J ac()z s) is the Jacobian variety of X s- Denote by b, the D-algebra generated by the Hecke

operators Ty for ¢ t Np), the operators U, for £ | Np, and the diamond operators (a)n, for
a € (Z/Np°Z)*, acting on Js(C) by Albanese functoriality, and let

. !
e = lim U™
m—oo P

be Hida’s ordinary projector. Following the convention in [How07b, §2.1], we make b, into a
O[[Z;]]-algebra via [z] = (z)p, where [z] € O[[Z;]]* is the group-like element corresponding to
z € Z) and (), denotes the p-part of the diamond operator (-)n,. By [Hid86b, Thm. 3.1], the
algebra hord = l'gls e°"p, is finite flat over A¥Y; in particular, h*4 is a semi-local ring equal to
the product of its localizations at its maximal ideals. Our fixed newform f defines an algebra
homomorphism Ay : hord — O and we let hl‘?‘fd be the direct summand of h°d through which A ¥
factors.

Definition 4.1. Let «, and S, be the roots of the Hecke polynomial X2 — a,X +¢;(p)p*~t. We
say that f is regular at p if o, # Bp.

Of course, since f is assumed to be ordinary at p, it can be non-regular at p only if &k = 1.

Lemma 4.2. Assume that either:
(a) k >2;
(b) k=1 and f is reqular at p.

Then the localization of ho'd at ker(A\y) is a discrete valuation ring.
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Proof. In case (a), this is a classical result of Hida (see [Hid86a, Cor. 1.4]). The result in case (b)
is recent work of Bellaiche-Dimitrov [BD16, Thm. 1.1]. O

Assume from now on that one of the conditions in Lemma 4.2 holds. Thus there is a unique
minimal prime a C h3'd containing ker()\s), and we set

m
I:= 6o a.

For each i € Z/(p — 1)Z, let e; be the idempotent of O[[Z]] projecting onto the w'-isotypical
component for the action of (Z/pZ)* C Z,, and note that hord = e;,_ohd. Letting a, € I be
the image of T,, the formal g-expansion

£=2 aq" el

k—

is an ordinary I-adic newform of tame level IV and character €yw 2 in the sense of Definition 2.4.

Let rr be the residue field of L and denote by py : Gq — GLa(xr) the semi-simple residual
representation associated with f.

Theorem 4.3. Assume that py is irreducible and p-distinguished. Then the following hold:
(1) The module

T = <£n eord(Tap(Js) ®Zp D)> ®bord H

S

1s free of rank 2 over I, and the resulting Galois representation
pr 1 Gq — Auty(T) ~ GLy(I)
1s unramified outside Np with
trace pg(Fr, ) = ay, det pg(Fr, ') = e (0)[0)¢,

for all £+ Np, where FrZ1 is an arithmetic Frobenius.
(2) There is an ezact sequence of 1|Gq,]-modules

(4.1) 0—FT—T—FT—0
with FET ~ 1, and with the action of Gq, on # T given by the unramified character
a:Gq, — I* sending Fr;l to ay,.

Proof. Part (1) follows from [MT90, Thm. 7], and part (2) from [Wil88, Thm. 2.2.2]. O

4.2. Howard’s big Heegner points. Fix a positive integer ¢, prime to Np. For n > s, the CM
points z.,» € Ig(N)(C) constructed in §2.5 descend to points Pr pn s € Xs(Heopn (f1ps)), where
H, ,n is the composition of H. ,» with the ray class field of K of conductor 9.

Proposition 4.4. The following hold:
(1) Letn > s> 0. Forallo € Gal(ﬁcopn (/,Lps)/ﬁcopn)7 we have

P n s = (0(0))p - Pegpn s,
where U : Gal(flcopn (Mps)/ﬁcopn) — 2 [{=£1} is such that 9* = ecye.
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(2) If n > s> 1, then

Z aS(ch;p",s) =Up- Peopns—1,
UeGal(ﬁcop" (Bps )/ﬁcopnfl (Bps))

where as : Xs — Xs_1 is the degeneracy map given by (E,tn,t,) — (E,tn,p - tp) on
non-cuspidal moduli.
(3) If n>s > 1, then

o —
Z Peoprs = Up - Pegpn,s-
JeGal(Hcop" (Mps)/Hcopn—l (Nps))

Proof. Let X be the compactified modular curve for the congruence subgroup I'o(N) N T'1(p*),
and consider the degeneracy map Oy : X = X, given by (E,tn,t,) — (E,Cn,t,) on non-
cuspidal moduli, where Cy denotes the cyclic subgroup of E[N] generated by ty. From the
construction of x.p,» given in §2.5, it is immediate to see that for n > s the image By (P, pn s)
agrees with the point h¢ ,n-s ¢ € X5(C) constructed in [How07b, §2.2], i.e., corresponding to the
triple (A pn—s g Moy pn—s 55 e pn—s,s) With:

b Acop"—s,s(c) = C/Ocopn;

o Nepn—s s = Acpns [MN Ocpnl;

® . s s a generator of the kernel of the cyclic p*-isogeny C/O,pn — C/O, n—s.
Thus properties (1), (2), and (3) follow immediately from Corollary 2.2.2, Lemma 2.2.4, and
Proposition 2.3.1 of [How07b], respectively. O
Set fc’s = Ncps (ftps), and keep the notations from Proposition 4.4. As in [How07b, p. 100],

one easily checks that for t > 0 and o € Gal(zcopgs/ﬁcopws) we have the equality © (o) = (¥(0)),
as endomorphisms of ek72eordJS(Lcopt7s), and so (using that U, has degree p and we are taking

ordinary parts) the points ej_ye°™P, i+s ¢ define classes

cop
Yeupts € € To(Leypt o)
which satisfy

(4.2) Yoot.s = O(0) “ Yept s
for all o € Gal(zcoptﬁ/ﬁcopt-ks).

Definition 4.5. For any Agt—module M equipped with a linear Gq-action, we let M t denote its
twist by the character ©71.

Thus (4.2) amounts to the statement that
Yeopt,s S HO(Hcopt+s, €OrdJs<Lcopt75)T).

For any number field F' let & be the Galois group of the maximal extension of F' unramified
outside the primes above Np. By Proposition 4.4, the image of y, .+ ; under the composite map

HO(H, e, €T (Lo o)1) 25 HO(H, e, €24 T (Lo o)1)
B HY G5 e Tay ()

CoP

defines a class X, ;¢ ; satisfying

Oés*%copt’s = Up . %Cgpt,sfl
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under the map

Qg : HY(S i e Ta, (J,)T) — HY (& A eI Ta, (Js—1)")

induced by a; : X, — Xy 1 by Albanese functoriality.

Definition 4.6. Let ¢ > 0 be an integer prime to N. The big Heegner point of conductor c is
the class

X.e H' (&5 T
defined as the image of @S U, * - Xc,s under the natural map

lim H' (& 7 ,e™Ta,(J,)1) — H'(65 ,TT).

By inflation, we shall view X, as a class in H' (I:TC, T).

As in [How07b, Prop. 2.3.1], it follows easily from Proposition 4.4 that the classes
(4.3) 3ot = Uy ™' Xyt € H' (Heypr, TT)
are compatible under the corestriction maps, thus defining a class

500700 = @300775 S Hll\N(ﬁcopoo/ﬁco7TT) = l&nHl(QSfIC
t t °

1.
L.

We conclude this section by recalling some of the local conditions satisfied by these classes.

Lemma 4.7. Let F' be a finite extension of K, and let v be a prime of F' above a prime £ dividing
(Dr, N). If py is ramified at €, then H*(FY,TT) is I-torsion free.

Proof. This is well-known; see e.g. [Biiyl4, Lem. 3.12]. O

For F a finite extension K, let Selg.(F,TT) C H'(&p, TT) be the strict Greenberg Selmer
group of [How07b, Def. 2.4.2].

Proposition 4.8. If py is ramified at every prime £ dividing (D, N), then X, € SelGr(I:jc, Tt)
for all positive integers ¢ prime to N.

Proof. The proof of [How07b, Prop. 2.4.5] shows that the localization loc,(X.) of X, at any place
v of H, lies in the local subspace Hér(Hcyv,TT) C HI(HCJ,,TT) defining Selg.(H,, TT), except
possibly at primes v | £ | N which are non-split in K, in which case it is shown that

V)

Hl (ﬁur TT)tors

c,v)

L= Hl(f[ur TT)
loc,(X.) € ker( HY(H,,, TT) — ;

where HY(H™ T)iors C HY(HY, T is the I-torsion submodule. In light of Lemma 4.7, the

C,v) c,v?
result follows. O
5. EXPLICIT RECIPROCITY LAW

In this section is we prove Theorem 5.3, the main technical result of this paper. We keep the
setting introduced at the beginning of Section 4.
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5.1. Regulator map for the anticyclotomic Z,-extension of K. Recall the I-adic Hecke
character £ : K*\Aj — I introduced in Definition 2.8. With a slight abuse of notation, we also
let & : Gg — I* be corresponding Galois character, and set

(5.1) T:=T|g, 0 ¢ 1.

Since p = pp splits in K, by Theorem 4.3 the restriction of T to a decomposition group at p
takes the form

a e ey 0! *
(52) T, + (7 5% Lote)

on a suitable I-basis. Since
(5.3) U= a ey 06!

is an unramified character of G, the local representation (5.2) is a p-ordinary deformation in

the sense of Definition 3.1, and so associated with it we may consider the regulator map £ of
Theorem 3.7. Here, we take F' to be the completion at a prime above p of the ring class field H,.,
of K of conductor ¢, (prime-to-p), F,/F an infinite unramified extension as in §3.3, and

G = Gal(Lo/F), where Lo = Foo(ftpe).
Recall the I-module D of Definition 3.5, which by [Och03, Lem. 3.3] is free of rank 1.

Lemma 5.1. There exists a canonical isomorphism of I-modules wg : D — 1 such that for every
v € X§(I) and every Hodge—Tate character ¢ of G of weight 0 < w < k, —1 the following diagram
commutes

we®1

D&z, Or[[G]] 182,0r(G]]
o
Dar,7(FV.) Foo ®q, F,

where the bottom horizontal map is given by pairing with the differential wy, ® ¢~ under the
canonical identification

Dar,r (Vi)
Fil’Dar r(F 1V, 4)

I

Dar,r(F 1V, 4)

= Fil'Dar, (V)"

Proof. The first isomorphism in the last part of the statement is explained in [Och03, Lem. 3.2]
and the second isomorphism is given by the de Rham pairing (, )qr. The result thus follows from
[KLZ17, Prop. 10.1.1(1)]. O

Set A := ¥(Frp) — 1 € I, and define Tyy := I[\"1|&z, W.

Proposition 5.2. Let K /F be a Z, -extension contained in Lo, obtained by adjoining the
torsion points of a relative Lubin-Tate formal group over F/Q,, and let I' = Gal(Koo/F') be the
corresponding quotient of G. There exists an injective Iy |[[I']]-linear map

L HY (Koo /F, Z1T) — Tyy[[T]]
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with pseudo-null cokernel such that for every Hodge—Tate character ¢ of I' of weight w > 0 and
conductor p", if Voo € Hi, (Koo/F, FTT) then

- (Uvlap)wb ' ¢ () )
Spl/,(i)(ﬁ(,l:f (QJOO)) - €(¢)p -1/ n : (1_pV(aP)_1XVf;1¢(p)) an - 07
v(@e s (p™)xvé ' (0f) —
(-~ -
oo 18 SPue(Dec))og, © 6 ar.

Proof. By (5.2), the action of Gq, on .#*T is given by the unramified character sending Fr,, to
a, - 5f5cyc@£_1(Frp) =a,- XE_I(pp)Ef(p)p, where p, is the idele of K with p-component equal
to p and 1 everywhere else. Thus the map £ of Theorem 3.7 can be applied to .Z+T, and we
define £, : H, (Loo/F, FT) — Tw][[G]] by the composition

ﬁocjf : Hllw(Loo/Fv QJFT) ﬁ At j(D®Zp@Fw[[G]]> wf—®1>j\fW[[GH7

where wg ® 1 is given by Lemma 5.1. Let J be the kernel of the natural projection I[[G]] — I[[T]].
The corestriction map

Hiy(Loo/F, FT) /] — Hiy(Koo/F, ZTT)

is injective, and its cokernel is contained in the J-torsion submodule of H?(L,.Z#*T), which
vanishes since H?(Ko, #TT) = {0} (as one can see e.g. by the argument right before [CH18,
Lem. 5.5]). Quotienting ﬁfjf by J we thus obtain a map

L5, H(Koo/Fy #4T) 2 1}, (Loo/ F. 7 T)/T — T[T

having the desired properties by virtue of Theorem 3.7 and Corollary 3.9. U

5.2. Explicit reciprocity law for big Heegner points. Recall the character A used in the
construction of &, and let ¢,Ok be the prime-to-p part of the conductor of A(x)A~(Z). Let
3ep00 € Hllw(ﬁcopoo /H.,, TT) be Howard’s system of big Heegner points, as recalled in §4.2. Since
Tt ¢ =T by (5.1), the twist 38 o lies in HL (He,poe/He,,T).

Let F' be the completion of fICO at a prime v above p (so F' is a finite unramified extension
of Qp), and let fIcopoo,v be the completion of fIcopoo at the unique prime above v. By [How07b,

Prop. 2.4.5], the class resv(3§; (lx,) goes to zero under the second arrow in the exact sequence
Hllw(ﬁcop"o,v/Fa FIT) — Hllw(ﬁcop“’w/Fa T) — Hllw(ﬁcopo",v/Fa FT)
induced by (4.1); since the first arrow is injective by [How07b, Lem. 2.4.4], we naturally have
1 ~
resv(ngoo) € Hllw(HCoPOO,U/F7 y—‘rT)

The extension ﬁcop‘x’,v /F is totally ramified and is well-known to agree with the Z)-extension
obtained by adjoining the torsion points of a Lubin—Tate formal group relative to the extension
F/Qy (see e.g. [Shnl6, Prop. 39]). Thus for I' = Gal(H,, e~ »/F) we have the regulator map L],

of Proposition 5.2, and we may let £ (resp(Bg;;o)) € Tyy[[[]] be the image of resv(Sg;;o) under
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the composition

H (Heppre o/ By ZT) 228 Ty [IT]) 2 T [Gal (e /)]
el B [Gal( e /K]

resg -

—= Tw[[T]),

where [' = Gal(flpoo /K). We can now state and prove the explicit reciprocity law for Howard’s

big Heegner points, where we let .Z, ¢(f) be the two-variable p-adic L-function constructed in
§2.7.

Theorem 5.3. The following equality holds in Tyy[[T]):
—1
‘Cgf(resp(‘SEo,OO)) = "%7&(f) : 0-717)3,
where 01 := recy(—1)|H, 0 € r.
We shall deduce Theorem 5.3 easily after the proof of the following result.

Proposition 5.4. Let v € X&(I) be an arithmetic prime of weight (2,¢) with e : T™" — Hpoo Of
conductor p®, and let 5: [ — L* be the p-adic avatar of an anticyclotomic Hecke character ¢ of
K of infinity type (1,—1) and conductor p"™ with n > s Then
~ Pp(—1)e(Pp)
Le (), 371 = — 2 NG)_
V(ap)Equfu (Frp)
Proof. Our hypotheses imply that the character £,¢ ! has finite order and it factors through the

Gal(H, ,n+1/K). By the same calculation as in the proof of [CH18, Thm. 4.9] (see esp. [loc.cit.,
(4.8)]) we obtain

(54)  Le®)w,07") = a(d, " (") > &1 o(o)x, (o) - A7 el i ),

o€Gal(H, nt1/K)

- (og, (resp(Spy.6-1 (38, 5)))s s, @ B)ar-

where dilfy is the p-adic modular form of weight 0 given by
—17b ._ 7; t b -1
d™'f) = lim d'f} = > v(a)n g
(n,p)=1

To proceed with the proof, we need to recall the definition of the Frobenius operator Frob on
the space V,,(N; R) of p-adic modular forms, where we take R to be a complete discrete valuation

ring containing O,,. If = = [(4,7®),n,)] is a point in IAg(N)/R with
(1%, p) : pa © prye > AIN] & A,

then 7, amounts to giving an isomorphism 7, : G, ~ A of formal groups, and we set

Frob(z) := (Ao, n(()p), 10,p)5
where:

o A := A/np(p,) is the quotient of A by its canonical subgroup, and we let Ao : A — Ay
is the natural projection;

o 1 = Agon® : py < Ag[N];
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® 1oy ¢ My < Ag[p™] induces 7o, := 7 o fio, Where i : go ~ A is the isomorphism of
formal groups induced by the dual isogeny po = AJ.
The action of Frob on V,,(N; R) is then defined in the obvious manner, setting

Frob(g)(x) := g(Frob(z)),

for every g € V,(N; R) and = € IAg(N)/R.

Now let F,,, be the Coleman primitive of the differential wy,, normalized so that it vanishes
at the cusp oo; this is a locally analytic p-adic modular form (as defined in [BDP13, p. 1083]) of
weight 0 satisfying

dF,, = wy,
and characterized by the further requirement that
v(ay) _
(5.5) F,, — pp Frob(F,, ) =d ' f}
; _ v(ap)
(¢f. [Casl3, Cor. 2.8]). In particular, note that UpFu, = = > Fo .

Let F, s be a finite extension of Zp(icoan’S) in Qp such that the base-change of )Z'S/Qp to Fi s
admits a stable model. The calculation in [Casl13, Prop. 2.9] applies to f and the classes

ACopTH_l,S = (Pcopn+17s) - (OO), Acopn+l+s7s = (Pcopn+1+s7s) - (OO)
in jS(Fn’S), yielding the formulae
(5.6) IngfV (Acop"Jrl,s) = wal, (Pcop"Jrl,s)a IngfV (Acop"+1+s,s) = wal, (Pcop”+1+s,s)a

where log,, i js(FnS) — C, is the formal group logarithm associated with wy, .
Now define Q. ,nt1 5 € jg(zcopn+l’s) ®z F, by

(57) Qcop”Jrl,s = Z AgoanrlJrs’s & X;1(5)7

GGG&l(ﬁCopn+1+s /ﬁcop"JFl )

where for each o € Gal(_ﬁcopn+1+s/ﬁcopn+1), 0 is an arbitrary lift of o to Gal(icopn+l7s/ﬁcopn+1);
by (4.2), the point Q) ,n+1 , does not depend on the particular choice of lift. Taking lifts & in (5.7)

which act trivially on pps (as we may, since Hcopn+1+5 N ﬁcopn+l(/,,l,p.s) = H, ,n+1) and extending
the map log,,. by Fy-linearity, we deduce from (5.6) that

l0gy,, (Qeprtts) = Z Foy, (Pe prtits )
TeGal(ZCOpn+1 ,S/Hcopnﬂ (.“ps )
(58) - way (U; N Pcopn+1+sys)

v(ay)\’
B pp ' waV (Pcopn+1»5)7

using Proposition 4.4 for the second equality. Since as noted at the beginning of §4.2 the points
Zegpr s € Ig(N)(C) descend to the points P, pn s € Xs(Heypr (pps)) for n > s, substituting (5.8)
into (5.4) and using (5.5) we thus arrive at

Loe(B)(v, 07 1) = a(dy p " dp(p")
(5:9) X <p> Z £;1¢X;1(U) ) Ingf (ngpn+175)-

via
() o€Cal(H, ni1/K)
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Recall that TT denotes the twist T ® ©~1, and note that Tt @ F, ~ T® F, as GQ(“pS)—
representations. By Hida’s control theorem (see e.g. [Hid86a, Thm. 3.1(i)]), the natural map
T — T ®r F, factors as

T — ¢”Ta,(J,) — T ®p F,,

and tracing through the definition of X ,n+1 in §4.2 we see that the image of Q. ,n+1 s under the
induced map

T T Kumoe°rd

Js(Leypni1 s) @ F, HY (Lo i1 4, €9 Tay(J5) @ F) — HY (Lopni15, T @1 F)

agrees with the image of U} - v(X, pn+1) under the restriction
Hl(ﬁcopn-o-u-s, Tf X1 Fy) — H! (Ecop”+17sa Tf X1 Fy) ~ H! (Ecop”“'l,w T ®q Fl,),

and hence

(510) logwf (Qcop"+1,s) = <W

p ) Lo, (resy (V(Xe,pnt1)))-

Note that e(¢p) = g(d)p_1)d>p(—p”). Thus substituting (5.10) into (5.9) and using (4.3) for the
second equality, we conclude that

Lo e(£)(1,07") = dp(~1)e(dp)p ™" > &, 9(0) - log,,, (resy ((Xc,pni1)7))
cfeGal(ﬁCOan /K)
Pp(—1)e(gp)p™"

= . . 571
et Ty e Puet (E o)) @ Blan,

as was to be shown. O

Proof of Theorem 5.3. In light of Proposition 5.2, the content of Proposition 5.4 amounts to the
equality

Lh (resp(38 ), 67 Y) = (Le(f) o1 (v, 671,

for all pairs (v,¢) as in the statement of that result. Since an element in Ly[[I] is uniquely
determined by values at such a collection of pairs, the result follows. [l

An immediate consequence of Theorem 5.3 is the following nontriviality statement for the
classes 3¢, 00- For ¢, = 1 and under the additional hypotheses that (D, N) = 1 and p { ¢(N)
(Euler’s totient function), this result was first shown by Howard (see [How07b, §3.1]) building on
the methods of Cornut—Vatsal.

Corollary 5.5. Let ¢, be a positive integer prime to p, and let T, = Gal(ﬁcopoo/ﬁco). Then the

class 3e, 00 is not I[[T'c,]]-torsion.

Proof. Note that it suffices to show the nontriviality statement for a character twist of 3., co-
Let v € X5(I) have weight (k,1) with & > 1 and be such that f, is classical, and let 3 be the

kernel of the map I[[T¢,]] — I[[I'c,]] ®r F,. Then P is a height 1 prime of I[[I'.,|] at which the
-1
specialization of 350,00 is nontrivial by Theorem 5.3 and Corollary 2.13. Since there are infinitely

many such P, it follows that 33: ;o is not I[[T's,]]-torsion, whence the result. O
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6. ARITHMETIC APPLICATIONS

In the following, for a prime p > 3, we let f € S(I'1(IV)) be a p-ordinary newform of weight
k > 1 and level N prime to p with associated Galois representations
pPr - GQ — AutL(Vf) ~ GLQ(L),

where L is a finite extension of Q, with ring of integers O. Also, we let K be an imaginary
quadratic field of odd discriminant —Dy < 0 satisfying hypothesis (heeg) relative to N and in
which p = pp splits.

6.1. Preparations. Let x be the p-adic avatar of an anticyclotomic Hecke character of K of
infinity type (j, —j) with j — k/2 € Z, and set

Vix = Vik/2)lax © x-
For S a finite set of places of K containing the primes above Np, and for every finite extension F’

of K, let &g be the Galois group of the maximal extension of F' unramified outside the places
above S. Recall that the Bloch-Kato Selmer group Sel(F,Vy ) is defined by

Fy, Vi)
(6.1) Sel(F, Vy,,) = ker (Hl(QSFS, Vi) — H M)

where v runs over all places of F', and
ker (HY(F,, Viy) = HY(F™, Viy)) if v 1 p;
H: (F,,V vs Y fix v Vfix : ;
{(Fon Vi) = { kerg HY(F,,Vy) = HY(F,,Viy ®q, Bais)) ifv|p.
Fix a Gq-stable O-lattice Ty C Vy and set Ty, := T¢(k/2)|q, ® x. We define Sel(F, T} ) by

the same recipe (6.1), replacing H} (F,, V) by their natural preimages in H!(F,,T},). Let F,
denote the completion of F' at any place above p, and similarly for Fg.

Lemma 6.1. If the infinity type of x is (j,—j) with j —k/2 € Z and j > k/2, then:

Hfl(Fﬁv Vf,x) = {0}, Hfl(FPva,x) = Hl(vavax)-
In particular, the classes in the Bloch-Kato Selmer group Sel(F,Vy,) are trivial at all primes
above p and satisfy no local condition at the primes above p.

Proof. From our conventions (see the footnote in Theorem 3.7), we find that the HodgeTate
weights of V5 := V}, X|GF are k/2 —j and 1 — k/2 — j; since these are non-positive integers under
the above hypotheses, it follows that FllODdR Fy (V5) = Dar, Fy (V5). Similarly, the Hodge-Tate
weights of Vj, := Vf,x‘GFp are the strictly posmve integers k/2 —|— jand 1 —k/2+ j, and therefore
Fil’Dgr,, (V;) = {0}. The result thus follows from [BK90, Thm. 4.1(ii)]. O

We will also have use for the following generalized Selmer groups obtained by changing in
definition (6.1) the local condition at the places above p. For v | p and £, € {0, Gr,0}, set

HY(F,, Vi) if £, = 0;
(6.2) H} (Fy, Vi) =< HYF,, F1V;,) if £, = Gr;
{0} if £, =0,

and for £ = {Ly},p, define

(Fo, Vi) H(Fy, Viy)
HA(F,Vy,) =k s,V i V) U HT (v, )
E( fX) er( ( F.5s Vfx %ng(F’Uan,X) X];[Hév(F’U’vaX)
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In addition, we define H}(F,, T}, ) taking preimages just as before.
Remark 6.2. By Lemma 6.1 we have
(6.3) Sel(F, Vi) = Hyo(F, Vi)
Remark 6.3. Taking £, = Gr for all v | p we get
(6.4) HE(F, Vi) = Selar(F, Vi),
where Selg: (L, Vy,) is the Greenberg Selmer group considered in [How07b, Def. 2.4.2].

6.2. Higher weight specializations of big Heegner points. In this section we relate the
higher weight specializations of Howard’s big Heegner points to the étale Abel-Jacobi images
of classical Heegner cycles [Nek95]. A first result in this spirit was obtained in [Cas13] under a
certain nonvanishing hypothesis (see [loc.cit., Thm. 5.11]). In Theorem 6.5 below we remove that
hypothesis, and find a relation between the global cohomology classes themselves, rather than
just their cyclotomic p-adic heights.

Assume that f has even weight k = 2r > 2 and trivial nebentypus. Fix an integer c, prime to
p, and set

Selgr(He,poo /He,, T (1)) := 1&1 Selar(Heopr, Tr (1)),

where Selgy (He,pr, Tf(r)) = HE(He,pn, Tf(r)) as in Remark 6.3. In particular, for every place v
of H.,yn above p, the restriction map res, : Selgy(He,pn, Tf(r)) = H'(Hepn v, Ty(r)) has image
contained in H(He,pn v, F T (1)) C H (Hepn v, Tt (7).
Let f be the ordinary I-adic newform of tame level N passing through f, and let
300,00 € Hllw(Hcop"o/HCm TT)

be Howard’s system of big Heegner points attached to f and K. (Note that since we assume here
that f has trivial nebentypus, the classes 3, are defined over the ring class fields H, ,: rather
¢ considered in §4.2.)

than their extensions H, ,

Lemma 6.4. Assume that pflg, is irreducible. Then for every place v of H., above p the
restriction map

resy : Selar (Hegpeo /Hey, Tt (1) — Hiy (Hegpro 0/ Heyo, F T4 (1))
18 injective.
Proof. Let Ay = O[[Gal(H,,pe/H,,)]]. Since Selg:(He,poo/He,,T(r)) is Ap-torsion-free by our
irreducibility hypothesis (see [How04, Lem. 2.2.9] and [PRO00, §1.3.3]), it suffices to show that
the kernel of res, is Ap-torsion; for this, it will suffice to show that for infinitely many ¢ :
Gal(Hepoe /He,) = O , the ¢-specialized map

res, : Selg (He,, Vi(r) ® ¢) — H (He, », FTVi(r) @ ¢)

is injective. By considering twists for each of the characters of Gal(H,,/K), it will suffice to show
that for infinitely many ¢ : I' = Gal(Hp~ /K) — Oép, the restriction map
(6.5) resy : Selar (K, Vi(r) ® &, ') — H' (K, FTVi(r) @ 6,1 9)
is injective. Let v € X§(I) be such that f, is the ordinary p-stabilization of f. By Corollary 2.13,
we have v(Z, ¢(f))(¢) # 0 for all but finitely many characters ¢ of I, and by Theorem 5.3 this
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shows that resp(SpV@(Bg’;)) # 0 for every such ¢, where Spy7¢(3§;;) is the image of 350_;0
under the composition

_1\ Sp, _ _
i\ (Heypoe /Heyy T @ €71) 225 HY (Hyypoe [ He,, Tr(r) ©.65Y) S HY (K, Tp(r) © 6, 0),
and we view ¢ as a character on Gal(H,,p~/H,,) via Gal(H¢,po/H,) C Gal(He,poo /K) — T. By

the results of [How07b, §2.3], the class Spy7¢(3§; ;O) is the base class of an anticyclotomic Euler

system for T¢(r) ® &, 1¢ with the Bloch-Kato local condition (see [CH18, Def. 7.2]), and so by
[CH18, Thm. 7.7] we have the implication
1

SPus(38 o) 0 = Sela:(K, Vi(r) @ &,'0) = L.Sp, (38 o),

noting the equality between the Greenberg and the Bloch-Kato Selmer groups in our setting (see
e.g. [How07b, Eq. (23)]). We thus conclude that (6.5) is injective, whence the result. O

We are now ready to prove Theorem A in the Introduction, the strenghtening of the main
result of [Cas13] advanced in [CH18, §1].
For a p-ordinary newform g = f,, of even weight k, = 2r, > 2, let

Zf, o0 € Hllw(Hcop"o/HcoaTg(Tl/))
be the Ap-adic class constructed in [CH18, §5.2], which by its geometric construction and the

equality (6.4) lands in Sela,(He,pe/He,, T}, (r,)). We refer the reader to [Casl3, p. 1250] and
[CH18, Eq. (4.6)] for the definition of the p-adic étale Abel-Jacobi images

(6.6) 5 h,, (ALE), ©F ., (Aeo,) € Sel(He,, Ty, (1))

Co,Tv Co,Tv
of classical [Nek95] and generalized [BDP13] Heegner cycles, respectively, attached to f, and K.
On the other hand, as before let 3, oo € Hy, (He,poo/He,, T") be Howard’s system of big Heegner
points attached to K and the Hida family f = >">° , a,¢" € I[[¢]] passing through f.

Theorem 6.5. Assume that:

k=2 (mod p—1);

py is ramified at every prime q | (D, N);

py p-distinguished;

Ptlay is irreducible.

Then for all v € X&(I) of weight 2r, > 2 with 2r, = k (mod 2(p — 1)) and trivial character, we
have

-1
V(SCO,OO) : ng = ZvacO7a

as elements in Selgy(He,pe [He,, Ty, (ry)), where oo = v(ay). In particular, for all such v we have

09

r,—1\ 2 ét heeg
o1 oo (120 )
v(ap)) e, (2y/=Dr)!

where uc, = |0 |/2.
Proof. Let ¢ := &, be the specialization of £ as v, and let
-1 ~
Ly = {Lyp(=),wyp, @72 L HE (Hepeo /Heyy F 1V, () @ 1) — Aw[[T]]
be the map introduced in [CH18, §5.3]. By construction, the map ng in Proposition 5.2 special-

izes at v to the map L’ﬁ;l, and using Theorem 5.3 for the second equality we have

(6.8) Ly (38 00)) = v(LL (resy (38, 1)) = V(e (£) - 1),
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On the other hand, as shown in the proof of Theorem 2.11, .Z, ¢(f) specializes at v to the p-adic
L-function %, 4 (f,) of [CH18, §3.3], and so by the explicit reciprocity law of [loc.cit., Thm. 5.7]
we have

-1
(6.9) V(Goef) 0 1p) = Lou(f) 0 1p =Ly (Zfcpa @Y e,

where o = v(a,,), since this is the U,-eigenvalue of the p-stabilized newform f,.
Comparing (6.8) and (6.9), the proof of the first statement in Theorem 6.5 follows from

Lemma 6.4 and the injectivity of E:ﬁ;l. (The injectivity of this map is not explicitly stated in
[CH18, §5.3], but it follows from the construction in [loc.cit., Thm. 5.1] and [LZ14, Prop. 4.11].)
In particular, by the construction of zy, ., o in [CH18, §5.2] (see [loc.cit., Def. 5.2]), we obtain
Jv o,
the relation
1 PN BDP\ 1
= —_— 1 _—— . (be A . —Tv
)= (1) W (08T
where u., = |0 |/2, and by [BDP17, Prop. 4.1.2] (with ry =2r, =2, ro =0,and sou =r, — 1)
the equality of classes (6.7) follows. t

Remark 6.6. For f, of weight 2 and trivial character, the classes (6.6) both reduce to Kummer
images of classical Heegner points, and if f, is the ordinary p-stabilization of f,, the argument in
the proof of Theorem 6.5 applies verbatim, yielding the same relation between classes. This ex-
cludes the case of arithmetic primes v of weight 2 and trivial character for which f, has conductor
divisible p, which is the subject of [Cas18].

6.3. Proof of Theorem C. Keeping the notations as in the statement of Theorem C in the
Introduction, let V,” br the contragredient of the representation Vj,, and let g € Si(I'1(NN,)) be
an eigenform whose associated Deligne—Serre representation Vj is isomorphic to VQV. (Note that
the existence of g is a consequence of the proof [KW09] of Serre’s modularity conjecture.) For 3
a prime of £ above p, we shall view g and Vj as defined over the finite extension of Q,, given by
the completion L := FEyp, and let T, C V;; be any Gq-stable O-lattice.

Let g, € Si(I'o(p) NT'1(N,)) be a p-stabilization of g. By [Wil88, Thm. 3|, there exists a
ordinary I-adic newform f of tame conductor N, such that v(f) = g, for some v € Xp(I) of
weight 1. Note that our hypotheses on p guarantee that the associated residual representation pg
is irreducible and p-distinguished; in particular, f is unique by Lemma 4.2.

Let A be the grossencharacter of K associated to A by the theory of complex multiplication,
and let %, ¢(f) be the two-variable p-adic L-function of §2.7 constructed with the corresponding
I-adic character €. As usual, let ¢,Ox be the prime-to-p conductor of A(x)A~(Z), and let
3eo00 € HE (Heopoe /He,, TT) be Howard’s system of big Heegner points attached to f and K. As
already noted (see the comments right before the statement of Theorem 2.11), the specialization
of the I-adic character x at v has central character y, | Ay = 59_1. Noting that A(a)A(a) = N(a),

we thus see from Theorem 2.11 and Theorem 5.3 that
L(A/Q.01) #0 = L(g/K.x,&N""2,0) £ 0
(6.10) — V(L () (1) #0
= 15y (Spy,0 (3%, o)) # 0,
and so res(Sp,, 1 (350700)) # 0 by the action of complex conjugation.

Let ¢ := {,. The Euler system relations established in [How07b, §2.3] imply that Sp, 4 (33: ;o)
is the base class of an anticyclotomic Euler system for T, 4 := T,(1/2) ® x,¢ in the sense of
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, Del. 7.2| for the local conditions defining the generalized Selmer group , o)
CH18, Def. 7.2] for the local conditions defining th lized Sel H(l}r,GrKV97¢ f
(6.2), where V, 4 = T 4[1/p]. Thus as in the proof of [CH18, Thm. 7.9] the last nonvanishing in
(6.10) implies that

—1
H(l?-r,Gr(K7 Vg,(ﬁ) =L- Spu,l (350,00)7 =L- Spy,l (Sgo,oo)a

and since resE(SpV7ﬂ(3§o,w)) # 0, this implies that
(611) HCI}I,O(Ka th@) = {0}

From Poitou—Tate duality we obtain the exact sequence

0 — Hy g(K, Vyg1) — Hly g (K, Vg y1) — HY Ky, 1V, 4o1)
— Hyo (K, Vy0)" — Hero(K, Vo s)”

and since H'(K,, Z TV, ;1) is one-dimensional, combining (6.10) and (6.11) we conclude that
(6.12) Hi (K, Vy.9) = {0},

and so Sel(K, V,,(A) ® V) vanishes by Lemma 6.1.

Now let F' be the splitting field of g, and set H = Gal(F/Q). Since Homg, (V,, Sel(F, V,(4))L)
is naturally identified with the space of H-invariant classes in Sel(F, V,,(A))®@V,’" = Sel(F, V,(A)®
V) and the restriction map

Sel(Q, Vy(4) ® V,') — Sel(F, V,(A) @ V)7
is as isomorphism, the proof of Theorem C follows immediately from (6.12).
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