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Abstract—We consider the problem of determining Granger

causal influences among sources that are indirectly observed

through low-dimensional and noisy linear projections. Commonly

used methods proceed in a two-stage fashion, by first solving

an inverse problem to localize the sources, and then inferring

the Granger causal influences from the estimated sources. The

inferred Granger causal links thus inherit the various biases

that are used in source localization techniques, in the form of

spatiotemporal priors designed in favor of spatial localization.

In addition, this approach does not account for the structural

properties of the underlying functional networks such as sparsity

of the links. We address these issues by modeling the source

dynamics as sparse vector autoregressive processes and estimate

the model parameters directly from the observations, with no

recourse to intermediate source localization. We evaluate the

performance of the proposed methodology using both simulated

and experimentally-recorded MEG data.

Index Terms—Granger causality, Statistical inference, EM

algorithm, MEG.

I. INTRODUCTION

I

n many applications of interest, the output of a system
is observed as the collective activity of latent sources,

and inferring the causal relations among these sources is
desired. For example, in case of the human brain, collective
activation of different cortical areas results in accomplishing a
single task, and extracting the causal relations among different
cortical regions allows to probe the underlying circuitry.
A popular characterization of the aforementioned causal

relationships is given by the notion of Granger Causality: if
including knowledge of one source improves the prediction of
another source, the latter is thought to be causally driven by the
former. More specifically, for two processes
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[1]. This methodology has been utilized in
several studies where the whole brain activity is measured via
functional magnetic resonance imaging (fMRI) [2], [3], [4].
These measurements of the brain activity are quantified by
changes in the blood oxygen level dependent (BOLD) signals
as surrogates of neural activity. In these studies, Granger
causality between different regions of the brain are directly
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obtained from these BOLD signals. Given the low temporal
resolution of the BOLD signal (typically < 1 Hz), it is not
possible to account for Granger causal influences that occur
at the millisecond resolution, which is known to be relevant
to various cognitive and sensory processes in the brain.
Magnetoencephalography (MEG) and Electroencephalogra-

phy (EEG) address this challenge by providing measurements
of the neural activity at the millisecond resolution. However,
the M/EEG sensors capture low-dimensional linear mixtures of
the underlying neural sources. As a result, inferring the causal
relationships between the sources from low-dimensional mea-
surements is not straightforward. One conventional approach
is to first solve an inverse problem to estimate the source
activities, often referred to as source localization. Then, the
estimated sources could be used to infer connectivity measures
such as GC links [5], [6], [7], [8].
Source localization has been a topic of active research over

the past few decades, and has resulted in many algorithms that
achieve high localization accuracy using specific spatiotempo-
ral priors in well-designed trial based experiments. However,
the desirable spatial localization of these algorithms comes at
the cost of introducing spatiotemporal biases in the solution.
As such, using source estimates that are biased towards accu-
rate spatial localization for GC analysis is likely to result in a
biased characterization of the underlying functional networks
[9]. In addition, such inverse solutions do not account for the
inherent sparsity of the functional networks, i.e., GC links.
To address this challenge, in this paper we model the

source dynamics using a sparse latent vector autoregressive
(VAR) parametric model and propose a methodology to di-
rectly estimate the model parameters from noisy and low-
dimensional measurements, with no recourse to intermediate
source localization. To explicitly model the sparsity of the
underlying networks, we estimate the VAR parameters via
sparse regularization using an instance of the Expectation-
Maximization (EM) algorithm. We subsequently estimate and
remove the bias introduced in the GC measure due to reg-
ularization, and characterize the strength of the GC links
using Youden’s J-statistics. Finally, we illustrate the perfor-
mance of our proposed methodology using simulated and
experimentally-recorded MEG data.



II. PRELIMINARIES AND PROBLEM DEFINITION

The source activity, x
t

2 RN

x and the M/EEG observations,
y

t
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y , both at time t, are related by the following linear
mapping:
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x is often referred to as the
lead field matrix, and n
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y is the additive measurement
noise vector at time t. Here, the N

x

, N
y

, and T represent
the dimension of the sources, number of sensors, and number
of time points, respectively. The lead field matrix can be
calculated using a 3D head model obtained by magnetic
resonance imaging. The measurement noise in Eq. (1), n

t

is
considered to be a zero-mean Gaussian random vector with
covariance matrix R and i.i.d. across time.

In order to explicitly model the spatiotemporal dependencies
of the sources, we use a VAR model with q lags, denoted by
VAR(q), as follows:
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coupling coefficient from the jth source to the ith source at lag
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x is assumed to be zero-mean temporally white Gaus-
sian noise with a spatial diagonal covariance matrix Q =
diag(�2
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, . . . ,�2

N

x

). We refer to the model in Eq. (2) as the
full model.
Within this framework, to test the Granger causality from

source ĩ to i, shown as (̃i 7! i), we remove the contribution
of the ĩth source from the ith source in Eq. (2) by enforcing
a
i,

˜

i,k

= 0, 8k. We similarly consider the process noise for
the ith source to be temporally white and w0

i,t

⇠ N (0,�2

i\˜i).
We refer to this model as the reduced model. We then define
the GC statistic as follows:
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mines the excitatory (positive) or inhibitory (negative) nature
of the GC link. The reduced model is nested in the full model,
so one would generally expect b�2
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knowledge of the past activity of the ĩth source does not
improve the prediction of the ith source, i.e., F
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and we can rule out the GC link (̃i 7! i). On the other
hand, if b�2
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, knowledge of the past activity of the
ĩth source improves the prediction of the ith source, and we
have |F
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| � 0, i.e., the GC link (̃i 7! i) exists.
Our goal is to determine which of the members of the set
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�� i, ĩ = 1, 2, . . . , N
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all the existing GC links among the N

x

sources, underlie the
source dynamics. The challenge in doing so is three-fold: 1)

the VAR parameters are assumed to be sparse and unknown,
and need to be reliably estimated from the low-dimensional
observations {y
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}T
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, 2) sparse estimation of the coefficients
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k

}q
k=1

results in biased estimates of the process noise
variances, which in turn bias the GC statistic, and 3) the fact
that |F

(
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| > 0 does not imply a statistically significant GC
link (̃i 7! i).

III. INFERENCE ALGORITHM

To identify the GC links in the set I, given the observations
(y

1:T

), the VAR model parameters need to be estimated. We
assume that the observation noise covariance R is known. In
our application of interest, i.e., MEG analysis, it can indeed be
estimated based on empty room recordings [10]. We address
the foregoing three challenges in the following subsections.

A. EM-based Parameter Estimation
We first note that expressing the log-likelihood of the

observations y
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only in terms of the model parameters Q

and A

k

, k = 1, . . . , q results in an intractable expression. We
thus consider the source activities x
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as latent variables and
proceed with an EM procedure [11]. Let the unknown param-
eters be denoted by ✓ := (✓
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We first consider estimation of the parameters in the full

model. The complete likelihood parameterized by ✓ is denoted
by p(x
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;✓). Starting with an initial guess of ✓ = b✓(0),
at each iteration l, we compute the conditional expectation
of log p(x
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;✓) given the current estimate of b✓(l) and
observations y
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as a surrogate function, and maximize it
to get an updated estimate of the parameters, b✓(l+1). The
surrogate function, often referred to as the Q-function, is thus
defined as Q(✓|b✓(l)) := E
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where K(b✓(l)) denotes terms that are independent of ✓, and
G
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are functions of first- and second-order
moments of the conditional density p(x
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|y
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; b✓(l)). Given
the foregoing structure of the Q-function, the lth iteration of
the EM algorithm can be summarized as follows:
E-step: Under the Gaussian assumption on n

t

and w

t

,
the conditional density of p(x
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;✓) can be shown to
be Gaussian, and hence the mean and covariances can be
efficiently computed via the Fixed Interval Smoothing (FIS)
algorithm [12] in an efficient manner.
M-step: The low-dimensionality of the observations re-

sults in an ill-posed maximization problem. We mitigate ill-
posedness by regularization and seek updated parameters via:
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In order to enforce sparsity, we consider p = 1, for which
closed-form solutions do not exist. However, the problem
can be solved via another instance of the EM algorithm,
known as Iteratively Re-weighted Least Squares (IRLS) [13],
utilizing the solution in Eq. (6) with suitable re-weighting of
the underlying parameters. We consider � = �1, where � can
be tuned by standard cross-validation procedures.
Using the same procedure, we also fit the parameters of the

reduced model corresponding to the GC link (̃i 7! i). The GC
statistic in Eq. (3) is then computed using the process noise
variance estimates from the full and reduced models.
B. Assessing the Statistical Significance of the GC Links
Due to variability of the estimated coefficient in Eq. (3), a

non-zero value of F
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does not necessarily imply existence
of the GC link (̃i 7! i). A statistical inference scheme is thus
required to assess the significance of the estimated GC links.
Consider the link (̃i 7! i) 2 I. We denote the cor-

responding parameter estimates from the full and reduced
models by ✓F
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respectively. In this particular case, the null hypothesis on the
existence of the GC link is defined as H

(

˜

i7!i),0

: ✓
i

= ✓R

i

, i.e.,
there is no GC influence from source ĩ to i, and the alternative
hypothesis as H
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, i.e., there exists a GC link
from source ĩ to i.
One conventional statistic for hypothesis testing in this

context is the deviance difference between the estimated full
and reduced model parameters:
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Due to regularization, the deviance difference estimate

is biased and hence does not readily admit a well-defined
asymptotic behavior. We therefore use the de-biased version
of deviance difference which is defined as [14]:
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log-likelihood function `
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bias allows to recover known asymptotics of the deviance
difference. To this end, we have:
Theorem 1. The de-biased deviance differences converge

weakly to the following distributions, under the null and
alternative hypotheses (as T ! 1):
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where �2(k) represents the �2 distribution with k degrees of
freedom, and �2(k, ⌫) represents the non-central �2 distribu-
tion with k degrees of freedom and non-centrality parameter
⌫, and Md := MF �MR = q.
Proof. The proof is based on [14] and [16], and is omitted
here for brevity. ⌅
The non-centrality parameter in Eq. (11) can be estimated as
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the nth sample of the deviance computed from N independent
trials [17]. Theorem 1 allows to both characterize the strength
of the hypothesis test and control for false discovery rate
(FDR), as described next.
FDR Control Procedure: Since multiple comparisons are

required to identify the significant GC links among a large
number of source pairs, the rate of type-I error (false discov-
ery rate) needs to be controlled. First, to control the type-
I error at a desired significance level ↵, the threshold for
rejecting H
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(CDF) of �2(Md). To correct for multiple comparisons, the
Benjamini-Yekutieli procedure can be utilized to control the
average FDR at a rate of ↵ := (|I|+1)↵

2|I| log |I| [18].
Test Strength Characterization: From Eq. (11), the

false rejection rate at a confidence level of 1 � ↵ for
the detected links can be quantified as ⌘
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confidence level of 1�↵, the overall performance of the tests
can be quantified by the Youden’s J-statistic as:
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The J-statistic takes values in the interval [0, 1], summarizing
the confidence in the detected GC link by combining type-I
and type-II errors. When J
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⇡ 0, while the null hypothesis
is rejected, there is no strong evidence to choose the alternative
over null. On the other hand, when J
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⇡ 1, there is strong
evidence that the alternative is true. Therefore, 0 < J
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can be thought as a normalized strength the GC link (̃i 7! i).
We finally construct the GC map �, with elements given by:
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where the sign of each element shows the excitatory (positive)
or inhibitory (negative) nature of the link.



IV. APPLICATION TO SIMULATED AND REAL DATA

We first present a simulation study to evaluate the perfor-
mance of our proposed algorithm, and then demonstrate its
utility in application to experimentally-recorded MEG data.

A. Simulation Study
We consider a scenario with N

x

= 100 sources and N
y

=
50 sensors, where 10 sources with unknown locations are
active. The sensor measurements are available for a duration of
T = 1000 samples. The observation noise covariance matrix is
assumed to be R = (0.1)I

N

y

, where I
N

y

is the identity matrix
with dimension N

y

. The sources are generated by a VAR(5)
process. In fitting the model parameters, the VAR order (q) is
determined using the AIC criterion, [19] and the regularization
parameter (�) is obtained via two-fold cross-validation.
Fig. 1A shows the ground truth GC structure among a

selected subset of the sources (for graphical convenience),
and Fig. 1B shows the ground truth J-statistics, which take
values of 1 (excitation) or �1 (inhibition). Fig. 1C shows
the estimated � matrix for all the active sources (indexed
by 1, 2, · · · , 10) and a subset of inactive sources (indexed
by 11, 12, · · · , 20), with FDR corrected at a confidence level
of 98%. Note that active sources refer to those that explain
90% of the variance. As a comparison benchmark, the results
of the common two-stage procedure that infers the GC links
from localized sources via the minimum norm estimate (MNE)
algorithm, are also shown in Fig. 1D. The MNE solution for
b
x

1:T

is obtained by solving:

b
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= argmin
x
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kx
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2
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 ⇣, (14)

for some ⇣ � 0. As it can be seen in Fig. 1D, the two-stage
procedure results in considerable spatial leakage and therefore
the GC matrix significantly differs from the ground truth, with
numerous spuriously detected links. Fig. 1E shows 4 selected
source activities, with source 6 considered as the target. While
including the contribution of source 6 improves the estimation
of source 10, it does not do so for sources 7 and 12.

B. Application to Experimental MEG Data
Next, we apply our proposed method to infer GC links

between different brain regions from MEG recordings. The
data were collected during the intervals between auditory
tasks while the participant was passively listening to task
instructions. The software package MNE-Python [20] is used
to band-pass filter the data between 0.5 � 20 Hz and down-
sample to 100 Hz. The measurement noise covariance is
estimated from empty room recordings via an automated
model selection procedure [10]. The participant’s head is co-
registered to the ‘fsaverage’ brain [21] using digitized head
shapes. An ‘fsaverage’ surface source space (namely, ‘ico-4’)
is morphed to the participant’s head and the vertices belonging
to each of the N

x

= 68 regions of interest (ROIs) are identified
using a parcellation method based on the ‘Desican-Killiany’
cortical atlas [22]. Using this organization of vertices, we can
represent the current density for each ROI by one current
dipole placed at its center of mass (defined based on the
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Fig. 1: Simulation results. A. The GC network corresponding to
sources {5, 6, . . . , 10}, where the blue and red arrows show the in-
hibitory and excitatory links, respectively. B. Ground truth GC matrix
[�]1:20,1:20 corresponding to 20 sources. C. Estimated [�]1:20,1:20

using the proposed method. D. Estimated [�]1:20,1:20 based on the
MNE solution. E. Selected estimated source activities. Including the
contribution of source 6 improves the estimation of source 10, but
does not do so for sources 7 and 12.

norm of the lead field vector) [8]. The current dipoles are
also directionally constrained to be normal to the average
cortical patches, which resulted in a reduced lead field matrix
of dimension 155 ⇥ 68. We apply our inference algorithm to
two selected 4 second segments of MEG data, and model
the sources as a VAR(10) process. Note that even though
N

y

> N
x

, a total number of N2

x

q = 46240 parameters need to
be estimated from N

y

T/2 = 31000 data samples (using two-
fold cross-validation), which renders the problem ill-posed.
The inferred GC links from the two data segments are

shown in Fig. 2A and B, for sources explaining 80% of
the data variance. The color of the links encodes the signed
J-statistics (red: excitatory, blue: inhibitory), and the black
arrow-heads indicate GC link direction. Given that the neural
activity pertain to “between task” conditions during these two
segments, the GC links show some variability between the
two windows shown in Fig. 2A and B. However, some of
the main GC links are strikingly persistent. We have singled
out five such sources enclosed by purple circles in Fig. 2A,
which corresponds to known frontal and sensory cortical areas
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Fig. 2: Application to experimentally-recored MEG data. A and
B. The detected GC links from two different 4 second windows
of data. The color of the links encodes the signed J-statistics (red:
excitatory, blue: inhibitory) and the black arrow-heads show the link
direction. FDR is controlled at 3%. The encircled sources (rIFG:
right inferior frontal gyrus, lIFG: left inferior temporal grys, lCG:
left cingulate gyrus, rSPL: right superior parietal lobe, and lMOG:
left medial occipital gyrus) correspond to a consistent sub-network
across these two segments of the experiment, which correspond to
known areas involved in sensory/cognitive processing. C. Selected
source activity estimates. Estimation of lIFG changes considerably
by including lMOG, which is not the case for lCG.

involved in sensory/cognitive processing [23]. Fig 2C shows
estimated time courses of three selected sources under both full
and reduced models. Estimation of lIFG changes considerably
by including lMOG as a covariate, which is not the case for
lCG. This observation is confirmed by the presence of the GC
link (lMOG 7! lIFG).

V. CONCLUSION
In this paper, we considered the problem of extracting

Granger causal influences among a number of sources that are
indirectly observed via low-dimensional and noisy measure-
ments. Instead of adopting the common two-stage procedure
of first solving the inverse problem to estimate the sources
followed by GC inference, we directly inferred the GC links
from the observations via two nested EM algorithms under
a sparse VAR model. Moreover, we developed a statistical
framework to assess the significance of the detected links.
We illustrated the performance of our proposed methodology
on both simulated and experimentally-recorded MEG data.
Our results show that the proposed methodology is capable
of revealing the GC structure of the underlying sources in a
more robust fashion than the common two-stage procedure.
Our future work is focused on incorporating the effect of

external/sensory stimuli and speeding up the algorithmic im-
plementation in order to efficiently analyze larger volumes of
MEG data from sensory and cognitive MEG experiments.
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