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Abstract. In the late 1990s, R. Coleman and R. Greenberg (independently)
asked for a global property characterizing those p-ordinary cuspidal eigenforms

whose associated Galois representation becomes decomposable upon restriction
to a decomposition group at p. It is expected that such p-ordinary eigenforms

are precisely those with complex multiplication.

In this paper, we study Coleman–Greenberg’s question using Galois defor-
mation theory. In particular, for p-ordinary eigenforms which are congruent to

one with complex multiplication, we prove that the conjectured answer follows

from the p-indivisibility of a certain class group.
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1. Introduction

1.1. Overview. As recorded in [GV04, Question 1], R. Greenberg has asked when
the 2-dimensional p-adic Galois representation ρf of Gal(Q/Q) attached to a p-
ordinary cuspidal eigenform f of weight k ≥ 2 has the property of being p-locally
split, i.e. its restriction to a decomposition group Gal(Qp/Qp) at p is isomorphic to
the sum of two characters. An equivalent form of this question, which appears to
be a very subtle problem in the p-adic theory of modular forms, was independently
raised by R. Coleman [Col96, Remark 2, pg. 232].1

One easily sees that p-ordinary eigenforms with complex multiplication have this
property, and the converse is expected to hold, i.e. (see [Eme97, Conj. (0.1)]):

(CG) ρf |Gal(Qp/Qp) is split
?

=⇒ f has complex multiplication.

Date: June 8, 2019.
1See [BE10, Theorem 4.3.3, Theorem 4.4.8] for the equivalence between the two formulations.
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Let Q(f) ⊂ C be the Hecke field of f . The Galois representation ρf is valued
in GL2(E), where E is the completion of Q(f) at a prime v above p. Serre [Ser68]
established (CG) when k = 2 and Q(f) = Q using Serre–Tate deformation theory.
Still in weight 2, Serre’s argument was extended independently by Emerton [Eme97]
and Ghate [Gha04] provided ρf is ordinary and p-split for all primes v of Q(f)
above p (we then say that ρf is totally p-split); the general weight 2 case was
recently established by Zhao [Zha14] building on Hida’s breakthrough [Hid13]. For
weights k > 2, Emerton [Eme97] showed that (CG) follows from a p-adic analogue
of Grothendieck’s variational Hodge conjecture, provided ρf is totally p-split. In a
different direction, building on modularity lifting results [BT99, Buz03] in weight
1, Ghate–Vatsal [GV04] showed under mild hypotheses that (CG) holds for all but
finitely many p-ordinary eigenforms in any single Hida family.

The main result of this paper is Theorem 1.3.1, which gives a sufficient condition
for (CG) to hold for all forms in a fixed congruence class f̄ , allowing for any p-adic
weight. This condition is that a certain quotient X (later denoted X(ψ−)) of the
p-part of the class group of the number field cut out by the associated mod p Galois
representation ρ̄f is zero. Such an X can be associated to any congruence class that
contains some member with complex multiplication; we impose only mild additional
assumptions. We list some examples of vanishing X in §1.8.

Greenberg’s pseudo-nullity conjecture [Gre01, Conj. (3.5)] suggests that a certain
Iwasawa-theoretic class group X−∞ (later denoted X−∞(ψ−)), which surjects onto X,
has finite cardinality. To illustrate the influence of X−∞, under an extra assumption,
we prove in Theorem 1.4.1 that the finiteness of X−∞ can be used to produce another
proof of the main result of [GV04] for the class of ρ̄f we consider in this paper.

It is natural to ask whether there exist converse arguments establishing the
finiteness of X−∞. Thus we give modular characterizations of the vanishing of X−∞
(Theorem 1.3.4) and its finiteness (Theorem 1.4.4).

1.2. Setup. In order to state question (CG) and the main result of this paper
precisely, we introduce the objects of study. Here GF denotes an absolute Galois
group of a field F , OF denotes the appropriate standard integer ring of F , and
“CM” is short for “complex multiplication.” Let p be a prime (later, p ≥ 5).

1.2.1. The question. We fix embeddings of algebraically closed fields Q ↪→ Qq for

all primes q, and Q ↪→ C. These embeddings give rise to a choice of q-adic valuation
on any algebraic complex number. They also determine a choice of decomposition
group Gq := Gal(Qq/Qq) ↪→ GQ and complex conjugation c ∈ GQ. We write
Iq ⊂ Gq for the inertia subgroup.

Choose a classical normalized cuspidal Hecke newform f ′ of weight k ≥ 2 and
level N ′ ≥ 1. If p - N ′, let f be a p-stabilization of f ′ of level Γ0(p) ∩ Γ1(N ′);
otherwise, let f = f ′. Thus f is an eigenvector for the Up-operator. Let

f =
∑
n≥1

an(f)qn

be the q-expansion of f at the cusp∞, write Q(f)/Q for the subfield of C generated
by the coefficients (also the Hecke eigenvalues) an(f), and write v = vf for the prime
of Q(f) over p that is distinguished by the embeddings above. We call f p-ordinary
when its Up-eigenvalue ap(f) ∈ C, which is known to be an algebraic integer, is a
p-adic unit.
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There is attached to f an absolutely irreducible p-adic Galois representation

(1.2.1) ρf : GQ −→ GL2(Q(f)v)

characterized by the property that

(1.2.2) trace ρf (Frobq) = aq(f) for all primes q - N ′p,

where Frobq ∈ GQ is a choice of arithmetic Frobenius element at q. It is known
that f is p-ordinary if and only if ρf |Gp admits a 1-dimensional unramified quotient
with Frobp-eigenvalue ap(f).

We call such a representation of GQ, when equipped with the Frobp-eigenvalue,
p-ordinary. Similarly, we call a representation ρ of GQ p-locally split when, in
addition, ρ|Gp is isomorphic to the direct sum of two characters. We ask the
question recorded in §1.1: when k ≥ 2, what property of f determines whether
ρf is p-locally split?

As discussed above, the proposal, denoted (CG), is that such f have CM. While
there exist representation-theoretic notions of CM that are arguably more encom-
passing, we give the simplest equivalent definition: f is called CM when there
exists an imaginary quadratic field K/Q such that the attached quadratic Dirichlet

character
(K/Q
·
)

satisfies

(1.2.3) an(f)
(K/Q

n

)
= an(f), for almost all n ≥ 1 (the CM condition).

1.2.2. Fixing the congruence class. It is natural to study (CG) over one congruence
class of eigenforms modulo p at a time. Let F be a finite field of characteristic p.
Let f̄ ∈ F[[q]] be the reduction modulo vf of the f ∈ OQ(f)[[q]] that we designated
above. Let

ρ̄ := (ρf mod vf ) : GQ −→ GL2(F)

be the associated representation. The Hecke eigenvalues of f̄ are determined by ρ̄
similarly to (1.2.2). Since f is a p-ordinary eigenform, we know that

(1”) ρ̄ is odd and ρ̄|Gp admits an unramified quotient with Frobp-eigenvalue

ᾱp := ap(f̄).

Let N ≥ 1 denote the tame level of f̄ , which equals the (prime-to-p) Artin
conductor of ρ̄. While in general N divides the prime-to-p part N ′(p) of N ′, in this

paper we address f that are minimal, that is, N = N ′(p).

Because question (CG) addresses p-ordinary eigenforms f such that ρf |Gp splits,
[Gha05, Prop. 6] ensures that in the presence of (2’) and (3’) below, we may replace
(1”) with the more restrictive assumption

(1’) ρ̄ is odd and ρ̄|Gp ' χ̄1 ⊕ χ̄2, where χ̄2 is unramified and χ̄2(Frobp) = ᾱp.

Our results on (CG) rely on conditions that imply that all Galois representations
that give rise to ρ̄ arise from Hecke eigenforms, i.e. “R = T.” Such R = T-type
results are subject to the following assumptions, when p is odd.

(2’) χ̄1 6= χ̄2, which is known as the residually p-distinguished condition on ρ̄.

(3’) ρ̄|GM is absolutely irreducible, where M = Q(
√

(−1)(p−1)/2p).

1.2.3. The residually CM p-ordinary setting. The following (0)–(4) are the assump-
tions we work under for the results of this paper.

(0) p ≥ 5 and f̄ has CM, in the sense of (1.2.3).
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It follows that there exists an imaginary quadratic field K/Q and a character

ψ̄ : GK −→ F× such that ρ̄ ∼= IndQ
K ψ̄.

Let ψ : GK → W (F)× denote the Teichmüller lift of ψ̄, let c′ ⊂ OK denote the
conductor of ψ, and let c ⊂ OK be the (prime-to-p) Artin conductor of ψ̄. Recalling
the complex conjugation c ∈ GQ established above, the anti-cyclotomic character
associated to ψ̄ is

ψ̄− := ψ̄ · (ψ̄c)−1,

where ψ̄c(γ) denotes ψ̄(cγc).
Having assumed (0), assumptions (1’)–(3’) are implied (respectively) by

(1) p splits in K, i.e.

pOK = pp∗,

where p is the prime distinguished by our fixed embedding Q ↪→ Qp, and,

also, ψ̄ is unramified at p∗ with ψ̄(Frobp∗) = ᾱp. One may then check that
N = NormK/Q(c)|Disc(K)|.

(2) ψ̄−|Gp
is non-trivial and vp(c′) ≤ 1.

(3) ψ̄− has order at least 3.

(For (3) ⇒ (3’), see [Hid15, Prop. 5.2(2)].) Finally, we impose the following mild
assumption.

(4) c + cc = OK .

1.3. Results, Part I. Our first main result addresses the representation ρg : GQ →
GL2(Qp) attached to a normalized p-ordinary p-adic eigenform g ∈ Zp[[q]] that has

tame level N , arbitrary p-adic weight, and a congruence with f̄ . We refer to whether
g has CM by the same definition (1.2.3), which makes sense for any p-adic weight.

The theorems in this section are subject to a condition on the following ideal
class group. Let ψ− : GK → W× denote the Teichmüller lift of ψ̄− to the Witt
vector ring W = W (F). Let K(ψ−)/K be the finite abelian extension cut out by
ψ−, and denote by X(ψ−) the ψ−-isotypical component of the p-cotorsion of the
ideal class group of K(ψ−).

Theorem 1.3.1. Assume (0)–(4) of §1.2. Let g denote a p-ordinary p-adic eigen-
form of tame level N and arbitrary p-adic weight that is congruent to f̄ . If X(ψ−) =
0 and ρg|Gp is split, then g has CM.

We apply the theorem to (CG).

Corollary 1.3.2. Assume (0)–(4) of §1.2. If X(ψ−) = 0, then (CG) is true when
restricted to those eigenforms of level N with a congruence with f̄ .

See §1.8 for explicit examples where (CG) is verified.

Remark 1.3.3. The condition X(ψ−) = 0 can be ensured analytically in some cases:
it is implied by the anti-cyclotomic Katz p-adic L-function L−p (ψ−)∗ in §3.2 being

a unit (see e.g. [BCG+19, Cor. 5.2.7]). We also note that the implication (CG)
is trivial in the congruence class of f̄ unless a different Katz p-adic L-function
L−p (ψ−), also defined in §3.2, is not a unit. Indeed, when L−p (ψ−) is a unit, any g

congruent to f̄ has CM (see Theorem 4.2.2).
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In fact, we prove that the vanishing of X(ψ−) is equivalent to a stronger form of
the expected implication (CG). To formulate this, we refer to a modulo p generalized
eigenform ḡ′ ∈ F[[q]] whose eigensystem equals that of f̄ . We specify these objects
in §2.2, also explaining that such a ḡ′ induces a Galois representation

ρḡ′ : GQ −→ GL2(Aḡ′),

where Aḡ′ is a finite-dimensional augmented F-algebra, such that

(ρḡ′ mod mAḡ′ ) ' ρ̄ and ρḡ′ 6' ρ̄⊗F Aḡ′ .

We also explain that the conditions “p-locally split” and “CM” can be sensibly
applied to such ḡ′.

Theorem 1.3.4. Assume (0)–(4) of §1.2. The following conditions are equivalent.

(i) X(ψ−) 6= 0.
(ii) There exists a modulo p generalized eigenform ḡ′ such that

(a) the Hecke eigensystem of ḡ′ is equal to that of f̄ ,
(b) ḡ′ does not have CM, and
(c) ρḡ′ |Gp is split.

When these conditions are true, then ḡ′ in (ii) may be chosen so that its Hecke span
is 2-dimensional, or, equivalently, Aḡ′ ' F[ε]/(ε2).

1.4. Results, Part II. We expect that there are many choices of (K, ψ̄) such that
X(ψ−) does not vanish, as the results of §1.3 require. The following theorems
address the general case.

We consider the following Iwasawa-theoretic class group tower over X(ψ−). Let
K−∞/K be the anti-cyclotomic Zp-extension of K. Let K−∞(ψ−) be the composite of
K−∞ and K(ψ−), and let X−∞(ψ−) be the ψ−-isotypical component of Galois group
of the maximal pro-p abelian unramified extension of K−∞(ψ−). There is a surjection
X−∞(ψ−) � X(ψ−), and standard arguments about the action of Gal(K−∞(ψ−)/K)
on X−∞(ψ−) imply that

X−∞(ψ−) = 0 if and only if X(ψ−) = 0.

In light of Greenberg’s pseudo-nullity conjecture [Gre01, Conj. (3.5)], it is natural
to expect that X−∞(ψ−) is finite in cardinality (note that our assumptions rule out
trivial zeros). We prove a proportionally weakened version of Theorem 1.3.1 in this
case.

Theorem 1.4.1. Assume (0)–(4) of §1.2 and that the class number of K is prime to
p. If X−∞(ψ−) has finite cardinality, then there exist at most finitely many ordinary
p-adic eigenforms g of tame level N congruent to f̄ such that ρg|Gp is split and g
does not have complex multiplication.

Remark 1.4.2. We note in §3.3 that X−∞(ψ−) is infinite if and only if the p-adic
L-function L−p (ψ−) and L−p (ψ−)∗ mentioned in Remark 1.3.3 have a common fac-
tor. It follows from smoothness results of the ordinary eigencurve in cohomological
weights (i.e. k ∈ Z≥2; see [Hid86b, Cor. 1.4], along with a duality argument) that
such a common factor cannot correspond to a p-adic weight in Z r {1}.

Remark 1.4.3. The conclusion of Theorem 1.4.1 was proven subject only to the
conditions (1’)–(3’) of §1.2 by Ghate–Vatsal [GV04, Thm. 13]. We describe the
relationship between the two methods in Remark 6.2.2.
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In analogy with Theorem 1.3.4, we also can give a modular characterization of
the infinitude of X−∞(ψ−). However, a more pleasant criterion applies to a mild
generalization X−∞(ψ−) of X−∞(ψ−), which surjects onto X−∞(ψ−) (see §3.3 for the
definition), and is isomorphic to it when p does not divide the class number of K.

Similarly to the mod p case above, to any generalized p-adic eigenform g′ with
eigensystem equal to that of a p-adic eigenform with CM f with coefficient field
E/W [1/p], there is associated a Galois representation

ρg′ : GQ −→ GL2(Ag′),

where Ag′ is a finite-dimensional augmented local E-algebra, such that

(ρg′ mod mAg′ ) ' ρf and ρg′ 6' ρf ⊗E Ag′ .

As before, the conditions of being p-locally split and of being CM can be sensibly
applied to ρg′ .

Theorem 1.4.4. Assume (0)–(4) of §1.2. The following conditions are equivalent.

(1) X−∞(ψ−) has infinite cardinality.
(2) There exists a generalized p-adic eigenform g′ of tame level N such that:

(a) the Hecke eigensystem of g′ has CM and is congruent to f̄ ,
(b) g′ does not have CM, and
(c) ρg′ |Gp is split.

When these conditions are true, then g′ in (2) may be chosen so that its Hecke span
is 2-dimensional, or, equivalently, Ag′ ' E[ε]/(ε2).

1.5. Method of Galois deformation theory. By Hida’s influential work [Hid86b],
p-ordinary p-adic eigenforms of tame level N with a congruence with f̄ (such as
g in the statement of Theorem 1.3.1, for example) are in bijective correspondence
with ring homomorphisms T→ Qp, where T is the “big” local p-adic Hecke algebra
arising from the Hecke action on p-ordinary modular forms of tame level N whose
residual Hecke eigensystem is congruent to f̄ . On the other hand, upon assumptions
(1”) and (2’), there exists a universal p-ordinary deformation ring Rord (constructed
by Mazur [Maz89]) parameterizing p-ordinary deformations of ρ̄. Hida’s further re-
sult [Hid86a] — that the Galois representations attached to p-ordinary eigenforms
interpolate in families — implies that there exists a natural map Rord → T. Under
assumptions (1”), (2’), and (3’) along with mild local conditions, Diamond [Dia97],

following Wiles [Wil95], has shown that this induces an isomorphism Rord ∼→ T.
Replacing (1”) with (1’) so that the expected implication (CG) is not trivial on

T, we use a universal Galois deformation ring denoted Rspl (constructed by Ghate–
Vatsal [GV11]) that parameterizes p-locally split representations of Gal(Q/Q) de-
forming ρ̄. It follows from the definitions that there is a surjection Rord � Rspl.
Thus, homomorphisms Rspl → Qp are in bijection with normalized p-ordinary eigen-
forms g such that ρg|Gp is split.

Assuming (0), there exist p-ordinary CM forms congruent to f̄ , resulting in a
quotient T � TCM, where TCM arises from the Hecke action on these CM forms.
The fact that the Galois representations arising from p-ordinary CM eigenforms
are p-locally split is reflected in the fact that there exists a surjection Rspl � TCM
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fitting in a commutative diagram

Rord ∼ //

����

T

����
Rspl // // TCM

(1.5.1)

In terms of this deformation-theoretic picture, our main result is Theorem 5.5.1,
which states that the surjection Rspl � TCM is an isomorphism if and only if
X(ψ−) = 0. Theorem 1.3.1 follows directly from this. The argument for Theo-
rem 1.4.1 is similar, with the addition of commutative algebra arguments set up in
§6 and further results on the structure of T reviewed in §4.

Theorem 5.5.1 is deduced from Theorem 5.4.1, which shows that X−∞(ψ−) con-
stitutes the conormal module of Spec(TCM) ⊂ Spec(Rspl). With this structure of

Rspl understood, Theorems 1.3.4 and 1.4.4 are applications of Rord ∼→ T and the
duality between Hecke algebras and cusp forms.

1.6. A question. One upshot of Theorem 5.5.1 is that (CG) lies somewhat deeper
than the simplest possible “big R=T”-type theorem one could hope for, namely,
Rspl ∼= TCM. Is there a Hecke algebra that always corresponds to Rspl? What is
the module of “p-split” modular forms? We intend to take this up in future work.

1.7. The appendix to this paper. These investigations arose from an attempt
to study (CG), for congruence classes ρ̄ = IndQ

K ψ̄ as introduced in §1.2.3 above,
after restriction of the Galois representations from GQ to GK , using the methods
of Wake and the second author [WWE18] to control residually reducible represen-
tations. In the process, we realized that some of these arguments amounted to an
application of a refined version of Shapiro’s lemma to move between deformations
of representations of GQ and GK . This is the method that is developed in §5 to
prove the key Theorem 5.4.1; in particular, the proof of our results makes no use
of the theory of ordinary pseudorepresentations of [WWE18].

Independently and at about the same time as us, Haruzo Hida established similar
results to ours by building on [WWE18] as well as his recent work [Hid18a]; see
§A.3 for a discussion of the theory of ordinary pseudorepresentations. He has very
kindly offered to write his proof of our Theorem 1.3.1 (assuming the class number
of K is prime to p) as an appendix to this paper.

1.8. Examples. Theorem 1.3.1 applies to tuples (p,K, ψ), where the ψ−-isotypical
part of the ideal class group of K(ψ−) vanishes. In order for the theorem to apply
non-trivially, we are interested in cases where:

(i) T 6∼= TCM, i.e. there exist non-CM cusp forms congruent to f̄ , and
(ii) X(ψ−) = 0.

For it is in these cases where Theorem 1.3.1 implies that there are no exceptions to
(CG) congruent to f̄ .

There are seven examples of (p,K, ψ) satisfying (i) listed in [Til88, pg. 268] (four
of which appear in [Hid85, pg. 142]), calculated by Maeda or Mestre. They also
each satisfy the running assumptions in our paper, because pOK = pp∗, ψ− has
order at least 3, and ψ is ramified exactly at p. Among these examples, three of
them satisfy [K(ψ−) : K] ≤ 13, so that we found it manageable to calculate K(ψ−)
and its class group using PARI/GP or Magma on a single machine. In each of these
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three cases, p does not divide the class number of K(ψ−), so that (ii) is satisfied
and Theorem 1.3.1 applies. These examples are

p K ψ
13 Q(i) ω8

p

23 Q(
√
−7) ω10

p

79 Q(
√
−7) ω12

p

The character ωp of GK is the Teichmüller lift of the following character ω̄p : GK →
F×p . Let w := #O×K and let ω̄p : (OK/p)×

∼→ F×p be the canonical identification.
Then, for every multiple a of w, one makes sense of ωap by taking the (a/w)-th
power of the character of GK associated via class field theory to the character

ω̄wp : (OK/p)×/O×K ↪→ F×p .

To illustrate the example (p,K, ψ) = (13,Q(i), ω8
p), we observe that ψ− has order

3 and cuts out the S3-extension of Q with minimal polynomial

x6 − 2x5 + 2x4 − 6x3 + 25x2 − 20x+ 8.

Its class number is 3.

Remark 1.8.1. At the moment, we know of no single example where (ii) fails (which
implies that (i) holds), so that the surjection Rspl � TCM is not an isomorphism
and also the conditions of Theorem 1.3.4 are satisfied.
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1.10. Notation and conventions. Homomorphisms between profinite topological
groups and algebras, and related Galois cohomology modules, are implicitly meant
to be continuous.

When F is a number field with a set of places Σ, we let GF,Σ denote the Galois

group of FΣ/F , where FΣ is the maximal subextension of Q/F that is ramified only
at the places in Σ. Other conventions about Galois groups, such as decomposition
groups Gq, have been stated in §1.2. We use the case that F = Q and Σ is the set
S of places supporting Np∞, thus the Galois group GQ,S . We use GK,S to denote
GK,SK , where SK is the set of places of K over S.

When F is either K or Q and T is a GF,S-module, we write Ci(OF [1/pN ], T ) for
the standard cochain complex of (inhomogeneous) GF,S-cochains valued in T , and
Hi(OF [1/pN ], T ) for its cohomology. We also use the notation Zi(OF [1/pN ], T )
and Bi(OF [1/pN ], T ) for the submodules of cocycles and coboundaries, respec-
tively. For a local field M arising as a completion of F , with absolute Galois group



CLASS GROUPS AND LOCAL INDECOMPOSABILITY FOR NON-CM FORMS 9

GM , we use Ci(M,T ), Hi(M,T ), Zi(M,T ), and Bi(M,T ) to denote the analogues
of the global objects above.

2. Ordinary modular forms and Galois representations

In this section, we review background from the theory of p-adic interpolation of
p-ordinary modular forms and Galois representations.

2.1. Hida theory. Throughout this paper, we freely refer to the p-adic families of
p-ordinary eigenforms constructed by Hida (see [Hid86b, Hid86a]), along with the
associated Hecke algebras and big Galois representations. This section summarizes
the parts of this theory that we shall apply, following [WWE18, §3] in some of this
summary.

We take the data f̄ , ρ̄, and N of §1.2.2 to be fixed in advance.

2.1.1. Ordinary Λ-adic cusp forms and Hecke algebras. For r ≥ 1, let S2(Γ1(Npr))ord
Zp

be the ordinary summand of the Zp-module of cuspidal forms of weight 2 and level
Npr with coefficients in Zp. Let

S′Λ = lim−→
r

S2(Γ1(Npr))ord
Zp ,

the limit being over the natural inclusion maps. Let T′ be the Zp-algebra generated
by the endomorphisms of S′Λ given by the Hecke operators

(2.1.1) Tn, U`, Up, 〈d〉, where (n,Np) = 1, (d,Np) = 1, ` | N is prime.

The action of these operators on the modulo p p-stabilized eigenform f̄ gives rise
to a maximal ideal of T′ with residue field F. Let T′′ denote the completion of T′
at this maximal ideal.

We write χ̄ for det ρ̄, and χ for the Teichmüller lift of χ̄. Using the isomorphism
Gab

Q
∼= Ẑ× of class field theory to think of χ as a Dirichlet character on (Z/pNZ)×

valued in Q×p , we define ΛQ as the χ-isotypical quotient of Zp[[Z×p × (Z/NZ)×]].

Likewise, using the projection Ẑ× � Z×p × (Z/NZ)×, we define the character

(2.1.2) 〈−〉Q : GQ −→ Λ×Q ,

which is a deformation of χ̄ from F to ΛQ.
There is a natural map Zp[[Z×p × (Z/NZ)×]] → T′′ sending d 7→ 〈d〉 for d ∈ Z

with (d,Np) = 1. We let

T := T′′ ⊗Zp[[Z×p ×(Z/NZ)×]] ΛQ,

that is, we specialize T so that the nebentype on (Z/pNZ)× is constant and equal
to χ (as opposed to a non-constant deformation, which is possible when p | φ(N)).
Let SΛ := S′Λ ⊗T′ T; this is the module of p-ordinary Λ-adic cusp forms congruent
to f̄ and with nebentype precisely χ, and T the corresponding Hecke algebra.

By Hida’s control theorem [Hid86b, §3], both T and SΛ are free ΛQ-modules of
finite rank, and by [loc. cit., §2] the pairing

(2.1.3) 〈 , 〉 : T× SΛ −→ ΛQ, (T, f) 7→ a1(T · f)

is a perfect pairing of ΛQ-modules. Consequently, we may view F ∈ SΛ as a Λ-adic
q-series in ΛQ[[q]] via

(2.1.4) F 7→
∑
n≥1

〈T ′n,F〉qn,
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where T ′n = Tn for (n,Np) = 1 and, otherwise, T ′n is the usual polynomial (see e.g.
[Shi71, Thm. 3.24]) in the operators of (2.1.1) with coefficients in Z.

2.1.2. Cohomological weights. We define a p-adic weight to be a characteristic zero
height 1 prime P of ΛQ. Any weight arises from a pair of characters (φk, χ

′),

φk : Z×p → Q×p and χ′ : (Z/prNZ)× → Q×p (some r ≥ 1)

such that

(φk · χ′)|(Z/pNZ)× = χ

under the canonical decomposition Z×p ∼= F×p × (1 + pZp). In general k is a formal

label, but when we start with k ∈ Z, then φk is the homomorphism φk(x) := xk−1.
The height 1 prime P = Pk,χ′ ⊂ ΛQ associated to (φk, χ

′) is defined to be the kernel

of the factorization of the ring homomorphism Zp[[Z×p × (Z/NZ)×]] → Qp through
ΛQ induced by φk · χ′. A weight (φk, χ

′) is called cohomological when k ∈ Z≥2.
By Hida’s control theorem, T and SΛ interpolate their classical analogues in co-

homological weight. That is, for any p-adic weight (φk, χ
′) with k ∈ Z≥2, we recover

the module of cusp forms of this weight k and nebentype χ′ that are congruent to
f̄ via

SΛ ⊗ΛQ ΛQ/Pk,χ′ ∼= Sk,χ′ := Sk(Γ1(Npr), χ′)ord
f̄ ⊂ Sk(Γ1(Npr), χ′)ord

Zp .

Similarly, denoting by Tk,χ′ the Hecke algebra generated by the Hecke action on
Sk,χ′ , we have a ring isomorphism

T⊗ΛQ ΛQ/Pk,χ′ ∼= Tk,χ′

and the ΛQ-adic duality (2.1.3) specializes modulo Pk,χ′ to the f̄ -congruent part of
the classical duality between Sk(Γ1(Npr), χ′) and its Hecke algebra.

We will use these consequences of the foregoing theory.

Lemma 2.1.5. There is a bijection between forms in Sk,χ′ ⊗ΛQ/Pk,χ′
Qp and ΛQ-

linear maps T → Qp factoring through T ⊗ΛQ ΛQ/Pk,χ′ , restricting to a bijection
between normalized eigenforms and multiplicative maps.

Proof. This is standard: see [Hid86b, Cor. 3.2] and [Hid86a, Thm. 1.2]. �

Lemma 2.1.6. T is reduced.

Proof. This follows from the argument of [Hid15, Lem. 5.4]. Indeed, the nilradical
of Tk,χ′ is known to act faithfully on oldforms that are old at levels dividing N
according to [Hid86b, Cor. 3.3], and there are no such oldforms in cohomological
weight by the assumption that N is the Artin conductor of ρ̄. Therefore T ⊗ΛQ

ΛQ/Pk,χ′ is reduced for k ∈ Z≥2, and since cohomological weights are dense in
Spec ΛQ and T is flat over ΛQ, T is reduced. �

2.1.3. Associated Galois representations. Hida [Hid86b] proved that the Galois rep-
resentations ρf of (1.2.1) associated to p-ordinary cuspidal eigenforms f interpo-
late along T. Under some assumptions, this interpolation takes on the following
particularly strong form. For the statement, we write xf : T → Ef ⊂ Qp for
the homomorphism associated to a cohomological p-ordinary eigenform f as per
Lemma 2.1.5, where Ef is the residue field of xf .
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Proposition 2.1.7. Upon assumptions (1”) and (2’) of §1.2, there exists a con-
tinuous representation

ρT : GQ −→ GL2(T),

characterized by the interpolation condition

ρf ' ρT ⊗T,xf Ef .

Moreover, ρT is ramified only at places supporting Np∞ and restricts to Gp with
form

(2.1.8) ρT|Gp '
(
〈−〉Q|Gp · ν−1 ∗

0 ν

)
,

where ν : Gp → T× is an unramified character sending an arithmetic Frobenius
Frobp to Up and 〈−〉Q was defined in (2.1.2).

Proof. Using assumptions (1”) and (2’), Hida’s interpolation result [Hid86b, Thm.
2.1] may be upgraded to the claimed form: see e.g. [EPW06, Props. 2.2.7 and 2.2.9].
Then the characterization claim follows from the fact that T is flat over ΛQ and
reduced by Lemma 2.1.6, as T therefore injects into the product of the Ef . �

Also, it follows from the above interpolation and the properties of ρf that the
determinant of ρT is given by

(2.1.9) det ρT ∼= 〈−〉Q ⊗ΛQ T.

In particular, we have equality of F-valued characters of GQ, (det ρT mod mT) =
(〈−〉Q mod mΛQ) = χ̄.

2.1.4. Complex multiplication in Hida families. When we impose assumption (0)
— i.e., that ρ̄ is induced from ψ̄ — there exist classical p-ordinary eigenforms with
CM that are congruent to f̄ and have tame level N . In each cohomological weight
(φk, χ

′), these form Hecke submodules

SCM
k,χ′ ⊂ Sk,χ′ .

The action of T on these submodules in cohomological weight results in a quotient
T � TCM which acts faithfully on them (see e.g. [Hid15, Prop. 5.1]).

Recalling from (1.2.3) the definition of CM form, we observe that this also applies
to any element of SΛ, using (2.1.4). Thus we have a sub-ΛQ-module of Λ-adic CM
forms SCM

Λ ⊂ SΛ.
It is known (see e.g. [Hid15, §5]) that SCM

Λ is Hecke-stable, TCM and SCM
Λ are

free ΛQ-modules, and the duality (2.1.3) restricts to a ΛQ-linear perfect pairing

TCM × SCM
Λ −→ ΛQ.

This duality along with the control theorem results in a CM-version of the control
in cohomological weights (φk, χ

′),

TCM ⊗ΛQ ΛQ/Pk,χ′
∼→ TCM

k,χ′ , SCM
Λ ⊗ΛQ ΛQ/Pk,χ′

∼→ SCM
k,χ′ .

We let ICM := ker(T � TCM), and denote by ρCM the restriction of ρT to the
CM locus: ρCM := ρT ⊗T TCM.



12 FRANCESC CASTELLA AND CARL WANG-ERICKSON

2.2. Non-classical weights and generalized eigenforms. We will have signif-
icant interest in both

(i) p-ordinary p-adic cusp forms of non-cohomological weight, and
(ii) p-ordinary modulo p cusp forms.

In both cases, we also need to define generalized eigenforms and their associated
Galois representations.

We define p-ordinary cusp forms of non-cohomological weight by interpolation.
These are all implicitly “of tame level N”.

Definition 2.2.1.

(1) A p-adic p-ordinary cusp form of p-adic weight (φk, χ
′) with a congruence

with f̄ is an element of Sk,χ′ := SΛ ⊗ΛQ ΛQ/Pk,χ′ .

(2) A p-ordinary p-adic Hecke eigensystem congruent to f̄ is a homomorphism
T→ Qp, and its weight (φk, χ

′) is determined by the unique height 1 prime

P ⊂ ΛQ through which the composite ΛQ → T→ Qp factors.

Remark 2.2.2. Note that Sk,χ is equal to the module of classical p-ordinary forms,
denoted identically, when the weight is cohomological.

The notions of

• Hecke eigenform,
• generalized Hecke eigenform, and
• CM by K (the condition of (1.2.3))

apply to such objects in the same manner as to their classical counterparts. In
particular, Lemma 2.1.5 generalizes straightforwardly to any p-adic weight. Thus
the eigensystems from Definition 2.2.1(2) are in natural bijection with normalized
eigenforms, i.e., “multiplicity one” holds in the presence of (1”)–(3’).

For the sake of clarity, we specify the meaning of “generalized eigenform”. We
use the notation (−)[1/p] as shorthand for (−)⊗Zp Qp.

Definition 2.2.3. Let g′ be p-adic p-ordinary cusp form in Sk,χ′ that is congruent
to f̄ . Denote by T[1/p]g′ the T[1/p]-span of g′ in Sk,χ′ [1/p]. We call g′ a generalized
eigenform when

(i) g′ is not an eigenform, and
(ii) soc(T[1/p]g′) is simple as a T[1/p]-module, where soc(T[1/p]g′) denotes the

socle of T[1/p]g′ as a T[1/p]-module.

From such a generalized eigenform, we obtain a p-adic p-ordinary eigensystem
T→ Qp of weight (φk, χ

′) via the T-action on this socle. Denote by Eg′ the subfield

of Qp generated by the image of T in EndQp(soc(T[1/p]g′)). We also say that the
Hecke eigensystem of g′ is g when g ∈ Sk,χ′ is a eigenform and also is an Eg′ -basis
for soc(T[1/p]g′).

We also define the p-ordinary modulo p cusp forms required for Theorem 1.3.4.

Definition 2.2.4. A p-ordinary modulo p cusp form (of tame level N) congruent
to f̄ is an element of SF := SΛ ⊗ΛQ F.

Exactly as in the p-adic case, the definition of eigenform, generalized eigenform,
and CM by K are identically formulated in SF. Note, however, that the socle of
the Hecke span of an element of SF is always simple and even 1-dimensional over
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F, being spanned by f̄ . Thus every element of SF is a generalized eigenform with
Hecke eigensystem precisely f̄ .

Finally, we require Galois representations associated to generalized eigenforms
g′ ∈ Sk,χ′ and ḡ′ ∈ SF.

Definition 2.2.5. Let Ag′ be the Qp-subalgebra of EndQp(Tg′ ⊗Zp Qp) generated
by the Hecke action on the Hecke span T[1/p]g′ of g′. Thus we have a natural
homomorphism T → Ag′ , and the Galois representation ρg′ associated to g′ is
given by

ρg′ := ρT ⊗T A
′
g.

The definition for ρḡ′ is formulated identically.

Lemma 2.2.6. There is a canonical structure of augmented Eg′-algebra on Ag′ ,
compatible with the maps they receive from T. There is an identical statement for
a generalized eigenform ḡ′ ∈ SF in place of g′.

Proof. Observe that Eg′ is the residue field of T⊗ΛQ ΛQ/Pk,χ at its prime ideal ℘g′ ,
because ℘g′ is the kernel of the Hecke action homomorphism

T⊗ΛQ ΛQ/Pk,χ → EndQp(soc(T[1/p]g′)).

Likewise, Ag′ admits a surjection from the completion (T ⊗ΛQ ΛQ/Pk,χ)∧℘g′ at this

residue field. As this completion is naturally endowed with the structure of an
augmented local Artinian Eg′ -algebra, this gives Ag′ the same kind of structure.
This augmentation structure Eg′ ↪→ Ag′ � Eg′ is T-equivariant, by construction.

�

2.3. The ordinary deformation ring. In this section, we recall an minimal or-
dinary deformation ring and its comparison to a Hecke algebra.

Recall that we have fixed ρ̄ as in §1.3, with coefficient field F, and that W = W (F)
is the Witt ring of F. Recall also that we denote the semi-simplification of ρ̄|Gp
by χ̄1 ⊕ χ̄2, where χ̄2 is assumed to be unramified. We use ' to represent isomor-
phisms of representations up to conjugation, while we use = to denote identical
homomorphisms into GL2. Finally, recall also the notation GQ,S from §1.10.

Let CNLW denote the category of complete Noetherian local W -algebras A with
residue field A/mA ∼= F.

Definition 2.3.1 (The minimal ordinary deformation functor, e.g. [DFG04, §3.1]).
LetDord : CNLW → Sets be the functor associating to A the set of strict equivalence
classes of homomorphisms ρA : GQ,S → GL2(A) such that

(i) ρA ⊗A F = ρ̄;

(ii) ρA|Gp '
(
χ1 b
0 χ2

)
, where χ2 : Gp → A× deforms χ̄2 and is unramified;

(iii) for primes ` | N such that #ρ̄(I`) 6= p, reduction modulo mA induces an

isomorphism ρA(I`)
∼→ ρ̄(I`);

(iv) for primes ` | N such that #ρ̄(I`) = p, ρI`A is A-free of rank 1.

The “strict” equivalence relation is conjugation by an element of 1 + M2×2(mA) ⊂
GL2(A). Note also that #ρ̄(I`) = p is equivalent to ρ̄(I`) having unipotent image.

Deformations ρA of ρ̄ satisfying the conditions defining Dord will be known as
p-ordinary of tame level N , or just p-ordinary.

The term “minimal” refers to conditions (iii) and (iv), while “ordinary” refers
to condition (ii). These conditions are well-known to be relatively representable on
deformation problems, as follows.
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Proposition 2.3.2. The conditions (1”) and (2’) of §1.2 imply that Dord is repre-
sentable by Rord ∈ CNLW . In this case, there is a universal ordinary deformation
ρord : GQ,S → GL2(Rord) of ρ̄.

Proof. Upon these conditions, the representability of a deformation ring for condi-
tions (i) and (ii) of Definition 2.3.1 is originally due to Mazur [Maz89, §1.7, Prop. 3].
A simplification of the argument for (ii) applies to show that (iv) is relatively rep-
resentable as well. It is standard that condition (iii) is relatively representable. �

Assuming (1”)–(3’), and under some mild additional conditions, one may produce
a map Rord → T corresponding to the representation ρT and prove that it is an
isomorphism. This was first done in many cases by Wiles [Wil95], followed by
generalizations such as those of Diamond [Dia96, Dia97]. Note, however, that some
of these generalizations require modifications to Rord or T. We state here only the
case we need, where we assume (0)–(4) of §1.2. In this generality, the isomorphism
is due to Wiles [Wil95, Thm. 4.8].

Theorem 2.3.3 (Wiles). Assume (0)–(4) of §1.2. Then the representation ρT of

Proposition 2.1.7 induces an isomorphism Rord ∼→ T of complete intersection rings.

Due to assumption (4), there are no ` | N of type (iv) in the sense of Definition
2.3.1; they are all of type (iii). While it is implicit in Theorem 2.3.3 that ρT satisfies
condition (iii), it will be useful later to have seen the following verification.

Lemma 2.3.4. Assume conditions (0)–(4) of §1.2. Then reduction modulo mT
induces isomorphisms

ρT(I`)
∼−→ ρ̄(I`) for all ` | N.

Proof. Because T is reduced (Lemma 2.1.6), by Lemma 2.1.5 it will suffice to prove
the result after replacing ρT by ρf for an eigenform f with a cohomological weight
(k, χ′) of ΛQ.

Choose some prime ` | N , and write ρ̄|G` ' χ̄`,1 ⊕ χ̄`,2, where (only) χ̄`,1
is ramified. It follows that H1(Q`, (χ̄`,1χ̄−1

`,2)±) = 0. This in turn implies that

ρf |G` ' χ`,1⊕χ`,2, where χ`,i deforms χ̄`,i. Because we have fixed the determinant
at ` (i.e. det ρf |I` = χ′|I`), we observe that the claimed isomorphism fails if and
only if χ`,2 is ramified if and only if the conductor of ρf |G` exceeds that of ρ̄|G` .
However, we have assumed that f is of level N , which is defined to be the prime-to-p
conductor of ρ̄. �

We have this addendum to Lemma 2.2.6.

Lemma 2.3.5. If we let g denote the eigensystem of g′, we have

ρg′ 6' ρg ⊗Eg′ Ag′ .

Proof. Since the socle of T[1/p]g′ is one-dimensional over Eg′ but g′ is not an
eigenform, the Hecke action map T → Ag′ cannot factor through the T-algebra
map Eg′ → Ag′ that corresponds to the Hecke action on g. Since Rord, and hence
T as well (Theorem 2.3.3), is a quotient of the unrestricted deformation ring of
ρ̄, this means that distinct homomorphisms to Ag′ out of T must correspond to
non-isomorphic Galois representations. �
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2.4. The p-locally split deformation ring. The following deformation problem
was first considered by Ghate–Vatsal [GV11].

Definition 2.4.1. Let Dspl : CNLW → Sets be the subfunctor of Dord associating
to A the set of strict equivalence classes of homomorphisms of the form

ρA|Gp '
(
χ1 0
0 χ2

)
.

Deformations ρA of ρ̄ satisfying the conditions defining Dspl will be known as p-split.

Proposition 2.4.2 (Ghate–Vatsal). Assume conditions (1’) and (2’) of §1.2. Then
Dspl is representable by Rspl ∈ CNLW .

Proof. This is [GV11, Prop. 3.1]. �

Corollary 2.4.3. Assume conditions (0)–(4) of §1.2. Then the Galois representa-
tions ρT and ρCM induce diagram (1.5.1).

Proof. We already know that Rord ∼→ T from Theorem 2.3.3. The canonical surjec-
tion Rord � Rspl arises from Proposition 2.4.2. Because ρCM is induced via IndQ

K

(see Proposition 4.1.2) and p splits in K, ρCM|Gp is p-split. Thus ρCM induces a

surjection Rspl � TCM. The commutativity of (1.5.1) is clear. �

3. Anti-cyclotomic Iwasawa theory

In this section, we assemble background information about objects of anti-
cyclotomic Iwasawa theory and their relation to Galois cohomology. We will apply
the assumptions (0)–(4) of §1.2 and use the characters ψ̄ and ψ̄− defined there.

3.1. Anti-cyclotomic extensions and Iwasawa algebras. Recall that we as-
sume that pOK = pp∗ splits, with Q ⊂ Qp inducing p. We have GK,S as in §1.10.
Our notation mostly follows [Hid15, pg. 636].

Let C be the prime-to-p conductor of ψ̄− : GK,S → F×, which is equal to c · cc
by assumption (4). Then we consider the following abelian quotients of GK,S :

Z = the ray class group of K modulo Cp∞,

Z− = the maximal quotient of Z where complex conjugation acts as −1,

Z−p = the maximal p-profinite quotient of Z−.

Let KCp∞ be the ray class field of K modulo Cp∞. Let K−Cp∞,p/K denote the

maximal pro-p anti-cyclotomic subextension of KCp∞/K, so that the Artin map
supplies canonical isomorphisms

Z ∼= Gal(KCp∞/K), Z−p
∼= Gal(K−Cp∞,p/K)

We also let Γ−K
∼= Zp be the maximal torsion-free quotient of Z−p , and let K−∞/K

be the corresponding Zp-extension.
Let F′ be the subfield of F generated by the values of ψ̄−, and denote by ψ− :

GK,S → W ′× the Teichmüller lift of ψ̄−, where W ′ := W (F′). Then ψ− factors

through a character on the quotient Z
(p)
− := Z−/Z−p (a direct factor of Z−), hence

defining a projection

πψ− : W ′[[Z−]] −→W ′[[Z−p ]]
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sending a group-like element (zp, z
(p)) ∈ Z− ⊂W ′[[Z−]]

×
to ψ−(z(p))zp ∈W ′[[Z−p ]].

In the following, we let

(3.1.1) Λ̃−W ′ := W ′[[Z−p ]], Λ−W ′ := W ′[[Γ−K ]]

denote the isotypical components of W ′[[Z−]] via πψ− , and via πψ− composed with

the natural projection Z−p � Γ−K , respectively. Let I := ker(Λ̃−W ′ � Λ−W ′) be the
kernel of the natural projection.

Notation: For the rest of §3 we drop the subscript W ′ in Λ̃−W ′ ,Λ
−
W ′ , but we resume

this outside §3.

A choice of section s : Γ−K ↪→ Z−p endows Λ̃− with the structure of an augmented

Λ−-algebra. Moreover, it is free of finite rank, receiving a natural isomorphism

(3.1.2) Λ̃− ∼= Λ−[[Gal(Hs/K)]],

where Hs/K is the finite p-primary unramified extension of K cut out by the
quotient Z−p � Z−p /Γ

−
K .

Let

(3.1.3) 〈−〉− : GK,S → (Λ−)×, 〈̃−〉− : GK,S → (Λ̃−)×

be the canonical characters arising from the projection from the group rings (3.1.1),

and denote by Λ−〈−〉 (resp. Λ̃−〈−〉) the free Λ−-module (resp. Λ̃−-module) of rank 1

on which GK,S acts via 〈−〉− (resp. 〈̃−〉−). In particular, the residual character in

both cases is ψ̄− : GK,S → F′×.
The following extension fields of K are cut out by the characters ψ−, 〈−〉−, and

〈̃−〉−, respectively:

K(ψ−) = Qker(ψ−)
,

K−∞(ψ−) = the composite K−∞K(ψ−),

K−∞(ψ−) = the composite K−Cp∞,pK(ψ−).

3.2. Anti-cyclotomic Katz p-adic L-functions. We briefly recall Katz’s p-adic
L-functions attached to K. In this section we write W for the Witt ring W (Fp) of
an algebraic closure of Fp.

For any prime-to-p ideal C ⊂ OK , Hida–Tilouine [HT93], following work of Katz
[Kat78] in the case C = 1, produced an element

µp ∈W[[Z]]

(denoted µp(Cp
∗∞) in [dS87, Thm. II.4.14]) characterized by an interpolation prop-

erty of critical values of the complex L-functions attached to certain Hecke charac-
ters of K modulo Cp∞. Taking C to be the prime-to-p conductor of ψ̄−, we shall
be concerned with the projection

L−p (ψ−) ∈W[[Z−p ]] ∼= Λ̃−⊗̂W ′W

of µp via the composite of the natural projection W[[Z]] � W[[Z−]] with πψ− .

By the Weierstrass preparation theorem, we may and do fix a choice of L̃−p (ψ−) ∈
Λ̃− such that

(L̃−p (ψ−)⊗ 1) = (L−p (ψ−))
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as ideals in Λ̃−⊗̂W ′W, and write L−p (ψ−) ∈ Λ− for its further specialization to Λ−.

Finally, when Spec(I) ⊂ Spec(Λ̃−) is some irreducible component, we denote by

L̃−p (ψ−)I the specialization of L̃−p (ψ−) to I.
The same constructions apply when p is replaced by p∗ (i.e., starting with µp∗),

yielding L̃−p (ψ−)∗ ∈ Λ̃−, etc. Altogether we obtain the following avatars of the
Katz p-adic L-functions that we will consider:

(3.2.1)

L̃−p (ψ−), L̃−p (ψ−)∗ ∈ Λ̃−;

L−p (ψ−), L−p (ψ−)∗ ∈ Λ−;

L̃−p (ψ−)I, L̃−p (ψ−)∗I ∈ I.

Since we impose condition (4), the following result gives us that the µ-invariants
of these p-adic L-functions (when the coefficient ring is a domain) vanish.

Proposition 3.2.2 (Finis [Fin06], Hida [Hid10]). The µ-invariants of L−p (ψ−),

L−p (ψ−)∗, L̃−p (ψ−)I, and L̃−p (ψ−)∗I are zero.

Remark 3.2.3. Each I is abstractly isomorphic to W ′[µpn ][[t]] for some n, where µpn
denotes a pn-th root of unity.

3.3. Anti-cyclotomic Iwasawa class groups. Consider the following metabelian
field extensions of K:

M−∞ = the maximal p-ramified pro-p abelian extension of K−∞(ψ−),

M−∞ = the maximal p-ramified pro-p abelian extension of K−∞(ψ−),

L−∞ = the maximal unramified pro-p abelian extension of K−∞(ψ−),

L−∞ = the maximal unramified pro-p abelian extension of K−∞(ψ−).

We have Iwasawa modules coming from Galois groups of these extensions, along
with the following integral units in these fields:

Y −∞ = Gal(M−∞/K
−
∞(ψ−)),

Y−∞ = Gal(M−∞/K−∞(ψ−)),

X−∞ = Gal(L−∞/K
−
∞(ψ−)),

X−∞ = Gal(L−∞/K−∞(ψ−)),

E−∞ = the group of global units in K−∞(ψ−),

U−∞ = the group of local 1-units in the completion of K−∞(ψ−) above p.

We note that Y −∞ , X
−
∞ are naturally modules over Zp[[Gal(K−∞(ψ−)/K)]], while

E−∞,U−∞,Y−∞,X−∞ are naturally modules over Zp[[Gal(K−∞(ψ−)/K)]]. In either case,
we append (ψ−), e.g. Y −∞(ψ−), to denote their ψ−-isotypical components. Thus

Y −∞(ψ−), X−∞(ψ−) are Λ−-modules and E−∞(ψ−),U−∞(ψ−),Y−∞(ψ−),X−∞(ψ−) are Λ̃−-
modules, and of all of these are known to be finitely generated. They are related
by isomorphisms

Y −∞(ψ−) ∼= Y−∞(ψ−)/IY−∞(ψ−), X−∞(ψ−) ∼= X−∞(ψ−)/IX−∞(ψ−).

Class field theory then yields the “fundamental” exact sequence of Λ̃−-modules

(3.3.1) 0 −→ E−∞(ψ−) −→ U−∞(ψ−) −→ Y−∞(ψ−) −→ X−∞(ψ−) −→ 0.
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Proposition 3.3.2 (Anti-cyclotomic main conjecture [Rub91, HT94, Hid09]). The
characteristic ideal in Λ− of Y −∞(ψ−) is generated by L−p (ψ−), and the characteristic

ideal of Y−∞(ψ−)I is generated by L̃−p (ψ−)I. In particular,

Y−∞(ψ−) = 0 ⇐⇒ Y −∞(ψ−) = 0 ⇐⇒ L−p (ψ−) ∈ (Λ−)×.

We apply the main conjecture toward the control of X−∞(ψ−).

Proposition 3.3.3. The following equivalences hold.

(i) X(ψ−) = 0 ⇐⇒ X−∞(ψ−) = 0 ⇐⇒ X−∞(ψ−) = 0, and this is implied by
at least one of L−p (ψ−) and L−p (ψ−)∗ being a unit in Λ−.

(ii) X−∞(ψ−) is infinite if and only if there exists some irreducible component

Spec(I) ⊂ Spec(Λ̃−) such that L̃−p (ψ−)I and L̃−p (ψ−)∗I have a non-trivial
common prime factor P ⊂ I of characteristic zero.

Proof. The equivalences of (i) (and the leftmost equivalence of Proposition 3.3.2)
follow from Nakayama’s lemma. For example, X(ψ−) ∼= X−∞(ψ−)/mΛ̃−X

−
∞(ψ−).

The relation of the vanishing of X−∞(ψ−) to the L-functions in the statement of (i)
follows from Proposition 3.3.2 and its variant for the module Y−∞(ψ−)∗ obtained by
swapping the roles of p and p∗.

To prove (ii), for convenience write Y (resp. Y∗) for Y−∞(ψ−) (resp. Y−∞(ψ−)∗),
Y for Y −(ψ−), and X for X−∞(ψ−). Because X is a quotient of Y, and we know
from Proposition 3.2.2 that the µ-invariant of Y is zero, Lemma 3.3.4 below implies
that X has a non-zero p-torsion-free quotient.

Therefore X [1/p] is a non-zero Λ̃[1/p]-module. By examining a choice of presen-
tation (3.1.2), we see that

Λ̃[1/p]
∼−→
⊕
I

(Λ̃/I)[1/p]

is a regular ring. Therefore X [1/p] is supported at some maximal ideal of (Λ̃/I)[1/p]
for some choice of irreducible component Spec(I) ⊂ Spec(Λ̃−). Since we know
that X is a quotient of both Y and Y∗ (whose characteristic ideals on each I
are associated to L̃−p (ψ−)I by Proposition 3.3.2), this means that CharI(YI) and
CharI(Y∗I ) have a common factor. By Proposition 3.3.2 this is a common factor of

L̃−p (ψ−)I and L̃−p (ψ−)∗I as well. �

Lemma 3.3.4. Let Z be a finitely generated Λ̃−-module. If Z is infinite and p-
power torsion, then the µ-invariant of Z := Z ⊗Λ̃− Λ− as a Λ−-module is positive.

Proof. Because Z is finitely generated and p-power torsion, there exists some t ∈
Z≥1 such that pt · Z = 0. Because of the surjections ·ps : Z/p � psZ/ps+1Z,

the infinitude of Z implies that Z/p is infinite. Because Λ̃−/p is generated over
Λ−/p by adjoining finitely many nilpotents (via a choice of presentation (3.1.2)),
the same argument implies that Z/p is infinite. As Z is supported on Spec(Λ−/p) ⊂
Spec(Λ−), this means that the µ-invariant of Z as a Λ−-module is positive. �

3.4. Galois cohomology with support, and duality. In this section, we com-
pute some Galois cohomology groups often known as “Iwasawa cohomology,” relat-
ing them to the Iwasawa-theoretic objects defined in §3.3. We follow the approach of
[WWE18, §6] and parts of [WWE17, §2], using the notation for Galois cohomology
established in §1.10.
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We will make use of the modules Λ−〈−〉, Λ̃−〈−〉 equipped with the canonical char-

acters defined in (3.1.3), and respectively denote by

Λ−#, Λ̃−#

the same underlying modules equipped with the inverse of those characters.
Let S′ ⊂ SK denote some subset of places of K. We will study the cohomology

of a GK,S-module T with support in S′, denoted Hi
(S′)(OK [1/pN ], T ), which is

defined to be the cohomology of the cone of the morphism of complexes

C•(S′)(OK [1/pN ], T ) := Cone

(
C•(OK [1/pN ], T ) −→

⊕
s∈S′

C•(Ks, T )

)
.

This gives rise to the standard long exact sequence in cohomology, whose terms in
a single degree are

(3.4.1) Hi
(S′)(OK [1/pN ], T ) −→ Hi(OK [1/pN ], T ) −→

⊕
s∈S′

Hi(Ks, T )

We see that we have Hi
(∅)
∼= Hi.

The following module-theoretic version of global Tate duality will be useful.

Proposition 3.4.2. Let T a free module of finite rank over a complete local Noe-
therian Zp-algebra R that is Gorenstein. Equip T with an R-linear action of GK,S.
Let V denote a finitely generated R-module (with a trivial GK,S-action). Then there
is a spectral sequence

Ei,j2 = ExtiR(H3−j
(S′)(OK [1/pN ], T ∗(1)), V )⇒ Hi+j

(SK\S′)(OK [1/pN ], T ⊗R V ),

where T ∗ denotes the R-linear dual module with the contragredient GK,S-action.

Proof. This follows directly from [WWE17, Prop. 2.2.1] when R is regular and S′ ∈
{SK , ∅}. We explain how to adapt the proof of loc. cit. to prove this proposition.

The generalization to an arbitrary subset S′ ⊂ S follows from the fact that
classical Poitou–Tate duality (i.e. for T a finite abelian group and T ∗ its Pontryagin
dual) holds for an arbitrary S′ ⊂ S. For this, see e.g. [GV18, Thm. B.1].

The first part of the proof of [WWE17, Prop. 2.2.1] reduces to the case V = R.
It relies on a particular case of [Nek06, Prop. 5.4.3], which is an expression of this
duality in the derived category of R-modules. In this setting, T may be a bounded
complex and T ∗ is a bounded complex representing RHomR(T, ωR), where ωR is a
dualizing complex for R. In our statement, R is assumed to be Gorenstein (thus
one may let ωR be R[0]) and T is R-free, so we may use the standard R-linear dual
module T ∗.

The second part of the proof of [WWE17, Prop. 2.2.1] uses [LS13, Prop. 3.1.3],
and there is no difference in its application. �

3.5. Kummer theory for anti-cyclotomic Iwasawa cohomology. We are in-

terested in Galois cohomology with coefficients in T = Λ̃−#(1), which, in view of the

review of Iwasawa cohomology in [WWE18, §6.1], is the case of Kummer theory.
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Proposition 3.5.1 (Kummer theory). The long exact sequence (3.4.1) where T =

Λ̃−#(1) and S′ = {p}, namely,

0 = H1
(p)(OK [1/Np], Λ̃−#(1))→ H1(OK [1/Np], Λ̃−#(1))→ H1(Kp, Λ̃

−
#(1))

→ H2
(p)(OK [1/Np], Λ̃−#(1))→ H2(OK [1/Np], Λ̃−#(1))→ H2(Kp, Λ̃

−
#(1)) = 0,

is canonically isomorphic to the fundamental exact sequence (3.3.1). In particular,
we have isomorphisms

H2
(p)(OK [1/pN ], Λ̃−#(1)) ∼= Y−∞(ψ−),(3.5.2)

H2(OK [1/pN ], Λ̃−#(1)) ∼= X−∞(ψ−).(3.5.3)

The proof technique is similar to that of [WWE18, §6], which applies when Q is
replaced by K.

Lemma 3.5.4. There are canonical isomorphisms

H1(OK [1/pN ], Λ̃−#(1)) ∼= E−∞(ψ−)

and (3.5.3).

Proof. The isomorphism with E−∞(ψ−) appears in [WWE18, Cor. 6.1.3]. The iso-
morphism (3.5.3) follows just as in the proof of [WWE18, Cor. 6.3.1]. Namely, be-
cause ψ− is non-trivial at all primes of K dividing N , and is clearly not congruent
modulo p to Zp(1), taking the ψ−-component of the long exact sequence appearing
in the statement of [WWE18, Cor. 6.1.3] results in the desired isomorphism. �

Similarly, we have the Kummer isomorphism

H1(Kp, Λ̃
−
#(1)) ∼= U−∞,

with respect to which the natural maps H1(OK [1/pN ], Λ̃−#(1)) → H1(Kp, Λ̃
−
#(1))

and E−∞ ↪→ U−∞ are compatible. Because H0(Kp, Λ̃
−
#(1)) = 0, it follows from (3.4.1)

that H1
(p)(OK [1/pN ], Λ̃−#(1)) = 0. By local Tate duality (“derived” as in Proposi-

tion 3.4.2, which can be applied with R = Λ̃− since this ring is a complete intersec-

tion, given its presentation (3.1.2)), the vanishing of H2(Kp, Λ̃
−
#(1)) follows from

the fact that H0(Kp, Λ̃
−
〈−〉/I) = 0 for all ideals I ⊂ Λ̃−.

It remains to establish (3.5.2) compatibly with the isomorphisms we have already
drawn. Using the proof of [Lim12, Prop. 5.3.3(b)] (which is written for S′ = SK ,
but applies to any choice of S′, such as S′ = {p}), we find that

H2
(p)(OK [1/Np], Λ̃−#(1)) ∼= lim←−

r

H2
(p)(OKr [1/Np], (ψ

−)−1(1)),

where K−Cp∞,p ⊃ Kr is a sequence of p-abelian extensions of K cut out by a funda-

mental system of open neighborhoods of the identity in Z−p , and the maps of the
limit are corestrictions. We use classical Poitou–Tate duality to draw a canonical
isomorphism to

lim←−
r,m

Hom(Ar,m,Qp/Zp), where Ar,m := H1
(Np∗)(OKr [1/Np], ψ

− ⊗Zp Z/pmZ).
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Because ψ− has order prime to p and is non-constant on Gq for all primes q of Kr

dividing Np∗, we deduce

Ar,m ∼= H1
(Np∗)(OKrK(ψ−)[1/Np],Z/pmZ)ψ

−

from the analogous isomorphisms for the cohomology theories H1(OKr [1/Np],−)
or H1(Kq,−) replacing H1

(Np∗)(OKr [1/Np],−). Because taking the ψ−-part kills

the contribution of the cokernel of

H0(OKrK(ψ−)[1/Np],Z/pmZ)→
∏

q′|q|Np∗

H0((KrK(ψ−))q′ ,Z/pmZ),

to H1
(Np∗)(OKrK(ψ−)[1/Np],Z/pmZ), we know that Ar,m is canonically isomorphic

to the group of ψ−-equivariant homomorphisms from the absolute Galois group of
KrK(ψ−) to Z/pmZ that are trivial on Gq′ for q′ | Np∗.

We observe that H1(Kq, ψ̄
−) = 0 for q | N follows from assumption (4); likewise,

ker(H1(Kp∗ , ψ̄
−) → H1(Kunr

p∗ , ψ̄
−)) = 0 follows from assumption (2). It follows

that triviality of an element of A1,1 = H1(OK [1/Np], ψ̄−) at the decomposition
group at q | Np∗ is equivalent to being trivial on the inertia group at q. It is
straightforward to generalize this conclusion to general Kr and m ≥ 1 from this
base case (K1 = K and m = 1), as Kr/K is ramified only at p. By definition of
Y−∞(ψ−), we deduce a canonical isomorphism

Ar,m ∼= HomZp(Y−∞(ψ−)⊗Λ̃− W
′[[ Gal(Kr/K)]],Z/pmZ).

Applying this isomorphism to the limits over m and r above, we deduce (3.5.2).
To complete the proof of Proposition 3.5.1, it remains to check that the connect-

ing map in (3.4.1) is compatible with the map U−∞(ψ−) → Y−∞(ψ−) coming from
the Artin symbol, and that the map from H2

(p) to H2 in (3.4.1) is compatible with

Y−∞(ψ−) � X−∞(ψ−). This is standard, so we omit it.

4. Residually CM Hecke algebras

Continuing from §2.1.4, we apply (0)–(4) of §1.2 to describe the structure of T.

4.1. CM Hecke algebras and associated Galois representations. The point
of this section is to study the structure of the CM Hecke algebra TCM, a quotient
of T which we defined in §2.1.4. This will mainly be applied in §6. We do this by
understanding the relation of TCM to Galois representations.

Recall that Spec(TCM) ⊂ Spec(T) is the minimal closed subscheme containing all
of the irreducible components of T with CM by K, and ρCM = ρT ⊗T TCM denotes
the restriction of ρT to this CM locus. Recall that c ⊂ OK denotes the prime-to-p
Artin conductor of ψ : GK,S →W×.

We will also use the notation for anti-cyclotomic Iwasawa theory established at
the beginning of §3.1. We add to it the following definitions. Let Kcp∞ denote the
ray class field of K modulo cp∞, with ray class group Z. Let Zp denote the maximal
pro-p quotient of Z, which is also naturally a direct factor. Also let Γp

K ' Zp be
the maximal torsion-free quotient of Zp.

We see that ψ factors through a character on the quotient Z(p) := Z/Zp, resulting
in a projection

πψ : W [[Z]] �W [[Zp]]
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sending a group-like element (zp, z
(p)) ∈ Z to ψ(z(p))zp ∈W [[Zp]]. In the following,

we let

Λ̃ := W [[Zp]], Λ := W [[Γp
K ]],

which are equipped with a canonical surjection Λ̃ � Λ.
Similarly to (3.1.3), we denote by

〈̃−〉 : GK,S → Λ̃×, 〈−〉 : GK,S → Λ×

the natural characters arising from projection GK,S � Z and πψ (resp. also via

Λ̃ � Λ). Each of Λ̃ and Λ are complete local Noetherian W -algebras with residue
field F, and these two characters are residually equal to ψ̄.

Similarly to Definition 2.3.1, a deformation ψA of ψ̄ to A ∈ CNLW is called
minimal at a prime q of K if reduction modulo mA induces an isomorphism

ψA(Iq)
∼→ ψ̄(Iq). It is standard (see e.g. [Maz89, §1.4]) that Λ̃ with 〈̃−〉 is a

universal deformation of ψ̄ as follows.

Lemma 4.1.1. There is a canonical isomorphism Rψ̄
∼→ Λ̃, where Rψ̄ represents

deformations ψA : GK,S → A× of ψ̄ to A ∈ CNLW that are minimal outside p.

Proposition 4.1.2. Assume (0)–(4) of §1.2. Induction IndQ
K produces an isomor-

phism Λ̃
∼→ TCM, arising from the isomorphism

ρCM ' IndQ
K 〈̃−〉.

In particular, TCM is a reduced complete intersection.

Proof. As pointed out in the proof of [Hid15, Prop. 5.7(2)], since we are working in
the minimal case (the tame level of our forms is equal to the prime-to-p conductor
of ρ̄) this claim follows immediately from Lemma 4.1.1 as long as ρ̄ is induced only
from K among all quadratic fields. By Proposition 5.2(2) in loc. cit., assumption
(3) of §1.2 implies this. �

There is a notion of a Zariski-closed maximal induced locus for IndQ
K in SpecR,

where R ∈ CNLW supports a Galois representation ρR : GQ,S → GL2(R) deforming

ρ̄ = IndQ
K ψ̄. (See, for example, [DW18].)

Corollary 4.1.3. The kernel ICM of the canonical surjection T � TCM cuts out
the maximal induced locus for ρT : GQ,S → GL2(T).

Proof. By Theorem 2.3.3 and the proof of Lemma 2.3.5, any Zariski-closed locus in
Spec(T) is determined by the Galois deformations it supports. Thus the corollary
follows from Proposition 4.1.2 and the fact that the CM condition of (1.2.3) is
equivalent to the induced condition: Rψ̄ parameterizes all characters ψA such that

IndQ
K ψA is p-ordinary of tame level N , and injects into TCM. �

Proposition 4.1.2 also allows us to the study weight map ΛQ → TCM ∼= Λ̃.

Lemma 4.1.4. The composite map β of ΛQ → T � TCM ∼= Λ̃ satisfies

(4.1.5) β ◦ 〈−〉Q|GK,S = 〈̃−〉 · 〈̃−〉
c
.

Also, β is an isomorphism if and only if p - hK .
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Proof. The first statement follows from (2.1.9), as Proposition 4.1.2 tells us that

ρCM|GK,S ' 〈̃−〉 ⊕ 〈̃−〉
c
.

A presentation of ΛQ as a power series ring W [[t]] arises from t 7→ 〈γ〉Q−1, where γ
is any element of Ip that projects to a generator of the Galois group of the maximal

cyclotomic Zp-extension of Q. From the presentation of Λ̃ given above, and the

equality (4.1.5), we see that ΛQ → Λ̃ is an isomorphism if and only if γ − 1 ∈ ΛQ
maps to a power series generator of Λ̃ if and only if γ maps to a generator of Zp.

This is the case if and only if Ip
∼→ Ip ⊂ GK,S surjects onto Zp, which is equivalent

to p - hK . �

4.2. Congruence module of the CM locus. We recall Hida’s determination of
the characteristic ideal of the congruence module of the CM locus Spec(TCM) ⊂
Spec(T).

For this, and for the further study of non-induced deformations of induced rep-

resentations in §5, we identify how anti-cyclotomic objects over Λ̃−W ′ set up in §3
(like L̃−p (ψ−)) are presented over Λ̃.

Notation. In §3 only, we denoted Λ̃−W ′ ,Λ
−
W ′ without the subscript. Elsewhere, the

relationship between the two notations is

Λ̃− := Λ̃−W ′ ⊗W ′ W, Λ− := Λ−W ′ ⊗W ′ W,

as in (4.2.1). We mildly abuse notation by continuing to use 〈̃−〉− (resp. 〈−〉−) for

the base change of this character (as defined in §3.1) via ⊗Λ̃−
W ′

Λ̃− (resp. ⊗Λ−
W ′

Λ−).

These anti-cyclotomic Iwasawa algebras Λ̃− and Λ− are domains of isomorphisms

(4.2.1) δ̃ : Λ̃−
∼−→ Λ̃, δ : Λ−

∼−→ Λ

that are characterized by inducing the equality of Λ̃ (resp. Λ)-valued characters

δ̃ ◦ 〈̃−〉− ∼= 〈̃−〉 · (〈̃−〉
c
)−1, resp. δ ◦ 〈−〉− ∼= 〈−〉 · (〈−〉

c
)−1.

They are induced by the canonical isomorphism ι : Zp ∼= Z−p of [Hid15, pg. 636].

Because T and TCM are reduced under our running hypotheses (see Lemma 2.1.6,
Proposition 4.1.2), there is a unique algebra decomposition of total fraction fields

Frac(T) ' Frac(TCM)⊕X.

Letting TnCM be the projected image of T in X, we have ICM ↪→ TnCM and TnCM

is ΛQ-torsion-free. The quotient TnCM/ICM is the congruence module, in the sense
of e.g. [Hid00, §5.3.3], between the two components Spec(TnCM) and Spec(TCM) of
Spec(T).

Theorem 4.2.2 (Hida). Assume conditions (0)–(4) of §1.2. Then

TnCM/ICM ' Λ̃/(L̃−p (ψ−)).
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Moreover, we have the following commutative diagram with exact rows and columns:

InCM
∼ //

��

(L̃−p (ψ−))

��
ICM

//

o

��

T //

��

TCM ∼= Λ̃

��
ICM

// TnCM // Λ̃/(L̃−p (ψ−)).

Proof. This is shown in [Hid15, Thm. 7.2], building on the proof originating from
[MT90] of the anti-cyclotomic main conjecture (Proposition 3.3.2). There we find
the additional assumption that ψ̄ is ramified at p and p - φ(N). However, the first
assumption is used only in order to apply [Hid15, Thm. 7.1] and ensure that T is a
Gorenstein ring. In our setting, this follows from Theorem 2.3.3. The assumption
p - φ(N) is used to rule out the failure of minimality of CM families, but our
assumptions guarantee minimality. �

5. Computation of conormal modules using Shapiro’s lemma

In this section, we give an explicit interpretation of the conormal module of the
closed CM locus inside the p-ordinary (resp. p-locally split) locus. From this, we
deduce the main theorem (Theorem 1.3.1) in §5.5.

5.1. Conormal modules. Assume (0)–(4) of §1.2 in all that follows. We will
study the conormal modules of the closed subspaces

(1) Spec(TCM) ⊂ Spec(Rord) ∼= Spec(T), and
(2) Spec(TCM) ⊂ Spec(Rspl)

We establish notation

J := ICM = ker
(
T � TCM

)
, Js := ker

(
Rspl � TCM

)
,

so that these conormal modules may be denoted

(1) J/J2 and (2) Js/(Js)2,

respectively. For convenience, we will use the canonical isomorphism Λ̃ ∼= TCM of

Lemma 4.1.2 and write Λ̃ in the place of TCM throughout this section, studying

J/J2 and Js/(Js)2 as Λ̃-modules.
We also let ρ represent a member of the strict equivalence class (the equivalence

relation defining Dspl(Λ̃); see §2.4) of ρCM characterized by demanding that

ρ(c) =

(
0 1
1 0

)
and ρ|GK,S =

(
〈−〉 0
0 〈−〉c

)
.

Indeed, the left equality fixes a basis up to ordering and scaling, and the second
condition fixes the order.

Let Λ̃[V ] denote Λ̃ ⊕ V as a square-zero augmented Λ̃-algebra, so V 2 = 0. For

R∗ ∈ {Rord, Rspl, Λ̃}, let HomCM(R∗, Λ̃[V ]) denote the fiber of

(5.1.1) HomΛQ(R∗, Λ̃[V ]) −→ HomΛQ(R∗, Λ̃)
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over the canonical ΛQ-algebra homomorphism φρ : R∗ � Λ̃ induced by ρ. Here we

use the isomorphism Λ̃ ∼= Rψ̄ of Lemma 4.1.1 to speak of the identity automorphism

of Λ̃ induced by ρ. Note that HomCM(R∗, Λ̃[V ]) has a natural Λ̃-module structure
coming from the second argument.

In what follows, we will use, without further comment, the following concrete

interpretation of HomCM(R∗, Λ̃[V ]) as a modified deformation functor D∗ρ.

Lemma 5.1.2. Let D∗ ∈ {Dord, Dspl, Dψ} be the deformation problem represented

by R∗. There is a canonical bijective correspondence between HomCM(R∗, Λ̃[V ])

and the subset D∗ρ(Λ̃[V ]) ⊂ D∗(Λ̃[V ]) consisting of the image of strict equivalence

classes within the set of homomorphisms ρV : GQ,S → GL2(Λ̃[V ]) such that ρV
(mod V ) = ρ and det ρV = 〈−〉Q ⊗ΛQ Λ̃.

Remark 5.1.3. Strict equivalence classes within D∗ρ amount to conjugacy classes by

1 +M2(V ) ⊂ GL2(Λ̃[V ]), which is why it is non-trivial to take the image in D∗.

Proof. Let ρV represent a strict equivalence class in D∗ that is the image of a
strict equivalence classes in D∗ρ. Then ρV (mod V ) ' ρ and det ρV = 〈−〉Q. The

first condition is equivalent to the map φρV : R∗ → Λ̃[V ] being induced by ρV
composing with Λ̃[V ] � Λ̃ to produce φρ. By examining (2.1.9), we see that

the second condition is equivalent to R∗ → Λ̃ being a ΛQ-algebra homomorphism.

Conversely, any strict equivalence class in D∗(Λ̃[V ]) that satisfies both conditions

contains a representative ρV of a strict equivalence class in D∗ρ(Λ̃[V ]), and it is clear
that such a class is unique. �

We also record the relationship between the HomCM(R∗, Λ̃[V ]), which follows

directly from the surjections Rord � Rspl � Λ̃.

Proposition 5.1.4. The conormal modules are characterized as Λ̃-modules by

HomΛ̃(J/J2, V ) ∼= HomCM(Rord, Λ̃[V ])/HomCM(Λ̃, Λ̃[V ]),

HomΛ̃(Js/(Js)2, V ) ∼= HomCM(Rspl, Λ̃[V ])/HomCM(Λ̃, Λ̃[V ]),

for all finitely generated Λ̃-modules V .

Notation. We will write ρV for a homomorphism

ρV : GQ,S → GL2(Λ̃[V ]) such that ρV (mod V ) = ρ and det ρV = 〈−〉Q.

That is, ρV is a representative of D∗ρ(Λ̃[V ]). We also mildly abuse terminology by
speaking of a deformation ρV , when really this is the strict equivalence class of ρV ,

and refer to ρV as an element of D∗ρ(Λ̃[V ]) for D∗ρ ∈ {Dord
ρ , Dspl

ρ , Dψ̄,ρ}.
Next we find these ρV as elements of an Ext1-module.

Lemma 5.1.5. For any finitely generated Λ̃-module V and R∗ ∈ {Rord, Rspl, Λ̃},
there exists a Λ̃-linear injection of

D∗ρ(Λ̃[V ]) = HomCM(R∗, Λ̃[V ]) ↪→ Ext1
Λ̃[GQ,S ]

(ρ, ρ⊗Λ̃ V )

determined by sending any ρV ∈ D∗ρ(Λ̃[V ]) to the extension class determined by the
surjection

ρV � ρV ⊗Λ̃[V ] Λ̃ = ρ.
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Proof. The condition ρV ∈ D∗ρ(Λ̃[V ]) implies that ρV ⊗Λ̃[V ] Λ̃ = ρ. One may then

readily check that the kernel of ρV � ρ is isomorphic to ρ ⊗Λ̃ V (where V has a

trivial GQ,S-action). Then the map to Ext1 is injective because strict equivalence

in D∗ρ amounts to conjugation by 1 +M2(V ). The fact that this map is Λ̃-linear is
a functorial (in V ) version of the standard fact (see e.g. [Maz89, pg. 399]) that the
tangent space of a deformation ring Rρ with residue field k is given, as a k-vector
space, to Hom(R, k[ε]/ε2), and admits a canonical isomorphism of k-vector spaces
to Ext1

k[GQ,S ](ρ, ρ). �

5.2. Local conditions. Next we address the local conditions that define the de-
formation problems Dord, Dspl, thereby determining the images of the injections of
Lemma 5.1.5. We will decompose the condition on the constancy of the determinant
of Lemma 5.1.2 into a sum of local inertial conditions.

First we address conditions at p. As we have seen, ρ|GK,S ' ψ ⊕ ψc. Because

p splits in K (and recall that we have designated p such that Gp
∼→ Gp), we also

have this decomposition of ρ|Gp . The characters remain distinct after restriction to

both GK,S and Gp because ψ̄|Gp
= χ̄1 6= χ̄2 = ψ̄c|Gp

, by the assumptions of §1.2.
Therefore, restriction to GK,S induces a canonical map
(5.2.1)

σp : Ext1
Λ̃[GQ,S ]

(ρ, ρ⊗V )→

Ext1
Λ̃[Gp]

(〈̃−〉, 〈̃−〉 ⊗ V ) Ext1
Λ̃[Gp]

(〈̃−〉
c
, 〈̃−〉 ⊗ V )

Ext1
Λ̃[Gp]

(〈̃−〉, 〈̃−〉
c
⊗ V ) Ext1

Λ̃[Gp]
(〈̃−〉

c
, 〈̃−〉

c
⊗ V )


(where the matrix stands for the direct sum of its entries). For 1 ≤ i, j ≤ 2, write
σpi,j for the projection to the (i, j)-th coordinate of the target of σp. Likewise, write

τpi,i for the composition of σpi,i with

Ext1
Λ̃[Gp]

(〈̃−〉
ci+1

, 〈̃−〉
ci+1

⊗ V )→ Ext1
Λ̃[Ip]

(〈̃−〉
ci+1

, 〈̃−〉
ci+1

⊗ V ).

Lemma 5.2.2. Let V be a finitely generated Λ̃ module.

(1) The ordinary condition and Ip-constant determinant condition on the target
of σp are cut out by the kernel of σp2,1 ⊕ τ

p
1,1 ⊕ τ

p
2,2.

(2) The split condition and Ip-constant determinant condition on the target of
σp are cut out by the kernel of σp2,1 ⊕ σ

p
1,2 ⊕ τ

p
1,1 ⊕ τ

p
2,2.

Proof. This computation of the ordinary condition amounts to the study of ordinary
deformation rings appearing in [Maz89, §1.7, pg. 401], and a straightforward gen-
eralization to Dspl. We provide more detail, and address the inertial determinant
condition.

A choice of V -valued cocycles e =
(
a b
c d

)
representing a cohomology class in the

codomain of σp may be represented as(
a ∈ Z1(Qp, V ) b ∈ Z1(Qp, Λ̃−〈−〉 ⊗ V )

c ∈ Z1(Qp, Λ̃−# ⊗ V ) d ∈ Z1(Qp, V )

)
,

where Λ̃−〈−〉⊗V is short for Λ̃−〈−〉⊗Λ−V , and where V is made to be a Λ̃−-module via

the homomorphism Λ̃− → Λ̃−W ′ ⊗W ′W
∼→ Λ̃ found in (4.2.1). This data determines
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a homomorphism

(5.2.3) ρe :=

(
〈̃−〉 · (1 + a) 〈̃−〉

c
b

〈̃−〉c 〈̃−〉
c
· (1 + d)

)
: Gp −→ GL2(Λ̃[V ]).

Conjugation by 1 + M2×2(V ) ⊂ GL2(Λ̃[V ]) moves e within its cohomology class.

Therefore, a deformation of ρ|Gp to Λ̃[V ] satisfies the conditions of the deformation

functor Dord if and only if c is a coboundary and d|Ip = 0. The additional condition
that the deformation of the determinant is trivial on Ip is equivalent to (a+d)|Ip = 0,
so we must have a|Ip = 0 as well.

Similarly, a deformation of ρ to Λ̃[V ] restricting to Gp as ρe determines an

element of Dspl(Λ̃[V ]) with a trivial deformation of the determinant on Ip if and
only if both b and c are coboundaries and d|Ip = a|Ip = 0. �

Next we address the conditions at primes ` | N . This is fairly simple, as we have
noted that the off-diagonal cohomology is trivial at ` in the proof of Lemma 2.3.4.
We set up the maps σ`, σ`i,j , and τ `i,j just as for the prime p, above.

Lemma 5.2.4. Let ` | N be a prime. The condition of minimality at ` is cut out
by the kernel of τ `1,1 ⊕ τ `2,2.

Proof. This condition is part (iii) of Definition 2.3.1. As the codomains of σ`i,j are

zero for (i, j) ∈ {(1, 2), (2, 1)}, only the conditions cut out by τ `1,1, τ `2,2 remain. �

Thus we have determined the image of the injections of Lemma 5.1.5.

Corollary 5.2.5. Let V be a finitely generated Λ̃-module.

(1) The image of

HomCM(Rord, Λ̃[V ]) ↪→ Ext1
Λ̃[GQ,S ]

(ρ, ρ⊗Λ̃ V )

is the kernel of σp2,1 ⊕
⊕

v|Np
(
τv1,1 ⊕ τv2,2

)
.

(2) The image of

HomCM(Rspl, Λ̃[V ]) ↪→ Ext1
Λ̃[GQ,S ]

(ρ, ρ⊗Λ̃ V )

is the kernel of σp1,2 ⊕ σ
p
2,1 ⊕

⊕
v|Np

(
τv1,1 ⊕ τv2,2

)
.

5.3. An explicit form of Shapiro’s lemma. Because ρ ∼= IndQ
K 〈̃−〉 (see Propo-

sition 4.1.2), we can apply Shapiro’s lemma to the domain of (5.2.1) to yield that

Ext1
Λ̃[GQ,S ]

(ρ, ρ⊗ V ) ∼= Ext1
Λ̃[GK,S ]

(〈̃−〉 ⊕ 〈̃−〉
c
, (〈̃−〉 ⊕ 〈̃−〉

c
)⊗ V ).

We need to relate this isomorphism to (5.2.1). For this, we develop, in this section,
an explicit version of Shapiro’s lemma for this particular case.

In order to state it, we use the notation (−)c on an extension class as follows,
extending the notation for representations of GK established in §1.2.3: When ρ1, ρ2

are representations of GK and e ∈ Ext1
GK (ρ2, ρ1) is an extension class represented

by the short exact sequence

0 −→ ρ1 −→ ρe −→ ρ2 −→ 0,

then we write ec ∈ Ext1
GK (ρc2, ρ

c
1) for the extension class of

0 −→ ρc1 −→ ρce −→ ρc2 −→ 0.
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Using the canonical isomorphism between these Ext-groups and group cohomology,
we also use the notation (−)c for the map

H1(OK [1/Np], ρ∗2 ⊗ ρ1) −→ H1(OK [1/Np], ρc2
∗ ⊗ ρc1)

induced by the map on Ext-groups.
Similarly, choosing matrix-valued representatives for the ρi and choosing some

cocycle a ∈ Z1(OK [1/Np], ρ∗2 ⊗ ρ1), we may use the notion of (−)c that applies to
homomorphisms:

ac(γ) = a(cγc) for γ ∈ GK,S .
We next show that these are compatible.

Lemma 5.3.1. With notation as above, if we write ρa for the extension of ρ2 by ρ1

induced by the cohomology class of a, then the cohomology class of ac corresponds
to the extension class of ρca.

Proof. Using the matrix valued representatives, we can write ρa as a homomorphism(
ρ1 ρ1 · a

ρ2

)
and observe that ρca is represented by the homomorphism(

ρc1 ρc1 · ac
ρc2

)
. �

For notational convenience, in the statement of Proposition 5.3.2 we use 〈〉 in

place of 〈̃−〉.

Proposition 5.3.2. The natural map
(5.3.3)

σK : Ext1
Λ̃[GQ,S ]

(ρ, ρ⊗ V )→

(
Ext1

Λ̃[GK,S ]
(〈〉, 〈〉 ⊗ V ) Ext1

Λ̃[GK,S ]
(〈〉c, 〈〉 ⊗ V )

Ext1
Λ̃[GK,S ]

(〈〉, 〈〉c ⊗ V ) Ext1
Λ̃[GK,S ]

(〈〉c, 〈〉c ⊗ V )

)
is injective, and its image is given by{(

a b
c d

)
∈

(
Ext1

Λ̃[GK,S ]
(〈〉, 〈〉 ⊗ V ) Ext1

Λ̃[GK,S ]
(〈〉c, 〈〉 ⊗ V )

Ext1
Λ̃[GK,S ]

(〈〉, 〈〉c ⊗ V ) Ext1
Λ̃[GK,S ]

(〈〉c, 〈〉c ⊗ V )

)∣∣∣∣ ac = d, bc = c

}
.

Proof. Shapiro’s lemma tells us that σK is injective.
Choose e =

(
a b
c d

)
in the group of cocycles whose cohomology class lies in the

codomain of σK ; for example, b ∈ Z1(OK [1/Np], 〈̃−〉 · (〈̃−〉
c
)−1 ⊗ V ). This is a

function e : GK,S → M2×2(V ) that determines the homomorphism ρe : GK,S →
GL2(Λ̃[V ]) (similar to (5.2.3)) given by

ρe :=

(
〈̃−〉(1 + a) 〈̃−〉

c
b

〈̃−〉c 〈̃−〉
c
(1 + d)

)
: GK,S −→ GL2(Λ̃[V ]).

It extends to a function on GQ,S = GK,S
∐
GK,Sc that we denote by ρ̃Ce , given by

ρ̃Ce : GK,Sc 3 γc 7→ ρe(γ) · C ∈ GL2(Λ̃[V ])

(so, in particular, ρ̃Ce (c) = C), where C ∈ GL2(Λ̃[V ]) has order 2 and satisfies

C ≡
(

1
1

)
(mod V ).
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We observe that the set of lifts of ρ to Λ̃[V ] is in bijection with the set of
pairs (e, C) such that ρ̃Ce is a homomorphism. We break the determination of the
homomorphism condition on ρ̃Ce into cases.

Case C =
(

1
1

)
. When C =

(
1

1

)
, we claim that ρ̃Ce is a homomorphism if and

only if ac = d and bc = c, as cocycle functions GK,S → V .
We want to verify that ρ̃Ce (γ′′γ′) = ρ̃Ce (γ′′)ρ̃e(γ

′) for all γ′′, γ′ ∈ GQ,S . A brief
computation reduces this verification to the case where γ′ ∈ GK,S and also γ′′ = γc
for some unique γ ∈ GK,S . In this case, rewrite γ′′γ′ = (γc)γ′ as γ(cγ′c)c, observing
that the desired equality holds if and only if

ρe(cγ
′c) =

(
1

1

)
ρe(γ

′)
(

1
1

)
.

This condition holds if and only if ac = d and bc = c, proving the claim.

Case of general C. The set of all possible elements GL2(Λ̃[V ]) satisfying the
conditions demanded of C are in bijection with

C =

{(
v11 v12

v12 v22

)
∈M2×2(V ) | v11 + v22 = v12 + v21 = 0

}
via C 7→ C −

(
1

1

)
. For the moment, fix (vi,j) so that it equals C −

(
1

1

)
. The

function arising from conjugating ρ̃Ce by 1 + C ′ := 1 +
(−v12/2 −v11/2
v11/2 v12/2

)
satisfies

(1 + C ′)ρ̃Ce (c)(1− C ′) =
(

1
1

)
.

Thus we may reduce to Case C =
(

1
1

)
.

In order to carry out this reduction, we need a bit of additional notation. Write
∂ for the boundary map ∂ : C0(OK [1/Np],M2×2(V ))→ C1(OK [1/Np],M2×2(V )),

and write ∂ =
(
∂11 ∂12

∂21 ∂22

)
for its decomposition into matrix coordinates. Then we

apply the case C =
(

1
1

)
and observe that 1 + e is fixed by conjugation by (1 +C ′)

to deduce that ρ̃Ce is a homomorphism if and only if

ac = d, bc = c.

A complement to C ⊂ pgl2 ⊗ V is
(

0 w
w 0

)
. Conjugating ρ̃Ce by 1 +

(
0 1
1 0

)
w fixes

ρ̃Ce (c) = C, fixes a and d, and sends

b 7→ b− ∂12(w), c 7→ c− ∂21(w),

which maintains the equality bc = c.

Altogether, we have calculated that lifts of ρ to Λ̃[V ] are in bijection with the

Λ̃-module

(a, b, v11, v12) ∈ Z1(OK [1/Np], V )⊕ Z1(OK [1/Np], Λ̃−〈−〉 ⊗ V )⊕ V ⊕2

via (a, b, v11, v12) 7→ ρ̃Ce , where e and C are defined as

e =

(
a b
bc ac

)
, C =

(
1

1

)
+

(
v11 v12

−v12 −v11

)
.

The action of conjugation by 1 + M2×2(V ) ⊂ GL2(Λ̃[V ]) on the lifts of ρ to Λ̃[V ],

under this bijection, amounts to translation by the sub-Λ̃-module

B1(OK [1/Np], V )⊕B1(OK [1/Np], Λ̃−〈−〉 ⊗ V )⊕ V ⊕2.

The quotient is naturally isomorphic to the claimed image of σK . �
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Using the foregoing expression of Shapiro’s lemma, we calculate HomCM(R∗, Λ̃[V ]).
Write Hp for the p-primary summand of the ideal class group of K.

Proposition 5.3.4. For any finitely generated Λ̃-module V , there are isomorphisms

HomCM(Rord, Λ̃[V ])
∼−→ HomZp(Hp, V )⊕H1

(Np∗)(OK [1/Np], Λ̃−〈−〉 ⊗ V ),

HomCM(Rspl, Λ̃[V ])
∼−→ HomZp(Hp, V )⊕H1

(Np)(OK [1/Np], Λ̃−〈−〉 ⊗ V ),

HomCM(Λ̃, Λ̃[V ])
∼−→ HomZp(Hp, V ).

Proof. We apply throughout the interpretation of HomCM(R∗, Λ̃[V ]) in Lemma 5.1.2.
Thus our goal is to calculate the image of the injections of Lemma 5.1.5, which are
determined by Corollary 5.2.5. So it remains is to interpret the conclusion of Corol-
lary 5.2.5 in terms of Proposition 5.3.2.

We use the notation of Galois cohomology instead of Ext1. For convenience,
when v is a rational prime dividing Np and ∗ = ij for i, j ∈ {1, 2}, we use the
natural extensions of σv∗ and τv∗ to the codomain of σK : these are σv

∗ , τ
v
∗ , where v

is the prime over v distinguished by the embeddings of §1.2.1.

σp
1,2 : H1(OK [1/Np], Λ̃−〈−〉 ⊗Λ̃ V ) −→ H1(Kp, Λ̃

−
〈−〉 ⊗Λ̃ V )

σp
2,1 : H1(OK [1/Np], Λ̃−# ⊗Λ̃ V ) −→ H1(Kp, Λ̃

−
# ⊗Λ̃ V )

τvi,i : H1(OK [1/Np], V ) −→ H1(Kunr
v , V ), i = 1, 2.

We also use the isomorphism of Shapiro’s lemma as given by the top row of σK :

(5.3.5) Ext1
Λ̃[GQ,S ]

(ρ, ρ⊗ V )
∼−→ H1(OK [1/Np], V )⊕H1(OK [1/Np], Λ̃−〈−〉 ⊗Λ̃ V ).

The map
⊕

v|Np
(
τv1,1 ⊕ τv2,2

)
factors through the summand H1(OK [1/Np], V ) of

the codomain of (5.3.5), yielding

H1(OK [1/Np], V ) −→
⊕
v|Np

(
H1(Kunr

v , V )⊕H1(Kunr
v , V )

)
a 7→

(
(a|Iv , ac|Iv) | primes v | Np

)
.

Using the equivalence ac|Ip = 0 ⇐⇒ a|Ip∗ = 0, we find that these are V -valued
homomorphisms factoring through Hp. This establishes the final claimed isomor-
phism, as deformations induced from K are split upon restriction to K.

For the first claimed isomorphism, we calculate the ordinary case. Similarly to

the previous paragraph, σp
2,1 factors through the summand H1(OK [1/Np], Λ̃−〈−〉⊗Λ̃

V ) of the codomain of (5.3.5), yielding

H1(OK [1/Np], Λ̃−〈−〉 ⊗Λ̃ V ) −→ H1(Kp, Λ̃
−
# ⊗Λ̃ V )

b 7→ bc|Gp

(5.3.6)

Let l be a prime of K over N . It follows from the cohomology calculation in the
proof of Lemma 2.3.4 that Hi(Kl, ψ̄

−) = 0 for all i ≥ 0. Therefore, the local factors
over N of the long exact sequence in cohomology (3.4.1) arising from the cone

construction (with S′ the set of primes of K dividing Np∗ and T = Λ̃−#) are trivial.

Likewise, for the local factors over p, we have H0(Kp, ψ̄
−) = H0(Kp∗ , ψ̄

−) = 0, so
there are no local terms in degree zero in this long exact sequence. Also, bc|Gp

= 0
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if and only if b|Gp∗ = 0. Therefore, the kernel of (5.3.6) is canonically isomorphic

to H1
(Np∗)(OK [1/Np], Λ̃−〈−〉 ⊗ V ).

Recalling the decomposition (5.3.5), we conclude that σp
2,1 ⊕

⊕
v|Np

(
τv1,1 ⊕ τv2,2

)
has kernel naturally isomorphic to the direct sum of the two kernels above. This
gives the first isomorphism.

The argument for the second is essentially identical. We replace σp
2,1 with σp

1,2⊕
σp

2,1, which also factors through the summand H1(OK [1/Np], Λ̃−〈−〉 ⊗Λ̃ V ) of the

codomain of (5.3.5). This factorization is

H1(OK [1/Np], Λ̃−〈−〉 ⊗Λ̃ V ) −→ H1(Kp, Λ̃
−
〈−〉 ⊗Λ̃ V )⊕H1(Kp, Λ̃

−
# ⊗Λ̃ V )

b 7→ (b|Gp
, bc|Gp

).

Therefore the kernel of σp
1,2 ⊕ σ

p
2,1 ⊕

⊕
v|Np

(
τv1,1 ⊕ τv2,2

)
is naturally isomorphic to

the direct sum of the two kernels from the factorization. Then, (3.4.1) computes
this group by the same argument as before, where S′ is now the set of primes of K
dividing Np. �

Now we can interpret maps out of the conormal modules of the CM locus in the
ambient ordinary or split deformation space.

Corollary 5.3.7. For any finitely generated Λ̃-module V , we have canonical iso-
morphisms

HomΛ̃(J/J2, V )
∼−→ H1

(Np∗)(OK [1/Np], Λ̃−〈−〉 ⊗ V ),

HomΛ̃(Js/(Js)2, V )
∼−→ H1

(Np)(OK [1/Np], Λ̃−〈−〉 ⊗ V )

that are functorial in V .

Proof. We claim that the injections

HomCM(Λ̃, Λ̃[V ]) ↪→ HomCM(R∗, Λ̃[V ]), ∗ ∈ {ord, spl}

induced by the canonical surjections Rord � Rspl � Λ̃ are compatible with the
direct sum decompositions in the statement of Proposition 5.3.4. This follows from
the fact that the image of these injections, say on an element a ∈ HomZp(Hp, V ),

corresponds exactly to IndQ
K 〈̃−〉 ·(1+a). By Lemma 4.1.1, induced deformations of

ρ̄ are exactly those that arise from homomorphisms out of Λ̃. Hence the statement
follows from Proposition 5.1.4. �

5.4. Interpretation as class groups. We arrive at the identification of the conor-

mal modules. We apply the map δ̃ of (4.2.1), usually restricting it from its domain

Λ̃−W ′ ⊗W ′ W to its subring Λ̃−W ′ ⊗ 1 ∼= Λ̃−W ′ .

Theorem 5.4.1. We have isomorphisms

(i) Y−∞(ψ−)⊗Λ̃−
W ′ ,δ̃

Λ̃
∼−→ J/J2 and

(ii) X−∞(ψ−)⊗Λ̃−
W ′ ,δ̃

Λ̃
∼−→ Js/(Js)2,

compatibly with the natural surjections J/J2 � Js/(Js)2 and Y−∞(ψ−) � X−∞(ψ−).

Remark 5.4.2. Case (i) was originally proved by Hida; indeed, it follows immediately

from the computation of HomCM(Rord, Λ̃[V ]) in [Hid06, Prop. 3.89, Thm. 5.33]
combined with the argument establishing Corollary 5.2.5.
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Proof. Let V be a finitely generated Λ̃-module. Since Λ̃ is a complete intersection
(see Proposition 4.1.2), we may apply global Tate duality in the form of Proposi-

tion 3.4.2. Since Hi
(p)(OK [1/Np], Λ̃−#(1)) = 0 for i 6= 2 according to Proposition

3.5.1, the application to T = Λ̃−#(1) of the global Tate duality spectral sequence of
Proposition 3.4.2 degenerates. This yields

HomΛ̃(H2
(p)(OK [1/Np], Λ̃−#(1)), V )

∼−→ H1
(Np∗)(OK [1/Np], Λ̃−〈−〉 ⊗ V ).

Because Λ̃⊗δ̃,Λ̃−
W ′

(Λ̃−W ′)#(1) ∼= W ⊗W ′ (Λ̃−W ′)#(1), Proposition 3.5.1 allows us to

replace H2
(p)(OK [1/Np], Λ̃−#(1)) by Y−∞(ψ−) ⊗Λ̃−

W ′ ,δ̃
Λ̃. Corollary 5.3.7 canonically

identifies HomΛ̃(J/J2,−) with

H1
(Np∗)(OK [1/Np], Λ̃−〈−〉 ⊗−)

as functors on finitely generated Λ̃-modules. Because both J/J2 and Y−∞(ψ−)⊗Λ̃−
W ′

Λ̃ are finitely generated as Λ̃-modules, Yoneda’s lemma implies the result (i).

The proof of (ii) is essentially the same. Because Hi(OK [1/Np], Λ̃−#(1)) = 0 for
i > 2, the duality spectral sequence of Proposition 3.4.2 yields

HomΛ̃(H2(OK [1/Np], Λ̃−#(1)), V )
∼−→ H1

(Np)(OK [1/Np], Λ̃−〈−〉 ⊗ V ).

By Proposition 3.5.1, we can replace H2(OK [1/Np], Λ̃−#(1)) by X−∞(ψ−)⊗Λ̃−
W ′ ,δ̃

Λ̃.

The rest of the proof proceeds as in the proof of (i). �

5.5. Proofs of main theorems. In this section, we deduce the main result (The-
orem 1.3.1), and also Theorems 1.3.4 and 1.4.4, from the following main technical

result. We resume writing TCM in place of Λ̃.

Theorem 5.5.1. Assume conditions (0)–(4) of §1.2. Then the surjection Rspl �
TCM is an isomorphism if and only if X(ψ−) = 0.

Proof. We know that X(ψ−) = 0 if and only if X−∞(ψ−) = 0 by Proposition 3.3.3(i).
Thus Theorem 5.4.1 implies the theorem, as long as we know that Js = 0 ⇐⇒
Js/(Js)2 = 0. This follows from Nakayama’s lemma, as Js is contained in the
maximal ideal of the complete Noetherian local ring Rspl. �

The main theorem now follows.

Proof of Theorem 1.3.1. The conclusion of Theorem 1.3.1 is equivalent to the set

SpecRspl(Qp) r SpecTCM(Qp).

being empty. When X(ψ−) = 0, this immediately follows from Theorem 5.5.1. �

Now we deduce Theorems 1.3.4 and 1.4.4 from Theorem 5.5.1 and the background
in §2.

Proof of Theorems 1.3.4 and 1.4.4. It follows from Proposition 2.4.2 that the p-
locally split condition is well-defined on the Galois representations associated to
generalized eigenforms g′, ḡ′, even though their coefficient rings are not domains.
Thus condition (c) of the theorems is equivalent to the map T → Aḡ′ (resp. T →
Ag′) factoring through T � Rspl.
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Similarly, as we have noted that the CM condition is well-defined on generalized
eigenforms in §2.2, the “not CM” condition (b) of both theorems is equivalent to
the map T→ Aḡ′ (resp. T→ Ag′) not factoring through T � TCM.

Case of Theorem 1.4.4. Assume that X−∞(ψ−) is infinite, which is equivalent to

X := X−∞(ψ−) ⊗Λ̃−
W ′ ,δ̃

Λ̃ being infinite. Then as a ΛQ-module (where this module

structure arises from β : ΛQ → Λ̃ discussed in Lemma 4.1.4), X has support on
some height 1 prime P ⊂ ΛQ. By Proposition 3.3.3(ii), P has characteristic zero;
hence P = Pk,χ′ for some p-adic weight (k, χ′).

Let E = Ek,χ′ denote the residue field of Pk,χ′ , which is a finite extension of Qp.
We now consider the surjection with square-zero kernel

(Rspl/(Js)2)⊗ΛQ E � TCM ⊗ΛQ E.

By Theorem 5.4.1, its kernel surjects onto X ⊗ΛQ E, which is non-zero. Because

TCM ⊗ΛQ E is a finite product of finite extension fields over E, it has some factor

Ex = (TCM ⊗ΛQ E)/mx with the following property: letting m′x be the kernel of

the surjection from (Rspl/(Js)2)⊗ΛQ E to Ex, X ⊗ΛQ E does not vanish under its

natural map to m′x/m
′
x

2
.

Choose some Ex-1-dimensional quotient X ′ of X ⊗ΛQ Ex and let Ax := Ex[X ′] '
Ex[ε]/(ε2) be the corresponding square-zero extension of Ex. Then we may factor
(Rspl/(Js)2)⊗ΛQ E � Ex through Ax � Ex.

We now recall the discussion of generalized eigenforms and their attached Galois
representations from §2.2. The composite T � Rspl � Ax corresponds (via the
duality of Lemma 2.1.5) to a p-adic p-ordinary generalized eigenform g′ of p-adic
weight (k, χ′) with eigensystem corresponding to the composite T � Ax � Ex.
The corresponding Galois representation ρg′ : GQ,S → GL2(Ax) arising as ρg′ :=
ρT ⊗T Ax has the following properties:

(a) The eigensystem induced by T→ Ex has CM and is congruent to f̄ , because
it factors through T � TCM.

(b) g′ does not have CM, because T→ Ax cannot factor through TCM: indeed,
by Theorem 5.4.1, if it did factor, then X must vanish when projected
to Ax. But T → Ax has been constructed so that it does not have this
property.

(c) ρg′ is p-locally split, because T ∼= Rord → Ax factors through Rord � Rspl.

These are the properties (a), (b), and (c) of Theorem 1.4.4. We have also arranged
for Ax ' Ex[ε]/(ε2), as claimed.

For the converse, note that if g′ inducing T → Ag′ arises from the action on a
generalized eigenform with properties (a), (b), and (c), then

(a) implies that the composite map T → Ag′ → Eg′ ∼= Ag′/mg′ to the residue
field of Ag′ amounts to an eigensystem that has CM,

(b) implies that this map does not factor through T � TCM, and
(c) implies that this map does factor through T � Rspl.

Consider the image A ⊂ Ag′ of Rspl, which is a local ring that is not a field (by
(a) and (b)). Writing mA ⊂ A for its maximal ideal, we consider the induced map
Rspl � A/m2

A. Its restriction to Js factors through Js/(Js)2, and (b) implies that
its image is non-zero. Since this image is a Zp-submodule of a Qp-vector space, we
deduce from Theorem 5.4.1 that X−∞(ψ−) is infinite.
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Case of Theorem 1.3.4. The proof of this case is essentially the same. The
only difference is that F plays the role of both E and Ex, while TCM ⊗ΛQ F is an

Artinian local F-algebra. Then the surjection of Artinian local algebras Rspl ⊗ΛQ

F � TCM ⊗ΛQ F induces a surjection of the square-zero extension quotients. By
Theorem 5.4.1 and by letting V = F in Proposition 5.3.4, this surjection is

F[X(ψ−)⊕ (Hp ⊗Zp F)] � F[Hp ⊗Zp F]

(in the notation of Proposition 5.3.4). It is straightforward to deduce the result
from here, using arguments analogous to the case of Theorem 1.4.4. �

6. Commutative algebra

In this section, we set up a proposition from commutative algebra and deduce
Theorem 1.4.1.

6.1. A proposition using the resultant. The following lemma summarizes the
theory of the resultant that we will require.

Lemma 6.1.1. Let R be a domain, and let F (y), G(y) ∈ R[y] be polynomials.
There is a resultant π ∈ R of F (y) and G(y) with the following properties.

(1) π = 0 if and only if F (y) and G(y) have a non-constant common factor.
(2) π ∈ R ⊂ R[y] is an R[y]-linear combination of F (y) and G(y), i.e.

π · R[y]

(F (y), G(y))
= 0.

In the following proposition, we refer to the generic rank of a module M over a
domain R. This is defined to be the Frac(R)-dimension of M ⊗R Frac(R).

Proposition 6.1.2. Let R be a complete Noetherian regular local ring. Let S be
an augmented reduced local R-algebra that is finitely generated and torsion-free as
an R-module. Let T be an augmented local R-algebra quotient of S, and denote by
K the kernel of T � R.

Assume that K/K2 is supported in codimension at least 2 as an R-module. Then
T has generic rank equal to 1.

Proof. For this proof, given an augmented R-algebra R ↪→ A� R, we denote by Ac

the R-module complement to the summand R ⊂ A determined by the augmented
R-algebra structure. That is, we have a canonical isomorphism of R-modules A ∼=
R ⊕ Ac. We note that A has generic rank 1 if and only if Ac is R-torsion; we will
implicitly use this equivalence in this proof.

Denote by J the kernel of S � R, and choose a minimal set G of generators for
the ideal J , which is also a minimal set of generators for S as an R-algebra. Choose
an element y ∈ G and write S′y ⊂ S, T ′y ⊂ T for the sub-R-algebras generated by y.
We observe that S′y → T ′y is a morphism of augmented R-algebras.

We claim that it suffices to prove that T ′y has generic rank 1 for all y ∈ G. Indeed,

consider these product algebras with an augmented RG-algebra structure

RG →
∏
y∈G

T ′y → RG � R,
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where the additional rightmost arrow is the diagonal projection homomorphism.
We also have a natural map ∏

y∈G
T ′y � T

lying over the diagonal projection, inducing a surjection of R-modules⊕
y∈G

(T ′y)c � T c.

Thus we observe that T has generic rank 1 if and only if T ′y has generic rank 1 for
all y ∈ G.

Having reduced to the case that #G = 1, we render S and T as

S =
R[y]

(y · F1(y), . . . , y · Fn(y))
,

T =
R[y]

(y · F1(y), . . . , y · Fn(y), y ·G1(y), . . . , y ·Gr(y))
.

Now we have J = (y). Note that J/J2 is a torsion R-module generated by y
(mod J2). Indeed, if this were not the case, let m ≥ 2 be minimal such that
Jm/Jm−1 is R-torsion. If P (y) ∈ R[y] is a monic polynomial of minimal degree
satisfied by y, then ym | P (y) because J i/J i+1 is free of rank one for i < m. Thus
y ·P (y) is a nilpotent element of S, contradicting our assumption that S is reduced.

Observe that J/J2 is a cyclic R-module, generated by y, and isomorphic as an
R-module to

J/J2 ∼−→ R

(F1(0), . . . , Fn(0))
.

Likewise, its quotient K/K2 is generated by the image y′ of y in T and is isomorphic
as an R-module to

K/K2 ∼−→ R

(F1(0), . . . , Fn(0), G1(0), . . . , Gr(0))
.

We claim that there exist a pair of polynomials F (y), G(y) in the set

{F1(y), . . . , Fn(y), G1(y), . . . , Gr(y)}

such that R/(F (0), G(0)) is supported in codimension 2. This follows directly from
the assumption that K/K2 is supported in codimension 2.

We note that
R[y]

(y · F (y))
,

R[y]

(y · F (y), y ·G(y))

are naturally augmented local R-algebras with augmentation ideal generated by y,
and with a surjective augmented R-algebra map to S and T , respectively. Therefore,
it suffices to replace S and T with these algebras. Indeed, having done this, we
observe that J/J2 is torsion and K/K2 is supported in codimension 2. We define

T ′ :=
R[y]

(F (y), y ·G(y))
,

the quotient of T by (F (y)), but note that T ′ is not an augmented R-algebra.
Because the kernel of T � T ′ is a cyclic R-module (generated by F (y)), and we
know that T has generic rank at least 1, it will suffice to show that T ′ is a torsion
R-module.
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Let π ∈ R be the resultant of the polynomials F (y), y ·G(y) ∈ R[y]. By Lemma
6.1.1(2), we have

π · T ′ = 0.

Thus we want to show that π 6= 0. By Lemma 6.1.1(1), it suffices to prove that
F (y) and y ·G(y) do not have any non-constant common factors. Assume, for the
sake of contradiction, that there exists such a divisor H(y) ∈ R[y]. We may assume
that H(y) is irreducible and monic, since both F (y) and y · G(y) are monic. We
see that H(y) 6= y, because F (0) 6= 0. Next, note that H(0) is not a unit in R,
because if H(y) | F (y) with quotient Q(y), then S ∼= R[y]/(y ·H(y) · Q(y)) would
not be a local ring (consider S/mRS). Then H(0) | F (0) and H(0) | G(0). This
contradicts the fact that R/(F (0), G(0)) is finite, as it surjects onto the non-finite
R/(H(0)). �

6.2. Proof of Theorem 1.4.1. We will apply Proposition 6.1.2 to Rspl in order
to prove Theorem 1.4.1.

Lemma 6.2.1. Assume (0)–(4). Also assume that p - hK and that X−∞(ψ−) has
finite cardinality. Then Rspl has generic rank 1 as a ΛQ-module.

Proof. We see that the conclusion of the lemma will follow from verifying that the
assumptions of Proposition 6.1.2 about (R,S, T,K) are satisfied by

(R,S, T,K) = (ΛQ, R
ord ∼= T, Rspl, Js),

where the augmented ΛQ-algebra structure of Rord ∼= T is understood to be defined
by the ideal J ∼= ICM.

Recall from Lemma 4.1.4 the sequence of homomorphisms

ΛQ → T � Rspl � TCM ∼→ Λ̃ � Λ.

There, we see that these induce isomorphisms ΛQ
∼→ Λ̃

∼→ Λ if and only if p - hK .

Thus we apply the assumption p - hK and identify ΛQ
∼→ TCM ∼= Λ̃, treating

T � Rspl as a morphism of augmented ΛQ-algebras.
All of the assumptions of Proposition 6.1.2, except the one that Js/(Js)2 is

supported in codimension at least 2, are satisfied by the properties of T checked in
§2, especially Lemma 2.1.6. We will show that the remaining property follows from
the assumption that X−∞(ψ−) is finite in cardinality.

For R = ΛQ, an R-module is supported in codimension 2 if and only if it has

finite cardinality. By Theorem 5.4.1, there is an isomorphism X−∞(ψ−) ⊗Λ̃−
W ′

Λ̃ ∼=
Js/(Js)2. When p - hK , X−∞(ψ−) = X−∞(ψ−). Then the tensor product operation

⊗Λ̃−
W ′

Λ̃ preserves the finite cardinality property of these modules. �

Proof of Theorem 1.4.1. By Lemma 6.2.1, we know that the assumptions of Theo-
rem 1.4.1 imply that Rspl has generic rank 1 as a ΛQ-module.

Because the locus Spec(TCM) ⊂ Spec(T) parameterizes exactly the CM p-adic
eigenforms congruent to f̄ , it follows from the constructions of §4.2 that the map
xg : T → Qp of Lemma 2.1.5 corresponding to a p-adic eigenform g (congruent to

f̄) factors through T � TnCM if g does not have CM. We also know that ρg is
p-locally split if and only if xg factors through T � Rspl. Thus it will suffice to
show that

Rsn := TnCM ⊗T R
spl
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is torsion as a ΛQ-module.
Since we have already deduced that Rspl has generic rank 1, it suffices to show

that the kernel of
Rspl � Rsn

has generic rank 1. In view of Theorem 4.2.2, we want to show that the kernel
InCM ⊂ T of T � TnCM, injects into Rspl under T � Rspl. But this follows from
the same theorem, as we see there that InCM injects under the composite quotient
map T � Rspl � TCM ∼= ΛQ, with torsion cokernel. �

Remark 6.2.2. The main result of Ghate–Vatsal [GV04] establishes the conclusion
of Theorem 1.4.1 upon assumptions (1’)–(3’) of §1.2. The additional assumptions
we rely on to prove Theorem 1.4.1 are (0), (4), and the finiteness of X−∞(ψ−).
There, the authors use the fact that the ideal of (∗) ⊂ T generated by the image
of Gp under the “∗” of (2.1.8) cuts out the quotient T � Rspl. Our method
hinges on the study of maximal square-zero augmented TCM-algebra quotients of
T (resp. Rspl) over ΛQ. We found in Theorem 5.4.1 that this maximal quotient is

T � Λ̃[Y−∞(ψ−)] (resp. Rspl � Λ̃[X−∞(ψ−)]), and that the image of Gp cuts out
the quotient Y−∞(ψ−) � X−∞(ψ−). So our method relies on detecting “∗” in the
conormal module ICM/I

2
CM
∼= Y−∞(ψ−).
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Appendix.
Local indecomposability via a presentation of the Hecke algebra

by Haruzo Hida

A.1. Summary. Let p ≥ 5 be a prime. In this appendix, we give a proof of
Greenberg’s conjecture ((CG) in the main text) of local indecomposability of a non-
CM residually CM Galois representation based on the presentation of the universal
ring given in [Hid18a] (so, the proof is different from the one given in the main text).
We impose an extra assumption (H3-4) in addition to the set of the assumptions
made in the main text (we list our set of assumptions as (H0–4) below). We use
the notation introduced in the main text. For each Galois representation ρ of GK ,

we write K(ρ) = QKer(ρ)
for the splitting field of ρ. We fix an algebraic closure F

of F and write W for the Witt vector ring W (F).
A deformation ρA : GK → GL2(A) for an algebra A in CNLW of a the rep-

resentation ρ = IndQ
K ψ : GQ → GL2(F) as in §1.2.2 is said to be minimal if

ρA(Il) ∼= ρ(Il) by the reduction map for all primes l|N [DFG04, §3.1, pg. 715]. By
an R = T theorem (e.g., [Dia97, Thm. 2.3]), we have a local ring T of the ordinary
Hecke algebra and its Galois representation ρT : GQ → GL2(T) giving a universal
ordinary pair with T being naturally an algebra over the weight Iwasawa algebra
Λ := W [[(1 + pZp)]] ∼= W [[T ]]. We assume that Spec(T) contains a non-CM com-
ponent Spec(TnCM). We made the following assumptions in [Hid18a] to prove a
presentation of T over Λ:

(H0) ψ−|Gp 6= 1 (a local condition),

(H1) ψ has conductor c′ such that c′ + c′
c

= OK and p∗ - c′,
(H2) the character ψ− has order at least 3 (a global condition),
(H3) the class number hK of K is prime to p,

(H4) the class number hK(ψ−) of the splitting field K(ψ−) = QKer(ψ−)
of ψ− is

prime to p.

Assuming T 6= Λ, the minimal presentation we found in [Hid18a] has the following
form:

(A.1) T ∼= Λ[[T−]]/(T−S+).

Here the ring Λ[[T−]] is the one variable power series ring over Λ with variable T−
and S+ is a power series in Λ[[T−]] prime to T−. We have an involution σ over

Λ acting on T corresponding to the operation ρ 7→ ρ ⊗ χ for χ :=
(
K/Q

)
. Non-

triviality of σ is equivalent to the existence of a non CM component of Spec(T).
This involution σ extends to an involution σ∞ of Λ[[T−]] so that σ∞(T−) = −T−
and σ∞(S+) = S+. To prove the presentation, we made in [Hid18a] some extra
conditions whose removal will be discussed in §A.2. To have one-variable presenta-
tion in (A.1), we need to assume p - hK (otherwise, we could have variables fixed
by σ∞ in the presentation).

Let T+ be the subring of T fixed by σ. Let TnCM := Λ[[T−]]/(S+) and TCM :=
Λ[[T−]]/(T−) = Λ, and write Θ for the image of T− in T. Since the CM Galois
deformation ρTCM into GL2(TCM) is induced from K, the involution σ is trivial on
TCM; so, the image of T− with σ∞(T−) = −T− vanishes in TCM; so, Θ lives in
(0 × TnCM) ∩ T (this is also clear from TCM = Λ[[T−]]/(T−)). This Θ plays the
role of L−p (ψ−) in the main text in the sense that TnCM/(Θ) ∼= TnCM ⊗T TCM ∼=
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Λ/(L−p (ψ−)) (the identity of the congruence modules) even if Θ lives in TnCM while

L−p (ψ−)) ∈ TCM = Λ. Then T ↪→ TnCM × TCM whose cokernel is isomorphic

to TnCM/(Θ) as T-modules and (Θ) = (0 × TnCM) ∩ T. The congruence module
TnCM/(Θ) after extending scalars to W is isomorphic to (TCM⊗̂WW)/(L−p (ψ−))

for the anticyclotomic Katz p-adic L-function L−p (ψ−) (of branch character ψ−,

denoted in the main text as L−p (ψ−); see Corollary A.2.5); so, Θ is a generator of

ICM and in this sense, we regard Θ ∈ TnCM.
Let P be a prime factor of p in K(ρ) (the splitting field of ρ). Write the image

of U(p) in T as u. Writing the local Artin symbol [x,Kp] (identifying Kp = Qp),
for the residual degree f of P, the semi-simplification of ρT([p,Kp]f ) is a conjugate

of
(
u−f 0

0 uf

)
as det(ρT([p,Qp]f )) = 1. Note here ψ−([p,Kp]f ) = 1 and u2f ≡

ψ−([p,Kp]f ) = 1 mod mT (as u ≡ ψ([p,Kp]) mod mT). Put a = u2f − 1 ∈ mT,
and for the Zp-subalgebra W1 of W generated by the values of ψ− over Gp, define
Λ1 := W1[[T, a]] to be the subalgebra of T topologically generated over W1[[T ]] ⊂ Λ
by a.

Theorem A.1.2. Let the notation be as above. Assume (H0–4) and σ 6= id on
T. Let Ip be the wild p-inertia subgroup of Gal(K(ρT)/Q) for the splitting field

K(ρT) of ρT. Then we have a decomposition Ip = U o Gal(Q∞/Q) for the Zp-
extension Q∞/Q, where U is an abelian group mapped by ρT into the unipotent
radical of a Borel subgroup in GL2(T) whose logarithmic image u = Lie(U) (in the
nilpotent Lie Λ-algebra T) is equal to Θ · Λ1. In short, we have an isomorphism

ρT(Ip) ∼=
{(

tZp ΘΛ1
0 1

)}
⊂ GL2(T), where t = 1 + T ∈ Λ.

This theorem supplies us with a very explicit unipotent element ( 1 Θ
0 1 ) in the

image of ρT with (ΘT⊗̂WW) ∩ ΛW = (L−p (ψ−)); therefore, we can answer the
question of Greenberg:

Corollary A.1.3. Assume (H0–4) and σ 6= id on T. For all prime divisors P ∈
Spec(TnCM) with associated Galois representation ρP , the following conditions are
equivalent:

(1) the Galois representation ρP is completely reducible over the inertia group
Ip at p,

(2) P ∈ Spec(TnCM) ∩ Spec(TCM),
(3) P |(L−p (ψ−)ΛW ∩ Λ).

As described in the main text, from [Eme97] and [Gha05, Prop. 11], the above
corollary implies:

Corollary A.1.4 (Coleman’s question). Assume (H0–4). For every classical mod-
ular form f of weight k ≥ 2 and of level N with residual representation ρ, write g
for the p-critical stabilization of the primitive form associated to f . Then g is in
the image of (q ddq )k−1 if and only if f has complex multiplication.

A.2. Presentation of a Galois deformation ring. For a set Q of Taylor–Wiles
primes satisfying the conditions (Q0–10) in [Hid18a, §§3-4], we write K(ρ)(pQ)

for the maximal p-profinite extension of K(ρ) unramified outside {p} t Q. We
simply write K(ρ)(p) for K(ρ)(pQ) if Q = ∅. Let GQ := Gal(K(ρ)(pQ)/Q) and

HQ := Gal(K(ρ)(pQ)/K) with G = G∅ and H = H∅. We first note that GQ =

Gal(K(ρ)(pQ)/K(ρ))oGal(K(ρ)/Q) andHQ = Gal(K(ρ)(pQ)/K(ρ))oGal(K(ρ)/K)
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as p > 2 and p - [K(ρ) : Q]. We fix such a decomposition; so, Gal(K(ρ)/Q) ∼= ∆G

for a subgroup ∆G of Gal(K(ρ)(p)/Q). Write ∆ ⊂ ∆G for the subgroup isomorphic
to Gal(K(ρ)/K); so, [∆G : ∆] = 2.

Let N = DNK/Q(c′). Let hQ be the big Hecke algebra described in [Hid18b,

§1] for each Q. We have a local ring TQ of hQ whose residual representation is
isomorphic to ρ. Let ρQ : GQ → GL2(TQ) be the Galois representation of TQ such
that Tr(ρQ(Frobl)) for primes l outside {l|Np} tQ is given by the image in TQ of
the Hecke operator T (l). On TQ, we have an involution σ with the property that

(ρQ)σ ∼= χ⊗ρQ for the quadratic character χ =
(
K/Q

)
. Put TQ± := {h ∈ TQ|σ(h) =

±h}. Let IQ := TQ(σ − 1)TQ = TQTQ− (the σ-different) and TQCM := TQ/IQ. It

is known that TQ and TQCM are reduced algebras finite flat over Λ. Further we

have an algebra decomposition TQ ⊗Λ Frac(Λ) = Frac(TQCM) × Frac(TQnCM) for

TQnCM
∼= TQ/(Frac(TQCM) × 0) ∩ TQ. In the above notation, if Q = ∅, we remove

the superscript or subscript Q from the notation. If σ is the identity on T, we have
TnCM = 0. Otherwise the subring TnCM

+ fixed by σ is a non-trivial Λ-algebra. The
theorem proven in [Hid18a, Thms. B and 5.4] is:

Theorem A.2.1. Assume (H0-H4), σ 6= id on T and that p splits in K. Let
Spec(T) be a connected component of Spec(h) associated to the induced Galois

representation ρ = IndQ
K ψ for the reduction ψ of ψ modulo mW for the maximal

ideal mW of W . Then the following assertions hold:

(1) We have presentations T ∼= Λ[[T−]]/(T−S+), T+
∼= Λ[[T 2

−]]/(T 2
−S+), TnCM ∼=

Λ[[T−]]/(S+) and TnCM
+

∼= Λ[[T 2
−]]/(S+) such that the involution σ∞ : T− 7→

−T− over Λ fixes the power series S+ ∈ Λ[[T 2
−]] and induces σ on T.

(2) The rings T, T+, TnCM, TnCM
+ are all local complete intersections free of

finite rank over Λ.
(3) The TnCM-ideal I = T(σ − 1)T ⊂ TnCM is principal and is generated by

the image Θ of T− with θ := Θ2 ∈ T+, and Θ is not a zero divisor. The
element Θ generates the TnCM

+ -module TnCM
− which is free over TnCM

+ , and

TnCM = TnCM
+ [Θ] is free of rank 2 over TnCM

+ .

Proof. The result [Hid18a, Thm. 4.10 and Prop. 6.2] asserts that T = Λ[Θ] with
σ(Θ) = −Θ; so, we have a surjection π : Λ[[T−]] � T with π(T−) = Θ, and
[Hid18a, Thms. A and B] asserts that T is a local complete intersection over Λ.
Thus T ∼= Λ[[T−]]/(S−) for a power series S− ∈ Λ[[T−]]. By the construction of π
of [Hid18a, §4] via a Taylor–Wiles patching argument, we have an involution σ∞ of
Λ[[T−]] lifting σ such that σ(T−) = −T− and σ(S−) = −S−; so, we have T−|S− and
hence S− = T−S+. Since T is reduced, T− and S+ are co-prime in Λ[[T−]]. This
shows the assertion (1). The assertions (2) and (3) follow from [Hid18a, Thm. B].

Strictly speaking, the patching argument is given in [Hid18a] under the following
extra assumptions:

(h2) N := DNK/Q(c′) for an O-ideal c′ prime to D with square-free NK/Q(c′)
(so, N is cube-free),

(h3) p is prime to N
∏
l|N (l − 1) for prime factors l of N .

Here is the reason why we can remove these two assumptions: We studied the
minimal deformation problem in [Hid18a] over the absolute Galois group GQ, but
as was explained in [DFG04, pg. 717], under the condition that p - |ρ(Il)| (which
holds in our case), all minimal deformations factor through G, and considering the
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deformation problem over {GQ}Q for appropriate sets Q of Taylor–Wiles primes
satisfying [Hid18b, §3 (Q0–8)], every argument in the proof of [Hid18a, Thm. 5.4]
goes through for the above choice of TQ (as easily checked), and thus we obtain
the theorem. Indeed, we used (h3) in [Hid18a] just because the universal minimal
ordinary Galois representation of prime-to-p conductor N (considered in [Hid18a])
factors through G; so, just imposing deformations to factor through G the argu-
ments simply work; so, we do not need to assume (h3). The condition (h2) is
assumed to guarantee the big Hecke algebra is reduced, but again, all deformations
over G has prime-to-p conductor equal to N which is equal to the prime-to-p con-
ductor of its determinant (the Neben character). Then, by the theory of new forms,
the Hecke algebra is reduced if its tame character has conductor equal to the tame
level; so, we do not need (h2). �

Since σ acts trivially on TCM = T/(Θ), writing ρ := (ρT mod (Θ)), we find

ρ ∼= ρ⊗ χ for χ =
(
K/Q

)
. Note that ρ is a minimal deformation of ρ; so, it factors

through G. Thus by [DHI98, Lem. 3.2] applied to G = G and H = H (under

the notation of the lemma), we find ρ ∼= IndQ
K Ψ for a character Ψ : H → TCM,×

unramified outside c′p deforming ψ. Let Γp be the Galois group over K(ρ) of

the maximal p-abelian extension of K inside K(ρ)(p) unramified outside p. By
p - hK , Γp

∼= O×p ⊗Z Zp, and hence W [[Γp]] ∼= Λ canonically via Z×p = O×p . We
identify the two rings. Since p - [K(ρ) : K], there exists a class field K(p)/K
in K(ρ)(p) with Gal(K(p)/K) ∼= Γp by Artin symbol. Define a character Φ :
GK → W [[Γp]]× = Λ× given by Φ(τ) = ψ(τ)τ |K(p). Then Φ factors through H.

Since (Λ,Φ) for the character Φ : H → Λ× is a universal pair for the deformation
problem of ψ unramified outside pc′ over the group H, we have a canonical surjective
algebra homomorphism Λ � TCM inducing Ψ. By the same argument which proves
[Hid18a, Cor. 2.5], this is an isomorphism. We record this fact as

Corollary A.2.2. We have isomorphisms T+/(θ) ∼= T/(Θ) = TCM ∼= Λ, where
θ = Θ2 ∈ TnCM

+ .

Recall G = Gal(K(ρ)(p)/Q) and H = Gal(K(ρ)(p)/K). Let ρA : GK → GL2(A)
be a minimal p-ordinary deformation of ρ for a p-profinite local W -algebra A with
residue field F. The representation ρA factors through G by minimality (so, here-
after, we consider the deformation problem over G). By p-ordinarity, we have

ρA|Gp ∼=
( εA ∗

0 δA

)
with (δA mod mA) = ψ

c
,

where mA is the maximal ideal of the local ring A. This gives rise to an exact
sequence εA ↪→ ρA � δA. Realize sl2(A) inside the A-linear endomorphism al-
gebra EndA(ρA), and write F+(ρA) the subspace of {T ∈ sl2(A)|T (ε) = 0} =
HomA(δA, εA) on which Ad(ρA) acts by the character εA/δA (the upper nilpotent
Lie subalgebra if ρA|Gp has upper triangular form as above). Write Ad(ρA)∗ for the
Galois module Ad(ρA)⊗A A∨ for the Pontryagin dual A∨ of A, where GQ acts on
the factor Ad(ρA). Similarly we put F+(ρA)∗ := F+(ρA)⊗A A∨ which is a p-local
Galois module. Then we define
(A.3)

SelQ(Ad(ρA)) := Ker(H1(G,Ad(ρA)∗)→ H1(Il,
Ad(ρA)∗

F+(ρA)∗
)×

∏
l|N

H1(Il, Ad(ρA)∗))
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for the product of restriction maps to the inertia group Il ⊂ G of l. In the Galois
group G, for l - N , Il is trivial (as K(ρ)(p)/Q is unramified outside Np); so, in the
right-hand-side of the above definition, H1(Il, Ad(ρA)∗)) for l - N does not show
up. We write M∨ for the Pontryagin dual of a module M .

Recall K−∞/K which is the maximal sub-extension of K(ρ)(p) p-abelian and an-
ticyclotomic over K, where the word “anti-cyclotomic” means complex conjugation
c acts on τ ∈ Gal(K−∞/K) by cτc−1 = τ−1. Lifting τ ∈ Gal(KC/K) to h ∈ H and
restricting h to K−∞, we have an isomorphism Γp = Gal(K(p)/K) ∼= Gal(K−∞/K)
(see [Hid15, pg. 636] and the main text §3). Recall:

Definition A.2.4. Let φ : GK → W× be a character of order prime to p whose
image generates Zp[φ] in W over Zp. Let Y −∞ be the Galois group over K−∞(φ) of
the maximal p-abelian extension of K−∞(φ) unramified outside p and totally split at
p∗. Regarding Gal(K(φ)/K) as a subgroup of Gal(K−∞(φ)/K) ∼= Gal(K(φ)/K) ×
Gal(K−∞/K), define Y −∞(φ) := Y −∞⊗Zp[Gal(K(φ)/K)],φZp(φ). Here Zp(φ) is the Zp[φ]-
module free of rank 1 on which Gal(K(φ)/K) acts by φ.

Corollary A.2.5. We have canonical isomorphisms of T-modules

SelQ(Ad(IndQ
K Φ)) ∼= (Y −∞(ψ−)⊗Zp[ψ−] W )∨,

SelQ(Ad(IndQ
K Φ))∨ ∼= (Θ)/(Θ)2 ∼= T−/θT− ∼= TnCM/(Θ) ∼= TnCM

+ /(θ),

TnCM
+ /(θ)⊗̂WW

(∗)∼= ΛW/(L−p (ψ−)).

Proof. By the decomposition Ad(IndQ
K Φ) ∼= χ⊕ IndQ

K ψ
− for χ =

(
K/Q

)
combined

with the functoriality of Greenberg’s Selmer group, we have SelQ(Ad(IndQ
K Φ)) ∼=

SelQ(χ) ⊕ SelQ(IndQ
K ψ

−). The first isomorphism is [Hid06, Thm. 5.33], where we

get SelQ(IndQ
K ψ

−) = Y −∞(ψ−)∨. Note that SelQ(χ) vanishes by p - hK . The second
follows from cyclicity over Λ proven in [Hid18a, Thm. B] and Theorem A.2.1. The
third identity (∗) follows from the proof of the anticyclotomic main conjecture
shown by Rubin and Mazur–Tilouine: charΛW

(Y −∞(ψ−)) = (L−p (ψ−)) (see [Rub91],
[Rub94], [Til89], [MT90]) combined with the first two identities. �

A.3. Modular Cayley–Hamilton representations. We introduce representa-
tions with values in a generalized matrix algebra (GMA) as in [BC09], [Che14] and
[WE18]. We refer to [WWE18, §5.9] for the notion of ordinarity over Q for GMA
representations (not treated in [BC09] and [Che14]). Since we have two conjugacy
classes of p-decomposition groups Dp and Dp∗ , we modify the definition (see below)
of ordinarity depending on each factor p and p∗. We follow [BC09, §1.3] to define
a GMA A-algebra E. Let A be a commutative ring and E an A-algebra. We say
that E is a generalized matrix algebra (GMA) of type (d1, . . . , dr) if R is equipped
with:

• a family orthogonal idempotents E = {e1, . . . , er} with
∑
i ei = 1,

• for each i, an A-algebra isomorphism ψi : eiEei
∼−→ Mdi(A), such that

the trace map T : R → A, defined by T (x) :=
∑
i Tr(ψi(eixei)) satisfies

T (xy) = T (yx) for all x, y ∈ E. We call E = {ei, ψi, i = 1, . . . , r} the data
of idempotents of E.

In this appendix, we assume that r = 2 and d1 = d2 = 1; so, we can forget about
ψi as an A-algebra automorphism of A is unique. Once we have E , we identify
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eiEei = A and put B = e1Ee2 and C = e2Ee1. Then a generalized matrix
algebra over A is a pair of an associative A-algebra E and E . It is isomorphic
to A ⊕ B ⊕ C ⊕ A as A-modules; so, we write instead (E, E) = (A B

C A ) which we
call a GMA structure. There is an A-linear map B ⊗A C → A such that the
multiplication in E is given by 2-by-2 matrix product. In this case, A is called
the scalar subring of (E, E) and (E, E) is called an A-GMA. A Cayley–Hamilton

representation with coefficients in A and residual representation
(
ψ 0

0 ψ
c

)
(with this

order ψ at the top) is a homomorphism ρ : H → E×, such that (E, E) is an

A-GMA, and such that in matrix coordinates, ρ is given by σ 7→
(
ρE11(σ) ρE12(σ)

ρE21(σ) ρE22(σ)

)
with (ρ11(σ) mod mA) = ψ(σ), (ρ22(σ) mod mA) = ψ

c
(σ), and ρ12(σ)ρ21(σ) ≡ 0

mod mA. For a given ρ, if we change the set E of idempotents, the matrix expression
changes; so, we added the superscript E to the matrix entries ρEij to indicate its
dependence on E . If the input of E is clear from the context, we omit the superscript
E .

In H, we have two conjugacy classes of the p-decomposition groups depending on
prime factors of p in K. Fix a decomposition subgroup Dp ⊂ H for p and put Dp∗

for p∗. We define p-ordinarity (resp. p∗-ordinarity) of ρ to have E (resp. E∗) such
that ρE12(σ) = 0 for all σ ∈ Dp and ρE22(Ip) = 1 (resp. ρE

∗

21 (σ) = 0 for all σ ∈ Dp∗

and ρE
∗

11 (Ip∗) = 1). We say ρ is ordinary if it is p and p∗-ordinary at the same time.
This definition does not depends on the choice of Dp and Dp∗ . For example, if we
replace Dp by σDpσ

−1, (E, ρ(σ)Eρ(σ)−1) satisfies the required conditions.

If (E, E) can be embedded into the matrix algebra M2(Ã) for a complete local

W -algebra Ã with residue field F containing A, the Cayley–Hamilton representation

ρ : H → E× can be regarded as a representation into GL2(Ã). Since ρ = IndQ
K ψ

is irreducible over G, we may have an extension ρ̃ of the GMA representation ρ to

G. If an extension ρ̃ exists, the extension is a usual representation into GL2(Ã).
As usual, we call ρ̃ p-ordinary if ρ̃|Gp ∼= ( ε ∗0 δ ) with unramified δ ≡ ψc mod mÃ.

The ordering of the residual representation
(
ψ 0

0 ψ
c

)
(with this order ψ at the top) is

fixed; so, plainly, to have compatibility of ordinarity of ρ over H and Q-ordinarity
of ρ̃ (and to preserve residual order of the characters ψ and ψ

c
), we need to define

p∗-ordinarity to have a set of idempotent E∗ so that ρE
∗ |D∗p in the lower triangular

form. Indeed, if ρ̃(c) = ( 0 1
1 0 ), ρ is p-ordinary for E if and only if ρ is p∗-ordinary for

the same E by choosing Dp∗ = cDpc
−1. As we describe in the following proposition,

this phenomenon occurs if we take ρ := ρT|H for A = T+ and Ã = T. Details of the
deformation theory of ρ in the category of representations over G and in the category
of Cayley–Hamilton representations over H will be discussed in a forthcoming paper
[Hid19].

Proposition A.3.1. The Galois representation ρ = ρT|H associated to T restricted
to H is an ordinary Cayley-Hamilton representation with values in the following
T+-GMA

(E, E = E∗) =
(

T+ B+

C+ T+

)
∼=
(

T+ T−
T− T+

)
with B+ ⊗T+

C+
∼= T− ⊗T+

T− → T+

given by Θb⊗Θc 7→ θbc for θ = Θ2 (the product in T).

Proof. Recall T− := {x ∈ T|σ(x) = −x}. Then T− = ΘT+, and Θ ∈ TnCM under
the inclusion T ↪→ TCM⊕TnCM; so, Θ is a zero-divisor in T but is not a zero-divisor
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in TnCM. Similarly θ ∈ TnCM
+ . Extend the character ψ to a function on G just by

0 outside H, and decompose G = H t cH. Then we have the following standard
realization of the induced representation:

ρ(τ) =
(

ψ(τ) ψ(τc)

ψ(c−1τ) ψ(c−1τc)

)
.

Then if χ(τ) = −1 (⇔ τ 6∈ H), we have

(ρ⊗ χ)(τ) =
(

0 −ψ(τc)

−ψ(c−1τ) 0

)
= jρ(τ)j−1

for j :=
(

1 0
0 −1

)
. If χ(τ) = 1 (⇔ τ 6∈ GK), ρ(τ) is diagonal commuting with j; so,

(ρ⊗ χ)(τ) = ρ(τ) = jρ(τ)j−1.

Thus we conclude ρ⊗ χ = jρj−1.
The deformation functor represented by T is given by:

D(A) := {ρ : G→ GL2(A) : p-ordinary | (ρ mod mA = ρ}/ ≈,

where “≈” is the strict equivalence (i.e., conjugation by 1+M2(mA)). Thus we can
let χ act on D by

ρ 7→ j(ρ⊗ χ)j−1 = ρσ.

Since j
(
a b
c d

)
j−1 =

(
a −b
−c d

)
and (ρT|Hmod (Θ)) = Φ ⊕ Φc is diagonal, we have

uj(ρT ⊗ χ)(uj)−1 = ρσT with u ∈ 1 + ΘM2(T). Write U = uj. Applying σ, we get
Uσ(ρσT ⊗ χ)U−σ = ρT; so, we have

UρTU
−1 = U(ρT ⊗ χ)U−1 ⊗ χ = ρσT ⊗ χ = U−σρTU

σ.

Thus juσju = UσU = z ∈ Z := 1 + ΘT. Since 1 + ΘM2(T) is p-profinite, letting
σ act on 1 + ΘM2(T) by x 7→ xσ̃ := jxσj, we can thus write u = vσ̃−1 ∈ (1 +
ΘM2(T))/Z for v ∈ 1 + ΘM2(Θ). Thus replacing ρT|H by ρ := v−1jρTjv|H , we

find jρj−1 = ρσ. In other words, ρ has values in E =
(

T+ T−
T− T+

)
, as desired

Since ψ−|Dp
6= 1 (H0), we can choose first τ ∈ ∆ with ψ(τ) 6= ψc(τ) so that

ρT(τ) =
(
ψ(τ) 0

0 ψc(τ)

)
, we can define the set E of idempotents of E having the GMA

form as above by

e1 =
ρT(τ)− ψc(τ)

ψ(τ)− ψc(τ)
and e2 =

ρT(τ)− ψ(τ)

ψc(τ)− ψ(τ)
.

Writing E = T+ ⊕ B ⊕ C ⊕ T+ with B ∼= C ∼= T−, we note that B (resp. C)
is the eigenspace under the conjugation action of ρT(τ) with eigenvalue ψ−(τ)
(resp. ψ−(τ)−1). Thus our expression of ρT|H is associated to (E, e1, e2). By
ordinarity of ρT on Gp (inducing Dp), we see ρT|H is p-ordinary. Plainly c ∈ G
interchanges e1 and e2; i.e., ρT(c)e1ρT(c) = e2. Thus over Dp∗ = cDpc, we conclude
ρT|H with values in (E, E) is also p∗-ordinary. Since the residual representation is

exactly
(
ψ 0

0 ψ
c

)
(with this order ψ at the top), the choice of (e2, e1) is impossible

violating the residual order of the characters (the definition of p∗-ordinarity is lower
triangular on Dp∗ to accommodate to preserve this residual order). Therefore we
need to choose E = (e1, e2) for p∗-ordinary. �

Under the normalization as above, we may and do assume that ρT(c) = ( 0 1
1 0 ).
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A.4. Local Iwasawa theory. Let k/Qp (inside Qp) is a Galois extension with

p - [k : Qp]. Write F/k for the cyclotomic Zp-extension inside Qp. Let Γ :=

Gal(F/k) = γZp and put Γn = Γp
n

. Set Fn := FΓn with p-adic integer ring on.
Let L (resp. Ln) be the maximal abelian p-extension of F (resp. Fn). Write
Xn := Gal(Ln/kn) and X := Gal(L/F ). We have Gal(F/Qp) = Gal(F/Qp) nX.
The exact sequence

1→ X → Gal(L/k)→ Γ→ 1

is split just by lifting γ to an element γ̃ ∈ Gal(L/k) taking splitting image γ̃Zp .
Therefore the commutator subgroup of Gal(L/kn) is given by (γp

n − 1)X, and we
have the corresponding exact sequence at each level n: 1 → X/(γp

n − 1)X →
Gal(LnF/F )→ Γn → 1.

Let k∞/k be the unramified Zp-extension inside Qp with its n-th layer kn, and
put Fn = Fkn. Let L (resp. Ln) be the maximal abelian p-extension of F∞
(resp. Fn). Set X := Gal(L/F∞). Pick a lift φ ∈ Gal(L/k) of the Frobenius
element [p,Qp]f (for the residual degree f of k/Qp) generating Gal(k∞F/k) and
a lift γ̃ ∈ Gal(L/k) of the generator γ of Gal(kQp,∞/k0) = Γ. The commutator
τ := [φ, γ̃], acts on X by conjugation, and (τ − 1)x := [τ, x] = τxτ−1x−1 for x ∈ X
is uniquely determined independent of the choice of γ and φ. Define L′ ⊂ L and
L′n ⊂ Ln by the fixed field of (τ−1)X (i.e., the fixed field of τ), which is independent
of the choice of γ̃ and φ. Let X ′ = Gal(L′/F∞) and X ′n = Gal(L′n/Fn).

Proposition A.4.1. Let the notation and the assumptions be as above.

(1) We have a canonical decomposition

X = lim←−
n

Xn = lim←−
n

X/(γp
n

−1)X ∼=

{
Zp[[Gal(F/Qp)]] if µp(k) = {1},
Zp[[Gal(F/Qp)]]⊕ Zp(1) if µp(k) = µp(Qp)

as Zp[[Gal(F/Qp)]]-modules. Thus for each finite dimensional Qp-irreducible
abelian representation η of Gal(k/Qp) with values in GLdim(η)(Zp) of order
prime to p, writing X[η] for the maximal η-isotypical quotient of X, we
have

X[η] ∼=

{
W (κ)[[Γ]] if η 6= ω,

Zp[[Γ]]⊕ Zp(1) if η = ω

as Gal(F/Qp)-modules. Here κ is the residue field of the subalgebra of
Mdim(η)(Zp) generated by the values of η over Zp, ω is the Teichmüller
character and σ ∈ Gal(F/Qp) acts on W (κ) via η regarded as having values
in W (κ)×.

(2) The restriction map X ′ → X induces an isomorphism of X ′/(φ−1)X ′ onto
the augmentation ideal of Zp[[Gal(F/Q)]] ⊂ X.

(3) For the character η : Gal(k/Qp)→W (κ) in (1), the factor X ′[η] is a cyclic
W (κ)[[Γ×Υ]]-module (i.e., it is generated topologically over W (κ)[[Γ×Υ]]
by one element).

Note that the subalgebra of Mdim(η)(Zp) generated by the values of η over Zp is
isomorphic to the Witt vector ring W (κ) with coefficients in its residue field κ.

Proof. We first prove the assertion (1). The statement of [Iwa73, Thm. 25] asserts
X ∼= Zp[[Γ]][k:Qp] or Zp[[Γ]][k:Qp]⊕Zp(1) as Zp[[Γ]]-modules. Write Y be the maximal
Zp[[Γ]]-free quotient of X. Since Gal(k/Qp) has order prime to p, Gal(K/Qp) ∼=
Gal(k/Qp)nΓ, and its action on Y is determined by its action on Y0 = Y/(γ−1)Y .
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We need to show Y0
∼= Zp[Gal(k/Qp)] as Gal(k/Qp)-modules (which implies Y ∼=

Y0[[Γ]] ∼= Zp[[Gal(K/Qp]]). Let Qp,∞ ⊂ Qp[µp∞ ] be the cyclotomic Zp-extension.

Writing M̂ := lim←−nM/pnM for a module M , by class field theory, Gal(L0K/K)

fits into the following commutative diagram with exact rows and surjective vertical
maps:

Gal(L0K/K)
↪→−−−−→ k̂×

Nk/Qp−−−−→ Q̂×p

||
y Artin rec.

y a

y
Gal(L0K/K) −−−−→

↪→
Gal(L0/k)

�−−−−→
Res

Gal(Qp,∞/Qp),

where the composite a◦Nk/Qp for the norm map Nk/Qp has image Gal(Qp,∞/Qp) ∼=
1 + pZp ∼= Γ.

First suppose that µp(k) = {1}. Then k̂× is torsion-free. The isomorphism class
of a torsion-free Zp[Gal(k/Qp)]-module M of finite rank over Zp is determined by
the Qp[Gal(k/Qp)]-module M ⊗Zp Qp. Since Qp[Gal(k/Qp)] is semi-simple, we

conclude k̂× ∼= Zp[Gal(k/Qp)] ⊕ Γ with Gal(k/Qp) acting on Γ trivially. Thus
we conclude Y0

∼= Zp[Gal(k/Qp)] in which the η-isotypical component has rank
dim(η) = rankZpW (κ) over Zp.

Now assume that µp(k) is non-trivial. Since p - [k : Qp], µp∞(k) = µp(k); so,

the torsion part of k̂× is cyclic of order p. Let k̂×f be the maximal torsion-free

quotient of k̂×. Then by the same argument as in the case where µp(k) = {1}, we

find k̂×f
∼= Zp[Gal(k/Qp)]⊕Γ as Zp[Gal(k/Qp)]-modules. By Iwasawa’s expression,

X/(γ− 1)X ∼= Z[k:Qp]
p ⊕µp(k) in which µp(k) is identified with Zp(1)/(γ− 1)Zp(1).

Again we have (X/(γ − 1)X)/µp(k) ∼= Zp[Gal(k/Qp)] as Zp[Gal(k/Qp)]-modules.
We have a commutative diagram with exact row

Zp(1)/(γ − 1)Zp(1)
↪→−−−−→ X/(γ − 1)X

�−−−−→ Y/(γ − 1)Y

o
y ||

y y
µp(k) −−−−→

↪→
X/(γ − 1)X −−−−→

�
Zp[Gal(k/Qp)]

of Zp[Gal(k/Qp)]-modules. This shows Y0 = Y/(γ − 1)Y ∼= Zp[Gal(k/Qp)] as
Zp[Gal(k/Qp)]-modules, and hence Y ∼= Zp[[Gal(F/Qp)]]. Therefore the surjective
Zp[[Gal(F/Qp)]]-morphism X � Y splits, and hence X ∼= Zp(1)⊕Zp[[Gal(K/Qp)]]
as desired.

Now we prove (2). Let k∞/kn/k0 be the intermediate n-th layer of the unramified
Zp-extension of k0 (so, Gal(kn/k0) ∼= Z/pnZ)). Recall the integer ring on of kn.
Let Xn = Gal(Ln/Fn). Then we have an exact sequence of Zp[Gal(kn/Q)]-modules

ô×n
↪→−−−−→ k̂×n

�−−−−→
v

Zp

o
y o

y o
y

Xn −−−−→
↪→

Gal(Ln/kn) −−−−→
�

Gal(k∞/kn)

where the map v is induced from the valuation ordp of k normalized so that
ordp(p) = 1. Writing $ for a prime element in on, we have v($) = e−1. Then

this exact sequence is split by v(pZp) = Zp = e−1Zp = v($Zp); so, k̂×n ∼= Xn ⊕
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Zp as Zp[Gal(kn/Qp)]-modules. By this diagram and L′n ⊃ k∞, we still have
Gal(L′n/kn) = X ′n ⊕Gal(k∞/kn) with Gal(k∞/kn) ∼= Zp.

By the same argument as in the case proving (1), if µp(k) = µp(Qp), we have
Xn ∼= Yn ⊕ Zp(1) as Zp[[Gal(knQp,∞/Qp)]]–modules for a unique direct summand
Yn. On Zp(1), φ acts trivially (as νp([p,Qp]) = 1 for the p-adic cyclotomic character
νp); so, [γ̃, φ] acts trivially on the factor Zp(1). Hence we still have the decompo-
sition X ′n = Y ′n ⊕ Zp(1). The restriction from X ′m → X ′n for m > n induces on

Zp(1) multiplication by pm−n as φ = [p,Qp]f acts trivially on µp∞(Qp). Thus
passing to the limit, the factor Zp(1) disappears. Therefore, by Kummer theory,

Coker(X ′
Res−−→ X) = Zp ⊕ Zp(1) if µp(k) = µp(Qp) and otherwise Zp; so, by defini-

tion, the restriction map Y ′m → Y ′n is onto, and its image passing to the limit is the
augmentation ideal of Zp[[Gal(F/Qp)]] (as we lose the augmentation quotient Zp
which corresponds to the factor Zp in Gal(L′n/kn)). Since Ker(X ′ → X) is plainly
(φ − 1)X ′, we find that X ′/(φ − 1)X ′ is isomorphic to the augmentation ideal of
Zp[[Gal(F/Qp)]] by (1).

The same argument works well when µp(k) = {1}. In this case, the argument is
easier as the factor Zp(1) does not show up.

We prove (3). Note that Zp[[Gal(F/Qp)]] =
⊕

χW (κχ)[[Γ]] for χ running over

all characters of Gal(k/Q), where κχ is the finite field generated by the values
of χ mod p over Fp. Then its augmentation ideal is given by (γ − 1)Zp[[Γ]] ⊕⊕

χ 6=1W (κχ)[[Γ]]. Thus X ′[η]/(φ − 1)X ′[η] ∼= W (κη)[[Γ]] as W (κη)[[Γ]]-modules

by Proposition A.4.1 (2). This is clear if η is non-trivial. If η = 1, we note that
(γ − 1)Zp[[Γ]] ∼= Zp[[Γ]] as Zp[[Γ]]-modules. So X ′[η]/(φ − 1)X ′[η] is cyclic over
W (κ)[[Γ]]. By the Nakayama’s lemma, we get the desired cyclicity of X ′[η] over
W (κ)[[Γ×Υ]]. �

A.5. Proof of Theorem A.1.2 and Corollary A.1.3. Recall the T+-GMA E =(
T+ T−
T− T+

)
given in Proposition A.3.1. Set EnCM = E⊗T+

TnCM
+ and ECM = E⊗T+

TCM
+ , and write ρ : W [H] → E, ρnCM : W [H] → EnCM and ρCM : W [H] → ECM

for the associated Cayley–Hamilton representations. Pick a prime ℘ of K(ρ) above
p. Let Ip (resp. Ip∗ , Dp) be the p-inertia (resp. p∗-inertia, p-decomposition)
subgroup of Gal(K(ρ)/K(ρ)) corresponding to ℘ and ℘c. Regard [p,Qp]f ∈ Dp for

the residual degree f of P = ℘ ∩ K(ρ), and recall ϕ′ := ρ([p,Qp]f ) =
(
u−f ∗

0 uf

)
with uf ∈ T+. Put Λ0 := Zp[[T ]] ⊂ Λ1 := W1[[T, a]] ⊂ T for a = u2f −1, and recall
t = 1 + T . We restate Theorem A.1.2 in the introduction in the following way:

Theorem A.5.1. Let the notation be as above. Suppose (H0–4). Then we can
choose conjugacy classes of Ip and Ip∗ in G and a generator Θ of the σ-different
I = T(σ − 1)T with Θσ = −Θ so that we have

ρ(Ip) =
{

( a b0 1 )
∣∣a ∈ tZp , b ∈ ΘΛ1

}
⊂ E×

and

ρnCM(Ip) =
{

( a b0 1 )
∣∣a ∈ tZp , b ∈ ΘΛ1

}
⊂ EnCM,×

and ρ(Ip∗) = Jρ(Ip)J−1, where J = ( 0 1
1 0 ) for ρ = ρT and ρTnCM . Here tZp ⊂ Λ is

embedded in E and EnCM by the structure homomorphism.

We can conjugate ρ by ( a 0
0 1 ) for any a ∈ T×, and by doing this, Θ will be replaced

by aΘ; so, actually, we can always assume that for any choice of the generator
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Θ with Θσ = −Θ of the ideal (Θ), we can arrange ρ(Ip) (and ρ(Ip∗)) as in the
corollary.

Proof. Write simply I = ρ(Ip) and D = ρ(Dp). From the definition of Λ-algebra
structure of T and p-ordinarity (e.g., [Hid15, (Gal), pg. 604]), we know I ⊂M(T)∩
E and ρ(Ip∗) ⊂ JM(T)J−1∩E for the mirabolic subgroup M(T) :=

{
( a b0 1 )

∣∣a ∈ T×, b ∈ T
}

.

Since Gal(Qabp /Qp) = [p,Qp]Ẑ n Z×p for the maximal abelian extension Qab/Q and
the local Artin symbol [p,Qp], we find

I ⊂
{

( a b0 1 )
∣∣a ∈ tZp , b ∈ ΘT+

}
and D = ϕ′

Zp n I

by the shape of E, and det(ρ(Ip)) = T := tZp ⊂ Λ×0 . Thus we have an extension
1→ U → I → T → 1 with U = Ker(det(ρ) : I → Λ×).

By [Hid15, Lem. 1.4], this extension is split by the action of ∆ for U being an
eigenspace on which ∆ acts by ψ−; so, we may assume to have a section s : T ↪→ I
identifying T with

{
( a 0

0 1 )
∣∣a ∈ T }. Replacing ϕ′ by an element ϕ ∈ ϕ′U , we may

assume that ϕ =
(
u−f 0

0 uf

)
commuting with

(
tZp 0
0 1

)
= Gal(Qp,∞K(ρ)/K(ρ)). Take

φ ∈ Dp such that ρ(φ) = ϕ and γ̃ ∈ Dp with ρ(γ̃) = ( t 0
0 1 ). For the commutator

[φ, γ̃], we have ρ([φ, γ̃]) = 1 (i.e. it acts on K(ρ)P trivially; the requirement for
the validity of Proposition A.4.1 (3)). The module U is a Λ1-module by the adjoint
action of T ·ϕZp . Since ρCM|I has kernel U , we see that I = ρ(Ip) ∼= ρnCM(Ip); so,
we only need to prove the assertion for ρ. If TnCM

+ · U ( T− = ΘT+ = ΘTnCM
+ , we

have UTnCM
+ ⊂ ΘmnCM

+ TnCM
+ = mnCM

+ T− for the maximal ideal mnCM
+ of TnCM

+ .
Write P|p for the prime factor in K(ψ−) corresponding to Ip. We apply Propo-

sition A.4.1 to the P-adic completion k of K(ψ−), its cyclotomic Zp-extension F
and the composite F∞ of F and the unramified Zp-extension of k. Thus U is made
of unipotent matrices, and writing

I1 := {τ ∈ Ip : τ |F = 1} = {τ ∈ Ip : τ |F∞ = 1},

we have U = ρ(I1). Therefore we may write ρ(τ) =
(

1 u(τ)
0 1

)
for τ ∈ I1. Let

u := u mod mnCM
+ T− with values in T−/mnCM

+ T− ∼= F. Let H(Φ−) := Ker(Φ− :
H → Λ×) for the universal character Φ. Since T−/θT− = Y −∞(ψ−) ⊗Zp[ψ−] W by
Corollary A.2.5 and θT+ is the ideal of reducibility in T+ of ρ in the sense of [BC09,
§1.5], this homomorphism extends to a non-zero homomorphism u : H(Φ−) → F
with u(τhτ−1) = Φ−(τ)u(h) unramified outside p over K(Φ−) = K(ρ)K−∞. Since
H(Φ−) := Gal(K(ρ)(p)/K(Φ−)) only ramifies at p, u is unramified at c′c′

c
. Since

Ip∗ is lower triangular contained in JM(T)J−1, u is unramified everywhere. Let

N∞ ⊂ K(ρ)(p) be the fixed field by Ker(u : Gal(K(ρ)(p)/K(Φ−))→ T−/mnCM
+ T−)

and put X := Gal(N∞/K(Φ−)). Then N∞/K(Φ−) is an everywhere unramified p-
abelian extension. Since K(Φ−)/K(ψ−) is a fully p-ramified Zp-extension generated
by an element γ, we find X/(γ−1)X is a Galois group of an everywhere unramified
p-abelian extension of K(ψ−), which is non-trivial by our assumption. Since p -
hK(ψ−), this is a contradiction. Thus the T+-span of u(I1) is F; so, the T+-span of

u(I1) is equal to T− by Nakayama’s lemma. Thus T+u(I1) 6≡ 0 mod mnCM
+ T−; so,

we may assume that Θ ∈ u(I1).
Regard ψ− as an abelian irreducible Zp-representation acting on W regarded as

a Zp-module. By Proposition A.4.1 (3), under the notation there, the Galois group
X ′[ψ−] is cyclic over W1[[Γ × Υ]] (Γ = tZp) and surjects onto U . Since the action
of W1[[Γ × Υ]] factors through Λ1, by Proposition A.4.1 (3), U is cyclic over Λ1;
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so, we have U ∼= Λ1. Thus we conclude ρ(I1) = U =
{

( 1 a
0 1 )

∣∣a ∈ ΘΛ1

}
inside ρ(H)

(for a suitable choice of Θ). This shows the desired expression for ρ(Ip). By the
same argument applied to p∗, we have ρ(H) contains JUJ−1, T and JT J−1, and
we obtain the form of ρ(Ip∗). �

Proof of Corollary A.1.3. We have by Theorem A.5.1,

ρP |Ip is indecomposable ⇔ (U mod P ) 6= 1⇔ P - (Θ).

By Corollary A.2.5, TnCM/(Θ)⊗̂WW ∼= ΛW/(L−p (ψ−)), we conclude that P - (Θ)⇔
P - (L−p (ψ−)). By Coker(T⊗̂WW → TCM⊗̂WW × TnCM⊗̂WW) ∼= ΛW/(L−p (ψ−)),
we see

P - (L−p (ψ−))⇔ P 6∈ Spec(TnCM) ∩ Spec(TCM)

as desired. �
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positio Math., 65(3):265–320, 1988.
[Til89] J. Tilouine. Sur la conjecture principale anticyclotomique. Duke Math. J., 59(3):629–

673, 1989.
[WE18] Carl Wang-Erickson. Algebraic families of Galois representations and potentially semi-

stable pseudodeformation rings. Math. Ann., 371(3-4):1615–1681, 2018.

[Wil95] Andrew Wiles. Modular elliptic curves and Fermat’s last theorem. Ann. of Math. (2),
141(3):443–551, 1995.

[WWE17] Preston Wake and Carl Wang-Erickson. Ordinary pseudorepresentations and modular

forms. Proc. Amer. Math. Soc. Ser. B, 4:53–71, 2017.
[WWE18] Preston Wake and Carl Wang-Erickson. Pseudo-modularity and Iwasawa theory. Amer.

J. Math., 140(4):977–1040, 2018.

[Zha14] Bin Zhao. Local indecomposability of Hilbert modular Galois representations. Ann.
Inst. Fourier (Grenoble), 64(4):1521–1560, 2014.

Department of Mathematics, Princeton University, Princeton, NJ 08544, USA

Email address: fcabello@math.princeton.edu

Department of Mathematics, Imperial College London, London SW7 2AZ, UK

Email address: c.wang-erickson@imperial.ac.uk

Department of Mathematics, UCLA, Los Angeles, CA 90095-1555, USA

Email address: hida@math.ucla.edu


