
 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Building and Validating a Scale for Secure Software
Development Self-Efficacy

Daniel Votipka, Desiree Abrokwa, and Michelle L. Mazurek
University of Maryland, College Park

dvotipka@cs.umd.edu, dabrokw1@umd.edu, and mmazurek@cs.umd.edu

ABSTRACT
Security is an essential component of the software develop-
ment lifecycle. Researchers and practitioners have developed
educational interventions, guidelines, security analysis tools,
and new APIs aimed at improving security. However, mea-
suring any resulting improvement in secure development skill
is challenging. As a proxy for skill, we propose to measure
self-efficacy, which has been shown to correlate with skill in
other contexts. Here, we present a validated scale measur-
ing secure software-development self-efficacy (SSD-SES). We
first reviewed popular secure-development frameworks and
surveyed 22 secure-development experts to identify 58 unique
tasks. Next, we asked 311 developers—over multiple rounds—
to rate their skill at each task. We iteratively updated our
questions to ensure they were easily understandable, showed
adequate variance between participants, and demonstrated
reliability. Our final 15-item scale contains two sub-scales
measuring belief in ability to perform vulnerability identifica-
tion and mitigation as well as security communications tasks.

CCS Concepts
•Security and privacy ! Software security engineering;
•Human-centered computing ! HCI design and evaluation
methods;

INTRODUCTION
Software developers play a critical role in end-user security,
but secure development can be difficult. According to NIST’s
National Initiative for Cybersecurity Education (NICE) frame-
work, developers must consider 44 distinct areas of security
tasks [85]. However, many developers do not believe they
have this level of skill [5], and prior work shows developers
struggle to write secure code [88, 64, 2, 1].

Previous studies have sought to measure secure development
skills through various methods [97, 27, 115, 37, 28, 96, 36,
14, 44, 59, 67, 26, 90, 88, 97, 1, 82, 83, 81]. In most cases, re-
searchers have participants identify and exploit vulnerabilities

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CHI ’20, April 25–30, 2020, Honolulu, HI, USA.
© 2020 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6708-0/20/04 ...$15.00.
DOI: https://dx.doi.org/10.1145/3313831.3376754

in sample programs or write small programs with security-
critical functionality. For example, while studying security
API misuses, Oliveira et al. asked participants to identify com-
mon mistakes in security “puzzles” (i.e., code snippets) [88].
In a more intensive evaluation, Ruef et al. asked Build It,
Break It, Fix It competitors to write medium size programs
with several security requirements during a week-long “build”
round [97]. Participants then evaluate each others’ submis-
sions through vulnerability-demonstrating exploits in another
week-long “break” round. These assessments provide valu-
able insights into actual secure-development skill, but are very
cumbersome. Other work asked participants to rate their secu-
rity skill on a single Likert scale or counted the vulnerabilities
reported in public code artifacts. While these are both require
less participant time, they are also noisy, as participants can
have difficulty assessing their abilities and there can be several
confounding factors impacting vulnerability counts.

This situation is unfortunate, as an accurate and efficient mea-
sure of skill would be useful for several reasons. First, attempts
to develop and improve secure development education [68, 23,
52, 61, 97] and guidelines [85, 94, 25, 76, 80], require the
ability to measure skills before and after the intervention to
test their effectiveness. A secure development skill measure
is also needed for use as a covariate when evaluating new
security tools [64, 102, 113, 106, 117, 98, 60, 101], documen-
tation [2], and APIs [1, 58, 116]. Without such a metric, the
experimenter cannot control for participant skill, which may
confound results.

We propose an alternative approach to measuring secure-
development skill: a validated scale. Human behavior re-
searchers regularly develop scales to “measure elusive phe-
nomena that cannot be observed directly” due to cost or com-
plexity [10]. Specifically, we propose measuring developers’
secure-development self-efficacy—belief in one’s ability to
successfully perform a task— which correlates with actual
skill in other contexts [10]. This scale would measure devel-
opers’ belief in their ability to complete secure-development
tasks, such as identifying security problems during software
design or employing secure programming languages.

In this paper, we develop and evaluate such a scale: the Secure
Software Development Self-Efficacy Scale (SSD-SES). We
followed Netemeyer et al.’s 4-step scale creation process [84]:

Paper 625 Page 1

https://dx.doi.org/10.1145/3313831.3376754
mailto:permissions@acm.org
mailto:mmazurek@cs.umd.edu
mailto:dabrokw1@umd.edu
mailto:dvotipka@cs.umd.edu

 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

1. Construct Definition and Content Domain: Clearly iden-
tifying the targeted construct’s scope (i.e., the underlying
idea). We focus on tasks related to secure code production.

2. Generating and Judging Measurement Items: Defining
an initial pool of candidate scale questions (items) and en-
suring they are relevant to the construct and understandable
by respondents. We generated items by reviewing five pop-
ular secure-development frameworks. We judge questions
based on reviews from security experts and developers.

3. Developing and Refining the Scale: Using Exploratory
Factor Analysis (EFA) to identify an underlying factor struc-
ture (i.e., any sub-components of the targeted construct and
their associated questions). We also refine the item set to its
most efficient form (i.e., only including items with sufficient
variance among respondents), while maintaining reliability
(i.e., whether the scale consistently measures the construct).

4. Finalizing the Scale: We use Confirmatory Factor Analysis
(CFA) to confirm the previously identified underlying factor
structure holds, maintaining reliability, with a new sample.

All our procedures were approved by the University of Mary-
land’s institutional review board. Throughout this process,
our scale was evaluated with 311 software developers and
22 security experts. The final SSD-SES consists of 15 items
measuring two underlying factors: vulnerability discovery and
mitigation, and security communication. We show that SSD-
SES performs reliably over multiple samples and behaves as
expected with respect to relevant measures from prior work.

RELATED WORK
While human-centered secure development is a growing sub-
field, work related directly to our scale is limited. Woon and
Kankanhalli’s secure-development intentions scale focuses
on development and includes self-efficacy questions [118].
However, it is a much broader measure, intended to assess
several factors influencing secure-development practice adop-
tion. Therefore, their self-efficacy questions are limited and
less concrete than ours (e.g., “I would feel comfortable carry-
ing out secure development of applications on my own”). By
focusing specifically on self-efficacy, we can provide a more
precise measure and identify underlying factors. Because this
scale has received only preliminary validation, we did not use
it to establish discriminant validity. Rajivan et al. developed
a measure assessing security expertise by asking participants
if they have performed several network defense and system
administration tasks (e.g., configuring a firewall) along with
two open-ended questions asking participants to describe se-
curity concepts (i.e., certificates and phishing). While this
scale targets expert users, it again measures an orthogonal
domain (e.g., network defense and system administration).
Finally, Campbell et al. propose a metric for cybersecurity
aptitude—potential to develop skills necessary for cybersecu-
rity tasks—as opposed to our measure targeted at current skill
level [20].

There have also been several efforts to develop scales for
efficiently measuring end-user security. Egelman and Peer
created the Security Behavior Intentions Scale (SeBIS) [38]
and Faklaris et al. established a measure for Security Atti-
tudes (SA-6) [41]. Together these scales cover participants’

security thoughts and behaviors; however, due to the differ-
ence in domains, we expect our scale measures an orthogonal
construct.

ITEM GENERATION AND JUDGMENT
The first step in scale development is construct definition:
scoping what the scale will and won’t cover. As SSD-SES’s
goal is to measure software developers’ belief in their ability
to perform secure development tasks, we focus only on tasks
related to the production of secure code. That is, we do not
include tasks from parts of the software development lifecycle
such as deployment, maintenance, or monitoring. We also
restrict our tasks to those prescribed by widely accepted secure-
development frameworks or experienced security experts.

Initial Item Generation
The second step is generating a set of candidate items (ques-
tions). The goal is to thoroughly survey the construct domain
and build an extensive possible item pool [84], to be nar-
rowed in later steps. We chose initial items by analyzing four
popular secure-development frameworks: NIST’s National
Initiative for Cybersecurity Education (NICE) framework [85],
the Building Security In Maturity Model (BSIMM) [76], the
Open Web Application Security Project (OWASP) Software
Assurance Maturity Model (OSAMM) [25], and Microsoft’s
Security Development Lifecycle (SDL) [80].

Two researchers independently reviewed each framework,
identified a set of prescribed tasks, and selected tasks focused
on secure code production. The researchers then met to com-
bine lists. Because best practice recommends a conservative
approach to initial item generation (i.e., including any pos-
sibly related items) [84], if a task was identified by either
researcher it was included in the initial set. Finally, the re-
searchers merged tasks from different frameworks considered
identical (e.g., phrased differently or using different terminol-
ogy, but expressing the same idea), again conservatively.

This process produced 57 unique software-development-
specific tasks mentioned in at least one framework. The full
task set (with sources) can be found in our supplementary ma-
terial in Table 7. These tasks can be divided into six categories:
determining security requirements (A1-11), identifying attack
vectors (A12-14), identifying vulnerabilities (A15-22), im-
plementing mitigations to prevent or remedy vulnerabilities
(A23-37), testing of security requirements (A38-42), and ef-
fectively communicating about security with peers, leadership,
and security experts (A43-57).

Content Review
To ensure the identified tasks cover the full range of the domain
(content validity) and that the task wording was understandable
to software developers (face validity), we surveyed 22 secure-
software-development experts and 8 developers.

Expert review. We asked security experts to review our initial
57 tasks (Table 7) and rate them on a 4-point Likert-scale rang-
ing from Definitely not a secure development task to Definitely
a secure development task. Respondents also had an Unsure
option if the wording was confusing or they could not clearly

Paper 625 Page 2

 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

delineate the task’s appropriateness. We also asked respon-
dents whether the task phrasing was unclear or confusing, and
to explain any confusion in free text. We concluded by asking
experts to list any missing tasks. Our expert review survey text
is given in our supplementary material.

We recruited security experts from a convenience sample of the
authors’ professional contacts (N=7) and members of NIST’s
Software and Supply Chain Assurance Forum [87] (N=16).
To ensure we received expert opinions, we only considered
respondents who self-reported 10 or more years of experi-
ence. After each response, we added any suggested tasks for
review by subsequent experts. We stopped recruiting addi-
tional experts when no new tasks were suggested and task
appropriateness responses remained stable (e.g., no signifi-
cant difference in results when adding the last 10 responses),
the suggested stopping criteria for free-listing exercises [114].
The 22 secure-development experts had 20 years of experi-
ence on average, and 81% also held a graduate degree. Our
expert population matched prior security expert studies whose
experts had at least 10 years experience [51, 50]. Li et al.
used participant titles as an alternate expertise indicator [69].
Our participants also met this condition, reporting senior job
titles such as Chief of Development, Cybersecurity Technical
Fellow, and Product Security Lead.

We made several changes to our task list based on expert
feedback. First, ten tasks were considered inappropriate—
Probably not or Definitely not a secure development task—by
80% of experts. For several tasks, our experts believed it
is not the developers’ role to determine the balance security
and performance costs, but instead the job of customers or
leadership (reworded A3 and A7; removed A10, A50, A51,
A52, A53). Similarly, our experts stated developers should not
be expected to research attacker techniques, but instead get
this information from security experts (reworded A5; removed
A55). Finally, our experts indicated code signing is not part of
secure code production, but instead its deployment, which is
out of scope for our construct definition (removed A11).

Additionally, we revised several tasks’ wording. Most signif-
icantly, we replaced “program” with “system” to match the
modular approach to design common in industry (A1, A2,
A4, A12, A13, A20, A29, A35, A45, A46). Other changes
included using more common developer terminology (A2),
focusing on threats from malicious actors (as opposed to nat-
ural disasters) (A6), making security explicit (A4), adding
clarifying examples (A15, A29), and rephrasing statements to
improve readability (A20, A21, A41, A42).

Finally, we added six tasks. Several experts recommended
tasks for identifying and using secure programming languages
and libraries (B15, B16, B26, B27, B28; shown in Table 1).
One expert also suggested adding a task for correctly imple-
menting authorization protocols (B34), as it represents a dis-
tinct access-control component (compared to authentication).

Multiple experts suggested the Software Assurance Forum for
Excellence in Code (SAFECode) Fundamental Practices for
Secure Software Development framework [94] as an additional
task source, so we repeated the framework review process for

SAFECode. While no task list or task categories changes were
made, it provided further support for tasks already included.

Developer pilot. Next, to ensure our target population could
easily understand each item, we piloted the post-expert-review
tasks with eight developers. First, we reframed each task as
an “I can” statement regarding the developer’s confidence in
performing the task. We then asked them to indicate their con-
fidence using a 5-point Likert-scale from “I am not confident
at all” to “I am absolutely confident.” We also provided a
“Do not understand” option if the respondent did not under-
stand the task’s meaning. Our full survey text is given in our
supplementary material’s main survey section.

We recruited a convenience sample of the researchers’ profes-
sional contacts, chosen to represent varying experience levels.
Participants were asked to “think aloud” as they responded
to each question. We updated the questions after each pilot,
eventually reaching the final set given in Table 1. Specifically,
we made the following changes: we reworded A48 to make it
clear we were asking about writing understandable security-
error messages, updated A8 to indicate we were asking about
code the developer has themself written as opposed to a library
function, and replaced the term “boundary cases” with “edge
cases” in A38 to use the more common terminology.

REFINING THE SCALE
To trim our item set and determine the underlying factor struc-
ture, we recruited 157 developers and performed EFA. This
section describes the methods used and our analysis results.

Recruitment
From September 2018 to July 2019, we recruited participants
using several methods to broadly sample the developer pop-
ulation. First, we contacted software-development-related
groups’ leadership. This included popular Meetup.com [79]
and LinkedIn [71] groups, regional ACM chapters [42], and
the researchers’ personal contacts at large development com-
panies. We asked each contact to share study details with
their organization’s members and their colleagues. Prior work
has found relative success partnering with organizational lead-
ership in this manner, adding credibility to recruitment mes-
sages [112]. We also posted messages on relevant online
forums such as Reddit and Slack channels. Dietrich et al.
showed this method’s usefulness with technology profession-
als, as participants are reached in a more natural setting and are
more likely to be receptive [35]. Finally, we recruited devel-
opers directly through the freelancing platform Upwork [109]
and the research-participant recruitment site Prolific [89]. Be-
cause of our broad recruitment process, we do not include
respondents who reported less than one year of development
experience.

We also varied the study’s compensation method. Prior work
suggests using a mix of incentives increases participant di-
versity [57]. Participants recruited through organizational
contacts and online forums were recruited in two waves. In
the first wave, we did not advertise or provide any compensa-
tion for participation. In the second, participants were entered

Paper 625 Page 3

https://Meetup.com

µµ ss

F1
B3
B4
B6
B11
B15
B39
B44
B47
B48
F2
B8
B31
B32
B50

B51
B53

B55

B57

B58

Secure Development Statement

I can perform a threat risk analysis (e.g., likelihood of vulnerability, impact of exploitation, etc.)
I can identify potential security threats to the system
I can identify the common attack techniques used by attackers
I can identify potential attack vectors in the environment the system interacts with (e.g., hardware, libraries, etc.)
I can identify common vulnerabilities of a programming language
I can design software to quarantine an attacker if a vulnerability is exploited
I can mimic potential threats to the system
I can evaluate security controls on the system’s interfaces/interactions with other software systems
I can evaluate security controls on the system’s interfaces/interactions with hardware systems

I can identify code that handles sensitive data (e.g., Personally Identifiable Information)
I can correctly implement authentication protocols
I can correctly implement authorization protocols
I can communicate security assumptions and requirements to other developers on the team to ensure vulnerabilities
are not introduced due to misunderstandings
I can communicate system details with other developers to ensure a thorough security review of the code
I can discuss lessons learned from internal and external security incidents to ensure all development team members
are aware of potential threats
I can effectively communicate to company leadership identified security issues and the cost/risk trade-off associated
with deciding whether or not to fix the problem
I can communicate functionality needs to security experts to get recommendations for secure solutions (e.g., secure
libraries, languages, design patterns, and platforms)
I know the appropriate point of contact/response team in my organization to contact if a vulnerability in production
code is identified

Do Not
Und.

0%
0%
0%

1.72%
0%

1.72%
1.72%
1.72%
3.45%

0%
0%

3.45%
0%

0%
0%

0%

3.45%

1.72%

µ

3.15
3.61
3.45
2.97
3.44
2.65
3.19
3.28
2.91

4.09
3.76
3.78
3.71

3.85
3.88

3.78

3.81

4.04

s

1.29
1.10
1.15
1.25
1.15
1.34
1.19
1.23
1.30

1.10
1.16
1.11
1.10

1.16
1.11

1.13

1.11

1.25

B1
B2
B5
B7
B9
B10
B12
B13
B14
B16
B17
B18
B19
B20
B21
B22
B23
B24
B25
B26
B27
B28
B29
B30
B33
B34
B35
B36
B37
B38
B40
B41
B42
B43
B45
B46
B49
B52
B54
B56

I can determine security controls which are necessary to implement in the system
I can determine security requirements for the system
I can identify access points into the system (i.e., attack surface) which could be used by an attacker
I can identify critical operational requirements which must continue to function or recover quickly after an attack
I can identify usage patterns that should be disallowed by the system’s design
I can identify potential attack vectors associated with the system under development
I can identify potential vulnerabilities in the operationalization of software (e.g., human errors)
I can identify security vulnerabilities in others? code (e.g., peer review or third party components)
I can identify common coding mistakes that create security vulnerabilities
I can understand security limitations of a programming language
I can identify potential vulnerabilities as I write code
I can use automated code analysis tools to identify vulnerabilities
I can use software fuzzing tools to identify vulnerabilities
I can review system design to identify areas where potential security risks exist
I can identify sections of code that are most likely to include security vulnerabilities
I can understand security issues and concerns associated with reused code (e.g., code samples, shared code)
I can apply applicable secure coding and testing standards
I can use provably secure programming languages
I can identify secure implementations of common libraries
I can use a secure implementation of a common library that is recommended by a security expert
I can apply security principles (e.g., least privilege) into the design of the system
I can utilize protocols that provide confidentiality of user data
I can utilize protocols that provide integrity of user data
I can utilize protocols that provide availability in the face of an attack
I can utilize protocols that provide non-repudiation
I can leverage enterprise security services to mitigate vulnerabilities (e.g., enterprise PKI)
I can leverage enterprise security teams for help to fix vulnerable code
I can leverage external security review (e.g., penetration testing, bug bounties) to find vulnerable code
I can design software to prevent potential vulnerabilities
I can rewrite software to remove vulnerabilities
I can write code to monitor and log system execution for later review
I can write error handling code to alert for possible malicious behavior
I can design software so that it fails gracefully in the face of attack
I can enumerate edge cases of the system’s use
I can assess that security requirements are met (e.g., through security design and code reviews)
I can demonstrate the effectiveness of implemented security mitigations
I can document a system’s security implications and assumptions so they are readable and actionable by others
I can communicate with other internal teams to understand how to securely interact with their systems
I can write understandable security and privacy error messages to draw the required user/operator attention
I can maintain awareness of hardware and software technologies’ security issues and their potential implications

6.90%
1.72%
1.72%
6.90%
0%

6.90%
5.17%
0%
0%
0%
0%

1.72%
13.79%
0%
0%

1.72%
3.45%
22.41%
3.45%
6.90%
3.45%
5.17%
3.45%
10.34%
39.66%
12.06%
3.45%
3.45%
1.72%
0%

1.72%
0%

3.45%
13.79%
0%

12.07%
1.72%
0%
0%
0%

3.50
3.64
3.34
3.44
3.66
3.24
3.77
3.38
3.80
3.68
3.73
3.31
2.92
3.44
3.54
3.79
3.63
3.72
3.34
4.01
3.49
3.83
3.81
3.07
3.21
3.16
3.93
3.41
3.41
3.66
3.95
3.77
3.19
3.43
3.65
3.35
3.68
3.95
3.92
3.40

1.13
1.06
1.24
1.15
1.12
1.26
1.10
1.20
1.07
1.04
1.01
1.27
1.33
1.19
1.14
1.07
1.19
1.26
1.19
1.14
1.25
1.18
1.13
1.27
1.31
1.32
1.23
1.26
1.24
1.18
1.23
1.13
1.30
1.15
1.13
1.20
1.18
1.10
1.13
1.30

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Table 1: Set of secure development tasks identified after both the expert review and developer pilot transformed into “I can” statements. Each task was evaluated on a 5-
point Likert-scale (from “I am not at all confident” to “I am absolutely confident”) by 157 developers. For each statement, we give the rate of “Do not understand”
responses, the average response, and standard deviations. The final items retained based on EFA are shown first grouped according to their associated sub-scale.

Paper 625 Page 4

 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

into a lottery for one of 10 $20 Amazon gift cards. Participants
recruited through Upwork and Prolific were paid $8 each.

Survey design
Participants were shown the 58 “I can” statements in Table 1
and asked to rate each on a 5-point Likert-scale from “I am
not confident at all” to “I am absolutely confident” or indicate
they “Do not understand”. Tasks were presented in random
order to prevent ordering effects. At the survey’s conclusion,
participants were asked to indicate their software development
skill level on a 5-point Likert scale ranging from “Novice
(limited experience)” to “Expert (recognized authority),” their
years of software development experience, and their average
time spent daily performing software development tasks, along
with other demographic questions. Our full survey text is given
in our supplementary materials’ main survey section.

We were concerned some participants might overrate their se-
cure development skill to portray appear more socially accept-
able [33]. To avoid social desirability bias, our study utilized
deception [84]. That is, during recruitment and throughout
the survey, participants were told our goal was to measure
general software development self-efficacy. At the survey’s
conclusion, participants were told the study’s true nature and
were allowed withdraw and have their response deleted.

Demographics
We received 181 responses, but 7 (4%) did not have one year
of development experience and 9 withdrew (5%) after learn-
ing the study’s true purpose. We removed eight responses
(4%) considered careless based on abnormally short response
times [78]. We set the cutoff at less than five minutes based
on an obvious threshold in the data.

The final 157 participants’ development experience ranged
from 1 to 45 years (µ = 8.68, s = 9.46). Our participants
were predominantly male (88%), young (50% below 30 and
83% below 40), educated (77% held a bachelor’s degree, 26%
held a graduate degree), and white (51%) or Asian (29%). Our
participants’ demographics are similar to those found by prior
large-scale secure development studies [1, 2, 5, 88, 97, 117,
100, 3, 34, 8, 58, 81] and other general software development
surveys [104, 63, 53, 111, 30, 66, 9, 17]. These prior studies’
developers’ mean development experience was between 5 and
16.4 years (mean of means = 9.49 years), and they were mostly
male (between 73% and 98%; mean = 89%) and young (mean
age between 19.4 and 32.9; mean of means = 28.52), matching
our sample. Half of our participants reported incomes between
$15K-$100K, which matches developer income levels in [88],
the only other prior work we found reporting participant in-
come. Note that due to the variance in demographics reported
in each paper, these are the only items we could clearly com-
pare to.

Choosing an appropriate sample size can be complicated. Prior
work suggests basing sample size on the number of items [6,
16, 22, 45, 49, 65, 70, 75, 86] with a minimum of 100 to 200
participants required [31, 32, 45, 48, 49, 70, 73]. For example,
Hair et al. recommend 5 participants per item [49]. However,
empirical evaluations of scales’ component analysis stability

(i.e., whether the factor structure identified varied) with vari-
ous sample sizes has not found evidence to support the sample
size-to-item ratio [11, 4, 110]. Instead, prior work shows fac-
tor loading (i.e., the magnitude of correlation between items
and their associated factor), the absolute sample size, and the
number of variables associated with each factor have the most
significant effect on component analysis stability [47]. There-
fore, Guadagnoli and Velicer recommend 150 participants as
sufficient if factors are made up of high numbers of items (10
or 12), even with low loadings (l < 0.40) [47]. We believed,
because of the large number of items tested, we would be
likely to meet this standard, so we targeted about 150 qualify-
ing participants. In fact (as will be discussed below), our data
met Guadagnoli’s and Velicer’s more conservative standard:
four or more variables per component having loadings over
0.60, which they found sufficient to assess underlying compo-
nent structures “whatever the sample size used.” We therefore
conclude our sample size was sufficient.

Issues with initial items
To refine our scale, we first checked for several potential issues
in our initial items. First, we observed our scale’s internal
consistency was very high (Cronbach’s a = 0.98), indicating
our items were closely related. Next, we checked each item’s
item-total correlation, which indicates how discriminant the
item is (i.e., participants who score high on the item are more
likely to score high on the full scale). Items with low item-
total correlation (< 0.2) should be excluded because they do
not adequately reflect the scale [39]. We did not observe any
questions with low item-total correlation.

We next looked for ceiling or floor effects: tight response
groupings at either extremes of the Likert scale (e.g., 4.0 <
µ < 5.0 and s < 1). Since scales are designed to measure
differences between participants, individual questions need to
exhibit adequate variance; if everyone responds similarly, the
item has limited utility. We found no items with this effect.

Finally, it is important to ensure our target population under-
stands each item. If a respondent if confused by the terminol-
ogy used or question phrasing, their response is framed by a
misconception and not reflective of the underlying construct.
We removed 13 items to which > 5% of participants responded
“Do not understand” or simply skipped. In many cases (B12,
B19, B28, B30, and B33), the confusion seemed to stem from
using less common security terminology such as fuzzing or
non-repudiation. Because the scale should usable by devel-
opers of all levels of security knowledge, we removed these
items. Similarly, 12.1% of participants found B34 confusing,
likely because it asks whether participants can use security ser-
vices provided by their enterprise. As not all developers work
in an enterprise setting which offers these services—including
many of the freelancers we recruited—this item also does not
meet our goal of producing a measure for all developers.

Factor analysis
With the remaining 45 items, we set out to identify the scale’s
underlying factor structure. Here, we define factors as our con-
struct’s sub-components. A construct can have one component,
indicating the scale’s items measure it directly, or multiple

Paper 625 Page 5

 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

components, where the scale can be broken into component
sub-scales and together their scores reflect the construct. Be-
cause these factors are latent, they can not, by definition, be
measured directly. Instead, we must first determine our con-
struct’s number of factors and which items best describe each
factor, i.e., the underlying factor structure.

Prior to attempting to identify our factor structure, we checked
whether our data actually measured common factors and were
correlated (prerequisites to establishing the number of factors
and their structure). According to Bartlett’s test of sphericity
(c2 = 4833.35, p < 0.001) [103] and the Measure of Sampling
Adequacy (0.936) [24], we confirmed our data met these goals.

Next, to identify the factor structure, we performed an ex-
ploratory Principal Component Analysis (PCA). PCA is a data
summarization method that transforms item responses such
that the first dimension (or component) explains as much vari-
ance in the original data as possible, with each subsequent and
orthogonal component explaining as much of the remaining
variance as possible. These components represent the scale’s
underlying factors. To produce an efficient factor structure
(i.e., one identifying the most variation with the least set of
items), we only retain the top components.

Since there is no standard method for deciding the number of
retained components, we relied on several and followed the
most common recommendation. This consensus protocol ac-
counts for each method’s strengths and weaknesses. First, we
calculated each components’ eigenvalues and selected those
with eigenvalues > 1.0 according to the Kaiser criterion [45].
Next, we determined optimal coordinates by fitting a line to
the smallest eigenvalues with a linear regression and identify-
ing where our eigenvalues diverge [92]. We also performed a
parallel analysis by generating random data, calculating the
associated eigenvalues, and retaining any eigenvalues whose
value was greater than the random data’s eigenvalues [56].
Finally, we determined the acceleration factor by looking for
the point where our eigenvalues changed dramatically [92].
In these analyses, the Kaiser criterion recommended six com-
ponents, the optimal coordinates and parallel analysis both
recommended two, and the acceleration factor recommended
one. Therefore, we retained two components.

To determine which factors each item associated most with
(i.e., which it loads on), we rotated responses [46]. There are
multiple possible rotation types, which can be divided into
orthogonal (e.g., varimax) or oblique (e.g., direct oblimin).
Orthogonal rotations are appropriate when the factors are not
expected to be correlated and an oblique rotation is appropri-
ate otherwise [46]. Because we did not know whether our
factors were correlated, we followed the recommendation of
Tabachnick and Fiddell who suggest first using an oblique
rotation (in our case a direct oblimin), calculating the corre-
lation of the identified sub-scales associated with each factor,
and switching to an orthogonal rotation if correlations do not
exceed 0.32, indicating 10% (or more) overlap in variance
among factors [105]. We found our factors were correlated
(0.64) and maintained the direct oblimin rotation.

F1 ITC F2 ITC
a 0.907 – a 0.876 –
IIC 0.520 – IIC 0.440 –
B3 0.81 0.78 B8 0.64 0.66
B4 0.69 0.80 B31 0.61 0.70
B6 0.83 0.78 B32 0.67 0.67
B11 0.79 0.81 B50 0.73 0.79
B15 0.65 0.66 B51 0.68 0.74
B39 0.74 0.73 B53 0.76 0.73
B44 0.64 0.72 B55 0.64 0.72
B47 0.64 0.77 B57 0.61 0.70
B48 0.82 0.78 B58 0.80 0.67

Table 2: Remaining items and factor structure after initial EFA.
The first two rows show reliability measures (Cronbach’s a
and average inter-item correlation) for each sub-scale. The
remaining rows show the retained items, their loadings, and
item-total correlations within the sub-scale.
After rotating items, we selected which ones to retain, using
three inclusion criteria. First, we only considered an item
as loading on a factor if its loading exceeded 0.5, indicating
significant association with the underlying factor [84]. Next,
we applied Saucier’s criterion, only considering an item to
load on a factor if its loading exceeded twice the loading on
any other factor. This ensures variance in item responses
maps to changes in the associated factor. Finally, we chose
to remove items where the item variance accounted for by all
the retained factors (its communality) was less than 0.4, as
recommended by Fabrigar et al. [40], as this tends to indicate
low item reliability. This led us to remove 27 more items.
We reran PCA on the remaining items and found that the two
retained components predicted more than 56.9% of variance.
Notably, the first factor accounts for a majority of the scale’s
variance (47.6%), with the second factor accounting for 9.3%
of variance. The rotated factor loadings are given in Table 2.
Note, because all our factor loadings are above 0.60, this
confirms the sufficiency of our 157 developer sample [47].

Reliability
To confirm our remaining items maintained their internal reli-
ability, we first computed Cronbach’s a for the full scale (a
= 0.936) and each sub-scale (a = 0.907, 0.876). We found
that our data met McKinley et al.’s suggested threshold that
a multi-component scale is reliable if a exceeds 0.6 and a
majority of sub-scale as exceed 0.7 [77].

Next, we tested item-total correlation using Pearson correla-
tion between each item and the average of all other items in
the same sub-scale. All items exceeded Everritt’s 0.2 thresh-
old [39]. Finally, we observed each sub-scales’ mean item-
total correlation (0.520 and 0.440, respectively) exceeded
0.30, which is considered “exemplary” [95]. Based on these
measures, we confirmed our reduced scale had high reliability.

FINALIZING THE SCALE
We next conducted an additional round of surveys from July
to September 2019 with the 18 items remaining after EFA
(shown at the top of Table 1). In this step, we tested whether
the identified two-factor structure was maintained, remaining
reliable, with a different participant pool.

Paper 625 Page 6

 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Survey Design
Respondents were again asked to respond to the 18 items on a
5-point Likert scale from “I am not at all confident” to “I am
absolutely confident.” We removed the “Do not understand”
option, as we had sufficiently established item face validity.

It is important to confirm our scale measures the targeted con-
struct by testing whether responses match other theoretically
relevant measures. To test whether SSD-SES converges with
measures we expect it to relate with (convergent validity),
while being distinct from other, similar scales (discriminant
validity), we performed Pearson’s correlation tests with four
related scales. We similarly use Pearson’s correlation to com-
pare to two additional, well-established psychometric scales to
understand how participant psychological characteristics relate
to secure-development self-efficacy. All p-values reported in
this section are corrected using a Bonferroni-Holm correction
to account for multiple testing [55]. To avoid overburdening
participants, we randomly present two of the six additional
scales (described in detail below) to each participant.

Recruitment
We used the same recruitment process as the prior step, target-
ing 120 responses. Prior work suggests 100 participants are
sufficient for confirmatory factor analysis [15]. We targeted
20 more participants to have 40 participants complete each ad-
ditional psychometric scale, giving sufficient power (> 0.80)
to identify > 42.5% correlation with SSD-SES [29].

Due to the relative difficulty of recruiting through organiza-
tions and online forums, we predominantly relied on Upwork’s
freelancing service and Prolific in this step. As developers
on these platforms tend to be less experienced, respondents
from these sites first completed a pre-screening survey, ask-
ing them to report years of software development experience
and average time spent daily on development tasks. We then
invited screened respondents to the full survey using a quota-
sampling method. Our quotas were chosen to match developer
experience ranges from StackOverflow’s most recent devel-
oper demographics survey [104]. Specifically, we sought to
survey 14 (11.4%) inexperienced developers (1-2 years), 70
(58.4%) moderately experienced developers (3-11 years), and
36 (30.2%) experienced developers (> 11 years). We con-
cluded recruitment after reaching each quota, though we were
not able to maintain the desired percentages due to the unpre-
dictable nature of responses from organizational contacts.

Demographics
A total of 162 developers responded in this round, but 2 par-
ticipants (1%) had less than a year of software-development
experience, 6 chose to withdraw (4%), and 8 (5%) responses
were considered careless (i.e., completed in less than 5 min-
utes [78]). The remaining 146 participants’ development ex-
perience was split between our three quota ranges as follows:
10.3% inexperienced, 65.1% moderately experienced, and
24.6% experienced (µ = 9.79, s = 10.80). Our participants
were predominantly male (91%), young (48% below 30 and
77% below 40), educated (57% held a bachelor’s degree, 26%
held a graduate degree), and white (77%) or Asian (9%). Par-
ticipant median income was between $1K-$75K. Again, this

matches broader developer demographics [1, 2, 5, 88, 97, 117,
100, 3, 34, 8, 58, 81, 104, 63, 53, 111, 30, 66, 9, 17].

Factor Analysis
To determine whether the latent factor structure identified pre-
viously held with our new population, we repeated the PCA
procedure using a direct oblimin rotation. We observed three
items either no longer sufficiently loaded on their original
factor (i.e., B8’s loading on F2 reduced to 0.39) or switched
factors (i.e., B31 and B32 switched to load on F1). Because
these items did not behave reliably across multiple samples,
they were removed [84]. The remaining items demonstrated
internal consistency with a Cronbach’s a of 0.92 (sub-scale
as were 0.90 and 0.88, respectively). The 15 items and their
associated latent factors are given in Table 3 with their mean
responses, factor loadings, and item-total correlations within
their sub-scales. All the remaining items and their sub-scales
behaved appropriately according to the variability and reliabil-
ity metrics given in the prior section.

The remaining sub-scale items represented two distinct themes:
vulnerability identification and mitigation tasks and security
communication tasks. Again, the first factor accounts for
a majority of the scale’s variance (48.1%), and the security
communication sub-scale accounts for 11.1% of variance.

While EFA is useful for determining a possible underly-
ing factor structure, it is not able to assess that structure’s
goodness-of-fit onto the data with respect to other possible
structures [72]. Therefore, we also performed a Confirmatory
Factor Analysis (CFA), which confirms our prior analyses
have been conducted thoroughly and appropriately [54]. CFA
is a type of structural-equations analysis assessing rival mod-
els’ goodness-of-fit. Specifically, we compare a null model
with all items loading on separate factors, a single common
factor model, and our multi-factor model [62].

Our model demonstrated sufficient goodness-of-fit with its c2

(176.38) below the conservative limit of twice the its degrees
of freedom (DoF = 89) [21]. Using ANOVA comparisons, we
found our model fit better than the null (c2 = 1257.34, p <
0.001) and the single-factor model (c2 = 317.78, p < 0.001).

We also calculated several other goodness-of-fit metrics. First,
we determined the Comparative Fit Index (CFI), which mea-
sures the model’s fit relative to a more restrictive baseline
model [12], and the Tucker-Lewis Index (TLI), a more conser-
vative version of CFI, penalizing overly complex models [13].
Our model performed well in both (CFI = 0.92, TLI = 0.91),
with scores over the recommended 0.90 threshold [84]. Next,
we calculated the Standardized Root Mean Square Residual
(SRMR), an absolute measure of fit calculating the difference
between observed and predicted correlation [108]. Our model
demonstrated a sufficient SRMR of 0.054—a value below 0.08
is considered good fit [108]. Finally, we calculated the Root
Mean Square Error of Approximation (RMSEA), which mea-
sures how well the model reproduces item covariances, instead
of a baseline model comparison. Our model demonstrated a
“moderate” fit with a RMSEA of 0.082 [74].

Paper 625 Page 7

µµ ss ll# Secure Development Statement µ s l ITC
Vulnerability Identification and Mitigation (48.2% of variance explained, CR = 0.90)
C3 I can perform a threat risk analysis (e.g., likelihood of vulnerability, impact of exploitation, etc.) 2.99 1.15 0.74 0.79
C4 I can identify potential security threats to the system 3.34 0.99 0.76 0.79
C6 I can identify the common attack techniques used by attackers 3.30 1.15 0.66 0.77
C11 I can identify potential attack vectors in the environment the system interacts with (e.g., hardware, libraries, etc.) 2.91 1.10 0.67 0.75
C15 I can identify common vulnerabilities of a programming language 3.34 1.16 0.56 0.72
C39 I can design software to quarantine an attacker if a vulnerability is exploited 2.41 1.19 0.77 0.72
C44 I can mimic potential threats to the system 2.97 1.06 0.78 0.71
C47 I can evaluate security controls on the system’s interfaces/interactions with other software systems 3.08 1.02 0.72 0.72
C48 I can evaluate security controls on the system’s interfaces/interactions with hardware systems 2.88 1.17 0.78 0.73

Security Communication (11.1% of variance explained, CR = 0.87)
C50 I can communicate security assumptions and requirements to other developers on the team to ensure vulnerabilities 3.46 1.03 0.73 0.86

are not introduced due to misunderstandings
C51 I can communicate system details with other developers to ensure a thorough security review of the code 3.50 1.15 0.78 0.83
C53 I can discuss lessons learned from internal and external security incidents to ensure all development team members 3.64 1.11 0.65 0.72

are aware of potential threats
C55 I can effectively communicate to company leadership identified security issues and the cost/risk trade-off associated 3.51 1.18 0.60 0.75

with deciding whether or not to fix the problem
C57 I can communicate functionality needs to security experts to get recommendations for secure solutions (e.g., secure 3.60 1.12 0.73 0.83

libraries, languages, design patterns, and platforms)
C58 I know the appropriate point of contact/response team in my organization to contact if a vulnerability in production 3.90 1.14 0.91 0.73

code is identified

rr rr <<

rr

Vulnerability Identification Security
and Mitigation Communication

Convergent Validity
CPSES r = 0.528, p = 0.001 r = 0.627, p < 0.001

Discriminant Validity
SA-6 r = 0.249, p = 0.191 r = 0.300, p = 0.111
SeBIS1 r = 0.077, p = 0.622 r = 0.202, p = 0.298
SeBIS2 r = 0.370, p = 0.053 r = 0.176, p = 0.337
SeBIS3 r = 0.308, p = 0.096 r = 0.227, p = 0.224
SeBIS4 r = 0.145, p = 0.412 r = 0.122, p = 0.470
GES r = 0.363, p = 0.067 r = 0.375, p = 0.063

Other Psychometric Scales
NFC r = 0.464, p = 0.007 r = 0.183, p = 0.337
GDMS1 r = 0.013, p = 0.928 r = 0.129, p = 0.450
GDMS2 r = 0.276, p = 0.121 r = 0.178, p = 0.337
GDMS3 r = 0.148, p = 0.403 r =-0.075, p = 0.622
GDMS4 r = -0.075, p = 0.622 r = 0.139, p = 0.403
GDMS5 r = 0.271, p = 0.121 r = 0.307, p = 0.096

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Table 3: SSD-SES’s final questions and associated sub-scales. Responses were reported on the following scale: I am not confident
at all (1), I am slightly confident (2), I am somewhat confident (3), I am moderately confident (4), and I am absolutely confident (5).

Reliability
To measure the sub-scales’ internal consistency, we calculate
their composite reliability [43]. Composite reliability offers
a more accurate view of reliability over Cronbach’s a , which
makes several potentially inaccurate assumptions, such as con-
sidering factor loadings and error variances equal [93]. Instead,
composite reliability considers factor loadings from CFA, mea-
suring the latent factors’ reliability instead of their individual
items. We found both sub-scales’ composite reliability (0.90
and 0.87, respectively) exceeded the recommended threshold
of 0.60, indicating they are internally consistent [7].

Convergent Validity
Prior work suggests the ability to identify vulnerabilities is
influenced by participants’ understanding of the development
environment (e.g., the programming language and libraries
used) and level of security experience [112]. We next consider
how well our scale correlates with each of these concepts.

Secure-development self-efficacy is related to general de-
velopment self-efficacy. To measure respondents’ software
development skill, we utilized the Computer Programing Self-
Efficacy Scale (CPSES), a measure of respondents’ belief in
their ability to produce working programs meeting functional-
ity requirements [107]. CPSES scores were statistically signif-
icantly correlated with both SSD-SES sub-scales (r = 0.528,
p = .001 and r = 0.627, p < 0.001, respectively).

To measure security experience, we asked if participants had
received security training, if they had found a vulnerability

Table 4: Correlations between sub-scales, related scales, and
other psychometrics.

or had one found in their code, and how often they commu-
nicate with security experts. We estimated the relationship
of security experience and secure-development self-efficacy
with a poisson regression (appropriate for count data [19]).
For each sub-scale, our initial regression model included each
security experience response and the participants’ software
development experience as independent variables. To avoid
overfitting, we tested all combinations of the independent

Paper 625 Page 8

pp

pp

Log
Variable Value Estimate CI p-value
Found Vuln Multiple 1.08 [1, 1.17] 0.049

Once – – –
Never 0.82 [0.73, 0.92] < 0.001*

Expert Multiple 1.09 [1.01, 1.17] 0.024*
Coworker One – – –

Never 0.81 [0.74, 0.88] < 0.001*
*Significant effect – Base case (Log Estimate = 1, by definition)

(a) Vulnerability Identification and Mitigation
Log

Variable Value Estimate CI p-value
Found Vuln Multiple 1.08 [0.98, 1.18] 0.112

Once – – –
Never 0.86 [0.76, 0.98] 0.026*

Expert Multiple 1.06 [0.97, 1.15] 0.191*
Coworker One – – –

Never 0.87 [0.79, 0.95] 0.002*

Dev > 11 years 1.11 [1.02, 1.2] 0.017*
Experience 3-11 years – – –

0-2 years 0.91 [0.79, 1.03] 0.143
*Significant effect – Base case (Log Estimate = 1, by definition)

(b) Security Communication

CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

variables, selecting the model with minimum Bayesian Infor-
mation Criteria [91], as is standard.

Table 5a shows the vulnerability identification and mitigation
regression model and Table 5b gives the security communica-
tion regression model. Base cases were selected to represent
the medium experience level to allow clearer comparisons.
Variable levels are presented in decreasing experience order.
The log estimate (LE) column gives the variable’s observed ef-
fect. For categorical variables, the LE is the expected relative
change in SSD-SES sub-scale score when moving to the given
variable level from the base case. The LE for each base case
is definitionally 1.0. We also give the 95% confidence interval
for the log estimate (CI) and the associated p-value.

Secure-development self-efficacy increases with security
experience. As expected, both SSD-SES sub-scale scores
increase with security experience. Specifically, participants
who had never found a vulnerability (LE = 0.82, p < 0.001)
or never worked with a security expert (OR = 0.81, p < 0.001)
had less belief in their ability to find and mitigate security
vulnerabilities. Further, those who have found multiple vulner-
abilities (LE = 1.08, p = 0.49) or worked with multiple security
experts (LE = 1.09, p = 0.024) had even higher self-efficacy.

We observed nearly the same significant trends in the security
communication sub-scale. However, more than one experience
finding a vulnerability did not show a significant increase over
a single vulnerability identification experience (LE = 1.08, p
= 0.112). Additionally, we found experienced developers (>
11 years experience) were more likely to believe they could
effectively discuss security (LE = 1.11, p = 0.017).

Discriminant Validity
To confirm that SSD-SES in fact measures a new construct,
we compared it to two end-user security behavior scales and a
general self-efficacy scale. First, we tested whether either sub-
scale correlated with the Security Intention Behavior Scale
(SeBIS) [38], which measures end-user intention to perform
a variety of security behaviors, and the End-User Security
Attitudes (SA-6) scale [41], which measures end-user attitudes
toward common security behaviors. Correlations between
each of these scales and SSD-SES’s two sub-scales are given
in Table 4. We did not observe any significant correlation
between either scale and SSD-SES.

Next, we tested the correlation between SSD-SES and the
General Self-Efficacy Scale (GSE), which assesses the “belief
that one can perform a novel or difficult tasks, or cope with
adversity—in various domains of human functioning [99].”
This comparison tested whether SSD-SES simply measured
respondents’ belief in themselves as opposed to a domain-
specific belief. Again, we did not observe any significant
correlation between GSE and SSD-SES.

The lack of significant correlations with SeBIS, SA-6, or GSE
indicates SSD-SES measures a distinct underlying construct.

Relationship with Psychological Constructs
Finally, we included two well-established psychometric mea-
sures to understand how participants psychological charac-

Table 5: Summary of regressions estimating relationship be-
tween each sub-scale and security experiences.

teristic relate to SSD-SES scores: the Need for Cognition
(NFC) scale and the General Decision-Making Scale (GDMS).
Correlations between NFC and GDMS and SSD-SES’s two
sub-scales are given in Table 4.

Curious developers believed more in their ability to iden-
tify and mitigate vulnerabilities. NFC measures intellec-
tual curiosity (i.e., the tendency to engage in and enjoy
thinking) [18]. We found that NFC significantly correlated
with the vulnerability identification and mitigation sub-scale
(r = 0.464, p = 0.007), but not the security communication
sub-scale (r = 0.183, p = 0.337). This suggests developers
who are more curious are more likely to feel confident in
their ability to search for, identify, and mitigate vulnerabilities.
This finding corroborates prior work, which observed develop-
ers who were more open or curious were more likely to find
vulnerabilities in secure-development puzzles [88].

We also compared SSD-SES to GDMS, which assesses how
individuals approach decisions with respect to five decision
styles. As secure development requires complex planning and
decision-making, our goal was to test whether any style corre-
lated with better secure-development self-efficacy. However,
we did not observe any statistically significant correlation.

DISCUSSION AND LIMITATIONS
Our final 15-item scale measures two distinct underlying fac-
tors: vulnerability identification and mitigation as well as secu-
rity communication. Through our scale development process
we observed SSD-SES demonstrate construct validity, internal
consistency and reliability, goodness-of-fit, and convergent

Paper 625 Page 9

 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

and discriminant validity. We found SSD-SES correlated with
general programming self-efficacy, security experience, and in-
tellectual curiosity, as expected. In this section, we discuss our
study’s limitations and the need for future work as well as how
SSD-SES can be employed by researchers and practitioners.

Limitations
Software developer recruitment is challenging [81], requiring
significant effort to reach the sample used in this study. While
we sought to recruit a diverse sample with respect to devel-
opment experience and we observed similar demographics to
the global developer population, it is possible our recruiting
methods do not fully represent the broader population. Future
work should consider methods to recruit participants not active
in development organizations, online forums, or freelancing
and research recruitment platforms.

In the final round of recruitment, we performed quota sampling
based on participants’ years of experience. We also randomly
assigned two of six external scales to each participant, without
consideration for quota sampling. As a result, the experience
distributions for these external scales were not entirely con-
sistent: fewer than expected participants in the inexperienced
group were assigned CPSES (2% as opposed to 10% of the to-
tal sample) and fewer of the experienced group were assigned
GES (14% as opposed to 25%). The supplementary materials
give further details. We do not expect this fairly small incon-
sistency to have a large effect on the results, particularly as we
observed almost no significant effects related to experience

While we believe our approach to item generation and question
trimming thoroughly reviews secure development concepts,
we do not argue our scale covers all possible factors. Rather,
our items and factors produce meaningful and reliable results
and pass relevant validity checks. It is possible some fac-
tors are not included. We leave future work to investigate
additional factors, expanding on our current findings.

Though we found SSD-SES reliable and valid according to
several measures, additional testing is necessary. First, as
we have only shown correlation between factors and other
psychometric measures, we cannot make assessments of causal
relationships; as such, we cannot yet create a predictive model
to target interventions at specific self-efficacy components.

Most importantly, further work is necessary to determine if
SSD-SES measures actual secure development skill improve-
ment. In future work, we plan to administer SSD-SES as a pre-
and post-test for a hands-on security training course, allowing
us to assess improvements and correlate with course grades.

Finally, technology (and accordingly, secure development
practice) changes over time. We designed SSD-SES to de-
scribe general principles we believe should remain relatively
static, but as with any scale SSD-SES should be occasionally
revisited and refreshed as needed.

Using SSD-SES
Our creation and validation of a lightweight secure software
development self-efficacy scale presents a valuable resource
for a variety of purposes. Below, we suggest possible uses.

SSD-SES for testing educational interventions. The initial
impetus for creating SSD-SES was to measure the value of
an educational intervention, such as a capture-the-flag exer-
cise [27]. By applying SSD-SES before and after adminis-
tering training, a researcher can observe changes in secure-
development self-efficacy, providing feedback for the improve-
ment and comparison of interventions.

To emphasize this benefit, we note that we did not observe a
significant relationship between SSD-SES and participants’
self-reported security training in our regression. While we
would expect training to improve self-efficacy, our results
suggest in practice, it does not consistently do so. Therefore,
future work in security education is necessary to identify the
right training to produce improved outcomes.

SSD-SES as a covariate. SSD-SES also provides a useful
option for software-developer studies where the researcher
may want to control for participants’ secure-development skill.
For example, in a usability study of security APIs, it would
be beneficial to include SSD-SES as a covariate to ensure
differences in outcomes between participants occur because
of changes to the API and not differences in security skill.

SSD-SES for measuring security culture. Finally, because
SSD-SES is a lightweight measure, it can be administered
broadly to capture an organization’s “security culture”. This
would be useful both for researchers comparing different or-
ganizations or measuring change over time, but also for prac-
titioners looking to diagnose whether and what actions are
necessary for organizational improvement.

ACKNOWLEDGMENTS
We thank the anonymous reviewers who provided helpful
comments on drafts of this paper, the security experts who
helped us define the domain, and all the organizations that
contributed to recruitment for this study. This project was
supported by NSF grant CNS-5-232772.

REFERENCES
[1] Yasemin Acar, Michael Backes, Sascha Fahl,

Simson L. Garfinkel, Doowon Kim, Michelle L.
Mazurek, and Christian Stransky. 2017. Comparing the
Usability of Cryptographic APIs. In Proceedings of the
38th IEEE Symposium on Security and Privacy (SP
’17). IEEE Computer Society, 154–171. http://dblp.
uni-trier.de/db/conf/sp/sp2017.html#Acar0FGKMS17

[2] Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek,
and C. Stransky. 2016. You Get Where You’re Looking
for: The Impact of Information Sources on Code
Security. In Proceedings of the 37th IEEE Symposium
on Security and Privacy (SP ’16). IEEE Computer
Society, Los Alamitos, CA, USA, 289–305. DOI:
http://dx.doi.org/10.1109/SP.2016.25

[3] Yasemin Acar, Christian Stransky, Dominik Wermke,
Michelle L. Mazurek, and Sascha Fahl. 2017. Security
Developer Studies with GitHub Users: Exploring a
Convenience Sample. In Proceedings of the 13th

Paper 625 Page 10

http://dblp.uni-trier.de/db/conf/sp/sp2017.html#Acar0FGKMS17
http://dblp.uni-trier.de/db/conf/sp/sp2017.html#Acar0FGKMS17
http://dx.doi.org/10.1109/SP.2016.25

 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Symposium on Usable Privacy and Security (SOUPS
’17). USENIX Association, Santa Clara, CA, 81–95.
https://www.usenix.org/conference/soups2017/
technical-sessions/presentation/acar

[4] Willem A. Arrindell and Jan van der Ende. 1985. An
Empirical Test of the Utility of the
Observations-To-Variables Ratio in Factor and
Components Analysis. Applied Psychological
Measurement 9, 2 (1985), 165–178. DOI:
http://dx.doi.org/10.1177/014662168500900205

[5] Hala Assal and Sonia Chiasson. 2019. ’Think Secure
from the Beginning’: A Survey with Software
Developers. In Proceedings of the 37th CHI
Conference on Human Factors in Computing Systems
(CHI ’19). ACM, New York, NY, USA, Article 289, 13
pages. DOI:
http://dx.doi.org/10.1145/3290605.3300519

[6] Andrew R Baggaley. 1983. Deciding on the ratio of
number of subjects to number of variables in factor
analysis. Multivariate Experimental Clinical Research
(1983).

[7] Richard P. Bagozzi and Youjae Yi. 1988. On the
evaluation of structural equation models. Journal of the
Academy of Marketing Science 16, 1 (01 Mar 1988),
74–94. DOI:http://dx.doi.org/10.1007/BF02723327

[8] Rebecca Balebako, Abigail Marsh, Jialiu Lin, Jason I.
Hong, and Lorrie Cranor. 2014. The Privacy and
Security Behaviors of Smartphone App Developers. (2
2014). DOI:http://dx.doi.org/10.1184/R1/6470528.v1

[9] Sebastian Baltes and Stephan Diehl. 2018. Towards a
Theory of Software Development Expertise. In
Proceedings of the 26th ACM Joint Meeting on
European Software Engineering Conference and
Symposium on the Foundations of Software
Engineering (ESEC/FSE 2018). ACM, New York, NY,
USA, 187–200. DOI:
http://dx.doi.org/10.1145/3236024.3236061

[10] Albert Bandura. 1993. Perceived Self-Efficacy in
Cognitive Development and Functioning. Educational
Psychologist 28, 2 (1993), 117–148. DOI:
http://dx.doi.org/10.1207/s15326985ep2802_3

[11] Paul T Barrett and Paul Kline. 1981. The observation
to variable ratio in factor analysis. Personality Study &
Group Behaviour (1981).

[12] Peter M Bentler. 1990. Comparative fit indexes in
structural models. Psychological bulletin 107, 2 (1990),
238.

[13] Peter M Bentler and Douglas G Bonett. 1980.
Significance tests and goodness of fit in the analysis of
covariance structures. Psychological bulletin 88, 3
(1980), 588.

[14] Kevin Bock, George Hughey, and Dave Levin. 2018.
King of the Hill: A Novel Cybersecurity Competition

for Teaching Penetration Testing. In Proceedings of the
3rd USENIX Workshop on Advances in Security
Education (ASE ’18). USENIX Association, Baltimore,
MD. https:
//www.usenix.org/conference/ase18/presentation/bock

[15] Kenneth A Bollen. 2014. Structural equations with
latent variables. Vol. 210. John Wiley & Sons.

[16] Richard W Brislin. 1980. Cross-cultural research
methods. In Environment and culture. Springer, 47–82.

[17] Jean-Marie Burkhardt, Françoise Détienne, and Susan
Wiedenbeck. 2002. Object-Oriented Program
Comprehension: Effect of Expertise, Task and Phase.
Empirical Software Engineering 7, 2 (01 Jun 2002),
115–156. DOI:
http://dx.doi.org/10.1023/A:1015297914742

[18] John T. Cacioppo, Richard E. Petty, and Chuan Feng
Kao. 1984. The Efficient Assessment of Need for
Cognition. Journal of Personality Assessment 48, 3
(1984), 306–307. DOI:
http://dx.doi.org/10.1207/s15327752jpa4803_13
PMID: 16367530.

[19] A Colin Cameron and Pravin K Trivedi. 2013.
Regression analysis of count data. Vol. 53. Cambridge
university press.

[20] Susan G. Campbell, Polly O’Rourke, and Michael F.
Bunting. 2015. Identifying Dimensions of Cyber
Aptitude: The Design of the Cyber Aptitude and Talent
Assessment. Proceedings of the Human Factors and
Ergonomics Society Annual Meeting 59, 1 (2015),
721–725. DOI:
http://dx.doi.org/10.1177/1541931215591170

[21] Edward G Carmines and John McIver. 1981.
Analyzing models with unobserved variables. Social
measurement: Current issues 80 (1981).

[22] Raymond B. Cattell. 1952. Factor analysis: An
introduction and manual for the psychologist and
social scientist. Harper & Row, New York.

[23] Center for Cyber Safety and Education. 2017. Global
Information Security Workforce Study. Technical
Report. Center for Cyber Safety and Education,
Clearwater, FL. https://iamcybersafe.org/wp-content/
uploads/2017/07/N-America-GISWS-Report.pdf

[24] Barbara A. Cerny and Henry F. Kaiser. 1977. A Study
Of A Measure Of Sampling Adequacy For
Factor-Analytic Correlation Matrices. Multivariate
Behavioral Research 12, 1 (1977), 43–47. DOI:
http://dx.doi.org/10.1207/s15327906mbr1201_3 PMID:
26804143.

[25] Pravir Chandra. 2017. Software Assurance Maturity
Model. Technical Report. Open Web Application
Security Project.

Paper 625 Page 11

https://www.usenix.org/conference/soups2017/technical-sessions/presentation/acar
https://www.usenix.org/conference/soups2017/technical-sessions/presentation/acar
http://dx.doi.org/10.1177/014662168500900205
http://dx.doi.org/10.1145/3290605.3300519
http://dx.doi.org/10.1007/BF02723327
http://dx.doi.org/10.1184/R1/6470528.v1
http://dx.doi.org/10.1145/3236024.3236061
http://dx.doi.org/10.1207/s15326985ep2802_3
https://www.usenix.org/conference/ase18/presentation/bock
https://www.usenix.org/conference/ase18/presentation/bock
http://dx.doi.org/10.1023/A:1015297914742
http://dx.doi.org/10.1207/s15327752jpa4803_13
http://dx.doi.org/10.1177/1541931215591170
https://iamcybersafe.org/wp-content/uploads/2017/07/N-America-GISWS-Report.pdf
https://iamcybersafe.org/wp-content/uploads/2017/07/N-America-GISWS-Report.pdf
http://dx.doi.org/10.1207/s15327906mbr1201_3

 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

[26] Wu chang Feng, Robert Liebman, Lois Delcambre,
Michael Lupro, Tim Sheard, Scott Britell, and Gerald
Recktenwald. 2017. CyberPDX: A Camp for
Broadening Participation in Cybersecurity. In
Proceedings of the 2nd USENIX Workshop on
Advances in Security Education (ASE ’17). USENIX
Association, Vancouver, BC. https://www.usenix.org/
conference/ase17/workshop-program/presentation/feng

[27] Peter Chapman, Jonathan Burket, and David Brumley.
2014. PicoCTF: A Game-Based Computer Security
Competition for High School Students. In Proceedings
of the 1st USENIX Summit on Gaming, Games, and
Gamification in Security Education (3GSE ’14).
USENIX Association, San Diego, CA.
http://www.usenix.org/conference/3gse14/
summit-program/presentation/chapman

[28] Kevin Chung and Julian Cohen. 2014. Learning
Obstacles in the Capture The Flag Model. In
Proceedings of the 1st USENIX Summit on Gaming,
Games, and Gamification in Security Education (3GSE
’14). USENIX Association, San Diego, CA.
https://www.usenix.org/conference/3gse14/
summit-program/presentation/chung

[29] Jacob Cohen. 2013. Statistical power analysis for the
behavioral sciences. Routledge.

[30] CollabNet. 2019. 13th Annual State of Agile Report.
https://www.stateofagile.com/
#ufh-i-521251909-13th-annual-state-of-agile-report/
473508. (2019).

[31] Andrew L Comrey. 1973. A first course in factor
analysis. Academic Press, New York.

[32] Andrew L Comrey. 1978. Common methodological
problems in factor analytic studies. Journal of
consulting and clinical psychology 46, 4 (1978), 648.

[33] Douglas P Crowne and David Marlowe. 1960. A new
scale of social desirability independent of
psychopathology. Journal of consulting psychology 24,
4 (1960), 349.

[34] Erik Derr, Sven Bugiel, Sascha Fahl, Yasemin Acar,
and Michael Backes. 2017. Keep Me Updated: An
Empirical Study of Third-Party Library Updatability
on Android. In Proceedings of the 24th Conference on
Computer and Communications Security (CCS ’17).
ACM, New York, NY, USA, 2187–2200. DOI:
http://dx.doi.org/10.1145/3133956.3134059

[35] Constanze Dietrich, Katharina Krombholz, Kevin
Borgolte, and Tobias Fiebig. 2018. Investigating
System Operators’ Perspective on Security
Misconfigurations. In Proceedings of the 25th ACM
Conference on Computer and Communications
Security (CCS ’18). ACM.

[36] Wenliang Du. 2011. SEED: hands-on lab exercises for
computer security education. IEEE Security & Privacy
9, 5 (2011), 70–73.

[37] C. Eagle. 2013. Computer Security Competitions:
Expanding Educational Outcomes. IEEE Security
Privacy 11, 4 (July 2013), 69–71. DOI:
http://dx.doi.org/10.1109/MSP.2013.83

[38] Serge Egelman and Eyal Peer. 2015. Scaling the
Security Wall: Developing a Security Behavior
Intentions Scale (SeBIS). In Proceedings of the 33rd
CHI Conference on Human Factors in Computing
Systems (CHI ’15). ACM, New York, NY, USA,
2873–2882. DOI:
http://dx.doi.org/10.1145/2702123.2702249

[39] Brian S Everitt and Anders Skrondal. 2010. The
Cambridge dictionary of statistics. New York
University.

[40] Leandre R Fabrigar, Duane T Wegener, Robert C
MacCallum, and Erin J Strahan. 1999. Evaluating the
use of exploratory factor analysis in psychological
research. Psychological methods 4, 3 (1999), 272.

[41] Cori Faklaris, Laura A. Dabbish, and Jason I. Hong.
2019. A Self-Report Measure of End-User Security
Attitudes (SA-6). In Proceedings of the 5th Symposium
on Usable Privacy and Security (SOUPS ’19).
USENIX Association, Santa Clara, CA.
https://www.usenix.org/conference/soups2019/
presentation/faklaris

[42] The Association for Computing Machinery. 2019.
Chapters. https://acm.org/chapters. (2019).

[43] Claes Fornell and David F. Larcker. 1981. Evaluating
Structural Equation Models with Unobservable
Variables and Measurement Error. Journal of
Marketing Research 18, 1 (1981), 39–50. DOI:
http://dx.doi.org/10.1177/002224378101800104

[44] Gordon Fraser, Alessio Gambi, Marvin Kreis, and
José Miguel Rojas. 2019. Gamifying a Software
Testing Course with Code Defenders. In Proceedings
of the 50th ACM Technical Symposium on Computer
Science Education (SIGCSE ’19). ACM, New York,
NY, USA, 571–577. DOI:
http://dx.doi.org/10.1145/3287324.3287471

[45] Richard L. Gorsuch. 1978. Factor Analysis (2nd ed.).
Erlbaum, Hillsdale, NJ.

[46] Richard L. Gorsuch. 1988. Exploratory Factor
Analysis. Springer US, Boston, MA, 231–258. DOI:
http://dx.doi.org/10.1007/978-1-4613-0893-5_6

[47] Edward Guadagnoli and Wayne F Velicer. 1988.
Relation of sample size to the stability of component
patterns. Psychological bulletin 103, 2 (1988), 265.

[48] Joy Paul Guilford. 1954. Psychometric methods.
(1954).

[49] Joseph F Hair, William C Black, Barry J Babin,
Rolph E Anderson, Ronald L Tatham, and others. 2006.
Multivariate data analysis. (2006).

Paper 625 Page 12

https://www.usenix.org/conference/ase17/workshop-program/presentation/feng
https://www.usenix.org/conference/ase17/workshop-program/presentation/feng
http://www.usenix.org/conference/3gse14/summit-program/presentation/chapman
http://www.usenix.org/conference/3gse14/summit-program/presentation/chapman
https://www.usenix.org/conference/3gse14/summit-program/presentation/chung
https://www.usenix.org/conference/3gse14/summit-program/presentation/chung
https://www.stateofagile.com/#ufh-i-521251909-13th-annual-state-of-agile-report/473508
https://www.stateofagile.com/#ufh-i-521251909-13th-annual-state-of-agile-report/473508
https://www.stateofagile.com/#ufh-i-521251909-13th-annual-state-of-agile-report/473508
http://dx.doi.org/10.1145/3133956.3134059
http://dx.doi.org/10.1109/MSP.2013.83
http://dx.doi.org/10.1145/2702123.2702249
https://www.usenix.org/conference/soups2019/presentation/faklaris
https://www.usenix.org/conference/soups2019/presentation/faklaris
https://acm.org/chapters
http://dx.doi.org/10.1177/002224378101800104
http://dx.doi.org/10.1145/3287324.3287471
http://dx.doi.org/10.1007/978-1-4613-0893-5_6

 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

[50] Julie M. Haney and Wayne G. Lutters. 2018. “It’s
Scary. . . It’s Confusing. . . It’s Dull”: How
Cybersecurity Advocates Overcome Negative
Perceptions of Security. In Proceedings of the 14th
Symposium on Usable Privacy and Security (SOUPS
’18). USENIX Association, Baltimore, MD, 411–425.
https://www.usenix.org/conference/soups2018/
presentation/haney-perceptions

[51] Julie M. Haney, Mary Theofanos, Yasemin Acar, and
Sandra Spickard Prettyman. 2018. “We make it a big
deal in the company”: Security Mindsets in
Organizations that Develop Cryptographic Products. In
Proceedings of the 14th Symposium on Usable Privacy
and Security (SOUPS ’18). USENIX Association,
Baltimore, MD, 357–373. https://www.usenix.org/
conference/soups2018/presentation/haney-mindsets

[52] Mariana Hentea, Harpal S Dhillon, and Manpreet
Dhillon. 2006. Towards changes in information
security education. Journal of Information Technology
Education: Research 5 (2006), 221–233.

[53] Michael Hilton, Nicholas Nelson, Timothy Tunnell,
Darko Marinov, and Danny Dig. 2017. Trade-offs in
Continuous Integration: Assurance, Security, and
Flexibility. In Proceedings of the 11th Joint Meeting on
Foundations of Software Engineering (ESEC/FSE ’17).
ACM, New York, NY, USA, 197–207. DOI:
http://dx.doi.org/10.1145/3106237.3106270

[54] Timothy R. Hinkin, J. Bruce Tracey, and Cathy A. Enz.
1997. Scale Construction: Developing Reliable and
Valid Measurement Instruments. Journal of Hospitality
& Tourism Research 21, 1 (1997), 100–120. DOI:
http://dx.doi.org/10.1177/109634809702100108

[55] Sture Holm. 1979. A Simple Sequentially Rejective
Multiple Test Procedure. Scandinavian Journal of
Statistics 6, 2 (1979), 65–70.
http://www.jstor.org/stable/4615733

[56] John L. Horn. 1965. A rationale and test for the
number of factors in factor analysis. Psychometrika 30,
2 (01 Jun 1965), 179–185. DOI:
http://dx.doi.org/10.1007/BF02289447

[57] Gary Hsieh and Rafal Kocielnik. 2016. You Get Who
You Pay for: The Impact of Incentives on Participation
Bias. In Proceedings of the 19th ACM Conference on
Computer-Supported Cooperative Work & Social
Computing (CSCW ’16). ACM, New York, NY, USA,
823–835. DOI:
http://dx.doi.org/10.1145/2818048.2819936

[58] Luigi Lo Iacono and Peter Leo Gorski. 2017. I Do and
I Understand. Not Yet True for Security APIs. So Sad.
In Proceedings of the 2nd European Workshop on
Usable Security (EuroUSEC ’17). Internet Society.
https://doi.org/10.14722/eurousec

[59] Ge Jin, Manghui Tu, Tae-Hoon Kim, Justin Heffron,
and Jonathan White. 2018. Game Based Cybersecurity
Training for High School Students. In Proceedings of
the 49th ACM Technical Symposium on Computer

Science Education (SIGCSE ’18). ACM, New York,
NY, USA, 68–73. DOI:
http://dx.doi.org/10.1145/3159450.3159591

[60] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill,
and Robert Bowdidge. 2013. Why Don’t Software
Developers Use Static Analysis Tools to Find Bugs?. In
Proceedings of the 35th International Conference on
Software Engineering (ICSE ’13). IEEE Press,
672–681.

[61] Melanie Jones. 2019. Why cybersecurity education
matters. https://www.itproportal.com/features/
why-cybersecurity-education-matters/. (2019).

[62] Karl G Jöreskog and Dag Sörbom. 1993. LISREL 8:
Structural equation modeling with the SIMPLIS
command language. Scientific Software International.

[63] Lindsay Kolowich. 2017. The Demographics of
Developers Around the World. https://blog.hubspot.
com/marketing/developers-demographic-survey. (2017).

[64] Stefan Krüger, Johannes Späth, Karim Ali, Eric
Bodden, and Mira Mezini. 2017. CrySL: Validating
Correct Usage of Cryptographic APIs. CoRR
abs/1710.00564 (2017).
http://arxiv.org/abs/1710.00564

[65] Joseph T. Kunce, Daniel W. Cook, and Douglas E.
Miller. 1975. Random Variables and Correlational
Overkill. Educational and Psychological Measurement
35, 3 (1975), 529–534. DOI:
http://dx.doi.org/10.1177/001316447503500301

[66] Thomas D. LaToza and Brad A. Myers. 2010.
Developers Ask Reachability Questions. In
Proceedings of the 32nd International Conference on
Software Engineering (ICSE ’10). ACM, New York,
NY, USA, 185–194. DOI:
http://dx.doi.org/10.1145/1806799.1806829

[67] Ákos Lédeczi, MiklÓs MarÓti, Hamid Zare, Bernard
Yett, Nicole Hutchins, Brian Broll, Péter Völgyesi,
Michael B. Smith, Timothy Darrah, Mary Metelko,
Xenofon Koutsoukos, and Gautam Biswas. 2019.
Teaching Cybersecurity with Networked Robots. In
Proceedings of the 50th ACM Technical Symposium on
Computer Science Education (SIGCSE ’19). ACM,
New York, NY, USA, 885–891. DOI:
http://dx.doi.org/10.1145/3287324.3287450

[68] Timothy C Lethbridge, Jorge Diaz-Herrera, Richard
Jr J LeBlanc, and J Barrie Thompson. 2007. Improving
software practice through education: Challenges and
future trends. In Future of Software Engineering. IEEE
Computer Society, 12–28.

[69] Paul Luo Li, Andrew J. Ko, and Jiamin Zhu. 2015.
What Makes a Great Software Engineer?. In
Proceedings of the 37th International Conference on
Software Engineering (ICSE ’15). IEEE Press,
Piscataway, NJ, USA, 700–710.
http://dl.acm.org/citation.cfm?id=2818754.2818839

Paper 625 Page 13

https://www.usenix.org/conference/soups2018/presentation/haney-perceptions
https://www.usenix.org/conference/soups2018/presentation/haney-perceptions
https://www.usenix.org/conference/soups2018/presentation/haney-mindsets
https://www.usenix.org/conference/soups2018/presentation/haney-mindsets
http://dx.doi.org/10.1145/3106237.3106270
http://dx.doi.org/10.1177/109634809702100108
http://www.jstor.org/stable/4615733
http://dx.doi.org/10.1007/BF02289447
http://dx.doi.org/10.1145/2818048.2819936
https://doi.org/10.14722/eurousec
http://dx.doi.org/10.1145/3159450.3159591
https://www.itproportal.com/features/why-cybersecurity-education-matters/
https://www.itproportal.com/features/why-cybersecurity-education-matters/
https://blog.hubspot.com/marketing/developers-demographic-survey
https://blog.hubspot.com/marketing/developers-demographic-survey
http://arxiv.org/abs/1710.00564
http://dx.doi.org/10.1177/001316447503500301
http://dx.doi.org/10.1145/1806799.1806829
http://dx.doi.org/10.1145/3287324.3287450
http://dl.acm.org/citation.cfm?id=2818754.2818839

 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

[70] Richard Harold Lindeman. 1980. Introduction to
bivariate and multivariate analysis. Technical Report.

[71] LinkedIn. 2019. LinkedIn. https://linkedin.com/.
(2019).

[72] J Scott Long. 1983. Confirmatory factor analysis: A
preface to LISREL. Vol. 33. Sage Publications.

[73] Robert Loo. 1983. Caveat on Sample Sizes in Factor
Analysis. Perceptual and Motor Skills 56, 2 (1983),
371–374. DOI:
http://dx.doi.org/10.2466/pms.1983.56.2.371

[74] Robert C MacCallum, Michael W Browne, and
Hazuki M Sugawara. 1996. Power analysis and
determination of sample size for covariance structure
modeling. Psychological methods 1, 2 (1996), 130.

[75] LA Maruscuilo and JR Levin. 1983. Multivariate
statistics in the social sciences. Books/Cole, Monterrey,
California (1983).

[76] Gary McGraw, Sammy Migues, and Jacob West. 2018.
Building Security in Maturity Model. Technical Report.
Open Web Application Security Project.

[77] Robert K McKinley, Terjinder Manku-Scott, Adrian M
Hastings, David P French, and Richard Baker. 1997.
Reliability and validity of a new measure of patient
satisfaction with out of hours primary medical care in
the united kingdom: development of a patient
questionnaire. BMJ 314, 7075 (1997), 193. DOI:
http://dx.doi.org/10.1136/bmj.314.7075.193

[78] Adam W Meade and S Bartholomew Craig. 2012.
Identifying careless responses in survey data.
Psychological methods 17, 3 (2012), 437.

[79] Meetup. 2019. We are what we do | Meetup.
https://www.meetup.com/. (2019).

[80] Microsoft. 2019. Microsoft Security Development
Lifecycle Practices. https://www.microsoft.com/en-us/
securityengineering/sdl/practices. (2019).

[81] Alena Naiakshina, Anastasia Danilova, Eva Gerlitz,
Emanuel von Zezschwitz, and Matthew Smith. 2019.
“If You Want, I Can Store the Encrypted Password”: A
Password-Storage Field Study with Freelance
Developers. In Proceedings of the 37th CHI
Conference on Human Factors in Computing Systems
(CHI ’19). ACM, New York, NY, USA, Article 140, 12
pages. DOI:
http://dx.doi.org/10.1145/3290605.3300370

[82] Alena Naiakshina, Anastasia Danilova, Christian
Tiefenau, Marco Herzog, Sergej Dechand, and
Matthew Smith. 2017. Why Do Developers Get
Password Storage Wrong?: A Qualitative Usability
Study. In Proceedings of the 24th ACM SIGSAC
Conference on Computer and Communications
Security (CCS ’17). ACM, New York, NY, USA,
311–328. DOI:
http://dx.doi.org/10.1145/3133956.3134082

[83] Alena Naiakshina, Anastasia Danilova, Christian
Tiefenau, and Matthew Smith. 2018. Deception Task
Design in Developer Password Studies: Exploring a
Student Sample. In Proceedings of the 14th Symposium
on Usable Privacy and Security (SOUPS ’18).
USENIX Association, Baltimore, MD, 297–313.
https://www.usenix.org/conference/soups2018/
presentation/naiakshina

[84] Richard G Netemeyer, William O Bearden, and
Subhash Sharma. 2003. Scaling procedures: Issues and
applications. Sage Publications.

[85] William Newhouse, Stephanie Keith, Benjamin
Scribner, and Greg Witte. 2017. NIST Special
Publication 800-181, The NICE Cybersecurity
Workforce Framework. Technical Report. National
Institute of Standards and Technology.

[86] Jum C Nunnally. 1994. Psychometric theory (3rd ed.).
Tata McGraw-Hill Education.

[87] National Institute of Standards and Technology. 2019.
Software and Supply Chain Assurance Forum - Cyber
Supply Chain Risk Management | CSRC. https://csrc.
nist.gov/Projects/Supply-Chain-Risk-Management/SSCA.
(2019).

[88] Daniela Seabra Oliveira, Tian Lin, Muhammad Sajidur
Rahman, Rad Akefirad, Donovan Ellis, Eliany Perez,
Rahul Bobhate, Lois A. DeLong, Justin Cappos, and
Yuriy Brun. 2018. API Blindspots: Why Experienced
Developers Write Vulnerable Code. In Proceedings of
the 14th Symposium on Usable Privacy and Security
(SOUPS ’18). USENIX Association, Baltimore, MD,
315–328. https://www.usenix.org/conference/
soups2018/presentation/oliveira

[89] Eyal Peer, Laura Brandimarte, Sonam Samat, and
Alessandro Acquisti. 2017. Beyond the Turk:
Alternative platforms for crowdsourcing behavioral
research. Journal of Experimental Social Psychology
70 (2017), 153 – 163. DOI:http://dx.doi.org/https:
//doi.org/10.1016/j.jesp.2017.01.006

[90] K. Qian, D. Lo, H. Shahriar, L. Li, F. Wu, and P.
Bhattacharya. 2017. Learning database security with
hands-on mobile labs. In 2017 IEEE Frontiers in
Education Conference (FIE). 1–6. DOI:
http://dx.doi.org/10.1109/FIE.2017.8190716

[91] Adrian E Raftery. 1995. Bayesian model selection in
social research. Sociological methodology (1995),
111–163.

[92] Gilles Raîche, Theodore A. Walls, David Magis,
Martin Riopel, and Jean-Guy Blais. 2013.
Non-Graphical Solutions for Cattell’s Scree Test.
Methodology 9, 1 (2013), 23–29. DOI:
http://dx.doi.org/10.1027/1614-2241/a000051

Paper 625 Page 14

https://linkedin.com/
http://dx.doi.org/10.2466/pms.1983.56.2.371
http://dx.doi.org/10.1136/bmj.314.7075.193
https://www.meetup.com/
https://www.microsoft.com/en-us/securityengineering/sdl/practices
https://www.microsoft.com/en-us/securityengineering/sdl/practices
http://dx.doi.org/10.1145/3290605.3300370
http://dx.doi.org/10.1145/3133956.3134082
https://www.usenix.org/conference/soups2018/presentation/naiakshina
https://www.usenix.org/conference/soups2018/presentation/naiakshina
https://csrc.nist.gov/Projects/Supply-Chain-Risk-Management/SSCA
https://csrc.nist.gov/Projects/Supply-Chain-Risk-Management/SSCA
https://www.usenix.org/conference/soups2018/presentation/oliveira
https://www.usenix.org/conference/soups2018/presentation/oliveira
http://dx.doi.org/https://doi.org/10.1016/j.jesp.2017.01.006
http://dx.doi.org/https://doi.org/10.1016/j.jesp.2017.01.006
http://dx.doi.org/10.1109/FIE.2017.8190716
http://dx.doi.org/10.1027/1614-2241/a000051

 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

[93] Tenko Raykov. 1997. Scale Reliability, Cronbach’s
Coefficient Alpha, and Violations of Essential
Tau-Equivalence with Fixed Congeneric Components.
Multivariate Behavioral Research 32, 4 (1997),
329–353. DOI:
http://dx.doi.org/10.1207/s15327906mbr3204_2 PMID:
26777071.

[94] Tony Rice, Josh Brown-White, Tania Skinner, Nick
Ozmore, Nazira Carlage, Wendy Poland, Eric
Heitzman, and Danny Dhillon. 2018. Fundamental
Practices for Secure Software Development. Technical
Report. Software Assurance Forum for Excellence in
Code.

[95] John P Robinson, Phillip R Shaver, and Lawrence S
Wrightsman. 1991. Criteria for scale selection and
evaluation. Measures of personality and social
psychological attitudes 1, 3 (1991), 1–16.

[96] Dale C. Rowe, Barry M. Lunt, and Joseph J. Ekstrom.
2011. The Role of Cyber-security in Information
Technology Education. In Proceedings of the 12th
Conference on Information Technology Education
(SIGITE ’11). ACM, New York, NY, USA, 113–122.
DOI:http://dx.doi.org/10.1145/2047594.2047628

[97] Andrew Ruef, Michael Hicks, James Parker, Dave
Levin, Michelle L. Mazurek, and Piotr Mardziel. 2016.
Build It, Break It, Fix It: Contesting Secure
Development. In Proceedings of the 23rd ACM
SIGSAC Conference on Computer and
Communications Security (CCS ’16). ACM, New York,
NY, USA, 690–703. DOI:
http://dx.doi.org/10.1145/2976749.2978382

[98] Caitlin Sadowski, Jeffrey van Gogh, Ciera Jaspan,
Emma Söderberg, and Collin Winter. 2015. Tricorder:
Building a Program Analysis Ecosystem. In
Proceedings of the 37th International Conference on
Software Engineering (ICSE ’15). IEEE Press,
598–608.

[99] Ralf Schwarzer, Matthias Jerusalem, J Weinman, S
Wright, and M Johnston. 1995. Measures in health
psychology: A user’s portfolio. Causal and control
beliefs. Generalized Self-Efficacy Scal,
NFER-NELSON, Windsor (1995), 35–37.

[100] Swapneel Sheth, Gail Kaiser, and Walid Maalej. 2014.
Us and Them: A Study of Privacy Requirements
Across North America, Asia, and Europe. In
Proceedings of the 36th International Conference on
Software Engineering (ICSE 2014). ACM, New York,
NY, USA, 859–870. DOI:
http://dx.doi.org/10.1145/2568225.2568244

[101] Yan Shoshitaishvili, Michael Weissbacher, Lukas
Dresel, Christopher Salls, Ruoyu Wang, Christopher
Kruegel, and Giovanni Vigna. 2017. Rise of the
HaCRS: Augmenting Autonomous Cyber Reasoning
Systems with Human Assistance. In Proceedings of the
2017 ACM SIGSAC Conference on Computer and

Communications Security (CCS ’17). ACM, Dallas,
Texas, USA, 347–362. DOI:
http://dx.doi.org/10.1145/3133956.3134105

[102] Justin Smith, Brittany Johnson, Emerson Murphy-Hill,
Bill Chu, and Heather Richter Lipford. 2015. Questions
Developers Ask While Diagnosing Potential Security
Vulnerabilities with Static Analysis. In Proceedings of
the 10th Joint Meeting on Foundations of Software
Engineering (ESEC/FSE ’15). ACM, 248–259. DOI:
http://dx.doi.org/10.1145/2786805.2786812

[103] George W Snedecor and Witiiam G Cochran. 1989.
Statistical methods. Ames: Iowa State Univ. Press Iowa
(1989).

[104] StackOverflow. 2018. StackOverflow Developer
Survey Results 2018.
https://insights.stackoverflow.com/survey/2018.
(2018).

[105] Barbara G Tabachnick, Linda S Fidell, and Jodie B
Ullman. 2007. Using multivariate statistics. Vol. 5.
Pearson Boston, MA.

[106] Tyler W. Thomas, Heather Lipford, Bill Chu, Justin
Smith, and Emerson Murphy-Hill. 2016. What
Questions Remain? An Examination of How
Developers Understand an Interactive Static Analysis
Tool. In Proceedings of the 2nd Workshop on Security
Information Workers (WSIW ’16). USENIX
Association, Denver, CO.
https://www.usenix.org/conference/soups2016/
workshop-program/wsiw16/presentation/thomas

[107] Meng-Jung Tsai, Ching-Yeh Wang, and Po-Fen Hsu.
2019. Developing the Computer Programming
Self-Efficacy Scale for Computer Literacy Education.
Journal of Educational Computing Research 56, 8
(2019), 1345–1360. DOI:
http://dx.doi.org/10.1177/0735633117746747

[108] Li tze Hu and Peter M. Bentler. 1999. Cutoff criteria
for fit indexes in covariance structure analysis:
Conventional criteria versus new alternatives.
Structural Equation Modeling: A Multidisciplinary
Journal 6, 1 (1999), 1–55. DOI:
http://dx.doi.org/10.1080/10705519909540118

[109] Upwork. 2017. Hire Freelancers, Make Things Happen
| Upwork. https://upwork.com. (2017).

[110] Wayne F. Velicer, Andrew C. Peacock, and Douglas N.
Jackson. 1982. A Comparison Of Component And
Factor Patterns: A Monte Carlo Approach.
Multivariate Behavioral Research 17, 3 (1982),
371–388. DOI:
http://dx.doi.org/10.1207/s15327906mbr1703_5 PMID:
26800757.

[111] Markos Viggiato, Ricardo Terra, Henrique Rocha,
Marco Tulio Valente, and Eduardo Figueiredo. 2018.
Microservices in Practice: A Survey Study. (2018).

Paper 625 Page 15

http://dx.doi.org/10.1207/s15327906mbr3204_2
http://dx.doi.org/10.1145/2047594.2047628
http://dx.doi.org/10.1145/2976749.2978382
http://dx.doi.org/10.1145/2568225.2568244
http://dx.doi.org/10.1145/3133956.3134105
http://dx.doi.org/10.1145/2786805.2786812
https://insights.stackoverflow.com/survey/2018
https://www.usenix.org/conference/soups2016/workshop-program/wsiw16/presentation/thomas
https://www.usenix.org/conference/soups2016/workshop-program/wsiw16/presentation/thomas
http://dx.doi.org/10.1177/0735633117746747
http://dx.doi.org/10.1080/10705519909540118
https://upwork.com
http://dx.doi.org/10.1207/s15327906mbr1703_5

 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

[112] Daniel Votipka, Rock Stevens, Elissa M. Redmiles,
Jeremy Hu, and Michelle L. Mazurek. 2018. Hackers
vs. Testers: A Comparison of Software Vulnerability
Discovery Processes. In Proceedings of the 39th IEEE
Symposium on Security and Privacy (SP ’18). San
Francisco, CA, 374–391. DOI:
http://dx.doi.org/10.1109/SP.2018.00003

[113] Stacey Watson and Heather Richter Lipford. 2017. A
Proposed Visualization for Vulnerability Scan Data. In
Proceedings of the 3rd Workshop on Security
Information Workers (WSIW ’17). USENIX
Association, Santa Clara, CA.
https://www.usenix.org/conference/soups2017/
workshop-program/wsiw2017/watson

[114] Susan C Weller and A Kimball Romney. 1988.
Systematic data collection. Vol. 10. Sage publications.

[115] Joseph Werther, Michael Zhivich, Tim Leek, and
Nickolai Zeldovich. 2011. Experiences in Cyber
Security Education: The MIT Lincoln Laboratory
Capture-the-flag Exercise. In Proc. of the 4th
Conference on Cyber Security Experimentation and
Test (CSET’11). USENIX Association, Berkeley, CA,

USA, 12–12.
http://dl.acm.org/citation.cfm?id=2027999.2028011

[116] Chamila Wijayarathna and Nalin A. G. Arachchilage.
2018. Why Johnny Can’t Store Passwords Securely?:
A Usability Evaluation of Bouncycastle Password
Hashing. In Proceedings of the 22nd International
Conference on Evaluation and Assessment in Software
Engineering (EASE’18). ACM, New York, NY, USA,
205–210. DOI:
http://dx.doi.org/10.1145/3210459.3210483

[117] Jim Witschey, Olga Zielinska, Allaire Welk, Emerson
Murphy-Hill, Chris Mayhorn, and Thomas
Zimmermann. 2015. Quantifying Developers’
Adoption of Security Tools. In Proceedings of the 10th
Joint Meeting on Foundations of Software Engineering
(ESEC/FSE ’15). ACM, 260–271. DOI:
http://dx.doi.org/10.1145/2786805.2786816

[118] Irene M.Y. Woon and Atreyi Kankanhalli. 2007.
Investigation of IS professionals’ intention to practise
secure development of applications. International
Journal of Human-Computer Studies 65, 1 (2007), 29 –
41. DOI:http://dx.doi.org/https:
//doi.org/10.1016/j.ijhcs.2006.08.003

Paper 625 Page 16

http://dx.doi.org/10.1109/SP.2018.00003
https://www.usenix.org/conference/soups2017/workshop-program/wsiw2017/watson
https://www.usenix.org/conference/soups2017/workshop-program/wsiw2017/watson
http://dl.acm.org/citation.cfm?id=2027999.2028011
http://dx.doi.org/10.1145/3210459.3210483
http://dx.doi.org/10.1145/2786805.2786816
http://dx.doi.org/https://doi.org/10.1016/j.ijhcs.2006.08.003
http://dx.doi.org/https://doi.org/10.1016/j.ijhcs.2006.08.003

	Introduction
	Related Work
	Item Generation and Judgment
	Initial Item Generation
	Content Review

	Refining the Scale
	Recruitment
	Survey design
	Demographics
	Issues with initial items
	Factor analysis
	Reliability

	Finalizing the Scale
	Survey Design
	Recruitment
	Demographics
	Factor Analysis
	Reliability
	Convergent Validity
	Discriminant Validity
	Relationship with Psychological Constructs

	Discussion and Limitations
	Limitations
	Using SSD-SES

	Acknowledgments
	References
	Expert Review Survey
	Instructions
	Tasks
	Final Thoughts
	Demographics

	Main Survey
	Instructions
	Tasks
	Demographics

	Additional Data

 HistoryItem_V1
 TrimAndShift

 Range: From page 4 to page 4
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 7.20 points
 Normalise (advanced option): 'original'

 32

 D:20200207124524
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 474
 343

 Fixed
 Up
 7.2000
 0.0000

 Both
 4
 SubDoc
 4

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 3
 16
 3
 1

 1

 HistoryList_V1
 qi2base

