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ABSTRACT 
Security is an essential component of the software develop-
ment lifecycle. Researchers and practitioners have developed 
educational interventions, guidelines, security analysis tools, 
and new APIs aimed at improving security. However, mea-
suring any resulting improvement in secure development skill 
is challenging. As a proxy for skill, we propose to measure 
self-efficacy, which has been shown to correlate with skill in 
other contexts. Here, we present a validated scale measur-
ing secure software-development self-efficacy (SSD-SES). We 
first reviewed popular secure-development frameworks and 
surveyed 22 secure-development experts to identify 58 unique 
tasks. Next, we asked 311 developers—over multiple rounds— 
to rate their skill at each task. We iteratively updated our 
questions to ensure they were easily understandable, showed 
adequate variance between participants, and demonstrated 
reliability. Our final 15-item scale contains two sub-scales 
measuring belief in ability to perform vulnerability identifica-
tion and mitigation as well as security communications tasks. 

CCS Concepts 
•Security and privacy ! Software security engineering; 
•Human-centered computing ! HCI design and evaluation 
methods; 

INTRODUCTION 
Software developers play a critical role in end-user security, 
but secure development can be difficult. According to NIST’s 
National Initiative for Cybersecurity Education (NICE) frame-
work, developers must consider 44 distinct areas of security 
tasks [85]. However, many developers do not believe they 
have this level of skill [5], and prior work shows developers 
struggle to write secure code [88, 64, 2, 1]. 

Previous studies have sought to measure secure development 
skills through various methods [97, 27, 115, 37, 28, 96, 36, 
14, 44, 59, 67, 26, 90, 88, 97, 1, 82, 83, 81]. In most cases, re-
searchers have participants identify and exploit vulnerabilities 
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in sample programs or write small programs with security-
critical functionality. For example, while studying security 
API misuses, Oliveira et al. asked participants to identify com-
mon mistakes in security “puzzles” (i.e., code snippets) [88]. 
In a more intensive evaluation, Ruef et al. asked Build It, 
Break It, Fix It competitors to write medium size programs 
with several security requirements during a week-long “build” 
round [97]. Participants then evaluate each others’ submis-
sions through vulnerability-demonstrating exploits in another 
week-long “break” round. These assessments provide valu-
able insights into actual secure-development skill, but are very 
cumbersome. Other work asked participants to rate their secu-
rity skill on a single Likert scale or counted the vulnerabilities 
reported in public code artifacts. While these are both require 
less participant time, they are also noisy, as participants can 
have difficulty assessing their abilities and there can be several 
confounding factors impacting vulnerability counts. 

This situation is unfortunate, as an accurate and efficient mea-
sure of skill would be useful for several reasons. First, attempts 
to develop and improve secure development education [68, 23, 
52, 61, 97] and guidelines [85, 94, 25, 76, 80], require the 
ability to measure skills before and after the intervention to 
test their effectiveness. A secure development skill measure 
is also needed for use as a covariate when evaluating new 
security tools [64, 102, 113, 106, 117, 98, 60, 101], documen-
tation [2], and APIs [1, 58, 116]. Without such a metric, the 
experimenter cannot control for participant skill, which may 
confound results. 

We propose an alternative approach to measuring secure-
development skill: a validated scale. Human behavior re-
searchers regularly develop scales to “measure elusive phe-
nomena that cannot be observed directly” due to cost or com-
plexity [10]. Specifically, we propose measuring developers’ 
secure-development self-efficacy—belief in one’s ability to 
successfully perform a task— which correlates with actual 
skill in other contexts [10]. This scale would measure devel-
opers’ belief in their ability to complete secure-development 
tasks, such as identifying security problems during software 
design or employing secure programming languages. 

In this paper, we develop and evaluate such a scale: the Secure 
Software Development Self-Efficacy Scale (SSD-SES). We 
followed Netemeyer et al.’s 4-step scale creation process [84]: 
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1. Construct Definition and Content Domain: Clearly iden-
tifying the targeted construct’s scope (i.e., the underlying 
idea). We focus on tasks related to secure code production. 

2. Generating and Judging Measurement Items: Defining 
an initial pool of candidate scale questions (items) and en-
suring they are relevant to the construct and understandable 
by respondents. We generated items by reviewing five pop-
ular secure-development frameworks. We judge questions 
based on reviews from security experts and developers. 

3. Developing and Refining the Scale: Using Exploratory 
Factor Analysis (EFA) to identify an underlying factor struc-
ture (i.e., any sub-components of the targeted construct and 
their associated questions). We also refine the item set to its 
most efficient form (i.e., only including items with sufficient 
variance among respondents), while maintaining reliability 
(i.e., whether the scale consistently measures the construct). 

4. Finalizing the Scale: We use Confirmatory Factor Analysis 
(CFA) to confirm the previously identified underlying factor 
structure holds, maintaining reliability, with a new sample. 

All our procedures were approved by the University of Mary-
land’s institutional review board. Throughout this process, 
our scale was evaluated with 311 software developers and 
22 security experts. The final SSD-SES consists of 15 items 
measuring two underlying factors: vulnerability discovery and 
mitigation, and security communication. We show that SSD-
SES performs reliably over multiple samples and behaves as 
expected with respect to relevant measures from prior work. 

RELATED WORK 
While human-centered secure development is a growing sub-
field, work related directly to our scale is limited. Woon and 
Kankanhalli’s secure-development intentions scale focuses 
on development and includes self-efficacy questions [118]. 
However, it is a much broader measure, intended to assess 
several factors influencing secure-development practice adop-
tion. Therefore, their self-efficacy questions are limited and 
less concrete than ours (e.g., “I would feel comfortable carry-
ing out secure development of applications on my own”). By 
focusing specifically on self-efficacy, we can provide a more 
precise measure and identify underlying factors. Because this 
scale has received only preliminary validation, we did not use 
it to establish discriminant validity. Rajivan et al. developed 
a measure assessing security expertise by asking participants 
if they have performed several network defense and system 
administration tasks (e.g., configuring a firewall) along with 
two open-ended questions asking participants to describe se-
curity concepts (i.e., certificates and phishing). While this 
scale targets expert users, it again measures an orthogonal 
domain (e.g., network defense and system administration). 
Finally, Campbell et al. propose a metric for cybersecurity 
aptitude—potential to develop skills necessary for cybersecu-
rity tasks—as opposed to our measure targeted at current skill 
level [20]. 

There have also been several efforts to develop scales for 
efficiently measuring end-user security. Egelman and Peer 
created the Security Behavior Intentions Scale (SeBIS) [38] 
and Faklaris et al. established a measure for Security Atti-
tudes (SA-6) [41]. Together these scales cover participants’ 

security thoughts and behaviors; however, due to the differ-
ence in domains, we expect our scale measures an orthogonal 
construct. 

ITEM GENERATION AND JUDGMENT 
The first step in scale development is construct definition: 
scoping what the scale will and won’t cover. As SSD-SES’s 
goal is to measure software developers’ belief in their ability 
to perform secure development tasks, we focus only on tasks 
related to the production of secure code. That is, we do not 
include tasks from parts of the software development lifecycle 
such as deployment, maintenance, or monitoring. We also 
restrict our tasks to those prescribed by widely accepted secure-
development frameworks or experienced security experts. 

Initial Item Generation 
The second step is generating a set of candidate items (ques-
tions). The goal is to thoroughly survey the construct domain 
and build an extensive possible item pool [84], to be nar-
rowed in later steps. We chose initial items by analyzing four 
popular secure-development frameworks: NIST’s National 
Initiative for Cybersecurity Education (NICE) framework [85], 
the Building Security In Maturity Model (BSIMM) [76], the 
Open Web Application Security Project (OWASP) Software 
Assurance Maturity Model (OSAMM) [25], and Microsoft’s 
Security Development Lifecycle (SDL) [80]. 

Two researchers independently reviewed each framework, 
identified a set of prescribed tasks, and selected tasks focused 
on secure code production. The researchers then met to com-
bine lists. Because best practice recommends a conservative 
approach to initial item generation (i.e., including any pos-
sibly related items) [84], if a task was identified by either 
researcher it was included in the initial set. Finally, the re-
searchers merged tasks from different frameworks considered 
identical (e.g., phrased differently or using different terminol-
ogy, but expressing the same idea), again conservatively. 

This process produced 57 unique software-development-
specific tasks mentioned in at least one framework. The full 
task set (with sources) can be found in our supplementary ma-
terial in Table 7. These tasks can be divided into six categories: 
determining security requirements (A1-11), identifying attack 
vectors (A12-14), identifying vulnerabilities (A15-22), im-
plementing mitigations to prevent or remedy vulnerabilities 
(A23-37), testing of security requirements (A38-42), and ef-
fectively communicating about security with peers, leadership, 
and security experts (A43-57). 

Content Review 
To ensure the identified tasks cover the full range of the domain 
(content validity) and that the task wording was understandable 
to software developers (face validity), we surveyed 22 secure-
software-development experts and 8 developers. 

Expert review. We asked security experts to review our initial 
57 tasks (Table 7) and rate them on a 4-point Likert-scale rang-
ing from Definitely not a secure development task to Definitely 
a secure development task. Respondents also had an Unsure 
option if the wording was confusing or they could not clearly 
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delineate the task’s appropriateness. We also asked respon-
dents whether the task phrasing was unclear or confusing, and 
to explain any confusion in free text. We concluded by asking 
experts to list any missing tasks. Our expert review survey text 
is given in our supplementary material. 

We recruited security experts from a convenience sample of the 
authors’ professional contacts (N=7) and members of NIST’s 
Software and Supply Chain Assurance Forum [87] (N=16). 
To ensure we received expert opinions, we only considered 
respondents who self-reported 10 or more years of experi-
ence. After each response, we added any suggested tasks for 
review by subsequent experts. We stopped recruiting addi-
tional experts when no new tasks were suggested and task 
appropriateness responses remained stable (e.g., no signifi-
cant difference in results when adding the last 10 responses), 
the suggested stopping criteria for free-listing exercises [114]. 
The 22 secure-development experts had 20 years of experi-
ence on average, and 81% also held a graduate degree. Our 
expert population matched prior security expert studies whose 
experts had at least 10 years experience [51, 50]. Li et al. 
used participant titles as an alternate expertise indicator [69]. 
Our participants also met this condition, reporting senior job 
titles such as Chief of Development, Cybersecurity Technical 
Fellow, and Product Security Lead. 

We made several changes to our task list based on expert 
feedback. First, ten tasks were considered inappropriate— 
Probably not or Definitely not a secure development task—by 
80% of experts. For several tasks, our experts believed it 
is not the developers’ role to determine the balance security 
and performance costs, but instead the job of customers or 
leadership (reworded A3 and A7; removed A10, A50, A51, 
A52, A53). Similarly, our experts stated developers should not 
be expected to research attacker techniques, but instead get 
this information from security experts (reworded A5; removed 
A55). Finally, our experts indicated code signing is not part of 
secure code production, but instead its deployment, which is 
out of scope for our construct definition (removed A11). 

Additionally, we revised several tasks’ wording. Most signif-
icantly, we replaced “program” with “system” to match the 
modular approach to design common in industry (A1, A2, 
A4, A12, A13, A20, A29, A35, A45, A46). Other changes 
included using more common developer terminology (A2), 
focusing on threats from malicious actors (as opposed to nat-
ural disasters) (A6), making security explicit (A4), adding 
clarifying examples (A15, A29), and rephrasing statements to 
improve readability (A20, A21, A41, A42). 

Finally, we added six tasks. Several experts recommended 
tasks for identifying and using secure programming languages 
and libraries (B15, B16, B26, B27, B28; shown in Table 1). 
One expert also suggested adding a task for correctly imple-
menting authorization protocols (B34), as it represents a dis-
tinct access-control component (compared to authentication). 

Multiple experts suggested the Software Assurance Forum for 
Excellence in Code (SAFECode) Fundamental Practices for 
Secure Software Development framework [94] as an additional 
task source, so we repeated the framework review process for 

SAFECode. While no task list or task categories changes were 
made, it provided further support for tasks already included. 

Developer pilot. Next, to ensure our target population could 
easily understand each item, we piloted the post-expert-review 
tasks with eight developers. First, we reframed each task as 
an “I can” statement regarding the developer’s confidence in 
performing the task. We then asked them to indicate their con-
fidence using a 5-point Likert-scale from “I am not confident 
at all” to “I am absolutely confident.” We also provided a 
“Do not understand” option if the respondent did not under-
stand the task’s meaning. Our full survey text is given in our 
supplementary material’s main survey section. 

We recruited a convenience sample of the researchers’ profes-
sional contacts, chosen to represent varying experience levels. 
Participants were asked to “think aloud” as they responded 
to each question. We updated the questions after each pilot, 
eventually reaching the final set given in Table 1. Specifically, 
we made the following changes: we reworded A48 to make it 
clear we were asking about writing understandable security-
error messages, updated A8 to indicate we were asking about 
code the developer has themself written as opposed to a library 
function, and replaced the term “boundary cases” with “edge 
cases” in A38 to use the more common terminology. 

REFINING THE SCALE 
To trim our item set and determine the underlying factor struc-
ture, we recruited 157 developers and performed EFA. This 
section describes the methods used and our analysis results. 

Recruitment 
From September 2018 to July 2019, we recruited participants 
using several methods to broadly sample the developer pop-
ulation. First, we contacted software-development-related 
groups’ leadership. This included popular Meetup.com [79] 
and LinkedIn [71] groups, regional ACM chapters [42], and 
the researchers’ personal contacts at large development com-
panies. We asked each contact to share study details with 
their organization’s members and their colleagues. Prior work 
has found relative success partnering with organizational lead-
ership in this manner, adding credibility to recruitment mes-
sages [112]. We also posted messages on relevant online 
forums such as Reddit and Slack channels. Dietrich et al. 
showed this method’s usefulness with technology profession-
als, as participants are reached in a more natural setting and are 
more likely to be receptive [35]. Finally, we recruited devel-
opers directly through the freelancing platform Upwork [109] 
and the research-participant recruitment site Prolific [89]. Be-
cause of our broad recruitment process, we do not include 
respondents who reported less than one year of development 
experience. 

We also varied the study’s compensation method. Prior work 
suggests using a mix of incentives increases participant di-
versity [57]. Participants recruited through organizational 
contacts and online forums were recruited in two waves. In 
the first wave, we did not advertise or provide any compensa-
tion for participation. In the second, participants were entered 
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Table 1: Set of secure development tasks identified after both the expert review and developer pilot transformed into “I can” statements. Each task was evaluated on a 5-
point Likert-scale (from “I am not at all confident” to “I am absolutely confident”) by 157 developers. For each statement, we give the rate of “Do not understand” 
responses, the average response, and standard deviations. The final items retained based on EFA are shown first grouped according to their associated sub-scale. 
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into a lottery for one of 10 $20 Amazon gift cards. Participants 
recruited through Upwork and Prolific were paid $8 each. 

Survey design 
Participants were shown the 58 “I can” statements in Table 1 
and asked to rate each on a 5-point Likert-scale from “I am 
not confident at all” to “I am absolutely confident” or indicate 
they “Do not understand”. Tasks were presented in random 
order to prevent ordering effects. At the survey’s conclusion, 
participants were asked to indicate their software development 
skill level on a 5-point Likert scale ranging from “Novice 
(limited experience)” to “Expert (recognized authority),” their 
years of software development experience, and their average 
time spent daily performing software development tasks, along 
with other demographic questions. Our full survey text is given 
in our supplementary materials’ main survey section. 

We were concerned some participants might overrate their se-
cure development skill to portray appear more socially accept-
able [33]. To avoid social desirability bias, our study utilized 
deception [84]. That is, during recruitment and throughout 
the survey, participants were told our goal was to measure 
general software development self-efficacy. At the survey’s 
conclusion, participants were told the study’s true nature and 
were allowed withdraw and have their response deleted. 

Demographics 
We received 181 responses, but 7 (4%) did not have one year 
of development experience and 9 withdrew (5%) after learn-
ing the study’s true purpose. We removed eight responses 
(4%) considered careless based on abnormally short response 
times [78]. We set the cutoff at less than five minutes based 
on an obvious threshold in the data. 

The final 157 participants’ development experience ranged 
from 1 to 45 years (µ = 8.68, s = 9.46). Our participants 
were predominantly male (88%), young (50% below 30 and 
83% below 40), educated (77% held a bachelor’s degree, 26% 
held a graduate degree), and white (51%) or Asian (29%). Our 
participants’ demographics are similar to those found by prior 
large-scale secure development studies [1, 2, 5, 88, 97, 117, 
100, 3, 34, 8, 58, 81] and other general software development 
surveys [104, 63, 53, 111, 30, 66, 9, 17]. These prior studies’ 
developers’ mean development experience was between 5 and 
16.4 years (mean of means = 9.49 years), and they were mostly 
male (between 73% and 98%; mean = 89%) and young (mean 
age between 19.4 and 32.9; mean of means = 28.52), matching 
our sample. Half of our participants reported incomes between 
$15K-$100K, which matches developer income levels in [88], 
the only other prior work we found reporting participant in-
come. Note that due to the variance in demographics reported 
in each paper, these are the only items we could clearly com-
pare to. 

Choosing an appropriate sample size can be complicated. Prior 
work suggests basing sample size on the number of items [6, 
16, 22, 45, 49, 65, 70, 75, 86] with a minimum of 100 to 200 
participants required [31, 32, 45, 48, 49, 70, 73]. For example, 
Hair et al. recommend 5 participants per item [49]. However, 
empirical evaluations of scales’ component analysis stability 

(i.e., whether the factor structure identified varied) with vari-
ous sample sizes has not found evidence to support the sample 
size-to-item ratio [11, 4, 110]. Instead, prior work shows fac-
tor loading (i.e., the magnitude of correlation between items 
and their associated factor), the absolute sample size, and the 
number of variables associated with each factor have the most 
significant effect on component analysis stability [47]. There-
fore, Guadagnoli and Velicer recommend 150 participants as 
sufficient if factors are made up of high numbers of items (10 
or 12), even with low loadings (l < 0.40) [47]. We believed, 
because of the large number of items tested, we would be 
likely to meet this standard, so we targeted about 150 qualify-
ing participants. In fact (as will be discussed below), our data 
met Guadagnoli’s and Velicer’s more conservative standard: 
four or more variables per component having loadings over 
0.60, which they found sufficient to assess underlying compo-
nent structures “whatever the sample size used.” We therefore 
conclude our sample size was sufficient. 

Issues with initial items 
To refine our scale, we first checked for several potential issues 
in our initial items. First, we observed our scale’s internal 
consistency was very high (Cronbach’s a = 0.98), indicating 
our items were closely related. Next, we checked each item’s 
item-total correlation, which indicates how discriminant the 
item is (i.e., participants who score high on the item are more 
likely to score high on the full scale). Items with low item-
total correlation (< 0.2) should be excluded because they do 
not adequately reflect the scale [39]. We did not observe any 
questions with low item-total correlation. 

We next looked for ceiling or floor effects: tight response 
groupings at either extremes of the Likert scale (e.g., 4.0 < 
µ < 5.0 and s < 1). Since scales are designed to measure 
differences between participants, individual questions need to 
exhibit adequate variance; if everyone responds similarly, the 
item has limited utility. We found no items with this effect. 

Finally, it is important to ensure our target population under-
stands each item. If a respondent if confused by the terminol-
ogy used or question phrasing, their response is framed by a 
misconception and not reflective of the underlying construct. 
We removed 13 items to which > 5% of participants responded 
“Do not understand” or simply skipped. In many cases (B12, 
B19, B28, B30, and B33), the confusion seemed to stem from 
using less common security terminology such as fuzzing or 
non-repudiation. Because the scale should usable by devel-
opers of all levels of security knowledge, we removed these 
items. Similarly, 12.1% of participants found B34 confusing, 
likely because it asks whether participants can use security ser-
vices provided by their enterprise. As not all developers work 
in an enterprise setting which offers these services—including 
many of the freelancers we recruited—this item also does not 
meet our goal of producing a measure for all developers. 

Factor analysis 
With the remaining 45 items, we set out to identify the scale’s 
underlying factor structure. Here, we define factors as our con-
struct’s sub-components. A construct can have one component, 
indicating the scale’s items measure it directly, or multiple 
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components, where the scale can be broken into component 
sub-scales and together their scores reflect the construct. Be-
cause these factors are latent, they can not, by definition, be 
measured directly. Instead, we must first determine our con-
struct’s number of factors and which items best describe each 
factor, i.e., the underlying factor structure. 

Prior to attempting to identify our factor structure, we checked 
whether our data actually measured common factors and were 
correlated (prerequisites to establishing the number of factors 
and their structure). According to Bartlett’s test of sphericity 
(c2 = 4833.35, p < 0.001) [103] and the Measure of Sampling 
Adequacy (0.936) [24], we confirmed our data met these goals. 

Next, to identify the factor structure, we performed an ex-
ploratory Principal Component Analysis (PCA). PCA is a data 
summarization method that transforms item responses such 
that the first dimension (or component) explains as much vari-
ance in the original data as possible, with each subsequent and 
orthogonal component explaining as much of the remaining 
variance as possible. These components represent the scale’s 
underlying factors. To produce an efficient factor structure 
(i.e., one identifying the most variation with the least set of 
items), we only retain the top components. 

Since there is no standard method for deciding the number of 
retained components, we relied on several and followed the 
most common recommendation. This consensus protocol ac-
counts for each method’s strengths and weaknesses. First, we 
calculated each components’ eigenvalues and selected those 
with eigenvalues > 1.0 according to the Kaiser criterion [45]. 
Next, we determined optimal coordinates by fitting a line to 
the smallest eigenvalues with a linear regression and identify-
ing where our eigenvalues diverge [92]. We also performed a 
parallel analysis by generating random data, calculating the 
associated eigenvalues, and retaining any eigenvalues whose 
value was greater than the random data’s eigenvalues [56]. 
Finally, we determined the acceleration factor by looking for 
the point where our eigenvalues changed dramatically [92]. 
In these analyses, the Kaiser criterion recommended six com-
ponents, the optimal coordinates and parallel analysis both 
recommended two, and the acceleration factor recommended 
one. Therefore, we retained two components. 

To determine which factors each item associated most with 
(i.e., which it loads on), we rotated responses [46]. There are 
multiple possible rotation types, which can be divided into 
orthogonal (e.g., varimax) or oblique (e.g., direct oblimin). 
Orthogonal rotations are appropriate when the factors are not 
expected to be correlated and an oblique rotation is appropri-
ate otherwise [46]. Because we did not know whether our 
factors were correlated, we followed the recommendation of 
Tabachnick and Fiddell who suggest first using an oblique 
rotation (in our case a direct oblimin), calculating the corre-
lation of the identified sub-scales associated with each factor, 
and switching to an orthogonal rotation if correlations do not 
exceed 0.32, indicating 10% (or more) overlap in variance 
among factors [105]. We found our factors were correlated 
(0.64) and maintained the direct oblimin rotation. 

F1 ITC F2 ITC 
a 0.907 – a 0.876 – 
IIC 0.520 – IIC 0.440 – 
B3 0.81 0.78 B8 0.64 0.66 
B4 0.69 0.80 B31 0.61 0.70 
B6 0.83 0.78 B32 0.67 0.67 
B11 0.79 0.81 B50 0.73 0.79 
B15 0.65 0.66 B51 0.68 0.74 
B39 0.74 0.73 B53 0.76 0.73 
B44 0.64 0.72 B55 0.64 0.72 
B47 0.64 0.77 B57 0.61 0.70 
B48 0.82 0.78 B58 0.80 0.67 

Table 2: Remaining items and factor structure after initial EFA. 
The first two rows show reliability measures (Cronbach’s a 
and average inter-item correlation) for each sub-scale. The 
remaining rows show the retained items, their loadings, and 
item-total correlations within the sub-scale. 
After rotating items, we selected which ones to retain, using 
three inclusion criteria. First, we only considered an item 
as loading on a factor if its loading exceeded 0.5, indicating 
significant association with the underlying factor [84]. Next, 
we applied Saucier’s criterion, only considering an item to 
load on a factor if its loading exceeded twice the loading on 
any other factor. This ensures variance in item responses 
maps to changes in the associated factor. Finally, we chose 
to remove items where the item variance accounted for by all 
the retained factors (its communality) was less than 0.4, as 
recommended by Fabrigar et al. [40], as this tends to indicate 
low item reliability. This led us to remove 27 more items. 
We reran PCA on the remaining items and found that the two 
retained components predicted more than 56.9% of variance. 
Notably, the first factor accounts for a majority of the scale’s 
variance (47.6%), with the second factor accounting for 9.3% 
of variance. The rotated factor loadings are given in Table 2. 
Note, because all our factor loadings are above 0.60, this 
confirms the sufficiency of our 157 developer sample [47]. 

Reliability 
To confirm our remaining items maintained their internal reli-
ability, we first computed Cronbach’s a for the full scale (a 
= 0.936) and each sub-scale (a = 0.907, 0.876). We found 
that our data met McKinley et al.’s suggested threshold that 
a multi-component scale is reliable if a exceeds 0.6 and a 
majority of sub-scale as exceed 0.7 [77]. 

Next, we tested item-total correlation using Pearson correla-
tion between each item and the average of all other items in 
the same sub-scale. All items exceeded Everritt’s 0.2 thresh-
old [39]. Finally, we observed each sub-scales’ mean item-
total correlation (0.520 and 0.440, respectively) exceeded 
0.30, which is considered “exemplary” [95]. Based on these 
measures, we confirmed our reduced scale had high reliability. 

FINALIZING THE SCALE 
We next conducted an additional round of surveys from July 
to September 2019 with the 18 items remaining after EFA 
(shown at the top of Table 1). In this step, we tested whether 
the identified two-factor structure was maintained, remaining 
reliable, with a different participant pool. 
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Survey Design 
Respondents were again asked to respond to the 18 items on a 
5-point Likert scale from “I am not at all confident” to “I am 
absolutely confident.” We removed the “Do not understand” 
option, as we had sufficiently established item face validity. 

It is important to confirm our scale measures the targeted con-
struct by testing whether responses match other theoretically 
relevant measures. To test whether SSD-SES converges with 
measures we expect it to relate with (convergent validity), 
while being distinct from other, similar scales (discriminant 
validity), we performed Pearson’s correlation tests with four 
related scales. We similarly use Pearson’s correlation to com-
pare to two additional, well-established psychometric scales to 
understand how participant psychological characteristics relate 
to secure-development self-efficacy. All p-values reported in 
this section are corrected using a Bonferroni-Holm correction 
to account for multiple testing [55]. To avoid overburdening 
participants, we randomly present two of the six additional 
scales (described in detail below) to each participant. 

Recruitment 
We used the same recruitment process as the prior step, target-
ing 120 responses. Prior work suggests 100 participants are 
sufficient for confirmatory factor analysis [15]. We targeted 
20 more participants to have 40 participants complete each ad-
ditional psychometric scale, giving sufficient power (> 0.80) 
to identify > 42.5% correlation with SSD-SES [29]. 

Due to the relative difficulty of recruiting through organiza-
tions and online forums, we predominantly relied on Upwork’s 
freelancing service and Prolific in this step. As developers 
on these platforms tend to be less experienced, respondents 
from these sites first completed a pre-screening survey, ask-
ing them to report years of software development experience 
and average time spent daily on development tasks. We then 
invited screened respondents to the full survey using a quota-
sampling method. Our quotas were chosen to match developer 
experience ranges from StackOverflow’s most recent devel-
oper demographics survey [104]. Specifically, we sought to 
survey 14 (11.4%) inexperienced developers (1-2 years), 70 
(58.4%) moderately experienced developers (3-11 years), and 
36 (30.2%) experienced developers (> 11 years). We con-
cluded recruitment after reaching each quota, though we were 
not able to maintain the desired percentages due to the unpre-
dictable nature of responses from organizational contacts. 

Demographics 
A total of 162 developers responded in this round, but 2 par-
ticipants (1%) had less than a year of software-development 
experience, 6 chose to withdraw (4%), and 8 (5%) responses 
were considered careless (i.e., completed in less than 5 min-
utes [78]). The remaining 146 participants’ development ex-
perience was split between our three quota ranges as follows: 
10.3% inexperienced, 65.1% moderately experienced, and 
24.6% experienced (µ = 9.79, s = 10.80). Our participants 
were predominantly male (91%), young (48% below 30 and 
77% below 40), educated (57% held a bachelor’s degree, 26% 
held a graduate degree), and white (77%) or Asian (9%). Par-
ticipant median income was between $1K-$75K. Again, this 

matches broader developer demographics [1, 2, 5, 88, 97, 117, 
100, 3, 34, 8, 58, 81, 104, 63, 53, 111, 30, 66, 9, 17]. 

Factor Analysis 
To determine whether the latent factor structure identified pre-
viously held with our new population, we repeated the PCA 
procedure using a direct oblimin rotation. We observed three 
items either no longer sufficiently loaded on their original 
factor (i.e., B8’s loading on F2 reduced to 0.39) or switched 
factors (i.e., B31 and B32 switched to load on F1). Because 
these items did not behave reliably across multiple samples, 
they were removed [84]. The remaining items demonstrated 
internal consistency with a Cronbach’s a of 0.92 (sub-scale 
as were 0.90 and 0.88, respectively). The 15 items and their 
associated latent factors are given in Table 3 with their mean 
responses, factor loadings, and item-total correlations within 
their sub-scales. All the remaining items and their sub-scales 
behaved appropriately according to the variability and reliabil-
ity metrics given in the prior section. 

The remaining sub-scale items represented two distinct themes: 
vulnerability identification and mitigation tasks and security 
communication tasks. Again, the first factor accounts for 
a majority of the scale’s variance (48.1%), and the security 
communication sub-scale accounts for 11.1% of variance. 

While EFA is useful for determining a possible underly-
ing factor structure, it is not able to assess that structure’s 
goodness-of-fit onto the data with respect to other possible 
structures [72]. Therefore, we also performed a Confirmatory 
Factor Analysis (CFA), which confirms our prior analyses 
have been conducted thoroughly and appropriately [54]. CFA 
is a type of structural-equations analysis assessing rival mod-
els’ goodness-of-fit. Specifically, we compare a null model 
with all items loading on separate factors, a single common 
factor model, and our multi-factor model [62]. 

Our model demonstrated sufficient goodness-of-fit with its c2 

(176.38) below the conservative limit of twice the its degrees 
of freedom (DoF = 89) [21]. Using ANOVA comparisons, we 
found our model fit better than the null (c2 = 1257.34, p < 
0.001) and the single-factor model (c2 = 317.78, p < 0.001). 

We also calculated several other goodness-of-fit metrics. First, 
we determined the Comparative Fit Index (CFI), which mea-
sures the model’s fit relative to a more restrictive baseline 
model [12], and the Tucker-Lewis Index (TLI), a more conser-
vative version of CFI, penalizing overly complex models [13]. 
Our model performed well in both (CFI = 0.92, TLI = 0.91), 
with scores over the recommended 0.90 threshold [84]. Next, 
we calculated the Standardized Root Mean Square Residual 
(SRMR), an absolute measure of fit calculating the difference 
between observed and predicted correlation [108]. Our model 
demonstrated a sufficient SRMR of 0.054—a value below 0.08 
is considered good fit [108]. Finally, we calculated the Root 
Mean Square Error of Approximation (RMSEA), which mea-
sures how well the model reproduces item covariances, instead 
of a baseline model comparison. Our model demonstrated a 
“moderate” fit with a RMSEA of 0.082 [74]. 
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µµ ss ll# Secure Development Statement µ s l ITC 
Vulnerability Identification and Mitigation (48.2% of variance explained, CR = 0.90) 
C3 I can perform a threat risk analysis (e.g., likelihood of vulnerability, impact of exploitation, etc.) 2.99 1.15 0.74 0.79 
C4 I can identify potential security threats to the system 3.34 0.99 0.76 0.79 
C6 I can identify the common attack techniques used by attackers 3.30 1.15 0.66 0.77 
C11 I can identify potential attack vectors in the environment the system interacts with (e.g., hardware, libraries, etc.) 2.91 1.10 0.67 0.75 
C15 I can identify common vulnerabilities of a programming language 3.34 1.16 0.56 0.72 
C39 I can design software to quarantine an attacker if a vulnerability is exploited 2.41 1.19 0.77 0.72 
C44 I can mimic potential threats to the system 2.97 1.06 0.78 0.71 
C47 I can evaluate security controls on the system’s interfaces/interactions with other software systems 3.08 1.02 0.72 0.72 
C48 I can evaluate security controls on the system’s interfaces/interactions with hardware systems 2.88 1.17 0.78 0.73 

Security Communication (11.1% of variance explained, CR = 0.87) 
C50 I can communicate security assumptions and requirements to other developers on the team to ensure vulnerabilities 3.46 1.03 0.73 0.86 

are not introduced due to misunderstandings 
C51 I can communicate system details with other developers to ensure a thorough security review of the code 3.50 1.15 0.78 0.83 
C53 I can discuss lessons learned from internal and external security incidents to ensure all development team members 3.64 1.11 0.65 0.72 

are aware of potential threats 
C55 I can effectively communicate to company leadership identified security issues and the cost/risk trade-off associated 3.51 1.18 0.60 0.75 

with deciding whether or not to fix the problem 
C57 I can communicate functionality needs to security experts to get recommendations for secure solutions (e.g., secure 3.60 1.12 0.73 0.83 

libraries, languages, design patterns, and platforms) 
C58 I know the appropriate point of contact/response team in my organization to contact if a vulnerability in production 3.90 1.14 0.91 0.73 

code is identified 

rr rr <<

rr

Vulnerability Identification Security 
and Mitigation Communication 

Convergent Validity 
CPSES r = 0.528, p = 0.001 r = 0.627, p < 0.001 

Discriminant Validity 
SA-6 r = 0.249, p = 0.191 r = 0.300, p = 0.111 
SeBIS1 r = 0.077, p = 0.622 r = 0.202, p = 0.298 
SeBIS2 r = 0.370, p = 0.053 r = 0.176, p = 0.337 
SeBIS3 r = 0.308, p = 0.096 r = 0.227, p = 0.224 
SeBIS4 r = 0.145, p = 0.412 r = 0.122, p = 0.470 
GES r = 0.363, p = 0.067 r = 0.375, p = 0.063 

Other Psychometric Scales 
NFC r = 0.464, p = 0.007 r = 0.183, p = 0.337 
GDMS1 r = 0.013, p = 0.928 r = 0.129, p = 0.450 
GDMS2 r = 0.276, p = 0.121 r = 0.178, p = 0.337 
GDMS3 r = 0.148, p = 0.403 r =-0.075, p = 0.622 
GDMS4 r = -0.075, p = 0.622 r = 0.139, p = 0.403 
GDMS5 r = 0.271, p = 0.121 r = 0.307, p = 0.096 
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Table 3: SSD-SES’s final questions and associated sub-scales. Responses were reported on the following scale: I am not confident 
at all (1), I am slightly confident (2), I am somewhat confident (3), I am moderately confident (4), and I am absolutely confident (5). 

Reliability 
To measure the sub-scales’ internal consistency, we calculate 
their composite reliability [43]. Composite reliability offers 
a more accurate view of reliability over Cronbach’s a , which 
makes several potentially inaccurate assumptions, such as con-
sidering factor loadings and error variances equal [93]. Instead, 
composite reliability considers factor loadings from CFA, mea-
suring the latent factors’ reliability instead of their individual 
items. We found both sub-scales’ composite reliability (0.90 
and 0.87, respectively) exceeded the recommended threshold 
of 0.60, indicating they are internally consistent [7]. 

Convergent Validity 
Prior work suggests the ability to identify vulnerabilities is 
influenced by participants’ understanding of the development 
environment (e.g., the programming language and libraries 
used) and level of security experience [112]. We next consider 
how well our scale correlates with each of these concepts. 

Secure-development self-efficacy is related to general de-
velopment self-efficacy. To measure respondents’ software 
development skill, we utilized the Computer Programing Self-
Efficacy Scale (CPSES), a measure of respondents’ belief in 
their ability to produce working programs meeting functional-
ity requirements [107]. CPSES scores were statistically signif-
icantly correlated with both SSD-SES sub-scales (r = 0.528, 
p = .001 and r = 0.627, p < 0.001, respectively). 

To measure security experience, we asked if participants had 
received security training, if they had found a vulnerability 

Table 4: Correlations between sub-scales, related scales, and 
other psychometrics. 

or had one found in their code, and how often they commu-
nicate with security experts. We estimated the relationship 
of security experience and secure-development self-efficacy 
with a poisson regression (appropriate for count data [19]). 
For each sub-scale, our initial regression model included each 
security experience response and the participants’ software 
development experience as independent variables. To avoid 
overfitting, we tested all combinations of the independent 
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Log 
Variable Value Estimate CI p-value 
Found Vuln Multiple 1.08 [1, 1.17] 0.049 

Once – – – 
Never 0.82 [0.73, 0.92] < 0.001* 

Expert Multiple 1.09 [1.01, 1.17] 0.024* 
Coworker One – – – 

Never 0.81 [0.74, 0.88] < 0.001* 
*Significant effect – Base case (Log Estimate = 1, by definition) 

(a) Vulnerability Identification and Mitigation 
Log 

Variable Value Estimate CI p-value 
Found Vuln Multiple 1.08 [0.98, 1.18] 0.112 

Once – – – 
Never 0.86 [0.76, 0.98] 0.026* 

Expert Multiple 1.06 [0.97, 1.15] 0.191* 
Coworker One – – – 

Never 0.87 [0.79, 0.95] 0.002* 

Dev > 11 years 1.11 [1.02, 1.2] 0.017* 
Experience 3-11 years – – – 

0-2 years 0.91 [0.79, 1.03] 0.143 
*Significant effect – Base case (Log Estimate = 1, by definition) 

(b) Security Communication 
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variables, selecting the model with minimum Bayesian Infor-
mation Criteria [91], as is standard. 

Table 5a shows the vulnerability identification and mitigation 
regression model and Table 5b gives the security communica-
tion regression model. Base cases were selected to represent 
the medium experience level to allow clearer comparisons. 
Variable levels are presented in decreasing experience order. 
The log estimate (LE) column gives the variable’s observed ef-
fect. For categorical variables, the LE is the expected relative 
change in SSD-SES sub-scale score when moving to the given 
variable level from the base case. The LE for each base case 
is definitionally 1.0. We also give the 95% confidence interval 
for the log estimate (CI) and the associated p-value. 

Secure-development self-efficacy increases with security
experience. As expected, both SSD-SES sub-scale scores 
increase with security experience. Specifically, participants 
who had never found a vulnerability (LE = 0.82, p < 0.001) 
or never worked with a security expert (OR = 0.81, p < 0.001) 
had less belief in their ability to find and mitigate security 
vulnerabilities. Further, those who have found multiple vulner-
abilities (LE = 1.08, p = 0.49) or worked with multiple security 
experts (LE = 1.09, p = 0.024) had even higher self-efficacy. 

We observed nearly the same significant trends in the security 
communication sub-scale. However, more than one experience 
finding a vulnerability did not show a significant increase over 
a single vulnerability identification experience (LE = 1.08, p 
= 0.112). Additionally, we found experienced developers (> 
11 years experience) were more likely to believe they could 
effectively discuss security (LE = 1.11, p = 0.017). 

Discriminant Validity 
To confirm that SSD-SES in fact measures a new construct, 
we compared it to two end-user security behavior scales and a 
general self-efficacy scale. First, we tested whether either sub-
scale correlated with the Security Intention Behavior Scale 
(SeBIS) [38], which measures end-user intention to perform 
a variety of security behaviors, and the End-User Security 
Attitudes (SA-6) scale [41], which measures end-user attitudes 
toward common security behaviors. Correlations between 
each of these scales and SSD-SES’s two sub-scales are given 
in Table 4. We did not observe any significant correlation 
between either scale and SSD-SES. 

Next, we tested the correlation between SSD-SES and the 
General Self-Efficacy Scale (GSE), which assesses the “belief 
that one can perform a novel or difficult tasks, or cope with 
adversity—in various domains of human functioning [99].” 
This comparison tested whether SSD-SES simply measured 
respondents’ belief in themselves as opposed to a domain-
specific belief. Again, we did not observe any significant 
correlation between GSE and SSD-SES. 

The lack of significant correlations with SeBIS, SA-6, or GSE 
indicates SSD-SES measures a distinct underlying construct. 

Relationship with Psychological Constructs 
Finally, we included two well-established psychometric mea-
sures to understand how participants psychological charac-

Table 5: Summary of regressions estimating relationship be-
tween each sub-scale and security experiences. 

teristic relate to SSD-SES scores: the Need for Cognition 
(NFC) scale and the General Decision-Making Scale (GDMS). 
Correlations between NFC and GDMS and SSD-SES’s two 
sub-scales are given in Table 4. 

Curious developers believed more in their ability to iden-
tify and mitigate vulnerabilities. NFC measures intellec-
tual curiosity (i.e., the tendency to engage in and enjoy 
thinking) [18]. We found that NFC significantly correlated 
with the vulnerability identification and mitigation sub-scale 
(r = 0.464, p = 0.007), but not the security communication 
sub-scale (r = 0.183, p = 0.337). This suggests developers 
who are more curious are more likely to feel confident in 
their ability to search for, identify, and mitigate vulnerabilities. 
This finding corroborates prior work, which observed develop-
ers who were more open or curious were more likely to find 
vulnerabilities in secure-development puzzles [88]. 

We also compared SSD-SES to GDMS, which assesses how 
individuals approach decisions with respect to five decision 
styles. As secure development requires complex planning and 
decision-making, our goal was to test whether any style corre-
lated with better secure-development self-efficacy. However, 
we did not observe any statistically significant correlation. 

DISCUSSION AND LIMITATIONS 
Our final 15-item scale measures two distinct underlying fac-
tors: vulnerability identification and mitigation as well as secu-
rity communication. Through our scale development process 
we observed SSD-SES demonstrate construct validity, internal 
consistency and reliability, goodness-of-fit, and convergent 
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and discriminant validity. We found SSD-SES correlated with 
general programming self-efficacy, security experience, and in-
tellectual curiosity, as expected. In this section, we discuss our 
study’s limitations and the need for future work as well as how 
SSD-SES can be employed by researchers and practitioners. 

Limitations 
Software developer recruitment is challenging [81], requiring 
significant effort to reach the sample used in this study. While 
we sought to recruit a diverse sample with respect to devel-
opment experience and we observed similar demographics to 
the global developer population, it is possible our recruiting 
methods do not fully represent the broader population. Future 
work should consider methods to recruit participants not active 
in development organizations, online forums, or freelancing 
and research recruitment platforms. 

In the final round of recruitment, we performed quota sampling 
based on participants’ years of experience. We also randomly 
assigned two of six external scales to each participant, without 
consideration for quota sampling. As a result, the experience 
distributions for these external scales were not entirely con-
sistent: fewer than expected participants in the inexperienced 
group were assigned CPSES (2% as opposed to 10% of the to-
tal sample) and fewer of the experienced group were assigned 
GES (14% as opposed to 25%). The supplementary materials 
give further details. We do not expect this fairly small incon-
sistency to have a large effect on the results, particularly as we 
observed almost no significant effects related to experience 

While we believe our approach to item generation and question 
trimming thoroughly reviews secure development concepts, 
we do not argue our scale covers all possible factors. Rather, 
our items and factors produce meaningful and reliable results 
and pass relevant validity checks. It is possible some fac-
tors are not included. We leave future work to investigate 
additional factors, expanding on our current findings. 

Though we found SSD-SES reliable and valid according to 
several measures, additional testing is necessary. First, as 
we have only shown correlation between factors and other 
psychometric measures, we cannot make assessments of causal 
relationships; as such, we cannot yet create a predictive model 
to target interventions at specific self-efficacy components. 

Most importantly, further work is necessary to determine if 
SSD-SES measures actual secure development skill improve-
ment. In future work, we plan to administer SSD-SES as a pre-
and post-test for a hands-on security training course, allowing 
us to assess improvements and correlate with course grades. 

Finally, technology (and accordingly, secure development 
practice) changes over time. We designed SSD-SES to de-
scribe general principles we believe should remain relatively 
static, but as with any scale SSD-SES should be occasionally 
revisited and refreshed as needed. 

Using SSD-SES 
Our creation and validation of a lightweight secure software 
development self-efficacy scale presents a valuable resource 
for a variety of purposes. Below, we suggest possible uses. 

SSD-SES for testing educational interventions. The initial 
impetus for creating SSD-SES was to measure the value of 
an educational intervention, such as a capture-the-flag exer-
cise [27]. By applying SSD-SES before and after adminis-
tering training, a researcher can observe changes in secure-
development self-efficacy, providing feedback for the improve-
ment and comparison of interventions. 

To emphasize this benefit, we note that we did not observe a 
significant relationship between SSD-SES and participants’ 
self-reported security training in our regression. While we 
would expect training to improve self-efficacy, our results 
suggest in practice, it does not consistently do so. Therefore, 
future work in security education is necessary to identify the 
right training to produce improved outcomes. 

SSD-SES as a covariate. SSD-SES also provides a useful 
option for software-developer studies where the researcher 
may want to control for participants’ secure-development skill. 
For example, in a usability study of security APIs, it would 
be beneficial to include SSD-SES as a covariate to ensure 
differences in outcomes between participants occur because 
of changes to the API and not differences in security skill. 

SSD-SES for measuring security culture. Finally, because 
SSD-SES is a lightweight measure, it can be administered 
broadly to capture an organization’s “security culture”. This 
would be useful both for researchers comparing different or-
ganizations or measuring change over time, but also for prac-
titioners looking to diagnose whether and what actions are 
necessary for organizational improvement. 
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