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Abstract—This paper analyzes the impacts that hydrodynamic
asymmetry faults have on marine hydrokinetic (MHK) turbines
and the challenges encountered when seeking to identify these
faults using non-intrusive fault detection and condition moni-
toring methods. When hydrodynamic asymmetry faults occur,
they induce vibrational Kinetic energy upon the turbine’s rotor
shaft at a frequency equal to the rotational frequency of the low
speed shaft (1P frequency). This vibrational energy is difficult to
visualize when observing the frequency spectrum of generator’s
electrical power when only using FFT and windowed FFT signal
processing methods. Such difficulties are a consequence of the
low signal to noise ratio (SNR) and non-stationary nature of the
generator’s electrical power signals. This paper utilizes a contin-
uous wavelet transform (CWT) with a complex Morlet wavelet
basis function to identify and quantify vibrational frequency
excitations contained within the generator’s output power, with
an aim towards performing machine condition monitoring and
fault detection on MHK turbines.

I. INTRODUCTION

According to the National Renewable Energy Laboratory’s
(NREL) Renewable Electricity Futures Study, it will be tech-
nically feasible for 80% of all U.S. electricity production to
be generated from renewable energy sources by 2050 [1], [2].
As efforts ramp up to meet this goal, the demand for clean
and renewable electricity generation from sources outside of
conventional wind and solar will likely increase dramatically.
Tidal, river, and ocean currents represent highly concentrated
renewable sources of energy that are both reliable and sustain-
able. It has been estimated that energy extraction in US waters
from just the Gulf Stream current alone has the potential to
generate up to 18.6 GW (163 TWh/yr) of electrical power [3].
Unfortunately, due in part to economic concerns relating to the
currently high levelized cost of energy (LCOE) associated with
this form of renewable energy generation, mainstream efforts
to widely implement the technologies needed to harness these
energy sources remain in their infancy.

This research proposes a promising means of lowering the
LCOE associated with marine hydrokinetic (MHK) turbine
usage through O&M cost reduction. This approach analyzes
the frequency spectrum of the turbine’s generator electrical
power to determine if excitations at the 1P shaft rotating
frequency can be statistically quantified to reveal any rel-
evant fault detection information. The 1P frequency is the
frequency of rotation of the turbine’s low speed shaft, for
which a continuous wavelet transform (CWT) that incorporates
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a complex Morlet wavelet basis function, is used to quantify
the vibrational excitation energy induced upon the low speed
shaft.

The 1P shaft rotating frequency has been successfully
used in [4] to visually locate wind turbine imbalance faults
within plots of the power spectral density (PSD) of the rotor
shaft’s frequency spectrum. In [5], Gong et al. proposed
an interpolation/up-sampling then down-sampling algorithm
to convert the non-stationary fundamental frequency of the
stator current into a more stationary version of itself. This
allowed for the characteristic frequencies of inner and outer-
race bearing faults to be more readily identified in the PSD of
the stator current.

In addition to these works, more generalized surveys have
been performed, specifically aimed at rotating machine fault
detection (RMFD) and condition monitoring techniques. In
particular, a survey focused on fault diagnostic techniques tar-
geted at induction machines subjected to non-stationary loads
and speeds was published by Guasp et al [6]. In Guasp’s work,
different diagnosis methods are summarized and categorized
by domain so that conceptual and practical understandings of
their implementations can be achieved. With respect to wavelet
transforms, a survey reviewing recent publications that utilized
wavelets for rotary machine fault diagnosis was presented
by Yan et al. [7]. Yan summarized works dealing with fault
diagnostic applications according to specific categories of the
wavelet transform, including but not limited to the CWT,
discrete wavelet transforms (DWT), wavelet packet transforms
(WPT), second generation wavelet transforms, and dual-tree
complex wavelet transforms. An in-depth and comprehensive
review on the importance of the inner product operation
contained within the wavelet transforms in reference to fault
feature detection for rotating machinery is presented by Chen
et al. [8]. Chen’s work investigates the influences that the use
of the inner product principle has had on major developments
in wavelet RMFD. Lastly, Cohen formulated improved ways of
parameterizing Morlet Wavelets so that accurate analyses, re-
porting, and interpretation of their results can be achieved [9].

The remainder of the paper is structured as follows. Section
II briefly describes the simulation platform and presents back-
ground information on the nature of hydrodynamic asymmetry
faults being studied in this research. Section III introduces
the Continuous Wavelet Transform and provides background
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Fig. 1. Simplified model of a 3-bladed MHK turbine. Fault energy experi-
enced by the rotor blades is transferred to the rotor shaft.

information on Morlet Wavelets. Section IV summarizes ex-
periments performed in this research and quantifies their
results. Lastly, concluding remarks and suggestions for future
research is presented in section V.

II. MHK TURBINE MODELING AND SIMULATION
A. Simulation Platform Overview

The simulation platform used in this research integrates
NREL’s Fatigue, Aerodynamics, Structures, and Turbulence
(FAST) simulation suite inside of MATLAB & Simulink [10]-
[12]. This platform is configured to numerically simulate the
dynamics of a 20 kW, 3-bladed, horizontal axis MHK turbine,
and induce upon it realistically modeled marine hydrodynamic
operating conditions.

This platform is configured to model full field turbulent
marine current conditions using NRELs TurbSim stochastic
inflow turbulence tool [13]. The input files are generated
using the TIDAL-spectral model, along with a mean current
speed of 1.90 m/s, and a turbulence intensity of 5% to
simulate ocean currents. The TIDAL-spectral model is based
upon measurements taken from a tidally mixed channel near
Marrowstone Island in Puget Sound, Washington [14].

B. Blade Imbalance-induced Hydrodynamic Asymmetry Faults

As with conventional wind turbines, rotor blade imbalance
faults will likely be some of the most prevalent types of faults
impacting MHK turbines. Such imbalances can arise from
either a defect that occurred during the manufacturing and
construction phases of the turbine, or develop during normal
operation due to the accumulation of wear and tear.

In cases where the pitch angle of one blade is deviated to
the extent that its angle of attack causes it to have differing
hydrodynamic behaviors from the other two blades may cause
hydrodynamic asymmetry faults to arise. As the turbine’s rotor
begins to rotate under this unbalanced condition, an unbal-
anced hydrodynamic moment is induced upon the rotor shaft.
For homogeneous current inflow conditions, the introduction
of this moment does not directly impact the production of

Fig. 2. Simple representation of a healthy rotor blade. The pitch angle of the
blade and its angle of attack, «, are intact and in proper working order.

Fig. 3. Simple representation of a faulty propeller blade. The pitch angle of
the blade is deviated, and thus the angle of attack, o, is also deviated. This
deviation of « imparts unbalanced moments of inertia and torques onto the
turbine’s rotor shaft.

power, since the net hydrodynamic torque remains constant.
However, the vertical current shear that naturally occurs in
rivers, tidal flows, and ocean currents will interact with this
asymmetry creating rotor torque fluctuation that are introduced
into the system at the 1P frequency.

Depicted in Fig. 2 is a simplified representation of a healthy
rotor blade, in which the angle of attack is labeled as a.
In healthy conditions, axial hydrodynamic forces, F,, are
induced upon the rotor blade, and tangent forces, F;, induced
torque upon the rotor shaft. During rotation, if the pitch angle
(and thus the angle of attack) of one of the blades is out
of alignment with that of the other two blades, unbalanced
hydrodynamic forces F,/, and Fy,, will be invoked upon the
misaligned blade, as shown in Fig. 3. These newly created
hydrodynamic forces impart unaccounted for torques and
moments of inertia onto the misaligned blade. The introduction
of the kinetic energy that is coupled within these unaccounted
for moments and torques are what produce the dynamic loads
and vibrations that are transferred onto the rotor shaft [15].
This transfer of energy onto the rotor shaft is also visible
within the frequency spectra of the generator’s output power
at the 1P shaft rotating frequency.
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III. WAVELET TRANSFORM THEORETICAL BACKGROUND

The wavelet transform can be interpreted as the convolution
between a signal, z(t), and a wavelet basis function, U(t).
The signal z(t) can be any measurement from the turbine,
however for the purposes of this research, x(t) represents the
generator power signal, which in itself, is an easily collectible
non-intrusive signal. W(¢), also known as the mother wavelet,
is the function for which dilated and translated versions of
itself are derived and used inside of the wavelet transform [16].
Wavelets are small, localized wave-like functions of oscillatory
nature, that have finite energy, zero mean, and who posses
Fourier Transforms that vanish for negative frequencies [7],
[16].

In general, there is a wide variety of mother wavelet basis
functions that can be used for the analysis of data. The optimal
choice is largely dependent upon both the nature of the signal
being analyzed and the characteristics of the phenomena being
researched. The Morlet wavelet was selected as the mother
wavelet of choice for this research. More insights upon why
this wavelet was chosen will be expanded upon in part B of
this section.

A. Continuous Time Wavelet Transform

There are two hyper-parameters that can be manipulated
to make W(¢) more robust for signal analysis. ¥(¢) can be
stretched or squeezed (dilated), or it can be shifted along the
time axis (translated). Dilations of W(t) are controlled by the
dilation parameter, a, while translations are controlled by the
translation parameter b.

For a shifted and dilated version of ¥(t), the form:

U(t) =T (t_b> (1)

a

may be used. The wavelet transform of a continuous signal,
x(t), that utilizes a range of a’s and b’s can be defined as:

T(a,b) = w(a) /Oo ()0 (t - b> dt @)

oo a

where the products of the signal being analyzed and the
shifted and dilated wavelet functions are called the wavelet
coefficients, T(a,b). The wavelet coefficients can be thought
of as measures of cross-correlation between the signal, x(t),
and a set of wavelets of various dilations [16]. In (2), w(a)
is a weighting function that is customarily set equal to 1/+/a,
to ensure that wavelets of the same scale all posses an equal
amount of energy. Lastly, the * symbol is used to indicate that
the complex conjugate of the wavelet basis function is utilized
within the wavelet transform.

From here, it is advantageous to show how the convolution
theorem can be use to express the wavelet transform as the
result of the inner product between the Fourier Transforms of
the signal, Z(f), and that of the wavelet, ¥, ,(f):

T(a,b) = / T a) e df 3

— 00

For a dilated and translated version of the wavelet, the
Fourier Transforms yields:

< 1 lt—b\ _,
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After implementing the substitution ¢'= (¢ — b)/a, such that
dt = adt’, the Fourier Transform of U, ;(f) becomes:

\ija,b(f)

Vou(f) = %/ Pt e im0 g (5)

Further simplification of \i!a,b(f) via the factorization of
the constant exponential term out of the integral and the re-
substitution of ¢’ back to ¢ yields:

Bou(f) = Vae G0 [

— 00

o (t)e ™Dt (6)

Thus it can be seen that the integral expression in (6) is
equation (4) re-scaled at frequency af, and thus, (5) can be
rewritten as:

o p(f) = Vab(af)e 120 o

With the Fourier Transform of the translated and dilated
version of the wavelet having now been defined, the complex
conjugate form can be written as:

U2 (f) = Vaw*(af)e (7P (8)

In conclusion, Equation (4) can now be expressed as:
o0
Tab) =va [ &8 () i )

with the deviations of Equations (1-10) coming courtesy
of [16].

The wavelet coefficient values, T(a, b), are usually mapped
onto a 2-dimensional plane in which the axes are measures
of the various translations and scales of the mother wavelet
basis function. When the shape of the wavelet at a specific
translation and scale has a high correlation with the shape of
the signal that it is analyzing, a greater wavelet coefficient
value is produced. Similarly, when the shape of the wavelet
of a specific translation and scale has a lower correlation with
the shape of the analyzed signal, a smaller wavelet coefficient
value is produced.

Traditionally, this mapping can be executed in a smooth and
continuous fashion (i.e. CWT), and allows for a more succinct
visualization of the correlation between the wavelet and the
signal under analyzation [16].

B. Complex Morlet Wavelet

A core tenet of the inner product theory is the idea that any
signal can be expressed as a linear combination of a set of basis
functions. This principle provides an extremely vital benefit
for RMFD and diagnosis when using wavelets as opposed
to sinusoids as basis functions [8]. Since the performance of
RMED lies within the ability to match the shape of the wavelet
basis function to the shape characteristics of a particular
fault features contained within a signal, choosing an optimal
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mother wavelet function is imperative for accurate condition
monitoring and fault detection.

For the purposes of this research a Morlet wavelet is selected
as the mother wavelet basis function. The reason for this
selection is due to the unique way in which Morlet wavelets
are able to localize the frequency information of z(¢) in time.
The increased control and precision that the shape of their
windowing kernel allows for in the frequency domain makes
them logical choices for analyzing frequency band specific
activity [17].

A complex Morlet wavelet can be constructed by tapering
a sine wave with a Gaussian window function. This can be
achieved by multiplying the Gaussian function with the sine
wave as shown:

2
Ww— emfte(ﬁ) (10)
where ¢ is the imaginary operator, f is the peak frequency in
Hertz of the sine wave, and ¢ is the time in seconds. When
selecting t, the inclusion of a phase shift can be bypassed
by selecting a time range that centers ¢ at zero, such that:
—-t<0<t[9]

Multiple sine waves of differing frequencies are used to
construct the Morlet Wavelets that are used to analyze xz(t).
This is synonymous to Fourier Transform analysis, in which
multiple sine waves are also used to preform frequency domain
analyses on x(t). However, unlike the sine waves of the
Fourier Transform, time-frequency decomposition via wavelet
convolution allows for the specification of the frequencies
used to construct the Morlet wavelets to be chosen manually,
as opposed to being dictated by the number of time series
data points contained within x(t) [17]. For this research, the
1P shaft rotating frequency is of interest, and therefore a
frequency range ranging from 0.1Hz to 2Hz is selected for
analysis.

The parameter that controls the width of the Gaussian
window in (10) is o, which is calculated as:

n
c=—
2nf

where n dictates the trade off between frequency and time
precision. This is an extremely non-trivial parameter that con-
trols the Heisenberg uncertainty principle for time-frequency
analysis, in that it is not possible to concurrently achieve both
optimal time and frequency precision [17]. The selection of
n heavily influences the quality of results that are achievable
from the data.

Larger values of n provides a better frequency precision
at the expense of decreased temporal precision, while the
opposite is true for smaller values of n. Thus, smaller values of
n are better for transient activity analysis, while larger values
of n are better for longer excitation activity [17]. Since this
research is concerned with analyzing frequency excitations
around the 1P shaft rotational frequency, larger values of n
were of interest. Through trial and error, a range between 5 to
15 was selected for n, with 500 increments between the min
and max values of n.

Y
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Fig. 4. Time domain representation of generator output power for all pitch
deviation fault scenarios. An initial two minute simulation was run, in which
only the time period interval from 5-115 seconds was used.

IV. EXPERIMENTAL DESIGN AND RESULTS

In total, 5 different current spectral seeds are tested, for
which a tidal intensity value of 5% is used in each seed. It
should be noted that a time window long enough to capture a
suitable amount of data will be necessary to determine the av-
erage rotating frequency of the rotor shaft. For the purposes of
this research 2 minute time histories are utilized. Since FAST
makes it possible to determine the instantaneous frequency
of the rotor, this stipulation is less of a concern. However,
outside of a laboratory environment, this stipulation will need
to be met in order to reproduce the methods presented in these
experiments.

Fig. 4 presents the time domain representation of the
generator output power for a typical current spectral seed. A
baseline case is initially simulated, in which no pitch angle
deviation faults are induced upon the rotor blades. Similar
simulations are then run and plotted for pitch angel deviations
of 5, 10, 15, and 20 degrees. For the baseline case, the MHK
turbine has a rotational speed of 60 RPMs (1 Hz).

A. Spectrum Analysis

The top portion of Fig. 5 is a spectrogram representation
of the electrical power output of the turbine’s generator,
corresponding to the 20 degree pitch fault case. The spectral
image was generated using a CWT with a Morlet basis
function. The instantaneous frequency of the rotor is overlaid
on top of the spectral image (represented by the solid white
line). Since the original generator power output was sampled
according to a normal distribution, 99.7% of all frequency
band specific activity corresponding to the 1P frequency region
of interest is bound within a range of +/- 3 standard deviations
(3-STD) of the instantaneous rotating frequency of the rotor
shaft (highlighted by the two dotted white lines).

The plot underneath the spectrogram is an attempt to use the
PSD to quantify the frequency band activity between the +/-
3-STD range. The PSD graph sums up the normalized wavelet
coefficient energy for specific frequency scales of the wavelets.
This measure can be thought of as the amount of relative
signal energy per specific translation point and frequency scale
of the wavelet. The solid line represents the average rotating
frequency of the rotor shaft, and the dotted lines on either side

Authorized licensed use limited to: Florida Atlantic University. Downloaded on July 27,2020 at 18:30:18 UTC from IEEE Xplore. Restrictions apply.



0,946 Hz

Change in Amplitude

5 15 25 35 45 55 65 75 85 95 105 115
Time ()

0L.835 He
1946 Hz

0725 He—

iy

o 0.2 04 6 8 1 1.2 14 L6 [B.]
Frequency (Hz)

Fig. 5. Top: Spectrogram representation of the generator output power for the
20 degree pitch fault scenario. The instantaneous 1P frequency (solid white
line) is range bounded by +/- 3-STD of the instantaneous frequency (dotted
white lines). Bottom: PSD of the generator output power. The average rotating
frequency of the rotor shaft (solid line) is range bounded by +/- 3-STD of the
instantaneous rotor frequency (dotted red lines).

TABLE 1

FREQUENCY BOUNDS FOR SHAFT 1P ROTATING FREQUENCY AND MEAN
FAULT ENERGY

Pitch Angle | Avg Freq.£3-STD | Mean Energy | Mean Energy STD
Baseline 1.01240.134 1.701 0.627

5 Degrees 0.997+0.132 1.772 0.698

10 Degrees 0.9461+0.127 2.815 1.105

15 Degrees 0.888+0.119 3.568 1.340

20 Degrees 0.835+0.110 5.305 2.125

of the average frequency line correspond to the boundaries of
the +/- 3-STD frequency range. From the figure, a distinct
amount of energy is observed in the range.

B. Quantification of Results

As shown within both the spectral image and PSD plot,
frequency excitations within the +/- 3-STD range do start to
become more prevalent as the pitch angle deviations increase.
This can be verified by noticing the frequency excitation blips
shown within this range on the spectrogram plot, and by
Table I, which sums up the wavelet coefficient energy within
the +/- 3-STD range of the 1P frequency of the rotor shaft
for all pitch angle imbalance fault scenarios. As portrayed
in Table I, a steady increase in the wavelet coefficient fault
energy can be observed within this frequency range of interest.
These quantified fault features can further be used for MHK
hydrodynamic asymmetry faults detection.

V. CONCLUSIONS AND FUTURE WORK

In this research, the dynamics of hydrodynamic asymmetry
faults induced upon the rotor blades of a MHK turbine
were studied for the purpose of evaluating non-intrusive fault
analysis methods. A continuous wavelet transform (CWT)
with a complex Morlet wavelet basis function was used to
experimentally verify that frequency excitations within the +/-
3-STD region of the rotor shaft’s 1P frequency could indeed
be visualized and quantitatively analyzed in the frequency
spectrum of the generator’s electrical power signal.

Moving forward, future works should focus on ways to
adaptively optimize the Morlet Wavelet to better match gen-
erator power signals. Additionally, fault detection system will

be developed based on machine learning techniques (e.g, deep
learning) using the quantified fault signatures from this paper.
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