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Abstract

In this study, we describe numerical implementation of a heterogenous, nearly incompressible, transverse
isotropic (NITI) finite element (FE) model with key advantages for use in MR elastography of fibrous soft
tissue. MR elastography (MRE) estimates heterogenous. property distributions from MR-measured
harmonic motion fields based on assumed mechanical/models.of tissue response. Current MRE property
estimation methods usually assume isotropic properties, which cause inconsistencies arising from model-
data mismatch when anisotropy is present. In this study, we use a NITI model parameterized by a base
shear modulus, shear anisotropy, tensile anisotropy, and an isotropic bulk modulus, which describes the
mechanical behavior of tissues with/aligned, fiber structures well. Property and fiber direction
heterogeneity are implemented at the levehof FE Gauss points, which allows high-resolution diffusion
tensor imaging (DTI) data to be incorporated easily into the model. The resulting code was validated
against analytical solutions and/a commercial FEM package, and is suitable for incorporation into
nonlinear inversion MRE algorithmss#Simulations of MRE in brain tissue with heterogeneous properties
and anisotropic fiber tracts, which|produced wavefields similar to experimental MRE, were generated
from anatomical, DTl and MRE_image data, allowing investigation of MRE inversion performance in a
realistic setting where the ground'truth and underlying mechanical behavior are known. Two established
isotropic inversion algorithms =nonlinear inversion (NLI) and local direct inversion (LDI) — were applied to
simulated MRE data. Both algorithms performed well in simple isotropic homogenous cases; however,
heterogeneity cased substantialartifacts in LDI arising from violation of local homogeneity assumptions.
NLI was able to recover accurate heterogenous displacement fields in the presence of measurement
noise. Isotropic NLI"inversion of simulated anisotropic data (generated using the NITI model) produced
maps of isotropic 'mechanical properties with (undesirable) dependence on the wavefield. Local
anisotropy also caused wavefield-dependent errors of 7% in nearby isotropic structures, compared to 10%
in the anisotropic'structures.

Introduction

Many biological tissues are composed of aligned fibrous structures, including skeletal muscle and brain
whitexmatter. In these cases, strong heterogeneities are also present in both mechanical properties and
fiber directions due to networks of brain white matter tracts or multiple muscle bundles in a limb. The
mechanical behavior of these tissues in response to applied loading is well described by nearly
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incompressible transverse isotropic equations of motion (Schmidt et al. 2016). Most mechanical property
estimation techniques, such as MR elastography (MRE), assume mechanical isotropy, which causes model-
data mismatches. These mismatches provoke wavefield dependencies in resulting mechanical property
estimates in tissues that are strongly anisotropic. Anisotropic MRE approaches>have /been reported
previously (Sinkus et al. 2005, Qin et al. 2013, Romano et al. 2012, Namani et al. 2009, :Guo et al..2016,
Chatelin, el al 2016, Miller et al 2018), but, to date, they have required assumptions of local hemogeneity
that do not hold in complex organs such as the brain where heterogeneity is present.in both’‘mechanical
properties and fiber directions. Nonlinear inversion (NLI) methods exploit=models,that are fully
heterogeneous and capture reflection and mode conversion effects that are present in tissue, and an
anisotropic formulation of NLI may prove advantageous for examining mechanical properties of brain and
muscle tissue.

Adapting NLI to anisotropic models requires numerical implementation of the heterogenous anisotropic
equations, which are well-suited to the finite element (FE) method, if computational challenges associated
with large differences in shear and bulk moduli are addressed for nearly incompressible materials. A 4™
order elasticity tensor has 81 components in three-dimensions’(3D), but symmetries reduce this number
to 21 independent parameters for the general anisotropicicase. Assuming further symmetries affords
additional parameter reductions. Orthotropic models involve 3,orthogonal axes with different shear
moduli, tensile moduli, and Poisson ratios which are represented by 9 independent parameters.
Transverse isotropy (TI) is a special case in which properties are invariant as the coordinate system is
rotated around a single axis (that typically corresponds to the direction of aligned fibers) and involves 5
independent parameters. Incompressible materials provide further simplification and reduce the number
of free parameters to 3. Full incompressibility must be/handled numerically with care; hence, nearly
incompressible (NI) assumptions achieve “isotropic compressibility” through a bulk modulus term with a
large value, which results in 4 free parametersiin the transverse isotropic case (Itskov and Askel 2002),
and allows models to include the fast p-wave (longitudinal wave) in nearly incompressible tissue.

In this paper, a reduced-parameterheterogenous, nearly incompressible (mixed displacement/pressure,
u-p) transverse isotropic (NITI) FE model is described, which is parameterized by an in-plane shear
modulus, shear anisotropy, tensile,anisotropy, and bulk modulus. To the best of our knowledge, details
associated with a heterogenous FE implementation of the 4-parameter NITI model have not been
published previously. ©ther transvérse isotropic options in the literature include five parameter
compressible TI models (Kaliske 2000, Rouze et al. 2013), 5-7 parameter hyperelastic TI models (Weiss et
al. 1996, Riiter et al. 2000), and 7-parameter biphasic TI models (Almeida et al. 1998). However, the NITI
model has been proposed as the simplest case which reproduces experimentally confirmed shear and
tensile anisotropy differences (Schmidt et al. 2016). Models with the minimum number of parameters
needed to reproduce observed phenomena are advantageous for inversion algorithms, where obtaining
estimates of many properties/accurately can be difficult from limited, noisy data. In this implementation
of the NITl.imodel, property and fiber direction heterogeneity are accommodated in the FE model at the
level of FE Gauss points, which allows high-resolution data on fiber direction to be incorporated to define
axes of symmetry. The implementation is validated against analytical solutions and commercial software
but is morexmodular and flexible than the latter, especially for MRE research studies because it enables
relatively simple assimilation of patient specific imaging data. The source code and precise form of the
FEM terms are also available, which is necessary for advanced FEM applications that require manipulation
of individual stiffness matrix contributions, such as NLI for NITI MRE (Tan et al. 2016).
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Combining this FE model with MRI anatomical atlases, diffusion tensor imaging (DTI) fiber directions, and
MRE displacement maps also provides a simulation platform capable of generating realistic_ patient
specific synthetic MRE data with which to test the performance of inversion algorithms in cases where
the ground truth is known. MRE-focused simulations often fail to test major assumptions underpinning
the inversion algorithms they are being used to validate. Direct inversion MRE relies oh,assumptions of
local homogeneity and encounters problems with reflected waves which are unavoidablein’ practice.
Simulations used to validate the approach often involve homogeneous properties configured in simple
geometries that minimize reflections (Papazoglou et al. 2008, Jiang and Nakamura, 2011, Hamhaber et al.
2007, Manduca et al. 2002, Clayton et al. 2011, Green et al 2008), and thus do not capture‘critical behavior
of heterogeneous tissues. Simulations with simple spatial variations, for example.discrete inclusions (Ou
et al. 2007, Pattison et al 2014, Sanchez et al. 2010, Barnhill et al. 2017), have been investigated, although
the zones of stiffness change have been small compared to a large homogenous background and inclusion
center. Recent publications have presented simulations based on realistic'geometries derived from
imaging data which reveal inaccuracies in direct inversion MRE'near mechanical property variations
(Murphy et al. 2013, Barnbhill et al. 2019, McGrath et al. 2016.). These simulations typically involved only
a few homogeneous tissue classes, whereas in vivo MRE images suggest continuous spatial variations and
distinct mechanical properties occur in a wide range of brain structures (Johnson et al. 2013, Guo et al.
2013). Thus, specification and treatment of heterogeneity arewvital for simulations that replicate
conditions associated with in vivo MRE, which is especially true when considering anisotropy where spatial
variation in both properties and fiber directions are present.

In this study, we use the proposed NITI FE model to create realistic representations of brain tissue
mechanics with a reduced number of parameters. Simulated wavefields with known properties, including
heterogeneity and anisotropy, were generated to understand better the performance of MRE inversion
algorithms in the brain. In particular, we examineithe relative performance of NLI and local direct inversion
(LDI) in recovering properties inthomogenous and heterogenous simulated data, with and without
measurement noise. We also apply isotropic NLI to anisotropic heterogenous data generated with the
NITI model, and quantify the wavefield-dependent errors that occur in the resulting mechanical property
estimates, which have been observed,in vivo (Anderson et al. 2016). By validating the NITI FE model and
replicating previous experimental results in simulation, we demonstrate utility of the model as a MRE
simulation platform, and for use’in development of anisotropic inversion algorithms in the future.

Nearly Incompressible Transverse Isotropic Model

The constitutive_equation,in’Voigt notation (6x1 vector representation of the 2" order tensors) for the
relationship between the stress; {a}, and strain, {€}, in a NITI material, where the axis of symmetry aligns
with one of thelcoordinate directions (this orientation is denoted by ¢’ and €’) is given by (Feng et al.
2013, Tweten et al. 2015)

0’11 C11 Ci12 C13 0 0 0 €11

o'y, Cay Cp C3 0 0 O €5y

0'33 _ |61 €32 Cs3 0 0 0 €'33 (1)
o1y 0 0 0 c4e O 0 2¢'15 |

0"23 0 0 0 0 Cssg 0 26,23

0’13 0 0 0 0 0 ceed \2¢';5
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In Equation 1, shear components are rearranged to match common numerical notation (Zienkiewicz et al.
1977). Defining the fiber axis as the x; direction, the components of the 6x6 elasticity matrix, [C], are
given by

4 4 4 1
€11 = K+§#(1+§5>' Cap = C33 = K+§#(1+§{>: Caq = Co6 = WLt @),

2 4 2 2
Ci2 = €13 = €21 = C31 = K_§#<1 +§(>' C3p2 = Cp3 = K_§#<1 —gf)' Cs5 = U
where u is the shear modulus in the plane normal to the fiber axis, ¢ is the shear anisotropy, ¢ is the
tensile anisotropy, and k is the isotropic bulk modulus. Terms in Equation 2 involve sums of k and y, which
are problematic numerically when k > u, i.e. near incompressibility. If we define the material pressure

to be,

(2)

P = K(Ell + 622 + 633), (3)
K can be removed from the terms in Equation 2 to produce an analogous system in Voigt notation

{0} =[Cl{e}+ {y pu (4)

oo OY U U

where terms in [C] are the same as those in [€}.with k removed. P becomes an additional degree of
freedom, and Equation 3 is used as a penalty. that. enforces the near incompressibility condition.
Separation of deviatoric and volumetric strains is common when implementing mixed u-p FEM for nearly
incompressible materials (Zienkiewicz et'al. 1977)-

The simplified structure of the elasticity matrixiin Equations 1 and 2 is lost when one of the coordinate
directions is not aligned with the/fiber axis. The 6x1 Voigt representation of the strain tensor, {€}, with
the fiber axis in the local x;-direction;.can be rotated into another coordinate system using a Bond
transformation (Zienkiewicz et al. 1877), {€'}= [B.]{€}, where

ti1tyy tigtiz  _taglys ti1ts2 tiatss tiatyy
tartar  taalaa [ Ta3lnz ta1t22 taala3 ta3ta1
B.] = t3131 t32l32 |\ /l33t33 t31t32 t32l33 t33l31 (5)
€ 2t11ty 28ty 285t (Giatas +tistzn)  (tiates + Gistyn)  (tistyy + Eitos) |

2ty1t31  2t5tsg 2tstss  (fa1tap +tptsr)  (taatss +tastsp)  (tastsr + taqtss)

2t31t11 2t32t12 2t33t13 (t31t12 + t32t11) (t32t13 + t33t12) (t33t11 + t31t13)
Here, the rotation matrix, T, expresses a vector in the global x-coordinate direction in the fiber axis, i.e.
x' = Tx. The elasticity)matrix is similarly transformed via [C']=[B]"[C][B,]. P is invariant to rotation so

this transformation can be applied to either [C] or [C]. For the generalized case with arbitrary fiber

alignment relative to the coordinate system, [C] and [C] are fully populated 6x6 matrices. Physically, these
relationshipsiensure uniaxial stress in a material where angled fibers produces axial and shear strains in
all orientations, unless the fiber and stress directions are aligned.

Methods

Implementation of NITI model in FE framework

The governing equation of solid mechanics is written as
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0;0;j = pu;, + F; (6)
where u is the displacement vector and F is an applied body force. In Equation 6, stress and strain appear
as standard rank two tensors, rather than in the Voigt notation used above. MRE typically uses steady
state vibration at a set frequency, w, with no internal forces at the vibration fregquency, i.e. u(x,t) =
Re{U(x)e'®*}, and F = 0. Assuming the complex-valued displacement amplitude, U, is;supported on a
set of finite element basis functions such that U(x) = YV_, u@ @ (x), the a’f* Galerkin‘weighted
residual statement in Eq. 6 is

(0:09 @) = (=pw?Up(@), (7)
where (...) = [[[(...) dV (Lynch 2004). Assuming a right-handed coordinate,system and applying an
appropriate integration by parts, $(yn;o0;;)ds = [[[(8;0;; + 0;;0;)dVj'to the LHS gives

(00 @) — (pw*up @) = ﬂg(niaijlll(a)) as, (8)
Assuming a full 6x6 [C] matrix after rotation with respect to an arbitrary fiberorientation, and substituting
terms into Equation 8, three components of (aijaizpa) can be written as

dy(@®
dx
dy@®
dy
dy@®
dz
dy@®

(Car€11 t Cap€pp + Caz€z3iat 2C4a€15 + 2045623 + 2546613)—dx

dy@
dy
dy@®
dz
_ { _ _ _ _ dl/)(“)
(Co1€11 7t Cea€2p + Co3€33 + 2Cea€12 + 2065623 + 2C66613)W

~ _ ~ ~ ~ ~ dll,(a)
+(Cs1611 + Cop€22 + Cs3€33 + 2C54€12 + 2055623 + 2C56613)W

(C11€11 t+ Ci2€22 + Ci3€33 + 2C14€15 + 20156230t 2016613 + P)
+(Ca1€11 + Can€zp + Caz€sz F 2Cha€1p + 2C4s5€23 + 2C46€13)

+(Co1€11 + Co2€22 + Co3€33 + 2Cea€12072C5€23 + 2Co6€13)

(9)

+(Cp1€11 + C22€37 Fi€a3€33 + 204612 + 2005623 + 2026613 + P)

+(Cs1€11 + Csp€29.+ Cs3€33 + 2C54€12 + 2055623 + 2C56€13)

dy@
dz

+(C31€04 + C32€22 + C33€33 + 2C34€12 + 2035623 + 2C36€13 + P)

Support of‘heterogeneities

FEM implementations often model heterogeneity with constant properties over each element, and use
specialized meshes to define regional boundaries. Brain tissue contains few sharp interfaces in properties;
smoothly varying properties and fiber directions are common between structures and along tracts; hence,
high-resolution continuous basis support of model parameters is advantageous. Additionally, the
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specialized meshing required for elementally-constant properties is not practical for MRE inversion since
the property interfaces are not known in advance.

The FE system is implemented on 27-node quadratic hexahedral elements for_which/integrals over
elements are evaluated with Gaussian integration. Thus, the finest level of heterogeneity which.can be
accommodated occurs at Gauss points. Orientation of fiber axes is defined by diffusion tensor imaging
(DTI) data, which are nearest-neighbor-interpolated to Gauss point locations. Heterogenous material
property values, (i, ¢, {), are interpolated to Gauss points from independent propertyxmeshes using the
appropriate basis functions (McGarry et al. 2012). The elasticity matrix is”assembled in local fiber
coordinates through Equation 1 for each Gauss point, and then transformed, to the global coordinate
system through Equation 5 for FEM stiffness matrix assembly via Gaussiantintegration. Clinical DTl data
resolution is approximately 1-3 mm, whereas the highest resolution MRE acguisitions reported to date on
a clinical system are 1.25 mm, with 2 mm being more typical (Johnson.et al..2013, Johnson et al. 2019).
Imaging time usually dictates the resolution achieved in each,scan; the/ Gauss point approach to
heterogeneity maximizes the value of any high-resolution data when acquired.

Finite element support of displacement and pressure

To avoid volume locking, the pressure variable is supported on basis functions of lower order than the
displacements. Displacement is expressed on standard quadratic FE basis functions, Y, defined on
isoparametric 27-node hexahedral elements (Zieénkiewicz et al. 1977) and written as

Pressure is represented on linear basis functions, y, defined as y; = 1, x2 = X, X3 = ¥, X4 = Z, Where
the subscript 7 refers to the reference, or ‘parent’ coordinate system of the isoparametric element,
written as

POE 24_1P Wx® ) (11)

These forms are often referred to.as Q>-P* Nicolaides-Boland elements. For a FE mesh with N,, nodes and
N, elements, the vector of unknown values to be computed during the solution process, {u}, is of length
3N,, + 4N,, and is structured as

T
{U} — [U:fl) Uz(l) U?El) U1(2) UZ(Z) U?ENn) Pl(l) Pz(l) P3(1) P4,(1) P1(2) PZ(Z) P4(Ne)] (12)
where the superscripts referto the node number for displacements, and element number for pressures.

Finite element matrix contributions

Substituting the definition of the strain tensor,
1
Eij = E(ajul + aiu]') (13)

into Equation 9, then using Equations 8, 10 and 11 allows the first 3 X N,, equations of the FE system to
be generated. The remaining 4 X N, equations required to solve the FE system for {U} are generated

Page 6 of 29



Page 7 of 29

oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - PMB-110060.R1

through Equation 3, enforced as a penalty term. The weighted residual form for the mt"* pressure basis,
¥ serving as a weighting function can be written

P
<<_; + (€11 + €2 + 533)>){(m)> =0 (14)

Specific forms of the FE stiffness matrix components are provided in the Appendix;
Viscoelasticity

In this study, time harmonic viscoelasticity is implemented through complex-valued moduli, . ¢, {, and
K are real-valued parameters, and includes an isotropic form of damping‘throughthe material property
definitions. Allowing ¢ and ¢ to have non-zero imaginary contributions would achieve anisotropic
damping, where shear waves attenuate differently depending on their. propagation direction and wave
polarization. Complex-valued k causes phase lag between an applied hydrostatic stress and the resulting
volumetric strain, which approximates p-wave damping when k > (.

Model validation

The Fortran FE NITI model implemented with the MUMPS matrix solver (Amestoy et al. 2001) was
validated against an analytic prediction of wavelength/and/exponential attenuation coefficient. The NITI
model results in two shear waves, which depend on the propagation direction, 7, and the fiber direction,

f, and the angle, 8, between them (Tweten et al. 2015). In the undamped case with real-valued u, The
slow shear wave with wavespeed

e %(1 ¢ cos? 6) (15)

occurs when fibers are not stretched, i.e. when the wave polarization direction, mg, is perpendicular to

the plane defined by the propagation and,polarization direction, i.e. my = 71 X f Note that ¢4y, has no
dependence on tensile anisotropy,.{. When fibers are stretched, the fast shear wave appears, with
wavespeed

ngast 2 %(1 + ¢ cos? 26 + {sin? 20). (16)

Note that the maximum.effect of'( occurs when 68 = 45°. The wave polarization direction in this case is
my = g X 7i. For harmonieviscoelasticity, the damped wavelength depends on both real and imaginary
components (Guidettin, and Royston, 2018). Defining the complex-valued slow modulus as pug =
%(1 + ¢ (cos 8)*) and the fast modulus as p; = u(1 + ¢p(cos 26)? + { (sin 26)? ), the expected shear

wavelength at frequency F (Hz) is

2

#S|f

(17)
Re (“Sv) +

1
Lar=%

)

TN

iuS|f

Im(psir)

, which gives an exponential attenuation coefficient of
2Re(us|f)

The damping ratio is &=
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21

as| (18)

T Losgsir
A 90x90x180 mm block geometry was created (long axis defined as the z direction), and.shear
displacement boundary conditions were applied on the XY face, in either the X or Y directions; resulting
in shear waves propagating along the long axis of the block. Displacement amplitudes.in other directions
are small as the wave is nearly completely damped prior to reflection fromsthe end face. Four fiber
orientations were considered: X direction, Y direction, Z direction, and at an angle of 60 degrees from the
Z axis in the XZ plane. The choices of fiber orientations and BC direction isolated.either the slow or the
fast shear wave to avoid the complication of the double damped sine wave fit.required when both waves
are present with significant amplitude. Material properties were u.= 2900 +,1200i, and 4 different
combinations of the anisotropies were specified: (¢ = 0.5, = 0.5), (¢= 0, = 0.5), (¢ = 0.5, = 0),
and (¢ =0, = 0). These parameter selections generate 8 simulations for each fiber orientation.
Displacement profiles were extracted from the central axis of.the block, which were fit to a decaying
sinusoid via nonlinear least squares.

- /2m
uri(z) = Ae~*sin (Tz 1 P) (19)

The wavelength, L, and exponential attenuation coefficient, a, for each of the 32 block simulations were
compared to the theoretical predictions in equations 17 and 18.

As an additional check, we compared our.computations ' with a model evaluated previously within the
commercial finite element package, (COMSOL Inc, Stockholm, Sweden) (Tweten et al. 2015, Tweten et al.
2017). A 50 mm cube of NITI material was generated and meshed at 2 mm. Material properties were
assigned as u = 3 + 0.3ikPa, p/= 1000kgm‘3, Kk = 1000kPa, and boundary conditions obeyed 50-
100 Hz x-directed shear vibration with :mm amplitude of the z = 0 face (all other faces were stress free).
Validation was performed through isotropic(¢ = 0, { = 0) and anisotropic cases with ¢ =1, = 2 and
fibers in the x direction, at 30 degreesiin the xz plane, and 45 degrees in the xy plane.

Brain model with DTI defined fiber directions

MRE data from a previous study was used to construct a patient-specific NITI brain model and investigate
the performance of isotropic MRE inversion under conditions of known and controllable anisotropy. Full-
brain MRE displacement data at 60 Hz were acquired with 2.0 mm isotropic resolution using a 3D
multiband, multishot spiral MRE sequence (Johnson et al. 2019). Imaging parameters included: TR/TE =
2134/70 ms; field=of-view =240x240 mm?; matrix = 120x120; 64, 2.0 mm thick slices; field inhomogeneity
correction with auxiliary fieldmap. Two separate MRE datasets were recorded sequentially over the same
field-of-view_andreselution: one with vibration in the anterior-posterior (AP) direction and the other with
vibration in the left-right (LR) direction (Smith et al. 2020). T;-weighted anatomical images informed atlas-
based segmentation of 10 white matter tracts (WMT) and 6 subcortical grey matter regions (SGM) using
standard-space atlases (Hua et al. 2008, Makris et al. 1999). Segmentations were registered to MRE image
space using FLIRT in FSL (Jenkinson et al. 2002, Jenkinson et al. 2012). DTI data provided fiber directions
and fractional anisotropy (FA) maps. DTl imaging data were collected with a simultaneous multislice EPI
sequence with same field-of-view and matrix as the MRE data with the following parameters: TR/TE =
3000/73.8 ms; b-value = 1000 s/mm?; multiband factor = 4; two acquisitions performed with reverse
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phase-encoding direction for distortion correction. Fiber directions and FA maps were determined, using
DTIfit in FSL (Jenkinson et al. 2012).

A mask generated from the MRE and DTI data was used to construct a model with realisticitissue classes
and fiber orientations. Bulk white and grey matter were segmented by thresholding the T;=weighted
anatomical image, and the 10 WMT and 6 SGM regions were assigned homogenous properties based/on
global and regional properties we have published previously (Hiscox et al. 2019). Structures which were
not included in the previous study were extracted from the underlying data using the same methods.
Property values from literature were originally generated from 50 Hz MRE expgriments, so we performed
simulations at 50 Hz as well. WMTs were assigned baseline ¢ and { values, estimated from their average
diffusion fractional anisotropy (FA), to encode different shear and tensile*anisotropy in each structure.
The diffusion FA for three diffusion eigenvalues, 14, A,, A3 is given by

JE+Z+ 2 (15)

\/(11 —22)% + (A — 23)2+ (A3 — A9)2
FA =
An equivalent mechanical FA, ug4, can be derived by assuming mechanical anisotropy is identical to
diffusion anisotropy: e adD) — mas (1 + @), A, /= A30Applying this definition of ¢ to Eq. 15 leads
to

ST
T Bt 2ptgr (16)

Equivalent ¢ values can then be computed by using

(17)

with the assumption that pr4 = aFA, where the coefficient can be used to scale the relationship
between mechanical and. diffusion anisotropy. The tensile anisotropy parameter, {, can be estimated
under the sameé assumption.Values of ¢ and { from Eq. 17 were multiplied by a random value in the
range [0.8 1.2].to avoid the /special case where ¢ = (. Although evidence suggests that gray matter
regions have some mechanical anisotropy (Prange and Margulies 2002), gray matter was assumed to be
isotropic to create'a model with both perfectly isotropic and transverse isotropic tissue classes. Structures
and their assigned NITI property values are summarized in Table 1.

Two sets of displacement boundary conditions were defined using boundary values from AP and LR MRE
measurements (McGarry et al. 2015), which provided two realistic displacement fields that represent
published experiments (Anderson et al. 2016) investigating the effects of wave propagation direction on



oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - PMB-110060.R1

isotropic inversions in the brain. The bottom surface was left stress-free to avoid high pressuresiarising
from a boundary fully constrained with noisy measurement data. Figure 1 illustrates the.process of
creating the subject-specific NITI simulation. A 132,000 node, full-brain computational problem required
1032 seconds to run on a single core of an Intel Xeon Gold 6148 2.40 GHz processofwith 384:.GB of RAM.

Table 1: Properties from the literature or subject-specific imaging used in the/NITl brain‘simulation.
Columns indicate the structure name/number (#), Gray/white matter classification (GW),the number of
2x2x2 mm voxels (N), fractional anisotropy from DTI (FA), and assigned NITI properties: real/imaginary
shear modulus (u, units of kPa), and the baseline shear and tensile anisotropy,.¢ and {. Regions of
cerebrospinal fluid (including the ventricles) were not segmented for these simulations and were assigned
the same properties as unspecified gray matter.
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Structure # |[GW | N FA Re(w) | Im(u) [0)] {
Unspecified gray matter 1 |G 61144 | 0.190 | 2.300 1.012 |0 0
Unspecified white matter 2 |W 52165 | 0.302, | 2.875 1.265 | 0.643 | 0.755
Anterior thalamic radiation 3 |W 1312 10.355 | 37152 1.351 | 0.838 | 0.665
Corticospinal tract 4 |W 1624( | 0.512/| 2.886 1.242 | 1.720 | 1.461
Cingulum (cingulate gyrus) 5 |W 554 0.412 | 3.497 0.910 | 0.964 | 0.823
Cingulum (hippocampus) 6 |W 223 0.335 | 2.950 0.538 | 0.611 | 0.613
Forceps major/minor 7 | W 3560 0.345 | 2.794 1.246 | 0.766 | 0.725
Inferior fronto-occipital fasciculus | 8 AW 1515 4 0.400 | 3.031 1.314 | 1.124 | 0.928
Inferior longitudinal fasciculus 9" | W 1824. | 0.422 | 2.832 1.247 | 1.166 | 1.008
Superior longitudinal fasciculus 10 | W 1879 | 0.340 | 2.732 1.306 | 0.841 | 0.641
Uncinate fasciculus 11 | W 560 0.363 | 2.868 1.334 | 0.971 | 0.810
Superior longitudinal fasciculus 12 | W 1020 | 0.445 | 2.922 1.361 | 1.261 | 0.945
Thalamus 1316 1534 | 0.351 | 3.535 1.308 | O 0
Caudate 14 | G 539 0.172 | 3.381 1.460 | O 0
Putamen 156G 983 0.228 | 3.434 1.449 |0 0
Pallidum 16 |G 296 0.234 | 3.406 1355 |0 0
Hippocampus 17 | G 606 0.182 | 3.022 1.070 |0 0
Amygdala 18 | G 297 0.156 | 3.256 1.290 |0 0
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46 Figure 1: Subject-spécific NITI'FEM brain model. Top Left: Atlas-based segmentation of brain regions used
to construct the model, where the region number correspond to structures detailed in Table 1. Top Right:
DTI-defined fiber directions. Bottom: Two sets of boundary conditions (BCs) taken from MRE

50 displacement measurements with AP and LR vibration, units of mm.
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Isotropic inversion of simulated NITI data

Output from the NITI FE model was used as input for MRE inversion in order to investigate poerformance
in an idealized situation where “true” properties are known. Isotropic simulated data (¢ =:{ = 0) which
were noise free, as well as with simulated added Gaussian noise (standard deviation equal to 5%-0f the
mean absolute displacement value) were inverted with two commonly used isotropic MRE. inversions —
nonlinear inversion (NLI), and local direct inversion (LDI). Further analysis of the effect of anisotropy was
investigated with NLI only.

NLI inversion parameters were the same as those applied in clinical brain studies, and included 100 global
iterations with 3 conjugate gradient and 2 line search iterations per subzone, Gaussian smoothing
between global iterations, 25 mm subzones with 15% overlap, and equalresolution for material property
and input data (2 mm) (Hiscox et al. 2018). Real and imaginary shear modulus maps were recovered
starting from an initial homogeneous estimate of u = 3.3 + 1.188i kPa. Density was p =1000 kgm3
(same as the simulation), and bulk modulus was held constant.at k¥ = 1649kPa to enforce near-
incompressibility (simulations used ¥ = 1000kPa).

Details of the implementation of the LDI algorithm are available in the'literature (Okamoto et al. 2011).
Briefly, the curl of the data was taken using a 2" order Savitzky=Golay filter on 3x3x3 blocks of data to
reduce compressional wave contributions. The curl data weresmoothed with a 1 mm Gaussian filter, and
the Laplacian of the curl was estimated using acentral difference approximation. An assumption of local
homogeneity of mechanical properties is then invoked to solve for an estimate of the complex-valued u
in Equation 6 at the center of 5x5x5 blocks of‘data viastotal Least Squares and the singular value
decomposition. At the boundaries, data.outside of the mask was given a weight of zero, and if less than
50% of the 5x5x5 block was present, the stiffness was'not computed.

Presumably, mechanical and diffusion anisotropy have the same principal direction, since these effects
are determined by the axes of anisotropy which are dominated by the fiber tract geometry. However, the
magnitude of diffusion and mechanical ‘anisotropy are governed by different physical mechanisms;
therefore, the level of anisotropy is'hot expected to be the same for the two processes (in fact, they may

provide distinct diagnostic signatures). Simulated data were generated by scaling ¢ and { between

diffusion and mechanical anisotropy through the scalar & = ’;L:, and differences between NLI inversions

of AP and LR motions were investigated and compared to a previously published in vivo study (Anderson
et al. 2016).

Results
Model validation

Agreement between theoretical and numerical values of the damped wavelength and exponential
attenuation coefficient was found. Of the 32 combinations of fiber direction, boundary conditions and
NITI parameter values investigated, two outliers occurred in which errors in the least squares fit were
evidenty)which generated deviations greater than 12% in L and 29% in a. Excluding these two outliers,
mean absolute difference between predicted and numerically estimated values of L and a in the 30
remaining.Cases were 0.53% and 2.8%, respectively. Examples of numerical and fitted curves for
representative cases are shown in figure 2.
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Comparison of the Fortran-based NITI implementation described here and its COMSOL counterpart.is also
shown in Figure 2. The FE model reproduced the COMSOL results for isotropic cases, as well as.for cases
with arbitrarily aligned fibers in the xy- and xz-planes with RMS errors of 0-3%. The COMSOL mesh was a
25x25x26 grid of quadratic hexahedral elements, whereas the NITI implementation ésed a 13x13x13 nodal
grid of quadratic-27 node hexahedral elements, small differences between solutions of this order are
expected due to discretization errors. The elemental property support of COMSOL felative to.the Gauss
point support in the Fortran implementation describe here are identical in homogenous cases; hence,
these differences are not expected to contribute to disagreement between models. The:€COMSOL model
was previously validated through comparisons of plane wave solutions in(the simulation to analytic
solutions governing slow and fast shear waves in NITI materials (Tweten et al. 2015, Hou et al. 2020).

Example displacement fields from the subject-specific NITI brain model with AP and LR displacement
boundary conditions are shown in Figure 3, and compared to experimental MREs-measurements. We also
compare displacement fields simulated with isotropic material properties. Differences between the NITI
model and the isotropic model are 25% and 19% RMS for AP and LR:boundary conditions, respectively.
Difference images reveal local variations up to 100% betweenMNITland isotropic models.

Isotropic inversions of isotropic data (¢ = { = 0) based on'NLLand LDI are compared in Figures 4 and 5
(homogeneous case), and Figures 6 and 7 (heterogenousicase), for both AP and LR boundary conditions,
with and without noise. Ideally, estimated parameter maps»are independent of displacement field
patterns. NLI performs well in all cases since the major assumption of isotropic elasticity is not violated,
and NLI correctly models heterogenous materials. LDl performs well in the central region of homogenous
data where the local homogeneity assumption is valid; however, it suffers from substantial artifacts near
boundary and stiffness interfaces.

Isotropic NLI inversions of anisotropic data appear in Figure 8. The shear modulus estimate falls between
the perpendicular and parallel shearmoduli, and RMS difference between inversions of AP and LR motions
increases to 8.6%, compared to 1.7%foninversions of isotropic data.

Table 2 summarizes RMS errors with respect to the ground truth values for noise-free inversions, and RMS
differences between AP and LRsinversions for the cases illustrated in figures 4-8. Isotropic NLI inversions
of isotropic displacement data had low RMS errors for both homogenous and heterogenous stiffness
distributions (0.7-6.9% for Re(t);1:6-12% for Im(u)). Consistency between NLI inversions using AP and
LR displacement fields was also observed: RMS difference 1.0-1.7% for Re(u), 1.8-3.0% for Im(u). LDI
inversion performed welliin the central region of inclusions in the homogenous case, with RMS errors
4.6% for Re(u) and,12% for Im(u). Substantial artifacts occurred near the boundaries and at stiffness
interfaces in heterogenous model cases, causing errors of 12-30% for Re(u) and 22-70% for Im(u) under
these conditions. Despite the property estimation errors, consistency of LDI for AP and LR vibration fields
was relatively good, even in heterogenous case: RMS differences of 3.7% for Re(u), 7.1% for Im(u). NLI
inversion of‘anisotropic data increased RMS differences between AP and LR inversions to 8.6% and 15%
for Re(u) and Im(u), respectively (relative to 1.7% and 3.0% for the isotropic case).

The NITFbrain'model was also used to investigate the effect of anisotropic structures on nearby isotropic
regions for isotropic NLI inversion. Weak correlation was found between property variability and AP and
LR boundary conditions (Figure 5), and some isotropic structures exhibited errors as large as those
observed in the most strongly anisotropic regions — for example, the isotropic pallidum had an AP-LR
difference of 0.32 kPa, which was almost as high as the largest differences in anisotropic WM tracts, such
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as the uncinate fasciculus at 0.33 kPa, and the corticospinal tract at 0.39 kPa. GM and WM structures had
AP-LR RMS differences of 1.8% and 1.7%, respectively, when both were defined as isotropic, and.7.2% and
9.8%, respectively, for NITI simulated data when gray matter was isotropic, and white matter was defined
as Tl. These results suggest that neglecting anisotropy will increase the wavefield dependent.error for in
vivo MRE by a factor of 4 to 5 (assuming up4 = FA).

A plot of AP-LR RMS differences for Re(u) of isotropic NLI inversions, where the level of mechanical
anisotropy in the simulated data was scaled to be lower than the diffusion anisotropy from FA
measurements is shown in Figure 10. As expected, lower anisotropy resulted in smaller RMS differences
between AP and LR motions. In vivo results from (Anderson et al. 2016) reported average white matter
differences of 2.2% and maximum differences of 23% in highly aligned~white matter tracts, which
corresponds to a scaling factor in the range 0.2-0.25 in Figure 10, as indicated by the dashed lines.
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Figure 2: Verification®™of NITI implementation. Top row: Displacements along the central axis of an elongated
block simulation. The parameters fit to a damped sinusoid (Eg. 19) are compared to theoretical predictions of
wavelength, L, and attenuation, a (Eqs. 17-18). Bottom row: comparison of displacement field images of the
simulation platform (Fortran), against a previously validated COMSOL implementation for A) isotropic case
(¢ = ¢ = 0), B) Anisotropicwith x-directed fibers (no rotation), C) and D), 30 degree fibers in the XY and XZ
planes. Twoarbitrary components for the central slice are shown in units of mm, as well as the RMS

percentage difference for all components. RMS differences for the whole volume were: A=1.36%, B=0.87%,
C=3.24%, D=1:93%.
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Figure 4: Plots of Re(u) in kPa. Single slice of NLI and LDI isotropic inversions of simulated heterogenous
isotropic data. True Re(u) assigned in the simulation appears onjthe left, and inversions of noise-free and
5% added Gaussian noise motion data are on the righty The first row reports data generated with BCs
from AP actuated MRE data, whereas the second row presents results with BCs from LR actuation. The
third row shows absolute differences in estimated properties between the two cases.
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Figure 5: Plots of Im(u) in kPa. Single slice of NLI and LDI isotropic inversions of simulated homogenous
isotropic data. True Im(u) assigned in the simulation appears on the left, and inversions of noise-free and
5% added Gaussian noise motion data are displayed on the right. The first row reports data generated
with'BCs from AP actuated MRE data, whereas the second row presents results with BCs from LR
actuation. The third row shows absolute differences in estimated properties between the two cases.
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24 Figure 6: Plots of Re() in kPa. Single slice of NLI and LDFisoetropicinversions of simulated heterogenous
isotropic data. True Re(u) assigned in the simulation appearsion the left, and inversions of noise-free
and 5% added Gaussian noise motion data are on.the right.The first row reports data generated with
28 BCs from AP actuated MRE data, whereas the secondrow presents results with BCs from LR actuation.
29 The third row shows absolute differences in estimated properties. between the two cases.
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50 Figure 7:Plots of Im(u) in kPa. Single slice of NLI and LDl isotropic inversions of simulated heterogenous
51 isotropic data. True Im(u) assigned in the simulation appears on the left, and inversions of noise-free
52 and 5% added Gaussian noise motion data are on the right. The first row reports data generated with
BCs fromAP actuated MRE data, whereas the second row presents results with BCs from LR actuation.
The third row shows absolute differences in estimated properties.
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Figure 8: Isotropic Inversion of simulated.data generated with the anisotropic NITI model. A single
central slice is shown, the true values’used.in the simulation are provided on the left, i, ¢ and
values from Table 1, along with the shear modulus parallel to the fibers, Ur = u(1+ ¢), and the

Young’s modulus along the fibers, Er = u(3 + 4¢). Images recovered by isotropic NLI are shown
on the right. Inversions of AP and LR motion fields appear in rows 1 and 2, and row 3 reports the
absolute difference, |uap — trr|-[All unitsiare kPa, other than ¢ and ¢, which are dimensionless.
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Table 2: RMS differences for NLI and LDI inversions between ground truth parameters andivalues
recovered from inversion of noise-free data (average of AP and LR inversions), and RMS_differences
between the AP and LR inversions. NLI differences are computed from the full field solution, whereas LDI
results use a mask eroded by seven serial erosions with a 3x3x3 kernel to avoid¢the artifacts near the
boundary evident in figures 4-8. The last row presents values from isotropic NLI inversions of anisetropic
data; RMS differences with the truth are not given since three moduli are supplied to the forward
simulation, but only one is recovered by inversion.

oNOYTULT D WN =

Re(p): truth | Im(u): truth | Re(w): AP-LR Im(p) — AP-LR

NLI: homogeneous 0.74% 1.6% 1.04% 1.76%
16 isotropic simulation

LDI: homogeneous 4.6% 11.9% 8.5% 20.3%
19 isotropic simulation

NLI: heterogenous 6.9% 11.8% 1.7% 3.0%
22 isotropic simulation

24 LDI: heterogenous 12.3% 229% 3.0% 7.13%
25 isotropic simulation

27 NLI:  heterogeneous N/A N/A 8.6% 15.0%
28 anisotropic simulation
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Figure 10: Effect of setting the mechanical anisotropy by scaling the diffusion
anisotropy. Simulated data were generated by computing ¢ and ¢ through equation
17,+and while adjusting the scalar multiplier, a, that maps diffusion anisotropy to
mechanical anisotropy. Mean (left axis) and maximum (right axis) difference between
isotropie’NLI inversions of simulated data with AP and LR displacement fields are
plotted. Dashed lines indicate in vivo results reported in (Anderson et al. 2016).
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Discussion

Many tissues in the human body consist of aligned fibers, resulting in transverse isotropic mechanical
properties (e.g. skeletal muscle and brain white matter). Importantly, both fiber directions and. mechanical
properties have strong spatial variation in vivo, as evidenced by the structure maps and /DTl imagesshown
in Figure 1. The majority of MRE inversions currently used in practice assume isotropic properties and
many also assume local homogeneity. The consequences of violating these assumptions have not been
investigated thoroughly. The finite element (FE) implementation of a heterogenous, NITI material
presented here is capable of modeling wave propagation in fibrous tissues, such as brain and muscle. The
model accommodates heterogeneity in both properties and fiber directions‘at FE Gauss points, which
achieves the highest possible discretization on a given FE mesh. DTl data/with resolution higher than the
MRE acquisitions can be incorporated into the model. Reflections and 'wave propagation are modeled
appropriately, which ensures the simulated data are representative,of wave behavior observed in
heterogenous elastic solids such as tissue.

The nearly incompressible behavior of tissue is evidenced by the,vastly different propagation speeds of
sound (¥1540 m s!), and shear waves (¥1-2 m s?). The FE.NITI implementation presented here takes
advantage of the structure of the elasticity matrix (Tweten et al. 2015) to separate shear and bulk moduli,
and enforces low compressibility through a penalty equation: This strategy introduces an extra, unknown,
pressure variable into the FEM system that incurs increased computation costs, however, implementation
is relatively straightforward, and models p-wave and associated mode conversions at boundaries and
stiffness interfaces in the computations. We have used this approach successfully in our previous isotropic
NLI routines (McGarry, et al, 2012), and have adopted it for the NITI material here. In a general
compressible Tl material, bulk moduli will'also be anisotropic, which generates 5 independent mechanical
parameters. In our model, we have assumed isetropic compressibility, which is expected to be accurate
provided k > u, and has the benefit of reducing the number of unknown material property parameters
to 4. Nearly incompressible formulations are available with accurate treatment of bulk modulus
anisotropy (Taylor et al. 1968); however, they involve much more complicated FE stiffness matrix terms,
which are not ideal for methods that exploit FEM in other techniques (such as model-based MRE
inversions) because these terms must be differentiated with respect to the mechanical property
parameters in order to generate'iterative property updates (Van Houten et al. 2001). The FEM terms in
this model are linear in (¢, and'{;which makes differentiation straightforward.

The model can be used.to generate forward-simulated data to test MRE inversion algorithms under
idealized conditions where “ground truth” properties are known. The brain model illustrated in Figure 1
incorporates subject-specific. maps of brain structures with properties taken from the literature, fiber
directions from/DTI data, and fractional anisotropy maps to approximate mechanical anisotropy. Realistic
wavefields are generated through simulations by using measured MRE data as boundary conditions.
Although the,goalof the simulations was not to match MRE experiments exactly, Figure 3 shows that the
simulated data resemble the experimentally measured MRE results in terms of wavelength and major
features of the wave pattern. Noticeable differences between measured and simulated data are evident
around the falx, which is a stiff membrane-like structure that is not included in this model explicitly, and
the ‘wentricles, which are modeled as a solid tissue continuum rather than true fluid-filled spaces.
Accurately ‘modeling these structures would further improve the simulation platform and will be
addressed in future work. Properties used in simulations were average literature values from isotropic
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MRE at 50 Hz and were assumed to be constant over each structure. Applying subject-specific MRE maps
and anisotropic mechanical testing data collected under controlled conditions for these properties would
likely yield a closer match between the model and these 60 Hz MRE displacements, but would be less
appropriate for testing the spatial accuracy of MRE inversions. Although appreciablédifferences between
the NITl and isotropic models occur in these simulations, applying measured data as boundary conditions
around most of the exterior give results which are more similar than would be expected for a,simulation
with free boundary conditions. Modeling the true boundary conditions on the surface of the brain from
skull vibration is difficult due to the surrounding CSF, arachnoid trabeculae and.cerebral meninges. Using
MRE measured displacements to define brain surface boundary conditions produces realistic wave fields
in simulation and ensures that conclusions drawn from simulated inversions are_relevant to common
experimental MRE conditions.

Experiments where isotropic simulated data were inverted with isotropic NLI (based on a heterogenous
FE model) and LDI (assuming locally homogenous mechanical properties) showed that NLI outperformed
LDI in all cases, particularly near the boundaries and at tissue’stiffness /interfaces where shear wave
reflections are generated. The assumption of local homogeneity of u required to simplify Equation 6 and
allow direct solutions through LDI means that shear wave reflections are not modeled correctly, leading
to the artifacts visible in Figures 4-7. Despite the artifacts in the heterogenous LDI inversions, the AP and
LR inversions were similar, which demonstrates that LDJis reasonably independent of wavefield patterns.
NLI was also less sensitive to noise than LDI, although the inversion parameters in NLI and LDI can be
modified to trade off accuracy and spatial reselution with noise sensitivity, so this result should be
considered valid only for the particular parametersiused in.this study. The LDI model we implemented has
been applied in the literature; however, other direct inversion algorithms are available that use
techniques such as directional filtering to reduce reflections which are not included in our simulations.
Data generated here from simulations are available for testing with more sophisticated direct inversion
algorithms from other research groups in the future.

Effects of NITI materials on isotropiC inversions were investigated by applying anisotropic properties to
white matter structures while keeping gray matter isotropic. In recent MRE literature, isotropic inversions
are speculated to have larger errors in‘anisotropic white matter due to model-data mismatch while more
isotropic gray matter will be less affected (Johnson et al. 2013, Guo et al. 2013). In the isotropic NLI
inversions in Figure 8, anisotropy.in.the simulated data results in an isotropic MRE approximation which
is a weighted average of theitwo shear moduli; the weighting is likely to be proportional to the energy of
waves propagating parallel and transverse to the local fiber axes, respectively (Schmidt et al. 2016).
Differences between inversions using AP and LR boundary conditions are 4-5 times as large for the NITI
model relative to the'isotropic case, as different wavefields yield different primary wave propagation
directions. A weak correlation is,apparent (Figure 9) between local anisotropy and wavefield-dependence
of properties, which indicates that the presence of anisotropy also causes errors in nearby isotropic
structures.«Accordingly, a spatially accurate NITI NLI approach can be expected to improve parameter
estimates in bothgray and white matter structures, and an advantage of the relatively simple form of the
FEM terms in.thé NITI model presented here is ideal for future implementation in advanced FE model-
based inversions such as NLI. The differences in AP and LR motions indicate the sensitivity of MRE results
to wavefield and likely propagation direction. While solving for all 4 parameters in the NITI model is
theoretically possible given a single wavefield, it has been hypothesized that including two or more
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wavefields may improve the estimation (Anderson et al. 2016, Smith et al. 2020), and overcome potential
limitations associated with insufficient wave propagation relative to fiber direction (Tweten et.al., 2017).

Figure 10 suggests that scaling the mechanical anisotropy to be 4 to 5 times lower than the diffusion
anisotropy measured with DTl approximately matches published in vivo results Anderson et al..(2016),
where experimentally demonstrated differences of 2.2% in bulk white matter and larger differences.(up
to 23%) in highly aligned WM structures were reported. This finding indicates mechanical anisotropy may
be lower than diffusion anisotropy, and provides an approximate scaling relationship forassigning realistic
anisotropic ¢ and { parameters in future simulations. This further suggests anisotropy on the order of
~10-30% present in brain WM tracts, which is similar to previous in vivo and ex vivo assessments, although
more direct evidence from in vivo anisotropic MRE would be required to provide more reliable estimates.

Conclusions

A finite element model based on an NITI material was developed and details of the FEM implementation
in heterogenous materials were presented for the first time. The modelwas used to perform subject-
specific simulations of shear wave behavior in the brain. MRE, DTIl, and anatomical MRI data were
collected to generate realistic wavefields in a full-brain geometry, which were then used to quantify error
and wavefield dependencies in estimated properties for two commonly used inversion algorithms under
idealized conditions. Analysis of simulated data,demonstrated. that local anisotropy affects parameter
estimates in both anisotropic structures (whité matter tracts) and nearby isotropic regions, motivating
development of model-based heterogenous NITI inversions. The approach, which makes the stiffness
matrix terms accessible within the FEM model, provides the foundation for implementing NLI-based MRE
inversion.
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Appendix: Finite element stiffness matrix terms.

Replacing €;; in equation 9 with equation 13, and substituting equations 10 and 11 for U and P allows the
finite element stiffness matrix contribution from each gauss point to be calculated:

Equation 9 contributes a 3x3 submatrix, A;4, for each weighting function, 1%, and each nodalibasis
function supporting the displacements, )((b). The terms are given by

Cooyp®  gy® gy @) gy @ oY@ e gy 0N gy @
Add(1:1)=<<cll + C1q 3y +Cie—5 | Ca1 + Caq 3y ¥ Ca6 5

ox 6 9z ) ox ox dy

Cooyp®  gyp® gy®N gy @
+<Ce1 o T Cer g C66 5, 57 — pw® Pl
_ooyp® gy ® gy @ gy @ oWy sop® gy gy@
Add(l'z)_<<clz dy T ox +C15?>W+<C42 oy G Ox T Cas 0z ) dy
ayp® ay® AP ®N\ oy(@
+ | Cez + Cos Cos —3-—
< dy 0x 0z ) 0z

C3 5, Tas 5 T Tax T\ 9o, Ths T T s | oy

oD ou® @) gy
0z dy 0x 0z
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There is also a 3x1 submatrix, A4y, for every weighting function, 1/)(‘1), and pressure basis support function,
x™, and these terms are given by

dy@
Agp(D) = (™ 225

dyit@)
Agy(2) = <X(n) —:fy >

dyp@
Agp(3) = <X(n) 1(/112 >

Substituting Equation 13 and Equation 1@iinto Equation 14 generates the FE system

4 27
1 ™ by 0@ by 0@
2. Zpm (n))_z (b) (b) (b) m)\ — 15
<< (K X th dx tu; dy +us dz X 0 (15)

n=1 b=1

This expression produces a 1x3 submatrix; 4,4, for each pressure basis weighting function, x,,, and
displacement basis function, w(b),

@ @ @
Apg(1) =< lgx X(m)>"4pd(2) =< 16/;}} X(m)>'Apd(3) =< lsz X(m)> (16)

and a 1x1 submatrix, Agps for each pressure basis weighting function, 1™, and pressure basis support
function, y™,

1
App = (;X“”x“’”) (17)

Comparisonof Ay g With terms in A, confirms that the approach maintains FE stiffness matrix symmetry,
which offers storage and computation speed benefits to the mixed nearly incompressible implementation.

The volume integrals indicated by the (:-- ) notation are computed by Gaussian integration, so these terms
just need tobe evaluated at each Gauss point and included in the weighted sum. The submatrices are
insertediinto the global stiffness matrix based on the global location of a, b and n in the solution vector,
{U3} defined in equation 12. Standard isoparametric mappings are also used to transform basis functions
and their derivatives from the parent to global coordinate systems (Zienkiewicz et al. 1977).



