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Abstract 

In this study, we describe numerical implementation of a heterogenous, nearly incompressible, transverse 

isotropic (NITI) finite element (FE) model with key advantages for use in MR elastography of fibrous soft 

tissue. MR elastography (MRE) estimates heterogenous property distributions from MR-measured 

harmonic motion fields based on assumed mechanical models of tissue response. Current MRE property 

estimation methods usually assume isotropic properties, which cause inconsistencies arising from model-

data mismatch when anisotropy is present. In this study, we use a NITI model parameterized by a base 

shear modulus, shear anisotropy, tensile anisotropy, and an isotropic bulk modulus, which describes the 

mechanical behavior of tissues with aligned fiber structures well. Property and fiber direction 

heterogeneity are implemented at the level of FE Gauss points, which allows high-resolution diffusion 

tensor imaging (DTI) data to be incorporated easily into the model. The resulting code was validated 

against analytical solutions and a commercial FEM package, and is suitable for incorporation into 

nonlinear inversion MRE algorithms. Simulations of MRE in brain tissue with heterogeneous properties 

and anisotropic fiber tracts, which produced wavefields similar to experimental MRE, were generated 

from anatomical, DTI and MRE image data, allowing investigation of MRE inversion performance in a 

realistic setting where the ground truth and underlying mechanical behavior are known. Two established 

isotropic inversion algorithms – nonlinear inversion (NLI) and local direct inversion (LDI) – were applied to 

simulated MRE data. Both algorithms performed well in simple isotropic homogenous cases; however, 

heterogeneity cased substantial artifacts in LDI arising from violation of local homogeneity assumptions. 

NLI was able to recover accurate heterogenous displacement fields in the presence of measurement 

noise. Isotropic NLI inversion of simulated anisotropic data (generated using the NITI model) produced 

maps of isotropic mechanical properties with (undesirable) dependence on the wavefield. Local 

anisotropy also caused wavefield-dependent errors of 7% in nearby isotropic structures, compared to 10% 

in the anisotropic structures.       

Introduction 

Many biological tissues are composed of aligned fibrous structures, including skeletal muscle and brain 

white matter. In these cases, strong heterogeneities are also present in both mechanical properties and 

fiber directions due to networks of brain white matter tracts or multiple muscle bundles in a limb. The 

mechanical behavior of these tissues in response to applied loading is well described by nearly 
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incompressible transverse isotropic equations of motion (Schmidt et al. 2016). Most mechanical property 

estimation techniques, such as MR elastography (MRE), assume mechanical isotropy, which causes model-

data mismatches. These mismatches provoke wavefield dependencies in resulting mechanical property 

estimates in tissues that are strongly anisotropic.  Anisotropic MRE approaches have been reported 

previously (Sinkus et al. 2005, Qin et al. 2013, Romano et al. 2012, Namani et al. 2009, Guo et al. 2016, 

Chatelin, el al 2016, Miller et al 2018), but, to date, they have required assumptions of local homogeneity 

that do not hold in complex organs such as the brain where heterogeneity is present in both mechanical 

properties and fiber directions. Nonlinear inversion (NLI) methods exploit models that are fully 

heterogeneous and capture reflection and mode conversion effects that are present in tissue, and an 

anisotropic formulation of NLI may prove advantageous for examining mechanical properties of brain and 

muscle tissue. 

Adapting NLI to anisotropic models requires numerical implementation of the heterogenous anisotropic 

equations, which are well-suited to the finite element (FE) method, if computational challenges associated 

with large differences in shear and bulk moduli are addressed for nearly incompressible materials. A 4th 

order elasticity tensor has 81 components in three-dimensions (3D), but symmetries reduce this number 

to 21 independent parameters for the general anisotropic case. Assuming further symmetries affords 

additional parameter reductions. Orthotropic models involve 3 orthogonal axes with different shear 

moduli, tensile moduli, and Poisson ratios which are represented by 9 independent parameters. 

Transverse isotropy (TI) is a special case in which properties are invariant as the coordinate system is 

rotated around a single axis (that typically corresponds to the direction of aligned fibers) and involves 5 

independent parameters. Incompressible materials provide further simplification and reduce the number 

of free parameters to 3. Full incompressibility must be handled numerically with care; hence, nearly 

incompressible (NI) assumptions achieve “isotropic compressibility” through a bulk modulus term with a 

large value, which results in 4 free parameters in the transverse isotropic case (Itskov and Askel 2002), 

and allows models to include the fast p-wave (longitudinal wave) in nearly incompressible tissue.     

In this paper, a reduced-parameter heterogenous, nearly incompressible (mixed displacement/pressure, 

𝑢-𝑝) transverse isotropic (NITI) FE model is described, which is parameterized by an in-plane shear 

modulus, shear anisotropy, tensile anisotropy, and bulk modulus. To the best of our knowledge, details 

associated with a heterogenous FE implementation of the 4-parameter NITI model have not been 

published previously. Other transverse isotropic options in the literature include five parameter 

compressible TI models (Kaliske 2000, Rouze et al. 2013), 5-7 parameter hyperelastic TI models (Weiss et 

al. 1996, Rüter et al. 2000), and 7-parameter biphasic TI models (Almeida et al. 1998). However, the NITI 

model has been proposed as the simplest case which reproduces experimentally confirmed shear and 

tensile anisotropy differences (Schmidt et al. 2016). Models with the minimum number of parameters 

needed to reproduce observed phenomena are advantageous for inversion algorithms, where obtaining 

estimates of many properties accurately can be difficult from limited, noisy data. In this implementation 

of the NITI model, property and fiber direction heterogeneity are accommodated in the FE model at the 

level of FE Gauss points, which allows high-resolution data on fiber direction to be incorporated to define 

axes of symmetry. The implementation is validated against analytical solutions and commercial software 

but is more modular and flexible than the latter, especially for MRE research studies because it enables 

relatively simple assimilation of patient specific imaging data. The source code and precise form of the 

FEM terms are also available, which is necessary for advanced FEM applications that require manipulation 

of individual stiffness matrix contributions, such as NLI for NITI MRE (Tan et al. 2016).  
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Combining this FE model with MRI anatomical atlases, diffusion tensor imaging (DTI) fiber directions, and 

MRE displacement maps also provides a simulation platform capable of generating realistic patient 

specific synthetic MRE data with which to test the performance of inversion algorithms in cases where 

the ground truth is known. MRE-focused simulations often fail to test major assumptions underpinning 

the inversion algorithms they are being used to validate. Direct inversion MRE relies on assumptions of 

local homogeneity and encounters problems with reflected waves which are unavoidable in practice. 

Simulations used to validate the approach often involve homogeneous properties configured in simple 

geometries that minimize reflections (Papazoglou et al. 2008, Jiang and Nakamura 2011, Hamhaber et al. 

2007, Manduca et al. 2002, Clayton et al. 2011, Green et al 2008), and thus do not capture critical behavior 

of heterogeneous tissues. Simulations with simple spatial variations, for example discrete inclusions (Ou 

et al. 2007, Pattison et al 2014, Sanchez et al. 2010, Barnhill et al. 2017), have been investigated, although 

the zones of stiffness change have been small compared to a large homogenous background and inclusion 

center. Recent publications have presented simulations based on realistic geometries derived from 

imaging data which reveal inaccuracies in direct inversion MRE near mechanical property variations 

(Murphy et al. 2013, Barnhill et al. 2019, McGrath et al. 2016.). These simulations typically involved only 

a few homogeneous tissue classes, whereas in vivo MRE images suggest continuous spatial variations and 

distinct mechanical properties occur in a wide range of brain structures (Johnson et al. 2013, Guo et al. 

2013). Thus, specification and treatment of heterogeneity are vital for simulations that replicate 

conditions associated with in vivo MRE, which is especially true when considering anisotropy where spatial 

variation in both properties and fiber directions are present.  

In this study, we use the proposed NITI FE model to create realistic representations of brain tissue 

mechanics with a reduced number of parameters. Simulated wavefields with known properties, including 

heterogeneity and anisotropy, were generated to understand better the performance of MRE inversion 

algorithms in the brain. In particular, we examine the relative performance of NLI and local direct inversion 

(LDI) in recovering properties in homogenous and heterogenous simulated data, with and without 

measurement noise. We also apply isotropic NLI to anisotropic heterogenous data generated with the 

NITI model, and quantify the wavefield-dependent errors that occur in the resulting mechanical property 

estimates, which have been observed in vivo (Anderson et al. 2016). By validating the NITI FE model and 

replicating previous experimental results in simulation, we demonstrate utility of the model as a MRE 

simulation platform, and for use in development of anisotropic inversion algorithms in the future. 

 

Nearly Incompressible Transverse Isotropic Model  

The constitutive equation in Voigt notation (6x1 vector representation of the 2nd order tensors) for the 

relationship between the stress, {𝝈}, and strain, {𝝐}, in a NITI material, where the axis of symmetry aligns 

with one of the coordinate directions (this orientation is denoted by 𝝈′ and 𝝐′) is given by (Feng et al. 

2013, Tweten et al. 2015) 

 

{
  
 

  
 
𝜎′11
𝜎′22
𝜎′33
𝜎′12
𝜎′23
𝜎′13}

  
 

  
 

 =

[
 
 
 
 
 
𝑐11 𝑐12 𝑐13 0 0 0
𝑐21 𝑐22 𝑐23 0 0 0
𝑐31 𝑐32 𝑐33 0 0 0
0 0 0 𝑐44 0 0
0 0 0 0 𝑐55 0
0 0 0 0 0 𝑐66]

 
 
 
 
 

 

{
  
 

  
 
𝜖′11
𝜖′22
𝜖′33
2𝜖′12
2𝜖′23
2𝜖′13}

  
 

  
 

. (1) 
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In Equation 1, shear components are rearranged to match common numerical notation (Zienkiewicz et al. 

1977). Defining the fiber axis as the 𝑥1 direction, the components of the 6x6 elasticity matrix, [𝑪], are 

given by  

 
𝑐11 =  𝜅 +

4

3
𝜇 (1 +

4

3
𝜁) , 𝑐22 = 𝑐33 =  𝜅 +

4

3
𝜇 (1 +

1

3
𝜁) , 𝑐44 = 𝑐66 = 𝜇(1 + 𝜙), 

𝑐12 = 𝑐13 = 𝑐21 = 𝑐31 =  𝜅 −
2

3
𝜇 (1 +

4

3
𝜁) , 𝑐32 = 𝑐23 =  𝜅 −

2

3
𝜇 (1 −

2

3
𝜁) , 𝑐55 = 𝜇 

(2) 

where 𝜇 is the shear modulus in the plane normal to the fiber axis, 𝜙 is the shear anisotropy, 𝜁 is the 

tensile anisotropy, and 𝜅 is the isotropic bulk modulus. Terms in Equation 2 involve sums of 𝜅 and 𝜇, which 

are problematic numerically when 𝜅 ≫ 𝜇, i.e. near incompressibility. If we define the material pressure 

to be, 

 𝑃 = 𝜅(𝜖11 + 𝜖22 + 𝜖33), (3) 
𝜅 can be removed from the terms in Equation 2 to produce an analogous system in Voigt notation  

 {𝜎′} = [𝑪̅]{𝝐′} +

{
 
 

 
 
𝑃
𝑃
𝑃
0
0
0}
 
 

 
 

, (4) 

where terms in [𝑪̅] are the same as those in [𝑪] with 𝜅 removed. 𝑃 becomes an additional degree of 

freedom, and Equation 3 is used as a penalty that enforces the near incompressibility condition. 

Separation of deviatoric and volumetric strains is common when implementing mixed 𝑢-𝑝 FEM for nearly 

incompressible materials (Zienkiewicz et al. 1977). 

The simplified structure of the elasticity matrix in Equations 1 and 2 is lost when one of the coordinate 

directions is not aligned with the fiber axis. The 6x1 Voigt representation of the strain tensor, {𝜖}, with 

the fiber axis in the local 𝑥1-direction, can be rotated into another coordinate system using a Bond 

transformation (Zienkiewicz et al. 1977), {𝜖′} = [𝐵𝜖]{𝜖}, where 

 [𝐵𝜖] =

[
 
 
 
 
 
𝑡11𝑡11 𝑡12𝑡12 𝑡13𝑡13 t11𝑡12 t12𝑡13 t13𝑡11
𝑡21𝑡21 𝑡22𝑡22 𝑡23𝑡23 t21𝑡22 t22𝑡23 t23𝑡21
𝑡31𝑡31 𝑡32𝑡32 𝑡33𝑡33 t31𝑡32 t32𝑡33 t33𝑡31
2t11𝑡21 2t12 t22 2t13t23 (𝑡12𝑡23 + 𝑡13𝑡22) (t12𝑡23 + 𝑡13𝑡22) (t13𝑡21 + 𝑡11𝑡23)

2t21𝑡31 2𝑡22𝑡32 2t23t33 (𝑡21𝑡32 + 𝑡22𝑡31) (t22𝑡33 + 𝑡23𝑡32) (t23𝑡31 + 𝑡21𝑡33)

2𝑡31𝑡11 2𝑡32𝑡12 2t33𝑡13 (𝑡31𝑡12 + 𝑡32𝑡11) (t32𝑡13 + 𝑡33𝑡12) (t33𝑡11 + 𝑡31𝑡13)]
 
 
 
 
 

.   (5) 

Here, the rotation matrix, 𝑇, expresses a vector in the global x-coordinate direction in the fiber axis, i.e. 

𝑥′ = 𝑇𝑥. The elasticity matrix is similarly transformed via [𝐶′]=[𝐵𝜖]
𝑇[𝐶][𝐵𝜖]. 𝑃 is invariant to rotation so 

this transformation can be applied to either [𝐶] or [𝐶̅]. For the generalized case with arbitrary fiber 

alignment relative to the coordinate system, [𝐶] and [𝐶̅] are fully populated 6x6 matrices. Physically, these 

relationships ensure uniaxial stress in a material where angled fibers produces axial and shear strains in 

all orientations, unless the fiber and stress directions are aligned.   

Methods 

Implementation of NITI model in FE framework 

The governing equation of solid mechanics is written as 
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 𝜕𝑖𝜎𝑖𝑗 = 𝜌𝑢𝑗̈ + 𝐹𝑗  (6) 

where 𝑢 is the displacement vector and 𝐹 is an applied body force. In Equation 6, stress and strain appear 

as standard rank two tensors, rather than in the Voigt notation used above. MRE typically uses steady 

state vibration at a set frequency, 𝜔,  with no internal forces at the vibration frequency, i.e. 𝑢(𝑥, 𝑡) =

𝑅𝑒{𝑈(𝑥)𝑒𝑖𝜔𝑡}, and 𝐹 = 0. Assuming the complex-valued displacement amplitude, 𝑈, is supported on a 

set of finite element basis functions such that 𝑈(𝑥) = ∑ 𝑢(𝑎)𝜓(𝑎)(𝑥)𝑁
𝑎=1 , the 𝑎𝑡ℎ Galerkin weighted 

residual statement in Eq. 6 is 

  ⟨𝜕𝑖𝜎𝑖𝑗𝜓
(𝑎)⟩  = ⟨−𝜌𝜔2𝑈𝑗𝜓

(𝑎)⟩, (7) 

where ⟨… ⟩ =∭(…) 𝑑𝑉 (Lynch 2004). Assuming a right-handed coordinate system and applying an 

appropriate integration by parts, ∮(𝜓𝑛𝑖𝜎𝑖𝑗)𝑑𝑠 =∭(𝜕𝑖𝜎𝑖𝑗 + 𝜎𝑖𝑗𝜕𝑖𝜓)𝑑𝑉, to the LHS gives  

 ⟨𝜎𝑖𝑗𝜕𝑖𝜓
(𝑎)⟩ − ⟨𝜌𝜔2𝑢𝑗𝜓

(𝑎)⟩ = ∮(𝑛𝑖𝜎𝑖𝑗𝜓
(𝑎)) 𝑑𝑆, (8) 

Assuming a full 6x6 [𝐶̅] matrix after rotation with respect to an arbitrary fiber orientation, and substituting 

terms into Equation 8, three components of ⟨𝜎𝑖𝑗𝜕𝑖𝜓𝑎⟩ can be written as  

 

⟨

(𝑐1̅1𝜖11 + 𝑐1̅2𝜖22 + 𝑐1̅3𝜖33 + 2𝑐1̅4𝜖12 + 2𝑐1̅5𝜖23 + 2𝑐1̅6𝜖13 + 𝑃)
𝑑𝜓(𝑎)

𝑑𝑥

+(𝑐4̅1𝜖11 + 𝑐4̅2𝜖22 + 𝑐4̅3𝜖33 + 2𝑐4̅4𝜖12 + 2𝑐4̅5𝜖23 + 2𝑐4̅6𝜖13)
𝑑𝜓(𝑎)

𝑑𝑦

+(𝑐6̅1𝜖11 + 𝑐6̅2𝜖22 + 𝑐6̅3𝜖33 + 2𝑐6̅4𝜖12 + 2𝑐6̅5𝜖23 + 2𝑐6̅6𝜖13)
𝑑𝜓(𝑎)

𝑑𝑧

⟩ 

⟨

(𝑐4̅1𝜖11 + 𝑐4̅2𝜖22 + 𝑐4̅3𝜖33 + 2𝑐4̅4𝜖12 + 2𝑐4̅5𝜖23 + 2𝑐4̅6𝜖13)
𝑑𝜓(𝑎)

𝑑𝑥

+(𝑐2̅1𝜖11 + 𝑐2̅2𝜖22 + 𝑐2̅3𝜖33 + 2𝑐2̅4𝜖12 + 2𝑐2̅5𝜖23 + 2𝑐2̅6𝜖13 + 𝑃)
𝑑𝜓(𝑎)

𝑑𝑦

+(𝑐5̅1𝜖11 + 𝑐5̅2𝜖22 + 𝑐5̅3𝜖33 + 2𝑐5̅4𝜖12 + 2𝑐5̅5𝜖23 + 2𝑐5̅6𝜖13)
𝑑𝜓(𝑎)

𝑑𝑧

⟩ 

⟨

(𝑐6̅1𝜖11 + 𝑐6̅2𝜖22 + 𝑐6̅3𝜖33 + 2𝑐6̅4𝜖12 + 2𝑐6̅5𝜖23 + 2𝑐6̅6𝜖13)
𝑑𝜓(𝑎)

𝑑𝑥

+(𝑐5̅1𝜖11 + 𝑐5̅2𝜖22 + 𝑐5̅3𝜖33 + 2𝑐5̅4𝜖12 + 2𝑐5̅5𝜖23 + 2𝑐5̅6𝜖13)
𝑑𝜓(𝑎)

𝑑𝑦

+(𝑐3̅1𝜖11 + 𝑐3̅2𝜖22 + 𝑐3̅3𝜖33 + 2𝑐3̅4𝜖12 + 2𝑐3̅5𝜖23 + 2𝑐3̅6𝜖13 + 𝑃)
𝑑𝜓(𝑎)

𝑑𝑧

⟩ 

(9) 

 

Support of heterogeneities 

FEM implementations often model heterogeneity with constant properties over each element, and use 

specialized meshes to define regional boundaries. Brain tissue contains few sharp interfaces in properties; 

smoothly varying properties and fiber directions are common between structures and along tracts; hence, 

high-resolution continuous basis support of model parameters is advantageous. Additionally, the 
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specialized meshing required for elementally-constant properties is not practical for MRE inversion since 

the property interfaces are not known in advance. 

The FE system is implemented on 27-node quadratic hexahedral elements for which integrals over 

elements are evaluated with Gaussian integration. Thus, the finest level of heterogeneity which can be 

accommodated occurs at Gauss points. Orientation of fiber axes is defined by diffusion tensor imaging 

(DTI) data, which are nearest-neighbor-interpolated to Gauss point locations. Heterogenous material 

property values, (𝜇, 𝜙, 𝜁), are interpolated to Gauss points from independent property meshes using the 

appropriate basis functions (McGarry et al. 2012). The elasticity matrix is assembled in local fiber 

coordinates through Equation 1 for each Gauss point, and then transformed to the global coordinate 

system through Equation 5 for FEM stiffness matrix assembly via Gaussian integration. Clinical DTI data 

resolution is approximately 1-3 mm, whereas the highest resolution MRE acquisitions reported to date on 

a clinical system are 1.25 mm, with 2 mm being more typical (Johnson et al. 2013, Johnson et al. 2019). 

Imaging time usually dictates the resolution achieved in each scan; the Gauss point approach to 

heterogeneity maximizes the value of any high-resolution data when acquired. 

Finite element support of displacement and pressure 

To avoid volume locking, the pressure variable is supported on basis functions of lower order than the 

displacements. Displacement is expressed on standard quadratic FE basis functions, 𝜓, defined on 

isoparametric 27-node hexahedral elements (Zienkiewicz et al. 1977) and written as  

 𝑈(𝑥) =∑ 𝑈(𝑏)𝜓(𝑏)(𝑥)
27

𝑏=1
 (10) 

Pressure is represented on linear basis functions, 𝜒, defined as 𝜒1 = 1, 𝜒2 = 𝑥𝑟, 𝜒3 = 𝑦𝑟, 𝜒4 = 𝑧𝑟, where 

the subscript 𝑟 refers to the reference, or ‘parent’ coordinate system of the isoparametric element, 

written as    

 𝑃(𝑥) =∑ 𝑃(𝑛)𝜒(𝑛)(𝑥)
4

𝑛=1
 (11) 

These forms are often referred to as Q2-P1 Nicolaides-Boland elements. For a FE mesh with 𝑁𝑛 nodes and 

𝑁𝑒  elements, the vector of unknown values to be computed during the solution process, {𝑢}, is of length 

3𝑁𝑛 + 4𝑁𝑒, and is structured as 

 {𝑈} = [𝑈1
(1) 𝑈2

(1) 𝑈3
(1) 𝑈1

(2) 𝑈2
(2)⋯𝑈3

(𝑁𝑛) 𝑃1
(1) 𝑃2

(1) 𝑃3
(1) 𝑃4

(1) 𝑃1
(2) 𝑃2

(2)⋯𝑃4
(𝑁𝑒)]

𝑇
 (12) 

where the superscripts refer to the node number for displacements, and element number for pressures.  

Finite element matrix contributions 

Substituting the definition of the strain tensor, 

 𝜖𝑖𝑗 =
1

2
(𝜕𝑗𝑢𝑖 + 𝜕𝑖𝑢𝑗) (13) 

into Equation 9, then using Equations 8, 10 and 11 allows the first 3 × 𝑁𝑛 equations of the FE system to 

be generated. The remaining 4 × 𝑁𝑒 equations required to solve the FE system for {𝑈} are generated 
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through Equation 3, enforced as a penalty term. The weighted residual form for the 𝑚𝑡ℎ pressure basis, 

𝜒(𝑚), serving as a weighting function can be written 

 ⟨(−
𝑃

𝜅
+ (𝜖11 + 𝜖22 + 𝜖33))𝜒

(𝑚)⟩ = 0 (14) 

Specific forms of the FE stiffness matrix components are provided in the Appendix.   

Viscoelasticity 

In this study, time harmonic viscoelasticity is implemented through complex-valued moduli, 𝜇. 𝜙, 𝜁, and 

𝜅 are real-valued parameters, and includes an isotropic form of damping through the material property 

definitions. Allowing 𝜙 and 𝜁 to have non-zero imaginary contributions would achieve anisotropic 

damping, where shear waves attenuate differently depending on their propagation direction and wave 

polarization. Complex-valued 𝜅 causes phase lag between an applied hydrostatic stress and the resulting 

volumetric strain, which approximates p-wave damping when 𝜅 ≫ 𝜇.  

Model validation 

The Fortran FE NITI model implemented with the MUMPS matrix solver (Amestoy et al. 2001) was 

validated against an analytic prediction of wavelength and exponential attenuation coefficient. The NITI 

model results in two shear waves, which depend on the propagation direction, 𝑛⃗ , and the fiber direction, 

𝑓 , and the angle, 𝜃, between them (Tweten et al. 2015). In the undamped case with real-valued 𝜇, The 

slow shear wave with wavespeed  

 𝑐𝑠𝑙𝑜𝑤
2 =

𝜇

𝜌
(1 + 𝜙 cos2 𝜃) (15) 

occurs when fibers are not stretched, i.e. when the wave polarization direction, 𝑚𝑠, is perpendicular to 

the plane defined by the propagation and polarization direction, i.e. 𝑚⃗⃗ 𝑠 = 𝑛⃗ × 𝑓 . Note that 𝑐𝑠𝑙𝑜𝑤 has no 

dependence on tensile anisotropy, 𝜁. When fibers are stretched, the fast shear wave appears, with 

wavespeed 

 𝑐𝑓𝑎𝑠𝑡
2 =

𝜇

𝜌
(1 + 𝜙 cos2 2𝜃 + 𝜁 sin2 2𝜃 ).  (16) 

Note that the maximum effect of 𝜁 occurs when 𝜃 = 45𝑜. The wave polarization direction in this case is 

𝑚⃗⃗ 𝑓 = 𝑚⃗⃗ 𝑠 × 𝑛⃗ . For harmonic viscoelasticity, the damped wavelength depends on both real and imaginary 

components (Guidetti  and Royston, 2018). Defining the complex-valued slow modulus as 𝜇𝑠 =
𝜇

𝜌
(1 + 𝜙 (𝑐𝑜𝑠 𝜃)2) and the fast modulus as 𝜇𝑓 = 𝜇(1 + 𝜙(𝑐𝑜𝑠 2𝜃)

2 + 𝜁 (𝑠𝑖𝑛 2𝜃)2 ), the expected shear 

wavelength at frequency F (Hz) is 

 𝐿𝑠|𝑓 =
1

𝐹
√
2

𝜌

|𝜇𝑠|𝑓|
2

𝑅𝑒 (𝜇𝑠|𝑓) + |𝜇𝑠|𝑓|
 , (17) 

The damping ratio is 𝜉𝑠|𝑓=
𝐼𝑚(𝜇𝑠|𝑓)

2𝑅𝑒(𝜇𝑠|𝑓)
, which gives an exponential attenuation coefficient of 
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 𝛼𝑠|𝑓 =
2𝜋

𝐿𝑠|𝑓𝜉𝑠|𝑓
 . (18) 

A 90x90x180 mm block geometry was created (long axis defined as the z direction), and shear 

displacement boundary conditions were applied on the XY face, in either the X or Y directions, resulting 

in shear waves propagating along the long axis of the block. Displacement amplitudes in other directions 

are small as the wave is nearly completely damped prior to reflection from the end face. Four fiber 

orientations were considered: X direction, Y direction, Z direction, and at an angle of 60 degrees from the 

Z axis in the XZ plane. The choices of fiber orientations and BC direction isolated either the slow or the 

fast shear wave to avoid the complication of the double damped sine wave fit required when both waves 

are present with significant amplitude. Material properties were 𝜇 = 2900 + 1200𝑖, and 4 different 

combinations of the anisotropies were specified: (𝜙 = 0.5, 𝜁 = 0.5), (𝜙 = 0, 𝜁 = 0.5), (𝜙 = 0.5, 𝜁 = 0), 

and (𝜙 = 0, 𝜁 = 0). These parameter selections generate 8 simulations for each fiber orientation. 

Displacement profiles were extracted from the central axis of the block, which were fit to a decaying 

sinusoid via nonlinear least squares. 

 𝑢𝑓𝑖𝑡(𝑧) = 𝐴𝑒
−𝛼𝑧𝑠𝑖𝑛 (

2𝜋

𝐿
𝑧 + 𝑃)  (19) 

The wavelength, 𝐿, and exponential attenuation coefficient, 𝛼, for each of the 32 block simulations were 

compared to the theoretical predictions in equations 17 and 18.   

As an additional check, we compared our computations with a model evaluated previously within the 

commercial finite element package, (COMSOL Inc, Stockholm, Sweden) (Tweten et al. 2015, Tweten et al. 

2017). A 50 mm cube of NITI material was generated and meshed at 2 mm. Material properties were 

assigned as 𝜇 = 3 + 0. 3𝑖𝑘𝑃𝑎,  𝜌 =. 1000𝑘𝑔𝑚−3, 𝜅 =  1000𝑘𝑃𝑎, and boundary conditions obeyed 50-

100 Hz x-directed shear vibration with 1 mm amplitude of the 𝑧 = 0 face (all other faces were stress free).  

Validation was performed through isotropic (𝜙 = 0, 𝜁 = 0) and anisotropic cases with  𝜙 = 1, 𝜁 = 2 and 

fibers in the x direction, at 30 degrees in the 𝑥𝑧 plane, and 45 degrees in the 𝑥𝑦 plane.  

Brain model with DTI defined fiber directions 

MRE data from a previous study was used to construct a patient-specific NITI brain model and investigate 

the performance of isotropic MRE inversion under conditions of known and controllable anisotropy. Full-

brain MRE displacement data at 60 Hz were acquired with 2.0 mm isotropic resolution using a 3D 

multiband, multishot spiral MRE sequence (Johnson et al. 2019). Imaging parameters included: TR/TE = 

2134/70 ms; field-of-view = 240x240 mm2; matrix = 120x120; 64, 2.0 mm thick slices; field inhomogeneity 

correction with auxiliary fieldmap. Two separate MRE datasets were recorded sequentially over the same 

field-of-view and resolution: one with vibration in the anterior-posterior (AP) direction and the other with 

vibration in the left-right (LR) direction (Smith et al. 2020). T1-weighted anatomical images informed atlas-

based segmentation of 10 white matter tracts (WMT) and 6 subcortical grey matter regions (SGM) using 

standard-space atlases (Hua et al. 2008, Makris et al. 1999). Segmentations were registered to MRE image 

space using FLIRT in FSL (Jenkinson et al. 2002, Jenkinson et al. 2012). DTI data provided fiber directions 

and fractional anisotropy (FA) maps. DTI imaging data were collected with a simultaneous multislice EPI 

sequence with same field-of-view and matrix as the MRE data with the following parameters: TR/TE = 

3000/73.8 ms; b-value = 1000 s/mm2; multiband factor = 4; two acquisitions performed with reverse 
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phase-encoding direction for distortion correction. Fiber directions and FA maps were determined using 

DTIfit in FSL (Jenkinson et al. 2012). 

A mask generated from the MRE and DTI data was used to construct a model with realistic tissue classes 

and fiber orientations. Bulk white and grey matter were segmented by thresholding the T2-weighted 

anatomical image, and the 10 WMT and 6 SGM regions were assigned homogenous properties based on 

global and regional properties we have published previously (Hiscox et al. 2019). Structures which were 

not included in the previous study were extracted from the underlying data using the same methods. 

Property values from literature were originally generated from 50 Hz MRE experiments, so we performed 

simulations at 50 Hz as well. WMTs were assigned baseline 𝜙 and 𝜁 values, estimated from their average 

diffusion fractional anisotropy (FA), to encode different shear and tensile anisotropy in each structure. 

The diffusion FA for three diffusion eigenvalues, 𝜆1, 𝜆2, 𝜆3 is given by 

 𝐹𝐴 = √
1

2

√(𝜆1 − 𝜆2)
2 + (𝜆2 − 𝜆3)

2+(𝜆3 − 𝜆1)
2

√𝜆1
2 + 𝜆2

2 + 𝜆3
2

 

 

(15) 

An equivalent mechanical FA, 𝜇𝐹𝐴, can be derived by assuming mechanical anisotropy is identical to 

diffusion anisotropy:  
𝜆1

𝑚𝑒𝑎𝑛(𝜆2,𝜆3)
=  

𝜇12

𝜇23
= (1 + 𝜙), 𝜆2 ≈ 𝜆3. Applying this definition of 𝜙 to Eq. 15 leads 

to 

 

 
𝜇𝐹𝐴 =

|𝜙|

√3 + 2𝜙 + 𝜙2
 

 

(16) 

Equivalent 𝜙 values can then be computed by using  

 𝜙 =

−1 ±√−2+
3
𝜇𝐹𝐴
2

(1 −
1
𝜇𝐹𝐴
2 )

 

 

(17) 

with the assumption that  𝜇𝐹𝐴 =  𝛼𝐹𝐴, where the coefficient can be used to scale the relationship 

between mechanical and diffusion anisotropy. The tensile anisotropy parameter, 𝜁, can be estimated 

under the same assumption. Values of 𝜙 and 𝜁 from Eq. 17 were multiplied by a random value in the 

range [0.8 1.2] to avoid the special case where 𝜙 = 𝜁. Although evidence suggests that gray matter 

regions have some mechanical anisotropy (Prange and Margulies 2002), gray matter was assumed to be 

isotropic to create a model with both perfectly isotropic and transverse isotropic tissue classes. Structures 

and their assigned NITI property values are summarized in Table 1.  

Two sets of displacement boundary conditions were defined using boundary values from AP and LR MRE 

measurements (McGarry et al. 2015), which provided two realistic displacement fields that represent 

published experiments (Anderson et al. 2016) investigating the effects of wave propagation direction on 
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isotropic inversions in the brain. The bottom surface was left stress-free to avoid high pressures arising 

from a boundary fully constrained with noisy measurement data. Figure 1 illustrates the process of 

creating the subject-specific NITI simulation. A 132,000 node, full-brain computational problem required 

1032 seconds to run on a single core of an Intel Xeon Gold 6148 2.40 GHz processor with 384 GB of RAM. 

 

Table 1: Properties from the literature or subject-specific imaging used in the NITI brain simulation. 

Columns indicate the structure name/number (#), Gray/white matter classification (GW), the number of 

2x2x2 mm voxels (N), fractional anisotropy from DTI (FA), and assigned NITI properties: real/imaginary 

shear modulus (𝜇, units of 𝑘𝑃𝑎), and the baseline shear and tensile anisotropy, 𝜙 and 𝜁. Regions of 

cerebrospinal fluid (including the ventricles) were not segmented for these simulations and were assigned 

the same properties as unspecified gray matter. 

 

Structure # GW N FA 𝑹𝒆(𝝁) 𝑰𝒎(𝝁) 𝝓 𝜻 

Unspecified gray matter 1 G 61144 0.190 2.300 1.012 0 0 
Unspecified white matter 2 W 52165 0.302 2.875 1.265 0.643 0.755 
Anterior thalamic radiation 3 W 1312 0.355 3.152 1.351 0.838 0.665 
Corticospinal tract 4 W 1624 0.512 2.886 1.242 1.720 1.461 
Cingulum (cingulate gyrus) 5 W 554 0.412 3.497 0.910 0.964 0.823 
Cingulum (hippocampus) 6 W 223 0.335 2.950 0.538 0.611 0.613 
Forceps major/minor 7 W 3560 0.345 2.794 1.246 0.766 0.725 
Inferior fronto-occipital fasciculus 8 W 1515 0.400 3.031 1.314 1.124 0.928 
Inferior longitudinal fasciculus 9 W 1824 0.422 2.832 1.247 1.166 1.008 
Superior longitudinal fasciculus 10 W 1879 0.340 2.732 1.306 0.841 0.641 
Uncinate fasciculus 11 W 560 0.363 2.868 1.334 0.971 0.810 
Superior longitudinal fasciculus 12 W 1020 0.445 2.922 1.361 1.261 0.945 
Thalamus 13 G 1534 0.351 3.535 1.308 0 0 
Caudate 14 G 539 0.172 3.381 1.460 0 0 
Putamen 15 G 983 0.228 3.434 1.449 0 0 
Pallidum 16 G 296 0.234 3.406 1.355 0 0 
Hippocampus 17 G 606 0.182 3.022 1.070 0 0 
Amygdala 18 G 297 0.156 3.256 1.290 0 0 
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Figure 1: Subject-specific NITI FEM brain model. Top Left: Atlas-based segmentation of brain regions used 

to construct the model, where the region number correspond to structures detailed in Table 1. Top Right: 

DTI-defined fiber directions. Bottom: Two sets of boundary conditions (BCs) taken from MRE 

displacement measurements with AP and LR vibration, units of mm.  
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Isotropic inversion of simulated NITI data 

Output from the NITI FE model was used as input for MRE inversion in order to investigate performance 

in an idealized situation where “true” properties are known. Isotropic simulated data (𝜙 = 𝜁 = 0) which 

were noise free, as well as with simulated added Gaussian noise (standard deviation equal to 5% of the 

mean absolute displacement value) were inverted with two commonly used isotropic MRE inversions – 

nonlinear inversion (NLI), and local direct inversion (LDI). Further analysis of the effect of anisotropy was 

investigated with NLI only.  

NLI inversion parameters were the same as those applied in clinical brain studies, and included 100 global 

iterations with 3 conjugate gradient and 2 line search iterations per subzone, Gaussian smoothing 

between global iterations, 25 mm subzones with 15% overlap, and equal resolution for material property 

and input data (2 mm) (Hiscox et al. 2018). Real and imaginary shear modulus maps were recovered 

starting from an initial homogeneous estimate of 𝜇 = 3.3 + 1.188𝑖 kPa. Density was 𝜌 =1000 kgm-3 

(same as the simulation), and bulk modulus was held constant at 𝜅 =  1649kPa to enforce near-

incompressibility (simulations used 𝜅 =  1000kPa).  

Details of the implementation of the LDI algorithm are available in the literature (Okamoto et al. 2011). 

Briefly, the curl of the data was taken using a 2nd order Savitzky-Golay filter on 3x3x3 blocks of data to 

reduce compressional wave contributions. The curl data were smoothed with a 1 mm Gaussian filter, and 

the Laplacian of the curl was estimated using a central difference approximation. An assumption of local 

homogeneity of mechanical properties is then invoked to solve for an estimate of the complex-valued 𝜇 

in Equation 6 at the center of 5x5x5 blocks of data via total Least Squares and the singular value 

decomposition. At the boundaries, data outside of the mask was given a weight of zero, and if less than 

50% of the 5x5x5 block was present, the stiffness was not computed.   

Presumably, mechanical and diffusion anisotropy have the same principal direction, since these effects 

are determined by the axes of anisotropy which are dominated by the fiber tract geometry. However, the 

magnitude of diffusion and mechanical anisotropy are governed by different physical mechanisms; 

therefore, the level of anisotropy is not expected to be the same for the two processes (in fact, they may 

provide distinct diagnostic signatures). Simulated data were generated by scaling 𝜙 and 𝜁 between 

diffusion and mechanical anisotropy through the scalar 𝛼 =
𝜇𝐹𝐴

𝐹𝐴
, and differences between NLI inversions 

of AP and LR motions were investigated and compared to a previously published in vivo study (Anderson 

et al. 2016).   

Results 

Model validation 

Agreement between theoretical and numerical values of the damped wavelength and exponential 

attenuation coefficient was found. Of the 32 combinations of fiber direction, boundary conditions and 

NITI parameter values investigated, two outliers occurred in which errors in the least squares fit were 

evident, which generated deviations greater than 12% in 𝐿 and 29% in 𝛼. Excluding these two outliers, 

mean absolute difference between predicted and numerically estimated values of 𝐿 and 𝛼 in the 30 

remaining cases were 0.53% and 2.8%, respectively. Examples of numerical and fitted curves for 

representative cases are shown in figure 2.  
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Comparison of the Fortran-based NITI implementation described here and its COMSOL counterpart is also 

shown in Figure 2. The FE model reproduced the COMSOL results for isotropic cases, as well as for cases 

with arbitrarily aligned fibers in the xy- and xz-planes with RMS errors of 0-3%. The COMSOL mesh was a 

25x25x26 grid of quadratic hexahedral elements, whereas the NITI implementation used a 13x13x13 nodal 

grid of quadratic-27 node hexahedral elements, small differences between solutions of this order are 

expected due to discretization errors.  The elemental property support of COMSOL relative to the Gauss 

point support in the Fortran implementation describe here are identical in homogenous cases; hence, 

these differences are not expected to contribute to disagreement between models. The COMSOL model 

was previously validated through comparisons of plane wave solutions in the simulation to analytic 

solutions governing slow and fast shear waves in NITI materials (Tweten et al. 2015, Hou et al. 2020).  

Example displacement fields from the subject-specific NITI brain model with AP and LR displacement 

boundary conditions are shown in Figure 3, and compared to experimental MRE measurements. We also 

compare displacement fields simulated with isotropic material properties. Differences between the NITI 

model and the isotropic model are 25% and 19% RMS for AP and LR boundary conditions, respectively. 

Difference images reveal local variations up to 100% between NITI and isotropic models.  

Isotropic inversions of isotropic data (𝜙 = 𝜁 = 0) based on NLI and LDI are compared in Figures 4 and 5 

(homogeneous case), and Figures 6 and 7 (heterogenous case), for both AP and LR boundary conditions, 

with and without noise. Ideally, estimated parameter maps are independent of displacement field 

patterns. NLI performs well in all cases since the major assumption of isotropic elasticity is not violated, 

and NLI correctly models heterogenous materials. LDI performs well in the central region of homogenous 

data where the local homogeneity assumption is valid; however, it suffers from substantial artifacts near 

boundary and stiffness interfaces.  

Isotropic NLI inversions of anisotropic data appear in Figure 8. The shear modulus estimate falls between 

the perpendicular and parallel shear moduli, and RMS difference between inversions of AP and LR motions 

increases to 8.6%, compared to 1.7% for inversions of isotropic data.   

Table 2 summarizes RMS errors with respect to the ground truth values for noise-free inversions, and RMS 

differences between AP and LR inversions for the cases illustrated in figures 4-8. Isotropic NLI inversions 

of isotropic displacement data had low RMS errors for both homogenous and heterogenous stiffness 

distributions (0.7-6.9% for 𝑅𝑒(𝜇), 1.6-12% for 𝐼𝑚(𝜇)). Consistency between NLI inversions using AP and 

LR displacement fields was also observed: RMS difference 1.0-1.7% for 𝑅𝑒(𝜇), 1.8-3.0% for 𝐼𝑚(𝜇). LDI 

inversion performed well in the central region of inclusions in the homogenous case, with RMS errors 

4.6% for 𝑅𝑒(𝜇) and 12% for 𝐼𝑚(𝜇). Substantial artifacts occurred near the boundaries and at stiffness 

interfaces in heterogenous model cases, causing errors of 12-30% for 𝑅𝑒(𝜇) and 22-70% for 𝐼𝑚(𝜇) under 

these conditions. Despite the property estimation errors, consistency of LDI for AP and LR vibration fields 

was relatively good, even in heterogenous case:  RMS differences of 3.7% for 𝑅𝑒(𝜇), 7.1% for 𝐼𝑚(𝜇). NLI 

inversion of anisotropic data increased RMS differences between AP and LR inversions to 8.6% and 15% 

for 𝑅𝑒(𝜇) and 𝐼𝑚(𝜇), respectively (relative to 1.7% and 3.0% for the isotropic case).  

The NITI brain model was also used to investigate the effect of anisotropic structures on nearby isotropic 

regions for isotropic NLI inversion. Weak correlation was found between property variability and AP and 

LR boundary conditions (Figure 5), and some isotropic structures exhibited errors as large as those 

observed in the most strongly anisotropic regions – for example, the isotropic pallidum had an AP-LR 

difference of 0.32 kPa, which was almost as high as the largest differences in anisotropic WM tracts, such 
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as the uncinate fasciculus at 0.33 kPa, and the corticospinal tract at 0.39 kPa. GM and WM structures had 

AP-LR RMS differences of 1.8% and 1.7%, respectively, when both were defined as isotropic, and 7.2% and 

9.8%, respectively, for NITI simulated data when gray matter was isotropic, and white matter was defined 

as TI. These results suggest that neglecting anisotropy will increase the wavefield dependent error for in 

vivo MRE by a factor of 4 to 5 (assuming 𝜇𝐹𝐴 = 𝐹𝐴).  

A plot of AP-LR RMS differences for 𝑅𝑒(𝜇) of isotropic NLI inversions, where the level of mechanical 

anisotropy in the simulated data was scaled to be lower than the diffusion anisotropy from FA 

measurements is shown in Figure 10. As expected, lower anisotropy resulted in smaller RMS differences 

between AP and LR motions.  In vivo results from (Anderson et al. 2016) reported average white matter 

differences of 2.2% and maximum differences of 23% in highly aligned white matter tracts, which 

corresponds to a scaling factor in the range 0.2-0.25 in Figure 10, as indicated by the dashed lines.  

 

 

 

 

Figure 2: Verification of NITI implementation. Top row: Displacements along the central axis of an elongated 

block simulation. The parameters fit to a damped sinusoid (Eq. 19) are compared to theoretical predictions of 

wavelength, 𝐿, and attenuation, 𝛼 (Eqs. 17-18). Bottom row: comparison of displacement field images of the 

simulation platform (Fortran), against a previously validated COMSOL implementation for A) isotropic case 

(𝜙 = 𝜁 = 0), B) Anisotropic with x-directed fibers (no rotation), C) and D), 30 degree fibers in the XY and XZ 

planes. Two arbitrary components for the central slice are shown in units of mm, as well as the RMS 

percentage difference for all components. RMS differences for the whole volume were: A=1.36%, B=0.87%, 

C=3.24%, D=1.93%. 
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Figure 3: Comparison of experimentally measured MRE data (column 1) with predictions from the 

NITI model (column 2), and an isotropic model (column 3). Differences between NITI and isotropic 

model predictions appear in column 4. All components of the complex-valued amplitude are shown 

for the same slice in units of mm.    
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Figure 4: Plots of 𝑅𝑒(𝜇) in kPa. Single slice of NLI and LDI isotropic inversions of simulated heterogenous 

isotropic data. True 𝑅𝑒(𝜇) assigned in the simulation appears on the left, and inversions of noise-free and 

5% added Gaussian noise motion data are on the right. The first row reports data generated with BCs 

from AP actuated MRE data, whereas the second row presents results with BCs from LR actuation. The 

third row shows absolute differences in estimated properties between the two cases. 

 

Figure 5: Plots of 𝐼𝑚(𝜇) in kPa. Single slice of NLI and LDI isotropic inversions of simulated homogenous 

isotropic data. True 𝐼𝑚(𝜇) assigned in the simulation appears on the left, and inversions of noise-free and 

5% added Gaussian noise motion data are displayed on the right. The first row reports data generated 

with BCs from AP actuated MRE data, whereas the second row presents results with BCs from LR 

actuation. The third row shows absolute differences in estimated properties between the two cases. 
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Figure 6: Plots of 𝑅𝑒(𝜇) in kPa. Single slice of NLI and LDI isotropic inversions of simulated heterogenous 

isotropic data. True 𝑅𝑒(𝜇) assigned in the simulation appears on the left, and inversions of noise-free 

and 5% added Gaussian noise motion data are on the right. The first row reports data generated with 

BCs from AP actuated MRE data, whereas the second row presents results with BCs from LR actuation. 

The third row shows absolute differences in estimated properties. between the two cases. 

 
Figure 7: Plots of 𝐼𝑚(𝜇) in kPa. Single slice of NLI and LDI isotropic inversions of simulated heterogenous 

isotropic data. True 𝐼𝑚(𝜇) assigned in the simulation appears on the left, and inversions of noise-free 

and 5% added Gaussian noise motion data are on the right. The first row reports data generated with 

BCs from AP actuated MRE data, whereas the second row presents results with BCs from LR actuation. 

The third row shows absolute differences in estimated properties. 
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Figure 8: Isotropic Inversion of simulated data generated with the anisotropic NITI model. A single 

central slice is shown, the true values used in the simulation are provided on the left, 𝜇, 𝜙 and 𝜁 

values from Table 1, along with the shear modulus parallel to the fibers, 𝜇𝑓 = 𝜇(1 + 𝜙), and the 

Young’s modulus along the fibers, 𝐸𝑓 = 𝜇(3 + 4𝜁). Images recovered by isotropic NLI are shown 

on the right. Inversions of AP and LR motion fields appear in rows 1 and 2, and row 3 reports the 

absolute difference, |𝜇𝐴𝑃 − 𝜇𝐿𝑅|.  All units are kPa, other than 𝜙 and 𝜁, which are dimensionless.  
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Table 2: RMS differences for NLI and LDI inversions between ground truth parameters and values 

recovered from inversion of noise-free data (average of AP and LR inversions), and RMS differences 

between the AP and LR inversions. NLI differences are computed from the full field solution, whereas LDI 

results use a mask eroded by seven serial erosions with a 3x3x3 kernel to avoid the artifacts near the 

boundary evident in figures 4-8. The last row presents values from isotropic NLI inversions of anisotropic 

data; RMS differences with the truth are not given since three moduli are supplied to the forward 

simulation, but only one is recovered by inversion.  

 𝑅𝑒(𝜇): truth 𝐼𝑚(𝜇): truth 𝑅𝑒(𝜇): AP-LR 𝐼𝑚(𝜇) – AP-LR 

NLI: homogeneous 

isotropic simulation 

0.74% 1.6% 1.04% 1.76% 

LDI: homogeneous 

isotropic simulation 

4.6% 11.9% 8.5% 20.3% 

NLI: heterogenous 

isotropic simulation 

6.9% 11.8% 1.7% 3.0% 

LDI: heterogenous 

isotropic simulation 

12.3% 22.9 % 3.0% 7.13% 

NLI: heterogeneous 

anisotropic simulation 

N/A N/A 8.6% 15.0% 
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Figure 9: Effect of local anisotropy on wave direction dependence of isotropic MRE 

inversion of NITI simulated data. The y-axis represents the difference in average 

recovered property values for each structure defined in Table 1, in kPa.  The x-axis is 

the average anisotropy,  
𝜙+𝜁

2
.   

 

Figure 10: Effect of setting the mechanical anisotropy by scaling the diffusion 

anisotropy. Simulated data were generated by computing 𝜙 and 𝜁 through equation 

17, and while adjusting the scalar multiplier, 𝛼, that maps diffusion anisotropy to 

mechanical anisotropy. Mean (left axis) and maximum (right axis) difference between 

isotropic NLI inversions of simulated data with AP and LR displacement fields are 

plotted. Dashed lines indicate in vivo results reported in (Anderson et al. 2016).   
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Discussion 

Many tissues in the human body consist of aligned fibers, resulting in transverse isotropic mechanical 

properties (e.g. skeletal muscle and brain white matter). Importantly, both fiber directions and mechanical 

properties have strong spatial variation in vivo, as evidenced by the structure maps and DTI images shown 

in Figure 1. The majority of MRE inversions currently used in practice assume isotropic properties and 

many also assume local homogeneity. The consequences of violating these assumptions have not been 

investigated thoroughly. The finite element (FE) implementation of a heterogenous, NITI material 

presented here is capable of modeling wave propagation in fibrous tissues, such as brain and muscle. The 

model accommodates heterogeneity in both properties and fiber directions at FE Gauss points, which 

achieves the highest possible discretization on a given FE mesh. DTI data with resolution higher than the 

MRE acquisitions can be incorporated into the model. Reflections and wave propagation are modeled 

appropriately, which ensures the simulated data are representative of wave behavior observed in 

heterogenous elastic solids such as tissue. 

The nearly incompressible behavior of tissue is evidenced by the vastly different propagation speeds of 

sound (~1540 m s-1), and shear waves (~1-2 m s-1). The FE NITI implementation presented here takes 

advantage of the structure of the elasticity matrix (Tweten et al. 2015) to separate shear and bulk moduli, 

and enforces low compressibility through a penalty equation. This strategy introduces an extra, unknown, 

pressure variable into the FEM system that incurs increased computation costs, however, implementation 

is relatively straightforward, and models p-wave and associated mode conversions at boundaries and 

stiffness interfaces in the computations. We have used this approach successfully in our previous isotropic 

NLI routines (McGarry, et al, 2012), and have adopted it for the NITI material here. In a general 

compressible TI material, bulk moduli will also be anisotropic, which generates 5 independent mechanical 

parameters. In our model, we have assumed isotropic compressibility, which is expected to be accurate 

provided 𝜅 ≫ 𝜇, and has the benefit of reducing the number of unknown material property parameters 

to 4. Nearly incompressible formulations are available with accurate treatment of bulk modulus 

anisotropy (Taylor et al. 1968); however, they involve much more complicated FE stiffness matrix terms, 

which are not ideal for methods that exploit FEM in other techniques (such as model-based MRE 

inversions) because these terms must be differentiated with respect to the mechanical property 

parameters in order to generate iterative property updates (Van Houten et al. 2001). The FEM terms in 

this model are linear in 𝜇, 𝜙, and 𝜁, which makes differentiation straightforward. 

The model can be used to generate forward-simulated data to test MRE inversion algorithms under 

idealized conditions where “ground truth” properties are known. The brain model illustrated in Figure 1 

incorporates subject-specific maps of brain structures with properties taken from the literature, fiber 

directions from DTI data, and fractional anisotropy maps to approximate mechanical anisotropy. Realistic 

wavefields are generated through simulations by using measured MRE data as boundary conditions. 

Although the goal of the simulations was not to match MRE experiments exactly, Figure 3 shows that the 

simulated data resemble the experimentally measured MRE results in terms of wavelength and major 

features of the wave pattern. Noticeable differences between measured and simulated data are evident 

around the falx, which is a stiff membrane-like structure that is not included in this model explicitly, and 

the ventricles, which are modeled as a solid tissue continuum rather than true fluid-filled spaces. 

Accurately modeling these structures would further improve the simulation platform and will be 

addressed in future work. Properties used in simulations were average literature values from isotropic 
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MRE at 50 Hz and were assumed to be constant over each structure. Applying subject-specific MRE maps 

and anisotropic mechanical testing data collected under controlled conditions for these properties would 

likely yield a closer match between the model and these 60 Hz MRE displacements, but would be less 

appropriate for testing the spatial accuracy of MRE inversions. Although appreciable differences between 

the NITI and isotropic models occur in these simulations, applying measured data as boundary conditions 

around most of the exterior give results which are more similar than would be expected for a simulation 

with free boundary conditions. Modeling the true boundary conditions on the surface of the brain from 

skull vibration is difficult due to the surrounding CSF, arachnoid trabeculae and cerebral meninges. Using 

MRE measured displacements to define brain surface boundary conditions produces realistic wave fields 

in simulation and ensures that conclusions drawn from simulated inversions are relevant to common 

experimental MRE conditions.      

Experiments where isotropic simulated data were inverted with isotropic NLI (based on a heterogenous 

FE model) and LDI (assuming locally homogenous mechanical properties) showed that NLI outperformed 

LDI in all cases, particularly near the boundaries and at tissue stiffness interfaces where shear wave 

reflections are generated. The assumption of local homogeneity of 𝜇 required to simplify Equation 6 and 

allow direct solutions through LDI means that shear wave reflections are not modeled correctly, leading 

to the artifacts visible in Figures 4-7. Despite the artifacts in the heterogenous LDI inversions, the AP and 

LR inversions were similar, which demonstrates that LDI is reasonably independent of wavefield patterns. 

NLI was also less sensitive to noise than LDI, although the inversion parameters in NLI and LDI can be 

modified to trade off accuracy and spatial resolution with noise sensitivity, so this result should be 

considered valid only for the particular parameters used in this study. The LDI model we implemented has 

been applied in the literature; however, other direct inversion algorithms are available that use 

techniques such as directional filtering to reduce reflections which are not included in our simulations. 

Data generated here from simulations are available for testing with more sophisticated direct inversion 

algorithms from other research groups in the future.   

Effects of NITI materials on isotropic inversions were investigated by applying anisotropic properties to 

white matter structures while keeping gray matter isotropic. In recent MRE literature, isotropic inversions 

are speculated to have larger errors in anisotropic white matter due to model-data mismatch while more 

isotropic gray matter will be less affected (Johnson et al. 2013, Guo et al. 2013). In the isotropic NLI 

inversions in Figure 8, anisotropy in the simulated data results in an isotropic MRE approximation which 

is a weighted average of the two shear moduli; the weighting is likely to be proportional to the energy of 

waves propagating parallel and transverse to the local fiber axes, respectively (Schmidt et al. 2016). 

Differences between inversions using AP and LR boundary conditions are 4-5 times as large for the NITI 

model relative to the isotropic case, as different wavefields yield different primary wave propagation 

directions. A weak correlation is apparent (Figure 9) between local anisotropy and wavefield-dependence 

of properties, which indicates that the presence of anisotropy also causes errors in nearby isotropic 

structures. Accordingly, a spatially accurate NITI NLI approach can be expected to improve parameter 

estimates in both gray and white matter structures, and an advantage of the relatively simple form of the 

FEM terms in the NITI model presented here is ideal for future implementation in advanced FE model-

based inversions such as NLI. The differences in AP and LR motions indicate the sensitivity of MRE results 

to wavefield and likely propagation direction. While solving for all 4 parameters in the NITI model is 

theoretically possible given a single wavefield, it has been hypothesized that including two or more 

Page 22 of 29AUTHOR SUBMITTED MANUSCRIPT - PMB-110060.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Acc
ep

ted
 M

an
us

cri
pt



wavefields may improve the estimation (Anderson et al. 2016, Smith et al. 2020), and overcome potential 

limitations associated with insufficient wave propagation relative to fiber direction (Tweten et al., 2017).  

Figure 10 suggests that scaling the mechanical anisotropy to be 4 to 5 times lower than the diffusion 

anisotropy measured with DTI approximately matches published in vivo results Anderson et al. (2016), 

where experimentally demonstrated differences of 2.2% in bulk white matter and larger differences (up 

to 23%) in highly aligned WM structures were reported. This finding indicates mechanical anisotropy may 

be lower than diffusion anisotropy, and provides an approximate scaling relationship for assigning realistic 

anisotropic 𝜙 and 𝜁 parameters in future simulations. This further suggests anisotropy on the order of 

~10-30% present in brain WM tracts, which is similar to previous in vivo and ex vivo assessments, although 

more direct evidence from in vivo anisotropic MRE would be required to provide more reliable estimates. 

Conclusions 

A finite element model based on an NITI material was developed and details of the FEM implementation 

in heterogenous materials were presented for the first time. The model was used to perform subject-

specific simulations of shear wave behavior in the brain. MRE, DTI, and anatomical MRI data were 

collected to generate realistic wavefields in a full-brain geometry, which were then used to quantify error 

and wavefield dependencies in estimated properties for two commonly used inversion algorithms under 

idealized conditions. Analysis of simulated data demonstrated that local anisotropy affects parameter 

estimates in both anisotropic structures (white matter tracts) and nearby isotropic regions, motivating 

development of model-based heterogenous NITI inversions. The approach, which makes the stiffness 

matrix terms accessible within the FEM model, provides the foundation for implementing NLI-based MRE 

inversion.  
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Appendix: Finite element stiffness matrix terms.  

Replacing 𝜖𝑖𝑗 in equation 9 with equation 13, and substituting equations 10 and 11 for 𝑈 and 𝑃 allows the 

finite element stiffness matrix contribution from each gauss point to be calculated.  

Equation 9 contributes a 3x3 submatrix, 𝐴𝑑𝑑, for each weighting function, 𝜓𝑎, and each nodal basis 

function supporting the displacements, 𝜒(𝑏). The terms are given by  

𝐴𝑑𝑑(1,1) = ⟨(𝑐1̅1
𝜕𝜓(𝑏)

𝜕𝑥
+ 𝑐1̅4

𝜕𝜓(𝑏)

𝜕𝑦
+ 𝑐1̅6

𝜕𝜓(𝑏)

𝜕𝑧
)
𝜕𝜓(𝑎)

𝜕𝑥
+ (𝑐4̅1

𝜕𝜓(𝑏)

𝜕𝑥
+ 𝑐4̅4

𝜕𝜓(𝑏)

𝜕𝑦
+ 𝑐4̅6

𝜕𝜓(𝑏)

𝜕𝑧
)
𝜕𝜓(𝑎)

𝜕𝑦

+ (𝑐6̅1
𝜕𝜓(𝑏)

𝜕𝑥
+ 𝑐6̅4

𝜕𝜓(𝑏)

𝜕𝑦
+ 𝑐6̅6

𝜕𝜓(𝑏)

𝜕𝑧
)
𝜕𝜓(𝑎)

𝜕𝑧
− 𝜌𝜔2𝜓𝑏𝜓𝑎⟩   

𝐴𝑑𝑑(1,2) = ⟨(𝑐1̅2
𝜕𝜓(𝑏)

𝜕𝑦
+ 𝑐1̅4

𝜕𝜓(𝑏)

𝜕𝑥
+ 𝑐1̅5

𝜕𝜓(𝑏)

𝜕𝑧
)
𝜕𝜓(𝑎)

𝜕𝑥
+ (𝑐4̅2

𝜕𝜓(𝑏)

𝜕𝑦
+ 𝑐4̅4

𝜕𝜓(𝑏)

𝜕𝑥
+ 𝑐4̅5

𝜕𝜓(𝑏)

𝜕𝑧
)
𝜕𝜓(𝑎)

𝜕𝑦

+ (𝑐6̅2
𝜕𝜓(𝑏)

𝜕𝑦
+ 𝑐6̅4

𝜕𝜓(𝑏)

𝜕𝑥
+ 𝑐6̅5

𝜕𝜓(𝑏)

𝜕𝑧
)
𝜕𝜓(𝑎)

𝜕𝑧
⟩ 

𝐴𝑑𝑑(1,3) = ⟨(𝑐1̅3
𝜕𝜓(𝑏)

𝜕𝑧
+ 𝑐1̅5

𝜕𝜓(𝑏)

𝜕𝑦
+ 𝑐1̅6

𝜕𝜓(𝑏)

𝜕𝑥
)
𝜕𝜓(𝑎)

𝜕𝑥
+ (𝑐4̅3

𝜕𝜓(𝑏)

𝜕𝑧
+ 𝑐4̅5

𝜕𝜓(𝑏)

𝜕𝑦
+ 𝑐4̅6

𝜕𝜓(𝑏)

𝜕𝑥
)
𝜕𝜓(𝑎)

𝜕𝑦

+ (𝑐6̅3
𝜕𝜓(𝑏)

𝜕𝑧
+ 𝑐6̅5

𝜕𝜓(𝑏)

𝜕𝑦
+ 𝑐6̅6

𝜕𝜓(𝑏)

𝜕𝑥
)
𝜕𝜓(𝑎)

𝜕𝑧
⟩ 

𝐴𝑑𝑑(2,1) = ⟨(𝑐4̅1
𝜕𝜓(𝑏)

𝜕𝑥
+ 𝑐4̅4

𝜕𝜓(𝑏)

𝜕𝑦
+ 𝑐4̅6

𝜕𝜓(𝑏)

𝜕𝑧
)
𝜕𝜓(𝑎)

𝜕𝑥
+ (𝑐2̅1

𝜕𝜓(𝑏)

𝜕𝑥
+ 𝑐2̅4

𝜕𝜓(𝑏)

𝜕𝑦
+ 𝑐2̅6

𝜕𝜓(𝑏)

𝜕𝑧
)
𝜕𝜓(𝑎)

𝜕𝑦

+ (𝑐5̅1
𝜕𝜓(𝑏)

𝜕𝑥
+ 𝑐5̅4

𝜕𝜓(𝑏)

𝜕𝑦
+ 𝑐5̅6

𝜕𝜓(𝑏)

𝜕𝑧
)
𝜕𝜓(𝑎)

𝜕𝑧
⟩ 

𝐴𝑑𝑑(2,2) = ⟨(𝑐4̅2
𝜕𝜓(𝑏)

𝜕𝑦
+ 𝑐4̅4

𝜕𝜓(𝑏)

𝜕𝑥
+ 𝑐4̅5

𝜕𝜓(𝑏)

𝜕𝑧
)
𝜕𝜓(𝑎)

𝜕𝑥
+ (𝑐2̅2

𝜕𝜓(𝑏)

𝜕𝑦
+ 𝑐2̅4

𝜕𝜓(𝑏)

𝜕𝑥
+ 𝑐2̅5

𝜕𝜓(𝑏)

𝜕𝑧
)
𝜕𝜓(𝑎)

𝜕𝑦

+ (𝑐5̅2
𝜕𝜓(𝑏)

𝜕𝑦
+ 𝑐5̅4

𝜕𝜓(𝑏)

𝜕𝑥
+ 𝑐5̅5

𝜕𝜓(𝑏)

𝜕𝑧
)
𝜕𝜓(𝑎)

𝜕𝑧
⟩ − 𝜌𝜔2𝜓𝑏𝜓𝑎 

𝐴𝑑𝑑(2,3) = ⟨(𝑐4̅3
𝜕𝜓(𝑏)

𝜕𝑧
+ 𝑐4̅5

𝜕𝜓(𝑏)

𝜕𝑦
+ 𝑐4̅6

𝜕𝜓(𝑏)

𝜕𝑥
)
𝜕𝜓(𝑎)

𝜕𝑥
+ (𝑐2̅3

𝜕𝜓(𝑏)

𝜕𝑧
+ 𝑐2̅5

𝜕𝜓(𝑏)

𝜕𝑦
+ 𝑐2̅6

𝜕𝜓(𝑏)

𝜕𝑥
)
𝜕𝜓(𝑎)

𝜕𝑦

+ (𝑐5̅3
𝜕𝜓(𝑏)

𝜕𝑧
+ 𝑐5̅5

𝜕𝜓(𝑏)

𝜕𝑦
+ 𝑐5̅6

𝜕𝜓(𝑏)

𝜕𝑥
)
𝜕𝜓(𝑎)

𝜕𝑧
⟩ 

𝐴𝑑𝑑(3,1) = ⟨(𝑐6̅1
𝜕𝜓(𝑏)

𝜕𝑥
+ 𝑐6̅4

𝜕𝜓(𝑏)

𝜕𝑦
+ 𝑐6̅6

𝜕𝜓(𝑏)

𝜕𝑧
)
𝜕𝜓(𝑎)

𝜕𝑥
+ (𝑐5̅1

𝜕𝜓(𝑏)

𝜕𝑥
+ 𝑐5̅4

𝜕𝜓(𝑏)

𝜕𝑦
+ 𝑐5̅6

𝜕𝜓(𝑏)

𝜕𝑧
)
𝜕𝜓(𝑎)

𝜕𝑦

+ (𝑐3̅1
𝜕𝜓(𝑏)

𝜕𝑥
+ 𝑐3̅4

𝜕𝜓(𝑏)

𝜕𝑦
+ 𝑐3̅6

𝜕𝜓(𝑏)

𝜕𝑧
)
𝜕𝜓(𝑎)

𝜕𝑧
⟩ 
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𝐴𝑑𝑑(3,2) = ⟨(𝑐6̅2
𝜕𝜓(𝑏)

𝜕𝑦
+ 𝑐6̅4

𝜕𝜓(𝑏)

𝜕𝑥
+ 𝑐6̅5

𝜕𝜓(𝑏)

𝜕𝑧
)
𝜕𝜓(𝑎)

𝜕𝑥
+ (𝑐5̅2

𝜕𝜓(𝑏)

𝜕𝑦
+ 𝑐5̅4

𝜕𝜓(𝑏)

𝜕𝑥
+ 𝑐5̅5

𝜕𝜓(𝑏)

𝜕𝑧
)
𝜕𝜓(𝑎)

𝜕𝑦

+ (𝑐3̅2
𝜕𝜓(𝑏)

𝜕𝑦
+ 𝑐3̅4

𝜕𝜓(𝑏)

𝜕𝑥
+ 𝑐3̅5

𝜕𝜓(𝑏)

𝜕𝑧
)
𝜕𝜓(𝑎)

𝜕𝑧
⟩ 

𝐴𝑑𝑑(3,3) = ⟨(𝑐6̅3
𝜕𝜓(𝑏)

𝜕𝑧
+ 𝑐6̅5

𝜕𝜓(𝑏)

𝜕𝑦
+ 𝑐6̅6

𝜕𝜓(𝑏)

𝜕𝑥
)
𝜕𝜓(𝑎)

𝜕𝑥
+ (𝑐5̅3

𝜕𝜓(𝑏)

𝜕𝑧
+ 𝑐5̅5

𝜕𝜓(𝑏)

𝜕𝑦
+ 𝑐5̅6

𝜕𝜓(𝑏)

𝜕𝑥
)
𝜕𝜓(𝑎)

𝜕𝑥

+ (𝑐3̅3
𝜕𝜓(𝑏)

𝜕𝑧
+ 𝑐3̅5

𝜕𝜓(𝑏)

𝜕𝑦
+ 𝑐3̅6

𝜕𝜓(𝑏)

𝜕𝑥
)
𝜕𝜓(𝑎)

𝜕𝑥
− 𝜌𝜔2𝜓𝑏𝜓𝑎⟩ 

There is also a 3x1 submatrix, 𝐴𝑑𝑝, for every weighting function, 𝜓(𝑎), and pressure basis support function, 

𝜒(𝑛), and these terms are given by 

𝐴𝑑𝑝(1) = ⟨𝜒(𝑛)
𝑑𝜓(𝑎)

𝑑𝑥
⟩ 

𝐴𝑑𝑝(2) = ⟨𝜒(𝑛)
𝑑𝜓(𝑎)

𝑑𝑦
⟩ 

𝐴𝑑𝑝(3) = ⟨𝜒(𝑛)
𝑑𝜓(𝑎)

𝑑𝑧
⟩ 

 

Substituting Equation 13 and Equation 10 into Equation 14 generates the FE system 

 ⟨(∑ (
1

𝜅
𝑃(𝑛)𝜒(𝑛))

4

𝑛=1

−∑(𝑢1
(𝑏) 𝜕𝜓

(𝑏)

𝑑𝑥
+ 𝑢2

(𝑏) 𝜕𝜓
(𝑏)

𝑑𝑦
+ 𝑢3

(𝑏) 𝜕𝜓
(𝑏)

𝑑𝑧
)

27

𝑏=1

)𝜒(𝑚)⟩ = 0 (15) 

This expression produces a 1x3 submatrix, 𝐴𝑝𝑑, for each pressure basis weighting function, 𝜒𝑚, and 

displacement basis function, 𝜓(𝑏), 

 𝐴𝑝𝑑(1) = ⟨
𝜕𝜓(𝑏)

𝑑𝑥
𝜒(𝑚)⟩ , 𝐴𝑝𝑑(2) = ⟨

𝜕𝜓(𝑏)

𝑑𝑦
𝜒(𝑚)⟩ , 𝐴𝑝𝑑(3) = ⟨

𝜕𝜓(𝑏)

𝑑𝑧
𝜒(𝑚)⟩     (16) 

and a 1x1 submatrix, 𝐴𝑝𝑝, for each pressure basis weighting function, 𝜒(𝑚), and pressure basis support 

function, 𝜒(𝑛), 

 𝐴𝑝𝑝 = ⟨
1

𝜅
𝜒(𝑛)𝜒(𝑚)⟩ (17) 

Comparison of 𝐴𝑝𝑑 with terms in 𝐴𝑑𝑝 confirms that the approach maintains FE stiffness matrix symmetry, 

which offers storage and computation speed benefits to the mixed nearly incompressible implementation.  

The volume integrals indicated by the 〈⋯ 〉 notation are computed by Gaussian integration, so these terms 

just need to be evaluated at each Gauss point and included in the weighted sum. The submatrices are 

inserted into the global stiffness matrix based on the global location of 𝑎, 𝑏 and 𝑛 in the solution vector, 

{𝑈} defined in equation 12. Standard isoparametric mappings are also used to transform basis functions 

and their derivatives from the parent to global coordinate systems (Zienkiewicz et al. 1977). 
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