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Abstract

We consider numerical approximation of the degenerate advection-diffusion equation, which is formally parabolic
but may exhibit hyperbolic behavior. We develop both explicit and implicit finite volume weighted essentially non-
oscillatory (WENO) schemes in multiple space dimensions on non-uniform computational meshes. The diffusion
degeneracy is reformulated through the use of the Kirchhoff transformation. Space is discretized using WENO re-
constructions with adaptive order (WENO-AO), which have several advantages, including the avoidance of negative
linear weights and the ability to handle irregular computational meshes. A special two-stage WENO reconstruction
procedure is developed to handle degenerate diffusion. Element averages of the solution are first reconstructed to give
point values of the solution, and these point values are in turn used to reconstruct the Kirchhoff transform variable of
the diffusive flux. Time is discretized using the method of lines and a Runge-Kutta time integrator. We use Strong
Stability Preserving (SSP) Runge-Kutta methods for the explicit schemes, which have a severe parabolically scaled
time step restriction to maintain stability. We also develop implicit Runge-Kutta methods. SSP methods are only con-
ditionally stable, so we discuss the use of L-stable Runge-Kutta methods. We present in detail schemes that are third
order in both space and time in one and two space dimensions using non-uniform meshes of intervals or quadrilaterals.
Efficient implementation is described for computational meshes that are logically rectangular. Through a von Neu-
mann (or Fourier mode) stability analysis, we show that smooth solutions to the linear problem are unconditionally
L-stable on uniform computational meshes when using an implicit Radau IIA Runge-Kutta method. Computational
results show the ability of the schemes to accurately approximate challenging test problems.

Keywords: hyperbolic, parabolic, degenerate diffusion, WENO reconstruction, WENO-AO, implicit L-Stable
time-stepping
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1. Introduction

We develop both explicit and implicit finite volume weighted essentially non-oscillatory (WENO) approximations
in d space dimensions of the parabolic advection-diffusion equation

ut + ∇ ·
(
F(u) − D(u)∇u

)
= 0, x ∈ Rd, t > 0, (1)

u(x, 0) = u0(x), x ∈ R, (2)

with the possibly nonlinear flux F(u) = F(u; x) and diffusion coefficient D(u) = D(u; x) ≥ 0. Numerical approxima-
tion of the diffusive flux, −D(u)∇u, can be problematic when D(u) is degenerate. In regions where D vanishes, the
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equation exhibits hyperbolic behavior. Near a degeneracy (i.e., near where D transitions from zero to positive), the
differential equation balances small and zero D(u) versus the gradient of u, which may blow up.

The Kirchhof transformation is often used to mitigate the problem [1, 2]. The Kirchhoff transformation of D(u) is

b(u; x) =
∫ u

0
D(v; x) dv. (3)

Its gradient is then
∇b(u; x) = ∇xb + D(u; x)∇u, (4)

where ∇x represents partial differentiation with respect to the components of x. We recast (1) as

ut + ∇ ·
(
f (u) − ∇b(u)

)
= 0, (5)

where
f (u; x) = F(u) + ∇xb. (6)

There are many numerical schemes designed for (1)–(2). However, there are few works that specifically exploit
WENO reconstructions. Explicit, finite difference WENO schemes were first developed for the problem by Liu, Shu,
and Zhang [2] in 2011 (a similar scheme appears in [3]). It requires uniform computational meshes. An explicit
finite volume method followed shortly afterwards in 2012, due to Bessemoulin-Chatard and Filbet [4]. Their scheme
required that the equation has a special structure, and it is only second order accurate. It is not apparent that implicit
WENO schemes have been developed. We present here both explicit and implicit finite volume WENO schemes of
third order formal accuracy in space and time. The schemes will be developed in one and two space dimensions,
on irregular computational meshes. It should be clear how to generalize our techniques to higher order schemes and
d > 2 space dimensions.

Recent developments in WENO reconstruction technology will be used to enable us to handle (1)–(2) in a wider
array of circumstances. In 2000, Levy et al. in [5] introduced a compact CWENO3 reconstruction, where they com-
bined quadratic polynomials with linear polynomials. In 2016, Balsara et al. generalized the idea of combining low
order polynomials with high order polynomials to define WENO reconstructions with adaptive order (WENO-AO)
[6, 7, 8]. We use such reconstructions, since they use arbitrary linear weights, so negative weights can be avoided, and
they have the flexibility to handle non-uniform computational meshes and multiple dimensions.

In [2], a double sliding average technique is developed to design a finite difference scheme for degenerate diffusion.
This restricts the scheme to uniform computational meshes. In some sense, we generalize the ideas in [2] to the
finite volume context and non-uniform meshes. We develop a special two-stage reconstruction procedure to handle
approximation of (possibly degenerate) diffusion. In the first stage, we use WENO-AO to reconstruct the solution
from its element averages ū. This reconstruction gives point values of the solution u. In the second stage, we evaluate
point values for the Kirchhoff variable b(u), and reconstruct them into a stencil polynomial. We do this for several
stencils, and we combine them using smoothness indicators as in the WENO methodology.

Explicit time stepping will require the usual parabolic time step restriction that ∆t = O(h2), where ∆t is the time
step and h is the minimal computational mesh element diameter. We use an explicit Strong Stability Preserving (SSP)
Runge-Kutta method [9, 10, 11]. To maintain the accuracy of O(h3), we require only a second order method in time,
since ∆t2 = O(h4) is sufficiently accurate, although we sometimes use the more popular third order SSP method.
While explicit methods are interesting from a theoretical point of view, they are severely limited in application due to
the extremely small time steps required.

Implicit time stepping allows one to take ∆t = O(h), and we would like to take ∆t longer than the CFL limit. If
one is satisfied with the CFL limit, an implicit SSP method can be used [11, 12, 13], but the time step restriction
is comparable to the CFL condition of explicit methods. Instead, we propose to use L-stable Runge-Kutta methods,
which are unconditionally stable and well-suited to stiff problems such as ours. We use perhaps the simplest third
order L-stable Runge-Kutta method, the Radau-IIA method [14, 15]. We will show that our overall scheme is indeed
unconditionally stable for smooth solutions to the linear version of (1) on uniform meshes in one dimension. We will
also see numerically that Radau IIA outperforms 2-stage implicit SSP3 when long time steps are used, presumably
because the SSP method is not L-stable.
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In the rest of the paper, we discuss the basics of our finite volume scheme in the next section. It requires WENO
reconstructions, which are described in Section 3. We first discuss one space dimension, and give WENO-AO(3,2)
reconstructions combining quadratics and linear polynomials for the advection and special WENO-AO(4,3) recon-
structions for the diffusion. We then discuss two space dimensions, giving similar reconstructions on logically rect-
angular computational meshes of quadrilaterals. WENO-AO(3,2) combines bi-quadratic and bi-linear polynomials in
an efficient manner. In Section 4, we discuss the explicit and implicit Kunge-Kutta time integrators. The stability
of the overall scheme is discussed in Section 5. We give a von Neumann (or Fourier mode) stability analysis of the
linear problem on a uniform computational mesh in one space dimension. Smooth solutions remain stable provided
∆t = O(h2) for the explicit scheme and unconditionally for the implicit one. In Section 6, we give numerical results
that justify the order of accuracy and stability of the schemes, show superconvergence of the diffusive approximation
on uniform meshes, and demonstrate that the schemes perform well for challenging test problems. Finally, in the last
section we give a summary and the conclusions of our results.

2. The basic finite volume scheme

Let Th be a fixed computational mesh of polytopal elements in Rd, where h measures the size of the elements,
e.g., h = maxE∈Th diam(E). In finite volume schemes, one approximates the average of u over an element E ∈ Th,
which we denote

ūE(t) =
1
|E|

∫
E

u(x, t) dx, (7)

where |E| is the d dimensional volume of E. Fix time levels 0 = t0 < t1 < t2 < · · · . We seek approximations to ūn
E

for each n > 0 and E ∈ Th, and we comit a small abuse of notation by denoting these discrete approximations by ūn
E .

No confusion should arise, since by the end of this section, whenever u appears with a subscript or superscript, it is a
discrete approximation to the true solution u.

Averaging (5) over E, we obtain

ūE,t +
1
|E|

∫
E
∇ ·

(
f (u) − ∇b(u)

)
dx = 0. (8)

A numerical flux function is needed for the advective term. After applying the divergence theorem and incorporating
the numerical flux, we obtain

ūE,t +
1
|E|

∫
∂E

(
f̂E(u) − ∇b(u) · νE

)
dσ(x) = 0, (9)

where ∂E is the boundary of E, νE is the outer unit normal vector to E, and dσ(x) is the d − 1 dimensional measure
on ∂E. We use the Lax-Friedrichs numerical flux

f̂E(u+, u−) =
1
2
[
( f (u+) + f (u−)) · νE − αLF(u+ − u−)

]
, (10)

where u− and u+ are approximate values of u, which will be reconstructed from data biased to being inside and outside
the element (i.e., reconstructed on E and on the neighboring element), respectively, and where αLF = max

u

⏐⏐⏐⏐∂ f /∂u
⏐⏐⏐⏐ =

max
u

⏐⏐⏐⏐∂(F + ∇xb)/∂u
⏐⏐⏐⏐.

Evaluation of the integrals over each facet of ∂E requires a quadrature rule (except in one space dimension). Let
E have LE facets, denoted e1, . . . , eLE . On each e j, j = 1, . . . , LE , assume that we use a quadrature rule at the points
x j,k with corresponding weights |e j|ω j,k, for an appropriate range of k, where |e j| is the d−1 dimensional area of e j. To
make the notation more concise, denote the discrete approximation u±j,k(t) = u±(x j,k, t)≈ u(x j,k, t) and u j,k(t) ≈ u(x j,k, t),
and then approximate (9) as

ūE,t +

LE∑
j=1

|e j|

|E|

∑
k

ω j,k
[
f̂E(u+j,k, u

−
j,k) − ∇b(u j,k) · νE

]
= 0. (11)
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This is a semidiscrete approximation of (1). It remains to discuss reconstruction of the approximate values u±j,k(t)
and ∇b(u j,k) · νE from the discrete solution ūE(t) at some time t, as well as the fully discrete time evolution scheme.
We present reconstructions in one and two space dimensions, and we present both explicit and implicit time stepping
schemes.

3. WENO reconstructions

In this section, we discuss WENO-AO reconstructions suitable for a formally third order scheme. The procedures
to follow may be employed for the fixed time t, and they give u(x j,k, t) explicitly if ūE(t) ∀E ∈ Th, are known, and
implicitly otherwise. We present WENO-AO(3,2) and WENO-AO(4,3) reconstructions. The former is for reconstruc-
tion of u in the advective flux and the latter is for reconstruction of the diffusive flux ∇b · ν. Both reconstructions
are third order for smooth solutions and drop to second order near discontinuities. Higher order reconstructions can
be developed using similar procedures. For example, a formally fifth order scheme would use WENO-AO(5,3) and
WENO-AO(6,4).

In one space dimension, one can also use classic finite volume WENO reconstructions [16, 17]. Since these are
somewhat more efficient than WENO-AO reconstructions, we use them to reconstruct the advective flux in some
of our numerical results. We continue to use WENO-AO for the diffusive flux, since classic WENO would require
negative weights.

In the case of a uniform computational mesh in one space dimension, the diffusive flux exhibits superconvergence
of one higher order. To see it, one must reconstruct the advective flux to higher order. In these cases, we use
classic WENO5 for advection and WENO-AO(4,3) for diffusion, or WENO7 and WENO-AO(6,4) for higher order
approximation. We do not encounter negative linear weights when using classic WENO on uniform meshes.

3.1. One space dimension

In one space dimension, E ∈ Th is an interval and ∂E consists of two points (so LE = 2 and no quadrature rule is
required). Let the computational mesh be defined by the grid points · · · < x−3/2 < x−1/2 < x1/2 < x3/2 < · · · . Denote
the cell centers by xi = (xi+1/2 + xi−1/2)/2 and let ∆xi = xi+1/2 − xi−1/2. Now the mesh elements Ei = [xi−1/2, xi+1/2] are
indexed by i, and we simplify (11) to

ūi,t +
1
∆xi

[(
f̂E(u+i+1/2, u

−
i+1/2) − bx(ui+1/2)

)
−

(
f̂E(u+i−1/2, u

−
i−1/2) − bx(ui−1/2)

)]
= 0, (12)

where bx =
d
dx b(u(x, t), x).

3.1.1. WENO-AO(3,2) for the advective flux in one dimension
To reconstruct u(x) for x ∈ Ei (i.e., u+i−1/2 and u−i+1/2 needed in the advective flux terms of (12), we consider

three stencils, the big centered stencil S 3 = {Ei−1, Ei, Ei+1} and the small left and right small stencils S 2
L = {Ei−1, Ei}

and S 2
R = {Ei, Ei+1}, as depicted in Figure 1. Construct the quadratic polynomial P3(x) so that its averages over the

elements in the stencil S 3 agree with the data {ūi−1, ūi, ūi+1}. Similarly construct P2
L(x) and P2

R(x) for the stencils S 2
L

and S 2
R. Let the index set for the small stencils be denoted by I = {L,R}. The WENO-AO(3,2) reconstruction of u

[5, 6, 7, 8] is given for x ∈ Ei by

u(x) ≈ R3,2
i (x) =

α̃

α

[
P3(x) −

∑
k∈I

βkP2
k(x)

]
+

∑
k∈I

β̃kP2
k(x), (13)

where the linear weights α and βk are arbitrary positive numbers such that α + βL + βR = 1 (we take α = 1/2 and
βL = βR = 1/4). The nonlinear weights α̃, β̃L, and β̃R are computed in the usual way [16], namely,

α̂ =
α

(ϵ + σP3 )τ
, β̂k =

βk

(ϵ + σP2
k
)τ
, α̃ =

α̂

α̂ +
∑
ℓ∈I β̂ℓ

, β̃k =
β̂k

α̂ +
∑
ℓ∈I β̂ℓ

, k ∈ I, (14)
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where the constants are usually chosen as τ = 2 and ϵ = 10−6 (but see [7, 8] for consideration of these parameters).
The smoothness indicator σPr for the polynomial Pr of degree r − 1 is computed [16] as

σPr =

r−1∑
ℓ=1

∫
Ei

∆x2ℓ−1
i

( dℓ

dxℓ
Pr(x)

)2
dx. (15)

xi−3/2 xi−1/2 xi+1/2 xi+3/2Ei−1 Ei Ei+1

ūi−1 ūi ūi+1

x

S 2
L

S 2
R

S 3

Figure 1: Stencils for WENO-AO(3,2) reconstruction.

As shown in [7, 8], when the solution u is smooth, the WENO-AO(3,2) reconstruction is third order accurate.
When u has a discontinuity (and the grids remain bounded away from this discontinuity [7]), the approximation drops
to second order accuracy.

3.1.2. WENO-AO(4,3) for the diffusive flux in one dimension
Because b(u)xx is a diffusive term, b(u)x in (12) should be reconstructed in a symmetric manner to avoid directional

bias. It also needs to be approximated to third order, so b(u) needs to be reconstructed to fourth order accuracy. For
a third order reconstruction of the derivative at x = xi+1/2, we use a WENO-AO(4,3) reconstruction, which uses the
symmetric set of stencils shown in Figure 2.

xi−3/2 xi−1/2 xi+1/2 xi+3/2 xi+5/2Ei−1 Ei Ei+1 Ei+2

ūi−1 ūi ūi+1 ūi+2

x

S 3
L

S 3
R

S 4

Figure 2: Stencils for WENO-AO(4,3) reconstruction.

Since our data involves local averages of u, we begin by finding a fourth order stencil polynomial P4 over
S 4 = {Ei−1, Ei, Ei+1, Ei+2}, and two third order stencil polynomials P3

L and P3
R over S 3

L = {Ei−1, Ei, Ei+1} and S 3
R =

{Ei, Ei+1, Ei+2}, respectively. These approximate u(x).
One can imagine several ways to compute b(u)x from these three polynomial approximations of u. Perhaps the

most straightforward is to define a WENO reconstruction of u, call it R(x), and compute the derivative of b(R(x)).
When u and b are smooth, one should obtain a good result. However, we are most concerned with the degenerate
case where u may have a very steep gradient, so that it is nearly discontinuous. In this case, R(x) smooths the steep
gradient and b(R(x)) does not preserve the steep front. We take a different approach. We will sample point values
of u from one of the three polynomials. Call a generic sample u j and define b j = b(u j). These values preserve the
steep front, and they can be reconstructed as a polynomial for b(u), which can in turn be differentiated. The three such
polynomials can be combined as in the WENO-AO methodology.

Let us be more precise. As depicted in Figure 3, we first define a local computational mesh about xi+1/2, which
might as well be uniform. We suppress the index i and let H = Hi > 0 so that H = O(h) (we take H = (xi+5/2 −

xi−3/2)/4), and define the local points x j = xi+1/2 + jH. The local mesh is then {x−3/2, x−1/2, x1/2, x3/2}. For the
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xi−3/2 xi−1/2 xi+1/2 xi+3/2 xi+5/2
x

ūi−1 ūi ūi+1 ūi+2

u−3/2 u−1/2 u1/2 u3/2

b−3/2 b−1/2 b1/2 b3/2

x−3/2 x−1/2 x1/2 x3/2 local x

Figure 3: Reconstruction of b(u) on the big stencil. The data ūi−1, ūi, ūi+1, ūi+2 is fit to a polynomial P(x), which is evaluated at the uniformly
distributed local points x j to define u j = P(x j), j = −3/2,−1/2, 1/2, 3/2. Then b j = b(u j) are point values of b, which are fit to a polynomial Q(x).

polynomial P4 approximating u, let u j = P4(x j) and b j = b(u j), j = −3/2,−1/2, 1/2, 3/2. Let Q4 be the cubic
polynomial interpolating the four values b−3/2, b−1/2, b1/2, and b3/2. Similarly define the quadratic polynomials Q3

L
interpolating b(P3

L(x j)), j = −3/2,−1/2, 1/2, and Q3
R interpolating b(P3

R(x j)), j = −1/2, 1/2, 3/2. The WENO-
AO(4,3) reconstruction of the derivative, for x ∈ Ei ∪ Ei+1, is

bx(u) ≈ R4,3
x,i (x) =

α̃

α

[
Q4′(x) −

∑
k∈I

βkQ3
k
′
(x)

]
+

∑
k∈I

β̃kQ3
k
′
(x), (16)

where the linear weights α +
∑

k∈I βk = 1.
The nonlinear weights need to be defined a bit differently from the WENO-AO(3,2) case (i.e., different from

(14)). The smoothness indicators can be defined by the polynomials used for reconstruction of u or b (i.e., P or Q).
The computational results suggest using P from the base data ū is a bit better. We use a smoothness indicator that
integrates over an interval with xi+1/2 in its interior. Moreover, we are approximating bx, so we should not consider
first derivatives of P, or, equivalently, we consider the smoothness of hP′, where h is the length of the integration
interval. Perhaps the simplest such smoothness indicator is

σh(Pr)′ =

r−1∑
ℓ=2

∫
Ei∪Ei+1

(∆xi + ∆xi+1)2ℓ−1
( dℓ

dxℓ
Pr(x)

)2
dx

=

r−2∑
ℓ=1

∫
Ei∪Ei+1

(∆xi + ∆xi+1)2ℓ+1
( dℓ+1

dxℓ+1 Pr(x)
)2

dx. (17)

The derivative is then approximated to third order when u is smooth on S 4. Otherwise, the derivative approxima-
tion drops to second order accuracy when the solution is smooth on one of the smaller stencils (and the discontinuity
stays bounded away from the grid points). As is usual in WENO methods, it is not so clear what happens when the
discontinuity is within Ei−1∪Ei, i.e., no more than an element away from xi (nevertheless, we will see good numerical
results later).

3.2. Two space dimensions

WENO reconstructions on unstructured two dimensional meshes are developed in [18, 19, 20], and on three
dimensional tetrahedral meshes in [21, 22]. Any of these reconstructions could be used here; however, we choose to
develop a reconstruction tailored to logically rectangular meshes of quadrilaterals or cuboidal hexahedra [23]. That
is, the mesh is a distortion of a rectangular mesh, and so the index space may be taken to be rectangular.

For simplicity, we only describe the reconstruction procedure in two dimensions. Extension to three (and higher)
dimensions is straightforward. Given an element Ei j, let (xi j, yi j) be its centroid. For numerical stability, we define
H =

√
|Ei j| and work in the variables ξ = (x − xi j)/H and η = (y − yi j)/H.

3.2.1. WENO-AO(3,2) for the advective flux in two dimensions
To compute u± at quadrature points in the advective part of (11), we use a WENO-AO(3,2) reconstruction to

combine polynomials that approximate to order three and two (i.e., bi-quadratics and bi-linears). As shown in Figure 4,
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consider four small stencils S 2
k , k ∈ I = {SE, SW, NE, NW}, where

S 2
NW = {Ei j, E(i−1) j, E(i−1)( j+1), Ei( j+1)}, S 2

NE = {Ei j, E(i+1) j, Ei( j+1), E(i+1)( j+1)},

S 2
SW = {Ei j, E(i−1) j, E(i−1)( j−1), Ei( j−1)}, S 2

SE = {Ei j, E(i+1) j, Ei( j−1), E(i+1)( j−1)}.

The big stencil is S 3 = ∪k∈IS 2
k .

Ei j

S 2
SE

S 2
SW

S 2
NW

S 2
NE

S 3

Figure 4: The five stencils used for logically rectangular WENO-
AO(3,2) reconstruction on Ei j in two space dimensions.

Ei j Ei+1, j

S 3
SW S 3

SE

S 3
NW

S 3
NE

S 4

Figure 5: The five stencils used for logically rectangular WENO-
AO(4,3) reconstruction of the diffusive flux on the interface be-
tween Ei j and Ei+1, j in two space dimensions.

We construct the bi-linear stencil polynomials P2
k over S 2

k (i.e., on the locally transformed stencil Ŝ 2
k),

P2
k(x, y) = bk

0 + bk
1ξ + bk

2η + bk
3ξη, k ∈ I,

and the bi-quadratic stencil polynomial P3 over S 3 (i.e., Ŝ 3),

P3(x, y) = a0 + a1ξ + a2η + a3ξη + a4ξ
2 + a5η

2 + a6ξ
2η + a7ξη

2 + a8ξ
2η2,

by requiring that each stencil polynomial has the same element average as u for all elements in the corresponding
stencil. For any (x, y) ∈ Ei j, the third order reconstruction of u, R3,2

i j (x, y), is given by the two dimensional analogue
of (13) with weights computed by (14), using the current small stencil index set I of four values. In two dimensions,
we take ϵ = |Ei j|, α = 1/2, and α j = 1/8, for all j ∈ I.

For a time dependent problem with a fixed computational mesh, a good way to implement the procedure above is
to first define the base polynomials. Given a stencil S with its locally transformed stencil Ŝ , denote the transformed
elements as Êpq ∈ Ŝ . Let ψ̂pq be the polynomial such that

1
|Êp′q′ |

∫
Êp′q′

ψ̂pq(ξ, η) dÂ =

⎧⎪⎪⎨⎪⎪⎩1, p = p′, q = q′,
0, otherwise,

∀Êp′q′ ∈ Ŝ .

Note that each ψ̂pq(ξ, η) can be precomputed once the mesh is given. The stencil polynomial is then

P(x, y) = P̂(ξ, η) =
∑
pq

ūpqψ̂pq(ξ, η), ∀Epq ∈ S . (18)

The smoothness indicator [19] of the polynomial P(x, y) of degree m is

σP =
∑

1≤|γ|≤m

∫
Ei j

|Ei j|
|γ|−1(DγP(x, y))2dA, (19)
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where γ = (γ1, γ2) is a multi-index, |γ| = γ1 + γ2, and D is the derivative operator (so Dγ = d|γ|/dxγ1
1 dxγ2

2 ). The
smoothness indicators can be computed using the base polynomials (see [24]). For the polynomial P in (18),

σP =
∑

1≤|γ|≤m

|Ei j|
|γ|−1

∫
Ei j

(DγP(x, y))2dA

=
∑

1≤|γ|≤m

∫
Êi j

(DγP̂(ξ, η))2dÂ

=
∑

1≤|γ|≤m

∫
Êi j

(∑
pq

ūpqD
γψ̂pq(ξ, η)

)2
dÂ

=
∑
pq

∑
p′q′

ūpq ūp′q′
∑

1≤|γ|≤m

∫
Êi j

Dγψ̂pq(ξ, η)Dγψ̂p′q′ (ξ, η) dÂ

=
∑
pq

∑
p′q′

ūpq ūp′q′ σ
p′q′

i j,pq,

(20)

where σp′q′

i j,pq can be precomputed from the computational mesh.

3.2.2. WENO-AO(4,3) for the diffusive flux in two dimensions
Evaluation of normal derivatives in (11) requires a different reconstruction. To maintain a formal symmetry, we

use the stencils depicted in Figure 5 to reconstruct a value on the facet between Ei j and Ei+1, j (a similar construction is
used for a facet between Ei j and Ei, j+1). The big stencil of 20 elements is S 4 =

{
Epq : i−1 ≤ p ≤ i+2, j−2 ≤ q ≤ j+2

}
and the small stencils are

S 3
NW =

{
Epq : i − 1 ≤ p ≤ i + 1, j ≤ q ≤ j + 2

}
S 3

NE =
{
Epq : i ≤ p ≤ i + 2, j ≤ q ≤ j + 2

}
,

S 3
SW =

{
Epq : i − 1 ≤ p ≤ i + 1, j − 2 ≤ q ≤ j

}
, S 3

SE =
{
Epq : i ≤ p ≤ i + 2, j − 2 ≤ q ≤ j

}
,

The bi-quadratic polynomials P3
k , k ∈ I = {SE, SW, NE, NW} are constructed by matching the average of u over each

element in the corresponding small stencil, and P4 is constructed similarly over the big stencil S 4, where now P4 is a
tensor product polynomial that is fourth order in ξ and fifth order in η.

Ei j Ei+1, j

e
×

Figure 6: The sampling line and sample points used for logically rectangular WENO-AO(4,3) reconstruction of the diffusive flux. For the quadrature
point, shown as a cross (×), on the interface e between Ei j and Ei+1, j, the sampling line goes through this point and is perpendicular to e.
Sample points, shown as dots, are taken on this line. In any dimension (two space dimensions are depicted), the local computational mesh is one
dimensional.

As in the one dimensional case, we sample values of u from these polynomials on a set of appropriate points.
Continuing the discussion for the facet e = Ei j∩Ei+1, j, let (x, y) be a quadrature point on e used in the diffusive part of
(11). As depicted in Figure 6, take the line normal to the facet (i.e., in the direction of νEi j ) and passing through (x, y),
and select four sampling points on this line. Again, we should take equally spaced points, with spacing H = O(h),
and (x, y) should be midway between the center two points. Let these points be (xℓ, yℓ) for ℓ = 1, 2, 3, 4. For the big
stencil, we sample uℓ = P4(xℓ, yℓ), compute bℓ = b(uℓ), and reconstruct the cubic polynomial Q4(z) in one dimension
interpolating bℓ, ℓ = 1, 2, 3, 4, where z is the local variable on the sampling line in the direction of νEi j ) such that z = 0
corresponds to the quadrature point (x, y). The derivative Q4′(0) is an approximation to ∇b(u) · νEi j at (x, y).
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Each small stencil k ∈ I is handled in a similar way, but we interpolate b(P3
k(xℓ, yℓ)) at only 3 values of ℓ to define

the quadratic polynomial Q3
k(z). For a “vertically” oriented interface like e, we use the three points farthest to the west

(W) for the NW and SW stencils, and the three points farthest to the east (E) for the NE and SE stencils.
The reconstruction of ∇b(u) · νEi j at the quadrature point (x, y) is then given by R4,3

ν,Ei j
(z)|z=0 satisfying an analogue

of (16) along the sampling line, using the current small stencil index set I of four values. The nonlinear weighting is
similar to (14). The smoothness indicators are computed from an analogue of (19) (or (20)) for the derivative, similar
to (17), which is

σhP′ =
∑

2≤|γ|≤m

∫
Ei j∪Ei+1, j

|Ei j ∪ Ei+1, j|
|γ|−1(DγP(x, y))2dA. (21)

3.3. Computing the derivative of the reconstruction
An implicit time stepping approximation of (11) will use implicit reconstructions. A nonlinear system solution

procedure such as Newton’s method will require evaluation of the Jacobian matrix, which will require that each
implicit reconstruction, at some time level t, will need to be differentiated with respect to the unknowns ūE(t) for
E ∈ Th. This is perhaps the most complicated derivative needed, so we discuss its implementation here. Fortunately,
this derivative is not problem dependent, and so can be coded once for all.

We consider only the derivatives of R3,2
i j (x, y) appearing in the two dimensional analogue of (13). The derivatives

of other reconstructions are computed similarly. The derivative of (13) is

∂R3,2
i j

∂ūpq
=

P3

α

∂α̃

∂ūpq
+
α̃

α

∂P3

∂ūpq
+

∑
k∈I

[
P2

k

(
∂β̃k

∂ūpq
−
βk

α

∂α̃

∂ūpq

)
+

(
β̃k −

α̃βk

α

) ∂P2
k

∂ūpq

]
, (22)

so we only need to compute the derivatives of the polynomials and the nonlinear weights. Clearly, if Epq < S 3, the
derivative is zero, so suppose that Epq ∈ S 3. The derivative of a stencil polynomial P, written in the local basis as in
(18) is

∂P(x, y)
∂ūpq

= ψ̂pq(ξ, η). (23)

The derivatives of α̃ and β̃k, k ∈ I are

∂α̃

∂ūpq
=

1(
α̂ +

∑
ℓ∈I β̂ℓ

)2 [ ∂α̂∂ūpq

∑
ℓ∈I

β̂ℓ − α̂
∑
ℓ∈I

∂β̂ℓ
∂ūpq

]
,

∂β̃k

∂ūpq
=

1(
α̂ +

∑
ℓ∈I β̂ℓ

)2 [ ∂β̂k

∂ūpq

(
α̂ +

∑
ℓ∈I

β̂ℓ

)
− β̂k

(
∂α̂

∂ūpq
+

∑
ℓ∈I

∂β̂ℓ
∂ūpq

)]
, k ∈ I. (24)

where
∂α̂

∂ūpq
=

−τα

(ϵ + σP4 )τ+1

∂σP4

∂ūpq
,

∂β̂k

∂ūpq
=

−τβk

(ϵ + σP3
k
)τ+1

∂σP3
k

∂ūpq
, k ∈ I. (25)

Finally, the derivative of the smoothness indicator for a stencil polynomial P, written in the form (20), is simply

∂σP

∂ūpq
= 2

∑
p′q′

ūp′q′
∑

1≤|γ|≤m

∫
Êi j

Dγψ̂pq(ξ, η)Dγψ̂p′q′ (ξ, η) dÂ = 2
∑
p′q′

ūp′q′σ
p′q′

i j,pq. (26)

This completes the description of the computation of the derivative of the reconstruction R3,2
i j with respect to its

unknown ūpq.

4. Time evolution

In this section, we discuss evolution of (11) in time. As is usual, we use the method of lines and a Runge-Kutta
time integrator. An s stage Runge-Kutta method can be described by its Butcher Tableau (as in Table 1), consisting of
the s × s matrix A = (ai j) and s vectors c and b satisfying

∑
j ai j = ci for all i and

∑
i bi = 1.
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c A
bT

Table 1: The Butcher Tableau
of a Runge-Kutta method.

0 0 0
1 1 0

1/2 1/2

0 0 0 0
1 1 0 0

1/2 1/4 1/4 0
1/6 1/6 2/3

Table 2: The second and third order explicit SSP Runge-
Kutta methods.

1/3 5/12 −1/12
1 3/4 1/4

3/4 1/4

Table 3: The third order implicit Radau-IIA
Runge-Kutta method.

We apply the method to the initial value problem (11), but to simplify the ideas, we rewrite it as

ūE,t(t) = F (t, ū(t)), (27)

where F is an operator of the cell averages ūE′ for a subset of E′ ∈ Th. This operator involves space derivatives, which
are computed using the WENO reconstructions explained in the previous section. Recall that we fixed the time levels
0 = t0 < t1 < t2 < · · · . Let ∆tn = tn+1 − tn. The Runge-Kutta method is then to compute the intermediate solutions

˜̄un+ci
E = ūn

E + ∆tn
s∑

j=1

ai jF (tn + c j∆tn, ˜̄un+c j ), i = 1, . . . , s, (28)

and then set

ūn+1
E = ūn

E + ∆tn
s∑

j=1

b jF (tn + ci∆tn, ˜̄un+ci ). (29)

4.1. Explicit time stepping

We need to choose a Runge-Kutta method that maintains accuracy, which in our case is third order in h. One
would also like to use a Strong Stability Preserving (SSP) Runge-Kutta method, since it maintains the stability of
forward Euler [9, 10, 11]. The diffusive terms will force us to take ∆tn = O(h2) to maintain stability, so a relatively
low order method can be used.

The explicit trapezoidal or improved Euler Runge-Kutta method of Table 2 is second order in the time step, and
so would be accurate to O(h4). It is also an SSP method. However, we sometimes use the more popular third order
SSP method given in Table 2, since this method would work when D ≡ 0 and ∆tn = O(h).

4.2. Implicit time stepping

There are no unconditionally stable SSP Runge-Kutta methods of order higher than one [11, 12, 13]. The time
step restriction is comparable to the CFL condition of explicit methods. This makes them unsuitable for the advection-
diffusion problem (1) that we consider.

An A-stable Runge-Kutta method is stable for the test equation u′ = au, where Real(a) < 0. That is, un+1 =

Q(∆t)un and |Q(∆t)| ≤ 1. However, when the differential equation is stiff, as in a diffusion problem, it is possi-
ble that ∆t is relatively large for the stiff components. An L-stable Runge-Kutta method is A-stable and satisfies
lim∆t→∞ |Q(∆t)| = 0. For such a method, the stiff components contribute little when the time step is large, as they
should. We therefore choose to use an L-stable Runge-Kutta method. Perhaps the simplest third order L-stable
Runge-Kutta method is the Radau-IIA method [14, 15], given in Table 3.

5. Stability

We can assess the stability properties of the schemes through a von Neumann (or Fourier mode) stability analysis
[25, 26]. To apply this analysis, we must restrict to the linear problem on a uniform rectangular mesh. We will only
consider the case of one space dimension, although the two dimensional case would be similar.

Consider the constant coefficient, linear advection-diffusion-reaction equation

ut + aux − Duxx = 0, x ∈ R, t > 0, (30)
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where a > 0 and D ≥ 0. In this case, the Lax-Friedrichs flux (10) reduces to the upwind flux, so for element E j,

f̂ (u+j+1/2(t), u−j+1/2(t)) = au−j+1/2(t) = aR3,2
j (x j+1/2, t),

where the reconstruction R3,2
j−1 is defined in (13). We assume that the true solution u is smooth, which holds by the

Cauchy-Kowalevski theorem [27] provided that the initial condition is an analytic function. In this case, the WENO
methodology implies that all the nonlinear weights are approximately equal to the linear weights [24, 8, 7]. As a
consequence, R3,2

j evaluates to the quadratic polynomial and R4,3
j evaluates to the cubic polynomial. Since the mesh is

uniform, ∆x j = h, for all j, and the scheme (12) applied to (30) reduces to

ū j,t = −
a
h
[
P3

j (x j+1/2, t) − P3
j−1(x j−1/2, t)

]
+

D
h2

[
hQ4

j
′
(x j+1/2, t) − hQ4

j−1
′
(x j−1/2, t)

]
= L j(ū(t)) =

1
∆tn

[
λA j(ū(t)) + µD j(ū(t))

]
, (31)

where λ = a∆tn/h and µ = D∆tn/h2, and the linear operator L j(ū(t)) =
(
λA j(ū(t)) + µD j(ū(t))

)
/∆tn has an advective

and diffusive part.
Consider the kth single Fourier mode ū(x, t) = T (t) eikx, where in this section i is the canonical imaginary root

of −1. Without loss of generality, assume x0 = −h/2, so x j+1/2 = jh. Then

ū j+1/2(t) = T (t) eikx j+1/2 = T (t) eik jh = T (t) ei jθ, (32)

where θ = kh. For an explicit scheme, we want to show A-stability, which is |T n+1| ≤ |T n|. For an implicit scheme, we
want to show also L-stability, which adds the condition T n+1 → 0 as ∆tn → ∞.

Substituting (32) into L, one obtains

∆tnL j(ū(t)) = ∆tn T (t) ei jθL(θ, h) = T (t) ei jθ[λA(θ, h) + µD(θ, h)
]
, (33)

where A(θ, h) and D(θ, h) will be computed from the spatial discretization. The general Runge-Kutta method of
Table 1, i.e., (28)–(29), then gives the equations

T̃ n+cp = T n +
(
λA(θ, h) + µD(θ, h)

) s∑
q=1

apqT̃ n+cq , p = 1, . . . , s, (34)

T n+1 = T n +
(
λA(θ, h) + µD(θ, h)

) s∑
q=1

bqT̃ n+cq , (35)

after canceling the common factor ei jθ.
To computeA(θ, h), note that

P3
j (x j+1/2) = u−j+1/2 =

1
6
(
− ū j−1 + 5ū j + 2ū j+1

)
,

and so
−∆tn a

h
[
P3

j (x j+1/2) − P3
j−1(x j−1/2)

]
=
λ

6
(
− ū j−2 + 6ū j−1 − 3ū j − 2ū j+1

)
= λA j(ū),

which leads to
A(θ, h) =

1
6
(
− e−2θ + 6e−θ − 3 − 2eθ

)
=

1
3
[
− (1 − cos θ)2 + i(cos θ − 4) sin θ

]
, (36)

which has nonpositive real part for any θ. To compute D(θ, h), note that b(u) = u, so Q4 = P4. It is not difficult to
verify that

u j−1 =
1

24
(
22ū j−1 + 5ū j − 4ū j+1 + ū j+2

)
, u j =

1
24

(
− ū j−1 + 26ū j − ū j+1

)
,

u j+1 =
1

24
(
− ū j + 26ū j+1 − ū j+2

)
, u j+2 =

1
24

(
ū j−1 − 4ū j + 5ū j+1 + 22ū j+2

)
,
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and so

Q4
j
′
(x j+1/2) = ux, j+1/2 =

1
24h

(
u j−1 − 27u j + 27u j+1 − u j+2

)
=

1
12h

(
ū j−1 − 15ū j + 15ū j+1 − ū j+2

)
.

Now
∆tn D

h2

(
hQ4

j
′
(x j+1/2) − hQ4

j−1
′
(x j−1/2)

)
=

µ

12
(
− ū j−2 + 16ū j−1 − 30ū j + 16ū j+1 − ū j+2

)
= µD j(ū),

and so
D(θ, h) =

1
12

(
− e−2θ + 16e−θ − 30 + 16eθ − e2θ) = −1

3
(1 − cos θ)(7 − cos θ) (37)

is nonpositive for any θ.

5.1. Explicit schemes

Let us denote z = λA(θ, h) + µD(θ, h). It is not surprising that the second order explicit SSP Runge-Kutta method
leads us from (34)–(35) to

T n+1 =
(
1 + z + 1

2 z2)T n, (38)

and the stability condition is |1 + z + 1
2 z2| ≤ 1. It is not easy to characterize when z meets this condition. Instead, we

will consider the case of pure diffusion, so λ = 0 and z = µD(θ, h) = −µ(1−cos θ)(7−cos θ)/3 is real and nonpositive.
Then we simply need that z ≥ −2. This must hold for all θ, so we need that

max
c∈[−1,1]

µ(1 − c)(7 − c) ≤ 6 =⇒ µ =
D∆tn

h2 ≤
3
8
= 0.375. (39)

When there is advection, this condition is asymptotically correct as h→ 0.
The third order order explicit SSP Runge-Kutta method leads to

T n+1 =
(
1 + z + 1

2 z2 + 1
6 z3)T n. (40)

In the case of pure diffusion, i.e., z real and nonpositive, stability requires that z ≥ z∗ = −2.51275, and so

max
c∈[−1,1]

µ(1 − c)(7 − c) ≤ −3z∗ =⇒ µ =
D∆tn

h2 ≤
−3z∗
16
= 0.47114. (41)

If we use WENO-AO(6,4) to compute the diffusion terms (combined with third order SSP Runge-Kutta), we find
that

D(θ, h) =
1

180
(
2e−3θ − 27e−2θ + 270e−θ − 490 + 270eθ − 27e2θ + 2e3θ)

= −
1

45
(1 − cos θ)(4 cos2 θ − 23 cos θ + 109),

which is again nonpositive, and

µ =
D∆tn

h2 ≤ 0.415712. (42)

This agrees with the value found in [2].

5.2. Implicit scheme

Again with z = λA(θ, h) + µD(θ, h), the Radau IIA Runge-Kutta method (Table 3) applied to (34)–(35) gives

T̃ n+1/3 = T n +
z

12
(5T̃ n+1/3 − T n+1), (43)

T n+1 = T̃ n+1 = T n +
z
4

(3T̃ n+1/3 + T n+1). (44)
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Inverting the 2 × 2 system leads to

T̃ n+1 =
48 + 16z

5z2 − 29z + 48
T n = Q(z) T n. (45)

It is apparent that if the scheme is A-stable for each Fourier mode (i.e., |Q(z)| ≤ 1), then it will be L-stable, since as
|z| → ∞, |Q(z)| → 0.

Let z = γ + iδ, and recall that γ ≤ 0. Then

|Q(z)|2 = Q(z)Q(z̄) =
(48 + 16γ)2 + 256δ2

(5γ2 − 5δ2 − 29γ + 48)2 + δ2(10γ − 29)2

=
(48 + 16γ)2 + 256δ2

(5γ2 − 29γ + 48)2 + 25δ4 − 10δ2(5γ2 − 29γ + 48) + δ2(10γ − 29)2 .

It is not difficult to verify that

(48 + 16γ)2 ≤ (5γ2 − 29γ + 48)2,

256δ2 ≤ 25δ4 − 10δ2(5γ2 − 29γ + 48) + δ2(10γ − 29)2

when γ ≤ 0 for any δ. Thus the implicit scheme is (unconditionally) A-stable, and also L-stable, for smooth solutions
to the linear problem on a uniform computational mesh. We remark that the intermediate time amplification factor
T̃ n+1/3 is also L-stable.

6. Numerical results

We have developed computer programs to test the algorithms described in this paper. The codes use one of the
Runge Kutta time stepping methods described in Section 4, second order explicit SSP Runge-Kutta (SSP2), third
order explicit SSP Runge-Kutta (SSP3), or Radau IIA Runge-Kutta (Radau3). If not stated otherwise, the advec-
tion is approximated using WENO-AO(3,2) reconstructions, as described in Sections 3.1.1 or 3.2.1, and diffusion is
approximated using WENO-AO(4,3) reconstructions, as described in Sections 3.1.2 or 3.2.2. Our schemes do not
require negative weights in the WENO reconstructions, because WENO-AO is used (or classic WENO is used on
uniform meshes). We describe our schemes by specifying the time stepping, advective reconstructions, and diffusive
reconstructions. For example, our main schemes are

SSP2/WENO-AO(3,2)/WENO-AO(4,3), abbreviated as explicit SSP2-3-4,

SSP3/WENO-AO(3,2)/WENO-AO(4,3), abbreviated as explicit SSP3-3-4,

Radau3/WENO-AO(3,2)/WENO-AO(4,3), abbreviated as implicit Radau3-3-4,

SSP3/WENO-AO(5,3)/WENO-AO(6,4), abbreviated as explicit SSP3-5-6.

We will use ∆t = O(h2) for the explicit schemes and ∆t = O(h) for the implicit one. Without superconvergence effects,
we would expect these schemes to converge as O(∆t2 + h3) = O(h3) for explicit SSP2-3-4, O(∆t3 + h3) = O(h3) for
explicit SSP3-3-4 and implicit Radau3-3-4, and O(∆t3 + h5) = O(h5) for explicit SSP3-5-6.

We present numerical results for test problems similar to those considered by Liu, Shu, and Zhang [2] and
Kurganov and Tadmor [28]. Most of our test examples use periodic boundary conditions, but a few use Dirichlet
conditions. The results we present below are comparable in accuracy to those in the aforementioned papers, but our
meshes are non-uniform in 1D and consist of quadrilaterals in 2D. Moreover, we include results from the implicit
scheme, which uses a much longer time step.

In one space dimension, we use the symbol M to denote the number of mesh elements. Non-uniform meshes are
created by randomly perturbing each interior point of a uniform mesh by ±25% of h =∆x = L/M, for a domain of
length L. The linear weights used in the reconstructions are α = 1/2 and βL = βR = 1/4. We take ϵ = 1E − 6 in (14)
defining the nonlinear weights.

In two space dimensions, we use a square computational domain. Our computational meshes are derived from
perturbations of uniform meshes of M × M elements, and in this case we define h to be the spacing of the uniform
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mesh. Each grid point (not on the boundary) is perturbed uniformly by ±25% in each coordinate direction. This
results in meshes of quadrilaterals. The linear weights used in the reconstructions are α = 1/2 and all βk = 1/8. The
nonlinear weights use a scaling as in (14), but the parameter ϵ for element E ∈ Th is mesh weighted by factor ϵ = |E|
(as suggested in [7, 8]). The spacing H of the sampling points on the sampling line needed for the reconstructions of
the diffusion terms is taken to be the unperturbed mesh spacing h. Except for the convergence studies, all other two
dimensional results use a computational mesh of M = 80 quadrilateral elements in each direction.

6.1. Convergence and stability studies
We begin with some simple tests to show the superconvergence phenomena when using uniform computational

meshes, and follow with general tests on non-uniform meshes.

6.1.1. Superconvergence tests
On uniform computational meshes, we expect that the diffusive terms are approximated to O(h4) when using

WENO-AO(4,3), and to O(h6) when using WENO-AO(6,4). To see this superconvergence, the advective term needs
to use reconstructions at least this accurate, so we employed classic WENO5 and WENO7 for these tests. Moreover,
the time error must be sufficiently accurate. For the explicit schemes, the stability results of Section 5 show that
∆t = O(h2), and so SSP2/WENO5/WENO-AO(4,3) should be O(h4) accurate, and SSP3/WENO7/WENO-AO(6,4)
should be O(h6) accurate.

We first test our schemes in the simple case of

ut + a(u2/2)x − Duxx = 0 (46)

over [0, 2π]. With a = 0 and D = 1, we have the heat equation. If we impose the initial condition u0(x) = sin x, the
exact solution is u(x, t) = sin xe−Dt. We can see from Table 4 that the explicit schemes show fourth and sixth order
convergence of the error on a uniform computational mesh. That is, the superconvergence is seen.

Table 4: The heat equation. Error and convergence order at time t = 1
using D = 1 on a uniform mesh.

M L1
h error order L∞h error order

SSP2/WENO5/WENO-AO(4,3) with ∆t = 0.35h2

20 2.369E-03 4.06 5.587E-04 4.02
40 6.606E-05 5.16 1.588E-05 5.14
80 2.379E-06 4.80 5.845E-07 4.76
160 1.200E-07 4.31 2.984E-08 4.29
SSP3/WENO7/WENO-AO(6,4) with ∆t = 0.4h2

20 2.823E-04 5.62 8.335E-05 5.53
40 4.895E-06 5.85 1.439E-06 5.86
80 9.204E-08 5.73 2.601E-08 5.79
160 1.105E-09 6.38 3.340E-10 6.28

Table 5: Burgers equation with diffusion D = 1. Error and conver-
gence order at time t = 2 on a uniform mesh.

M L1
h error order L∞h error order

SSP2/WENO5/WENO-AO(4,3) with ∆t = 0.35h2

20 1.937E-03 2.76 4.949E-04 2.99
40 1.550E-04 3.64 3.921E-05 3.66
80 4.582E-06 5.08 1.167E-06 5.07

160 1.257E-07 5.19 3.320E-08 5.14
SSP3/WENO7/WENO-AO(6,4) with ∆t = 0.4h2

20 4.988E-05 6.25 1.280E-05 6.28
40 2.708E-07 7.53 7.563E-08 7.40
80 5.035E-09 5.75 1.350E-09 5.81

160 8.425E-11 5.90 2.320E-11 5.86

We now consider a = 1 and D = 1, giving Burgers equation with diffusion. Exact solutions can be found using
the Hopf-Cole transformation, and we take the exact solution

u(x, t) =
−2D cos x exp(−Dt)
2 + sin x exp(−Dt)

. (47)

The results appear in Table 5, and we see superconvergence. In fact, the lower order scheme has O(h5) convergence
of the advection, so those results appear somewhat better than the expected O(h4) up to M = 160. The convergence
drops to O(h4) for larger M. The higher order scheme is indeed O(h6).

We next test superconvergence for the porous medium equation (PME), given below in Section 6.2 (i.e., (49)), for
which the Barenblatt solution (50) is known. We take as initial condition the Barenblatt solution at t = 1. The domain
is restricted to [−6, 6], and we set the boundary condition u(±6, t) = 0 for t > 1. Table 6 shows the convergence rate at
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Table 6: Porous medium equation with m = 8. Error and convergence order at time t = 1.05 on a uniform mesh.
M L1

h error order L∞h error t = 1.05 order
SSP2/WENO5/WENO-AO(4,3) with ∆t = 0.04375h2

20 7.166E-06 8.92 3.114E-06 9.86
40 5.765E-07 3.20 4.266E-07 2.52
80 3.103E-08 4.52 2.405E-08 4.45

160 1.815E-09 4.24 1.427E-09 4.22
SSP3/WENO7/WENO-AO(6,4) with ∆t = 0.05h2

20 1.882E-05 7.04 1.699E-05 6.04
40 7.577E-07 4.07 9.810E-07 3.62
80 1.319E-08 6.26 2.132E-08 5.92

160 1.822E-10 6.40 3.859E-10 6.00

t = 1.05, with |x| ≤ 1.5 (i.e., in the smooth region of the solution) and m = 8. We continue to see the superconvergence
effect, and the results are a bit better than the third order discontinuous Galerkin scheme of Zhang and Wu [29, Table
1].

6.1.2. Convergence tests in two space dimensions
We now generalize (46) as the two-dimensional Burgers equation with diffusion,

ut + a[(u2/2)x + (u2/2)y] − D(uxx + uyy) = 0, (48)

on the domain [0, 2]2.

Table 7: Heat Equation in 2D. Error and convergence order using
∆t = 0.2h2 (explicit SSP3-3-4) and ∆t = h (implicit Radau3-3-4) on
quadrilateral meshes based on perturbation of uniform meshes.

M L1
h error order L∞h error order

Explicit SSP3-3-4
20 4.186E-04 3.97 3.744E-04 3.90
40 1.299E-05 5.01 1.903E-05 4.30
80 6.360E-07 4.35 1.179E-06 4.01
160 3.994E-08 3.99 7.596E-08 3.96

Implicit Radau-3-3-4
20 1.368E-02 3.30 5.940E-03 3.47
40 2.003E-03 2.76 8.305E-04 2.84
80 2.812E-04 2.83 1.133E-04 2.87
160 3.757E-05 2.90 1.495E-05 2.92

Table 8: Burgers equation in 2D with diffusion. Error and conver-
gence order of the implicit Radau3-3-4 scheme using ∆t = 5h at time
t = 1 on quadrilateral meshes meshes.

M L1
h error order L∞h error order

D = 0.1
20 3.254E-03 —— 1.570E-03 ——
40 4.908E-04 2.73 2.172E-04 2.85
80 6.687E-05 2.88 2.910E-05 2.90

160 8.742E-06 2.94 3.764E-06 2.95
D = 0.0001

20 2.023E-08 —— 5.617E-08 ——
40 5.705E-09 1.83 2.487E-08 1.18
80 1.058E-09 2.43 5.766E-09 2.11

160 1.330E-10 2.99 6.748-10 3.10

We first take a = 0, D = 1 (i.e., the heat equation), and the initial condition u(x, y, 0) = sin(π(x + y)). For the
explicit scheme, we used ∆t = 0.2h2 and ran the simulation to time t = 0.02. For the implicit scheme, we used ∆t = h
and ran to time t = 0.2. We used meshes of M × M elements (so h = 2/M).

The rates of convergence appear in Table 7. The rates of convergence bounce around a bit as M increases, probably
due to the use of randomly perturbed meshes of quadrilaterals. We see superconvergence of order four for the explicit
scheme. The time stepping here is accurate enough, since we use the third order SSP method with ∆t = O(h2), so the
temporal error is O(∆t3) = O(h6) is sixth order accurate in space. It seems that the existence of an underlying uniform
mesh is enough to give superconvergence in space. In fact, we see this effect for one dimensional problems as well
when we define non-uniform meshes from a uniform mesh by randomly perturbing each internal grid point by ±25%.
To drop the scheme to order three, we need to use a non-uniform mesh of grid points produced in a nested fashion,
namely, all coarse grid points are retained and new points are added by perturbing the midpoint of the two adjacent
coarse grid points.
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The implicit results show only the expected third order convergence, since now ∆t = O(h) and the time stepping,
being third order, does not allow us to see the superconvergent space approximation.

Finally, we take a = 1 and the exact solution

u(x, y, t) = −2Dπ
cos

(
π(x + y)

)
exp(−2Dπ2t)

2 + sin
(
π(x + y)

)
exp(−2Dπ2t)

.

The rates of convergence for the implicit Radau3-3-4 scheme are given in Table 8 for a large and small diffusion
coefficient D and using ∆t = 5h. We see the expected third order convergence, even for the relatively long time step
used.

6.1.3. Stability tests for the implicit time integrator
Since the 2-stage implicit SSP3 method is not L-stable, it is not expected to perform for relatively long time steps.

In fact, it is known that implicit SSP methods lead to oscillations when the stability constraint fails to be satisfied [13].
Our implicit Radau3-3-4 scheme is unconditionally L-stable for the linear problem.
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Figure 7: Burgers equation. Comparison of the implicit
SSP3/WENO-AO(3,2) scheme and the implicit Radau3-3-4 scheme,
using a non-uniform mesh of M = 160 elements.

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

IC

SSP

RadauIIA
0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

IC

SSP

RadauIIA

∆t = 0.5h (SSP is stable) ∆t = 2h (both unstable)

Figure 8: Buckley-Leverett hproblem. Comparison of the implicit
SSP3/WENO-AO(3,2) scheme and the implicit Radau3-3-4 scheme,
using a non-uniform mesh of M = 100 elements.

We compare solutions of the implicit SSP3/WENO-AO(3,2) scheme (with no diffusion) and the implicit Radau3-
3-4 scheme. In Figure 7, we show results for the nonlinear Burgers equation (47) (a = 1, D = 0) with u(x, 0) =
1
2 (1− sin x) at time t = 2. We use a non-uniform mesh of M = 160 elements. When ∆t = 2h, the SSP scheme is stable,
and gives good results, but Radau does likewise. However, when ∆t = 5h, both schemes go unstable (the problem is
not linear and the solution is not smooth), but Radau gives better results.

In Figure 8, we show results at time t = 0.085 for the nonlinear Buckley-Leverett problem using the flux (55) with
an initial jump discontinuity. We use a non-uniform mesh of M = 100 elements. When ∆t = 0.5h, SSP is stable, and
both schemes gives good results. When ∆t = 2h, both schemes go unstable, but, again, Radau gives better results.
For this example, we do not use the Koren limiter used in [13], so the solution is not quite as sharp as obtained in that
paper.

6.2. The porous medium equation (PME)
We now show solutions for the porous medium equation (PME), i.e.,

ut = (um)xx, (49)

in which m is a constant greater than one. The Barenblatt solution [30] of the PME is

Bm(x, t) = t−k
[(

1 −
k(m − 1)

2m
|x|2

t2k

)
+

]1/(m−1)

, m > 1, (50)

where u+ = max(u, 0) and k = (m + 1)−1. This solution, for any time t > 0, has compact support [−αm(t), αm(t)] with
the interface |x| = αm(t) moving outward at a finite speed, where

αm(t) =

√
2m

k(m − 1)
tk.
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6.2.1. The Barenblatt solution
For the PME (49) on [−6, 6], we take as initial condition the Barenblatt solution (50) at t = 1, and the boundary

condition u(±6, t) = 0 for t > 1. We divide the computational domain into M = 160 cells, and randomly per-
turb each point uniformly by ±25% of h = 12/M. We plot the numerical solution at time t = 2 for m = 2, 4,
6, and 8 in Figure 9. The explicit SSP2-3-4=SSP2/WENO-AO(3,2)/WENO-AO(4,3) and SSP3-5-6=SSP3/WENO-
AO(5,3)/WENO-AO(6,4) schemes (although there is no advection in this problem) use a time step so that

max
u
|b′(u)|∆t/min

i
h2

i = 0.35 or 0.4, respectively.

Both explicit schemes produce accurate numerical solutions without noticeable oscillations. The solutions for the
implicit Radau3-3-4 scheme are nearly identical, and they appear in Figure 10. For these, we use only M = 120 and
∆t = h.
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Figure 9: Barenblatt solution of the PME on a non-uniform mesh of M = 160 elements at time t = 2. Circles are for the
explicit SSP2-3-4=SSP2/WENO(3,2)/WENO-AO(4,3) scheme, squares are for SSP3-5-6/WENO(5,3)/WENO-AO(6,4), using ∆t satisfying
maxu |b′(u)|∆t/mini h2

i = 0.35 and maxu |b′(u)|∆t/mini h2
i = 0.4, respectively. The solid line is the exact solution.
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Figure 10: Barenblatt solution of the PME on a non-uniform mesh of M = 120 elements at time t = 2 using implicit Radau3-3-4 and ∆t = h. The
solid line is the exact solution.

6.2.2. Collision of two boxes
We also consider the solution of the PME problem representing the collision of two initial boxes with different

heights. We take m = 6 in the PME and the initial condition

u(x, 0) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if x ∈ (−4,−1),
2, if x ∈ (0, 3),
0, otherwise.

(51)

The evolution of the numerical solution on non-uniform meshes is shown in Figure 11 for the explicit scheme. The
implicit scheme gives very similar results, and they are shown in Figure 12.

We now consider the collision of two boxes with different heights and an x−dependent diffusion term, so

ut =
(
(x + 6)2u5ux

)
x, x ∈ [−6, 6]. (52)

Using the Kirchhoff transformation, this becomes

ut + ((x + 6)u6/3)x =
(
(x + 6)2u6/6

)
xx, x ∈ [−6, 6]. (53)
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Figure 11: PME collision of two boxes with different heights for m = 6 on a non-uniform mesh of M = 160 elements for the explicit SSP2-3-4
scheme, with ∆t satisfying maxu |b′(u)|∆t/mini h2

i = 0.25.
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Figure 12: PME collision of two boxes with different heights for m = 6 on a non-uniform mesh of M = 120 elements for the implicit Radau3-3-4
scheme, with ∆t = 0.005h for the first 20 steps and then ∆t = 0.05h.
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Figure 13: PME collision of two boxes with different heights for m = 6 using an x−dependent diffusion on a non-uniform mesh of M = 160
elements for the explicit SSP2-3-4 scheme, with ∆t satisfying maxu |b′(u)|∆t/mini h2

i = 0.25.

The numerical solution for the explicit SSP2-3-4 scheme, with initial condition (51), is shown in Figure 13. The
x−dependent diffusion causes no difficulty.

Due to the x−dependence, there is more diffusion on the right side of the domain than on the left, and this can be
seen in the results, although the effect is somewhat subtle to the eye. However, comparison to the original PME (49)
reveals the effect. With m = 6, (49) is ut = (6u5ux)x, so the diffusion coefficient is the constant value 6, whereas (53)
has coefficient (x + 6)2 on the domain [−6, 6], which varies from 0 to 144. However, initially u = 0 for x < −4, so the
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diffusion coefficient is more like 4 to 144, i.e., it is at least about as much as in the original PME. Comparing Figure 11
(or Figure 12) to Figure 13, we see that the latter has more diffusion overall—perhaps about ten times more, given the
time scales. Moreover, the edges (or steep fronts) on the right sides of the boxes are more diffused than those on the
left in Figure 13 compared to the original PME results. These observations are to be expected from the nature of the
x−dependent diffusion.

6.2.3. The PME in two dimensions
We consider now the two-dimensional porous medium equation

ut = ∆um (54)

on the domain [−10, 10]2, where we take m = 2 and m = 8. The initial condition is taken to represent two round
bumps, and it is

u(x, y, 0) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
exp

(
− 1/[6 − (x − 2)2 − (y + 2)2]), if (x − 2)2 + (y + 2)2 < 6,

exp
(
− 1/[6 − (x + 2)2 − (y − 2)2]), if (x + 2)2 + (y − 2)2 < 6,

0, otherwise.

t = 0 t = 1 t = 4

Figure 14: The solution to the 2D PME with m = 2. The implicit Radau3-3-4 solution using M = 80 quadrilateral elements and ∆t = h/2.

t = 5 t = 10 t = 40

Figure 15: The solution to the 2D PME with m = 8. The implicit Radau3-3-4 solution using M = 80 quadrilateral elements and ∆t = 2h.

The explicit scheme uses ∆t = 0.1h2, while the implicit scheme uses ∆t = 0.5h for m = 2 and ∆t = 2h for
m = 8. The explicit and implicit schemes give nearly identical plots, so we only show the implicit results for m = 2 in
Figure 14 at times t = 0, 1, and 4, and for m = 8 in Figure 15 at times t = 5, 10, and 40.

6.3. Buckley-Leverett equation
The Buckley-Leverett flux function is defined as

fBL(u) =
u2

u2 + (1 − u)2 , (55)

which is a nonconvex function. It arises in problems involving flow in porous media.
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6.3.1. The Buckley-Leverett equation in one dimension
We consider the scalar Buckley-Leverett equation

ut + fBL(u)x − D(ν(u)ux)x = 0, (56)

where we set D = 0.01 and
ν(u) = 4u(1 − u). (57)

The initial condition is

u(x, 0) =
{

1 − 3x, 0 ≤ x ≤ 1
3 ,

0, 1
3 ≤ x ≤ 1,

(58)

and the boundary condition is u(0, t) = 1. The results given in Figure 16 show good agreement with the reference
solution, for both third order explicit and implicit schemes.
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Figure 16: Solution of the Buckley-Leverett equation with ini-
tial condition (58) at time t = 0.2 on a non-uniform mesh.
On the left are results for explicit SSP2-3-4 with ∆t satisfying
maxu |b′(u)|∆t/mini h2

i = 0.25, and depicting with circles for M = 50
and squares for M = 100. On the right are results for implicit Radau3-
3-4 with ∆t = h. The solid lines are the reference solutions with
N = 800 (explicit) and M = 400 (implicit).
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Figure 17: Solution of the Buckley-Leverett Riemann problem (59)
at time t = 0.2 on a non-uniform mesh of M = 100 elements, showing
both the original problem (wider front) and the one imitating gravita-
tion (narrower front). On the left is explicit SSP2-3-4, with ∆t satis-
fying maxu |b′(u)|∆t/mini h2

i = 0.25. On the right is implicit Radau3-
3-4 with ∆t = 2h (no gravity) and h (with gravity). Solid lines are the
reference solutions using M = 800 (explicit) and M = 400 (implicit).

We also consider the problem with an initial condition representing a Riemann problem, i.e.,

u(x, 0) =

⎧⎪⎪⎨⎪⎪⎩ 0, 0 ≤ x < 1 − 1
√

2
,

1, 1 − 1
√

2
≤ x ≤ 1.

(59)

We solve the problem as stated above, with the diffusion coefficient (57) and the flux fBL. We also solve the problem
with the modified flux function

fBLg(u) = fBL(u)(1 − 5(1 − u)2) =
u2

u2 + (1 − u)2 (1 − 5(1 − u)2)

to imitate gravitational effects. Results are shown in Figure 17, and again very good agreement with the reference
solution is observed in both cases for both explicit and implicit schemes.

6.3.2. The Buckley-Leverett equation in two dimensions
The following is a modified Buckley-Leverett problem:

ut + ∇F(u) − D∆u = 0, F(u) =
( fBL(u)

fBLg(u)

)
=

u2

u2 + (1 − u)2

( 1
1 − 5(1 − u)2

)
, (60)

which more appropriately incorporates gravitational effects. We consider this problem on [−1.5, 1.5]2 with (again)
very small D = 0.01. The initial condition is

u(x, y, 0) =

⎧⎪⎪⎨⎪⎪⎩1, if x2 + y2 ≤ 0.5,
0, otherwise.

The explicit and implicit schemes use ∆t = 2h2 and ∆t = h, respectively, and they give nearly identical plots. We
show the implicit results in Figure 18 at time t = 0.5.
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Figure 18: The 2D Buckley-Leverett equation. The implicit solution using M = 80 quadrilateral elements and ∆t = h at time t = 0.5 in profile (left)
and as a contour plot (right).

6.4. A glacier growth model in one space dimension
We next consider a one-dimensional model for glacier growth [31]. The evolution of a glacier of height u(x, t)

resting upon a flat mountain can be described by the nonhomogeneous advection-diffusion equation

ut + f (u)x = D(ν(u)ux)x + S (x, t, u),

where D = 0.01 and

f (u) =
u + 3u6

4
and ν(u) = 3u6.

We take the initial condition

u(x, 0) =
{

1, x < 0,
0, x > 0,

and the source term

S (x, t, u) =
{

S 0(x), if u(x, t) > 0,
max(S 0(x), 0), if u(x, t) = 0, where S 0(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, x < −0.4,
1
2 (x + 0.4), −0.4 ≤ x ≤ −0.2,
− 1

2 x, x > −0.2.
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Figure 19: Moving glacier on a uniform mesh of M = 100 elements at various times t. Circles show the explicit SSP2/WENO5/WENO-AO(4,3)
scheme and squares show the explicit SSP3/WENO7/WENO-AO(6,4) scheme, using ∆t = 5h2 and ∆t = 6h2, respectively. The solid line is the
reference solution (the latter scheme with M = 800).

For this example, we use uniform meshes of M = 100 elements and the explicit schemes that produce super-
convergence. That is, we use SSP2/WENO5/WENO-AO(4,3) and SSP3/WENO7/WENO-AO(6,4). The numerical
solutions are shown in Figure 19. They show good agreement with the reference solution using M = 800 (and the
more accurate scheme). The sixth order scheme shows a bit better agreement than the fourth order scheme.

6.5. A strongly degenerate advection-diffusion equation
In our final set of tests, we consider a strongly degenerate parabolic advection-diffusion equation with a diffusion

coefficient given by Dν(u), where

ν(u) =
{

0, |u| ≤ 0.25,
1, |u| > 0.25, (61)

and we take D = 0.1. The degeneracy is quite strong. In fact, our equation will be hyperbolic where |u| ∈ [−0.25, 0.25]
and parabolic elsewhere. We will take a Burgers flux.
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6.5.1. A strongly degenerate advection-diffusion equation in 1D
The one dimensional equation is

ut + f (u)x − D(ν(u)ux)x = 0.

We take D = 0.1, f (u) = u2, and the Riemann initial condition

u(x, 0) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, − 1

√
2
− 0.4 < x < − 1

√
2
+ 0.4,

−1, 1
√

2
− 0.4 < x < 1

√
2
+ 0.4,

0, otherwise,
(62)

Results are shown in Figure 20.
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Figure 20: Burgers equation with a discontinuous diffusion coeffi-
cient (62) at time t = 0.7, using a mesh of M = 100 elements. Explicit
results are on the left, using a uniform mesh, with circles for explicit
SSP2/WENO5/WENO-AO(4,3) using ∆t = 3h2 and with squares for
explicit SSP3/WENO7/WENO-AO(6,4) using ∆t = 4h2. The squares
give a better solution than the circles. On the right are the results for
implicit Radau3-3-4 using ∆t = 2h and non-uniform meshes. The
solid lines are the reference solutions with M = 800 (explicit) and
M = 400 (implicit).
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Figure 21: Burgers equation with an x-dependent discontinuous dif-
fusion, M = 100, at t = 0.7. Explicit results are on the left, using a
uniform mesh. Circles show explicit SSP2/WENO5/WENO-AO(4,3)
using ∆t = 1.2h2, and squares show explicit SSP3/WENO7/WENO-
AO(6,4) using ∆t = 1.5h2. On the right are the results for implicit
Radau3-3-4 using ∆t = h and non-uniform meshes. The solid line is
the reference solution using a fine mesh, and the dashed line is the
x-independent diffusion solution from Figure 20.

We also compute solutions with an x-dependent diffusion D ν(x, u) = D
(
x − 1/

√
2
)2
ν(u), where ν(u) is as (61).

The results are shown in Figure 21, which shows that the solution is more diffusive when x < 0, as it should be, since
ν(x, u) is bigger when x < 0. There is also a small advective effect due to the x-dependency of the diffusion coefficient,
i.e., the overall flux from (6) is

f (u; x) = u2 + 2D
(
x − 1/

√
2
)
ν(u).

6.5.2. A strongly degenerate advection-diffusion equation in 2D
Our final test considers the Burgers equation

ut + ∇F(u) − D∇ · (ν(u)∇u) = 0, F(u) = u2
(1
1

)
, (63)

on [−1.5, 1.5]2, where D = 0.1 and ν is defined in (61). The initial condition is

u(x, y, 0) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1, if (x + 1/2)2 + (y + 1/2)2 ≤ 0.16,
−1, if (x − 1/2)2 + (y − 1/2)2 ≤ 0.16,
0, otherwise.

When the explicit and implicit schemes use ∆t = 2h2 and ∆t = 4h, respectively, they give nearly identical plots.
In Figure 22, we show a cross-section of both results at time t = 0.5. We also show the implicit result, for which the
time step ∆t = 4h. We believe we could obtain accurate results with an even longer time step, but our Newton solver
is implemented in a naive way, and it breaks down for ∆t = 5h.
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Figure 22: Burgers equation in 2D with a discontinuous diffusion coefficient. Solutions using M = 80 quadrilateral elements at time t = 0.5. A
cross-section of the results for both the explicit (∆t = 2h2) and implicit (∆t = 4h) schemes (left), and the implicit solution (right).

7. Summary and Conclusions

We considered numerical approximation of the degenerate advection-diffusion equation. We developed both ex-
plicit and implicit finite volume weighted essentially non-oscillatory (WENO) schemes for this possibly degenerate
equation, which may exhibit parabolic or hyperbolic behavior. The diffusion was reformulated through the use of the
Kirchhoff transformation to better handle the degeneracy. We presented in detail schemes that are third order in both
space and time in one and two space dimensions using non-uniform meshes in 1D and meshes of quadrilaterals in 2D.

We used WENO-AO reconstructions for the spatial discretization. Classic WENO achieves higher order accuracy
by special (linear) weighting of the smaller stencil polynomials. These linear weights may not exist or they may be
negative. WENO-AO achieves higher order accuracy by incorporating the polynomial of the larger stencil, and thus
the linear weights are arbitrarily set by the user; that is, they always exist and they can be taken to be positive. More-
over, because there are no special linear weights, non-uniform and irregular computational meshes can be handled
in a natural way. In two space dimensions, we presented a reconstruction technique that is well-suited for logically
rectangular meshes, using tensor product polynomials so that there is a match between the number of polynomial
unknowns and the number of elements in the stencil.

We developed a special two-stage reconstruction procedure to handle degenerate diffusion. We used WENO-AO
to reconstruct the solution from its element averages ū. This reconstruction gives point values of the solution u, which
in turn give point values for the Kirchhoff variable b(u). Finally, these are reconstructed into a stencil polynomial, and
several of these are combined as in the WENO methodology using smoothness indicators.

Time was discretized using the method of lines and a Runge-Kutta time integrator. We used Strong Stability
Preserving (SSP) Runge-Kutta methods for the explicit schemes. Stability requires a severe parabolically scaled
time step restriction ∆t = O(h2). We also used implicit Runge-Kutta methods. Because SSP methods are only
conditionally stable, we turned to L-stable Runge-Kutta methods, which can handle the stiff diffusive components of
the problem. For a third order scheme, we used Radau IIA Runge-Kutta. We showed that the overall implicit scheme
is unconditionally L-stable on uniform computational meshes for smooth solutions to the linear problem, through a
von Neumann (or Fourier mode) stability analysis.

Computational results showed the ability of the schemes to accurately approximate challenging test problems.
We showed that the schemes are third order in general, and exhibit superconvergence on uniform meshes (if the time
stepping and handling of the advective terms is accurate enough). We showed that the implicit scheme using Radau
IIA is comparable to the use of a third order implicit SSP Runge-Kutta method when the time step is within the
stability region, and that Radau IIA is superior to implicit SSP outside the stability region. In other words, our scheme
is more robust to the choice of time step. The schemes produced accurate solutions for the porous medium equation,
Burgers equation, and Buckley-Leverett problems in 1D and 2D on non-uniform meshes, with the implicit scheme
using the reasonable hyperbolically scaled ∆t = O(h).

The schemes of [2, 3] are of the finite difference variety, use explicit time-stepping only, and they require uniform
computational meshes. The scheme of [4] requires specially structured equations and rectangular meshes, and uses
explicit time-stepping and is only second order accurate. It appears that our schemes are the first high order, general
purpose finite volume WENO schemes developed for the degenerate advection-diffusion equation. They can use
explicit or implicit time stepping, and they use non-uniform computational meshes in multiple space dimensions.
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