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ABSTRACT
Many existing identification approaches require active user input,
specialized sensing hardware, or personally identifiable informa-
tion such as fingerprints or face scans. In this paper, we propose
EchoLock, a low-effort identification scheme that validates the user
by sensing hand geometry via commodity microphones and speak-
ers. EchoLock can serve as a complementary verification method
for high-end devices or as a stand-alone user identification scheme
for lower-end devices without using privacy-sensitive features. In
addition to security applications, our system can also personalize
user interactions with smart devices, such as automatically adapt-
ing settings or preferences when different people are holding smart
remotes. To this end, we study the impact of hands on structure-
borne sound propagation in mobile devices and develop a user
identification scheme that can measure, quantify, and exploit dis-
tinct sound reflections in order to differentiate distinct identities.
Particularly, we propose a non-intrusive hand sensing technique to
derive unique acoustic features in both time and frequency domain,
which can effectively capture the physiological and behavioral traits
of a user’s hand (e.g., hand contours, finger sizes, holding strengths,
and holding styles). Furthermore, learning-based algorithms are
developed to robustly identify the user under various environments
and conditions. We conduct extensive experiments with 20 partic-
ipants, gathering 80,000 hand geometry samples using different
hardware setups across 160 key use case scenarios. Our results
show that EchoLock is capable of identifying users with over 94%
accuracy, without requiring any active user input.
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1 INTRODUCTION
User identification is a fundamental and pervasive aspect of mod-
ern mobile device usage, both as a means of maintaining security
and personalized services. Verifying oneself is necessary to gain
access to smartphones, bank accounts, and customized news feeds;
information and resources which must be available on demand. As
such, repeated acts of authentication can grow tedious and con-
sume unnecessarily long portions of daily routines involvingmobile
devices. Studies on cellphone addiction suggest that user identi-
fication procedures encompass up to 9% of daily usage time [19],
with related inquiries showing strong interest in more convenient
practices [39]. Techniques such as facial recognition or fingerprint-
ing do not require considerable effort from the user, but demand
dedicated hardware components that may not be available on all
devices. This is of particular importance for markets in developing
countries, where devices such as the Huawei IDEOS must forgo
multiple utilities in order to maintain affordable price points (e.g.
under $80) [15, 17]. Secure and effective identification necessitates
a lightweight protocol to facilitate tailored services at low cost.

To this end, we propose EchoLock, a low-effort user identification
scheme for commercial-off-the-shelf (COTS) mobile devices. By al-
lowing an acoustic signal to propagate through the mobile device,
it is possible to measure properties of human hand geometry, a bio-
metric indicator known to be accurate for user identification [7], yet
rarely employed in mobile applications due to obstacles in obtaining
accurate measurements with limited hardware. We show that pres-
sure applied by a person’s hand on the device creates unique and
observable impacts on structure-borne sound propagation. By using
a designated inaudible signal, EchoLock can capture such impacts
and extract the user’s unique hand biometrics for user identification.
Our approach is low-effort as no conscious action is required by
the user; holding the device itself is the user identification action
as shown in Figure 1.

Because structure-borne sound propagation depends on material,
dimensions, and external forces , one hand does not produce the
same acoustic pattern when holding different devices. Similarly,
one device does not produce the same pattern when held by dif-
ferent hands, making our credential a secure key that represents
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Figure 1: Capture of hand biometric information embedded
in structure-borne sound using commodity microphones
and speakers.

a specific hand-device pair. By using only readily available speak-
ers and microphones, our system is non-intrusive and low cost.
We envision that the availability of these hardware components
will only increase with the rising prevalence of integrated Inter-
net of Things (IoT) devices built with virtual assistants and voice
controllers, projected to reach an install base of over 75 billion by
2025 [1].

Existing solutions in the market are typically considered effec-
tive, but do have some limitations regarding ease of use. Actions
such as password entry, voice utterances, or finger presses demand,
however briefly, the user’s attention and active participation in
the process. In contrast, EchoLock is a passive procedure. Our tech-
nique serves as a viable standalone identification system, or as a
complementary system for multi-factor authentication due to its
naturally low involvement. Password security, for example, can be
enhanced by simultaneously sampling hand biometrics during typ-
ing or swiping actions, compensating for common vulnerabilities
(e.g. PIN codes spied on through shoulder-surfing attacks cannot
be used if the attacker’s hand is not recognized by the device).

As a standalone technique, EchoLock is applicable to a wide vari-
ety of services. Resources such as financial accounts or health apps
on smartphones can trigger a single-instance identification check
to verify the user’s hand before divulging sensitive information.
Private message notifications can be displayed or hidden onscreen
depending on which person is currently holding the device. The
integration of IoT with home security systems, such as Amazon
Blink [8], can enable even unconventional objects to be compatible
with EchoLock. For example, door handles and safety railings can be
used to passively sense structure-borne sound propagation when
held and open or lock entrances accordingly. Beyond security, appli-
ances such as smart remotes can also employ our system to enhance
the user experience. The Amazon Fire TV stick [4] is equipped with
microphones and Alexa support, making our system easy to deploy
for personalized user settings and TV channels at no additional
cost. The speed of sound propagation is rapid, even when traveling
through physical mediums, making our system latency competitive
with existing technologies. Continuous authentication can also be
implemented via periodic measurements.

Building EchoLock for such applications does present many
challenges, the most prominent being the development of a non-
intrusive approach that leverages a single pair of low-fidelity speaker
and microphone to capture unique characteristics of a user’s hand

Table 1: Qualitative comparison of existing user IDmethods.
Identification
Technique

Evaluation
Category

Personally
Identifiable

Physiological
Credentials

Behavioral
Credentials

Dedicated
Hardware

Image [13] Knowledge No No Yes No
Face [16] Visual Yes Yes No No

Fingerprint [26] Visual Yes Yes No Yes
Iris [10] Visual Yes Yes No Yes
Gait [43] Visual No Yes Yes No
Voice [20] Acoustic Yes Yes Yes No
Our Work Acoustic No Yes Yes No

biometrics, which usually has only minute differences between peo-
ple. In addition, the acoustic signal propagating from the device’s
speaker to its microphone usually experiences the multipath effect,
resulting in airborne and structure-borne signals that requires care-
ful separation. Moreover, the ambient noises and acoustic signals
reflected off the environment create interference that needs to be
accounted for. Finally, many factors could impact the robustness of
the proposed approach, such as device shape or material.

To address these challenges, EchoLock utilizes an ultrasonic sig-
nal to sense a user’s mannerisms when holding a device. A high-
frequency, short duration transmission is selected to reduce audible
disturbances to the user and provide prompt validation. We distin-
guish structure-borne and near-surface airborne signals based on
differing travel speeds in air and solid materials [2]. The system
applies a band-pass filter to remove ambient acoustic noises that
do not share the same spectrum as the designated ultrasonic signal.
We derive fine-grained acoustic features in the time and frequency
domains, as well as acoustic features, to capture the unique hand
biometrics. We further develop learning-based user identification
algorithms to robustly identify the user when considering various
impact factors. Our main contributions in this work are as follows:

• We study the impact of hand biometrics (i.e., hand geometry,
holding strengths and holding styles) on structure-borne
sound propagation through mobile devices and design an
acoustic sensing-based technique to measure these effects
using limited hardware in mobile devices. We show that
users’ unique physiological and behavioral hand biometrics
can be captured by using a designated acoustic signal.

• We develop a low-effort user identification system for mo-
bile devices that validates hand biometric information based
on acoustic sensing. The proposed system does not require
any input from the user and is non-intrusive by utilizing
inaudible frequencies.

• We identify unique acoustic features, including time-domain,
frequency-domain and acoustic features, to capture the user’s
hand biometrics. We also develop robust learning-based
methods to distinguish users based on their unique hand
biometrics.

• We implemented an early prototype of EchoLock on vari-
ous mobile devices and evaluated performance under mul-
tiple conditions. With over 80,000 hand geometry samples
gathered over 160 trials of key use case scenarios, we show
identification accuracy upwards of 94%.

2 RELATEDWORK
Routine identification methods typically assess possession of text
or numerical keys such as passwords [35]. In such cases, the user
must either commit to memory a complex sequence or settle for a



trivial key at the expense of security. Graph-based [38] and image-
based [14, 34] methods propose swipe patterns and picture recogni-
tion as more intuitive alternatives. While effective, these methods
verify knowledge rather than the user and require active input.

In contrast, biometric-based approaches use physical traits of
users as credentials, which could enable passive user authentica-
tion and reduce user effort. Several popular examples include face
ID [5], capacitive fingerprint scanning [12], and iris scanning [9].
Physiological credential are typically unique to a person and do
not change abruptly over time, making them ideal for identification
systems. However, these approaches require dedicated hardware
components to make accurate measurements, which limits the pool
of devices on which they can be deployed. Furthermore, theft of
these credentials are highly problematic since they involve person-
ally identifiable information [40].

Human behaviors have also been employed as credentials. For ex-
ample, prior works have shown it is possible to identify individuals
based on hand gestures [21, 22], voice commands [5, 41], as well as
finger inputs made on touchscreens [29, 31, 32], solid surfaces [23],
and wearable devices [3]. These are less personally identifiable, and
thus pose a smaller risk to user privacy, but can be challenging to
associate with a given identity due to natural inconsistencies users
exhibit when asked to reproduce these characteristics

Proposals have been made to measure credentials in a passive,
low-effort manner, which we consider closely related to EchoLock.
Ren et al. use accelerometer readings in mobile devices to derive
unique gait patterns and passively verify the user as they walk [28].
Zheng et al. extract behavioral patterns from touchscreen taps (e.g.,
rhythm, strength, angle of applied force) using built-in accelerome-
ters, gyroscopes, and piezoelectric sensors to provide non-intrusive
user authentication [42]. Zhou et al. develop an attack to passively
detect lockscreen swipe patterns based on acoustic reflections pro-
duced by the user’s fingers during input [45].

We summarize the findings of prior work in Table 1. Unlike exist-
ing approaches, EchoLock leverages novel hand biometrics including
hand-related physiological (i.e., hand geometry) and behavioral (i.e.,
holding strengths and styles) traits to provide convenient and secure
user identification. By performing fine-grained acoustic sensing to
capture the unique hand biometrics, the user can be identified pas-
sively when holding their personal device. The natural availability
of speakers and microphones makes acoustic sensing a widely used
technique in many mobile computing applications, such as indoor
localization [36] and human-computer interaction [33, 37]). To our
best knowledge, we are the first work to utilize acoustic sensing
to capture hand biometric information for low-effort user identi-
fication. Our proposal does not depend on personally identifiable
information, active user inputs, or specialized hardware.

3 ADVERSARY MODEL
Malicious users may attempt to attack our system in order to gain
access to personal information or deny legitimate users from ac-
cessing services. In this section, we introduce attack strategies that
may be deployed against EchoLock.

Impersonation Attack. The attacker attempts to mimic the
holding posture of the legitimate user to gain access to the device.
For impersonation attacks, the attacker may either be informed
or uninformed. In the uninformed case, the attacker possesses no
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Figure 2: System overview of EchoLock.

knowledge on how to circumvent the identification process and
naively attempts to mimic the legitimate user’s holding behavior. In
the informed case, however, the attacker is explicitly aware of the
legitimate user’s authentication credentials in some form. This may
be through passive observations of the user’s hands or interactions
such as handshaking. Physically faking the legitimate user’s profile,
however, requires applying forces to the device such that they create
structural deformations similar to how the user’s own hands would.

Eavesdropping and Replay Attack The attacker attempts to
steal acoustic credentials of the legitimate user by eavesdropping
instances of identification attempts. This may be done by position-
ing a microphone near the user as EchoLock is deployed. After
obtaining an audio sample of a signal used to authenticate the user,
the attacker gains possession of the targeted device and replays the
audio sample via an external speaker. During ultrasonic sensing,
the mobile device will transmit and record our acoustic signal. In
order to succeed, the attacker must first suppress or bypass the sig-
nal transmission stage to avoid overlap with their attacking signal,
which is a non-trivial challenge.

Jamming Attack. The attacker in this scenario is focused on
deliberate sabotage of genuine authentication attempts. This may
be carried out by playing loud noise or ultrasonic frequencies near
the user to disrupt the geometry estimation procedure. The attacker
does not necessarily need to know the user’s credentials to jam the
system. We assume in our assessment that the attacker will utilize
ultrasonic frequencies to decrease the chances of detection by the
ordinary user.

4 SYSTEM OVERVIEW
4.1 Design of EchoLock
As people have small differences in their hand biometrics, it is
critical to design EchoLock in such a way that it can perform fine-
grained acoustic sensing to capture the small differences among
different users’ hand biometrics by using low-cost COTS mobile
devices. The basic idea of EchoLock is to leverage a speaker and
microphone to transmit, receive, and analyze structure-borne sound



waves as illustrated in Figure 2. Many mobile devices, such as smart-
phones, touch pads, and remote controls, are equipped with such
components and have many applications regarding security and
personalization. EchoLock first transmits an inaudible acoustic se-
quence, consisting of 𝑛 inaudible chirp signals ranging from 18kHz
to 22kHz. Then it immediately records the reflections from the
user’s hand via onboard microphones. This procedure can be initi-
ated by a pre-determined trigger, such as raise [5] or squeeze [25]
detection found in COTS mobile devices.

The recorded response undergoes our Signal Pre-processing phase,
where we apply a band-pass filter to remove ambient noise and
conduct the Structure-borne Signal Segmentation to extract the re-
flection of the transmitted n-chirp signal via the structure-borne
propagation paths. After the Signal Pre-processing, we analyze each
chirp signal in Acoustic Feature Extraction to determine meaningful
features capable of differentiating user hand biometrics in the time
and frequency-domain, including statistical properties such as av-
erage or median, spectral points of the FFT, and MFCC coefficients.
To ensure the effectiveness of the candidate features, we perform
the KNN-based Feature Selection to identify the features that are
sensitive to forces exerted by the user’s hand. We note that such
features may not necessarily be consistent for the same hand when
holding different physical structures (e.g., a different smartphone)
due to altered sound propagation properties.

Next, our system performs Hand Geometry Profiling and Hand
Biometric Identification to determine the user’s identity based on
the extracted features. Extracted features representative of the in-
teraction between hand posture and device structure are compiled
into a m×n matrix data structure, where m corresponds to number
of features, and saved to a Profile Database. This database is then ref-
erenced for a profile match when identifying the user. Through our
experiments with 20 participants, we empirically find that chirps
with different frequency ranges may contain different degrees of
useful information. To combat this, we adopt a Optimal Chirp Se-
lection method to quantify the likelihood a given chirp signal suc-
cessfully captured detailed biometric information. We provide a
select number of chirp signals as inputs for ourGeometry Estimation
phase to generate a multi-dimensional characterization array using
the chirp feature matrices. Finally, we employ a machine-learning
based approach to match the extracted hand biometric features with
users’ profiles in Profile Prediction, where our system deduces the
most probable hand geometry match by examining the numerical
distance discrepancies and concludes with a predicted profile label.
This output can control a desired functionality, such as unlocking
a device or switching user accounts.

4.2 Challenges and Requirements
Using a single built-in speaker and microphone available on a mo-
bile device to sense complex hand geometry is an unexplored area.
Because acoustic signals travel rapdily compared to the small di-
mensions (i.e. sensing area) of mobile devices (e.g. 15 cm between
a smartphone speaker and microphone), the existing built-in mi-
crophone can only receive limited acoustic samples (< 20 sam-
ples [33, 37]) to describe a complete propagation. Additionally, the
acoustic signals arriving at the microphone are the combination of
structure-borne propagation and airborne propagation, requiring
delicate separation. The environmental reflections of the acoustic

sensing signals and the ambient noises corrupt the received sound
and make the acoustic analysis of the user’s holding hand even
harder. Besides addressing these challenges, we also need to con-
sider both security and usability when designing the system. In
particular, the passive user input to our system should be hard to
observe and imitate to meet security requirements.

5 STRUCTURE-BORNE SIGNAL DESIGN
5.1 Sound Propagation on Mobile Devices
Structure-borne sound is most often recognized as vibration and
can be perceived both by ear and touch. From Hooke’s Law [30], the
speed of sound through a medium can be represented as a function,
formulated as 𝑐 =

√
𝐾
𝑝 where 𝐾 is the bulk modulus of elasticity,

or Young’s modulus, and 𝑝 is the medium density. The structure
path is more direct compared to in the air due to the greater density
and compression resistance of the mobile device, allowing sound
to travel and be received more quickly. This trait is of interest as
propagation through a physical medium provides natural resilience
to reflections from distant obstacles as there is minimal deviation
from the sound path.

However, structure-borne propagation is much more sensitive
to physical disturbances. Interactions such as touching the medium
can significantly alter the acoustic patterns as the contact and force
exerted upon the medium changes how it reverberates. While this
normally poses a challenge for acute acoustic sensing, EchoLock
exploits this for the purposes of recognizing individual people. The
force of a user’s grip on the mobile device is integral to the system,
essentially extending the medium to encompass both the device
and user’s hand. Bulk modulus of elasticity can be expressed as:

𝐾 =
−(𝑝1 − 𝑝0)
(𝑉1 −𝑉0)/𝑉0

=
Δ𝑃

Δ𝑉 /𝑉0
, (1)

for a given differential change in pressure Δ𝑃 and volume Δ𝑉
relative to an initial volume𝑉0. The introduction of a stable additive
density𝑉1 and fluctuating pressure increase 𝑝1 by the user changes
K to a dynamic set of elasticity constants. This produces a range
of acoustic patterns representative of how the device is held by a
specific individual at the time of measurement, uniquely shaped
by hand contour, posture, grip pressure, and behavior. Note that
this model is an incomplete explanation as it does not account for
a distributed application of pressure from different focal points of a
user’s hand. However, we find this explanation sufficient for the
purposes of conveying the intuition behind EchoLock’s premise.

Structure-borne Propagation Feasibility. A preliminary ex-
periment was performed to gauge the ability for a mobile device to
ascertain environmental conditions using acoustic sensing. Three
different use cases were selected with the intent of demonstrating
that conditions with distinct forces exerted upon the mobile device
could be easily recognized. Figure 3 shows the particular experi-
mental setup for each the three scenarios; having the mobile device
resting in the user’s hand, on a table, or within the user’s pocket.

An inaudible chirp signal sweeping from 18 kHz to 22 kHz was
emitted from the bottom device speakers to induce vibration, which
is then recorded by a single microphone near the top of the device.
This captured recording is then examined for features that may iden-
tify environmental origins. The results of these experiments can be
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Figure 3: Preliminary experiments for environment differ-
entiation.

seen in Figure 3(d). Three samples from each use case were obtained
and the average amplitude for each recording was extracted. The
absolute difference was then computed for each combination of
samples to measure statistical distinction between each use case and
show a clear relation between samples originating from different
use cases. Samples native to the same use case displayed naturally
low amplitude difference, which increased when compared to sam-
ples from foreign cases. Note across the diagonal that the difference
is zero as these are comparisons between a sample with itself. This
suggests that, even with minimal sensors and signal processing,
structural-borne sound propagation is capable of communicating
critical information about the immediate surroundings.

5.2 N-chirp Sequence for Acoustic Sensing
Measuring biometric properties of a given person accurately using
only sound propagation requires our signal to satisfy several design
criteria:
• The signal must be designed in such a way to easily distinguish
between the structure-borne and airborne sound propagation.

• The transmitted signal should be recognizable such that it can be
easily identified and segmented amid interference from ambient
noise and other acoustic disruptions.

• The signal should fall within a safe frequency range inaudible
to average human hearing. This is primarily for the purpose of
usability as a noticeably audible signal may pose a nuisance to
some users. Generally speaking, 16kHz is the upper bound of
easily detectable sound for ordinary adults [6].

• The signal must be able to be deployed on a COTS device, lim-
iting the viable transmission frequency range. Android devices,
for example, are reported to have a maximum sampling rate of
around 44kHz, limiting a practical signal to 22kHz at most [18].

Many devices, however, exhibit considerable attenuation prob-
lems when transmitting frequencies exceeding 20kHz due to
hardware imperfections in onboard speakers [33, 36, 37, 44].
With these considerations, we design a 𝑛-chirp sequence where

𝑛 describes a number of repeating chirp signals utilizing the inaudi-
ble frequency range from 18kHz to 22kHz. Though this frequency
sweep may be perceptible to sensitive groups, such as pets or young
children, the duration is brief (i.e. milliseconds) to minimize distur-
bances. Each chirp consists of 1200 samples, equating to a 25ms
duration at a 48kHz sampling frequency. During ultrasonic sensing,
the recorded structure-borne propagation of the chirp signal will
be embedded with information on the user’s hand geometry. While
a shorter chirp minimizes exposure to environmental reflections, it
also limits the signal-to-noise ratio (SNR). From our experiments,
we observed that most COTS speakers struggle to consistently
sweep a wide, high frequency band in such a short time period. To
balance these considerations, we transmit a series of consecutive
chirps, where each chirp is of a singular frequency such that the
first chirp is 18kHz while the 𝑛-th chirp is of 22kHz. This frequency
increments in steps of 1kHz at every 𝑛/5-th chirp.

In addition, we separate these chirps with 25ms of empty buffers
to stagger the arrival of environmental reflections from structure-
borne sound. A pilot signal of 22kHz is prefixed to the sequence for
the purposes of simplifying signal segmentation in later procedures,
but is not used directly to sense information on the user. By utilizing
multiple chirps, we can also gather multiple user samples in a
single ultrasonic sensing instance. This leads to a natural trade-off
dilemma between higher classification accuracy and shorter time
delays. We show in further detail the performance accuracy for
increasingly large 𝑛 values in Section 8.5.

5.3 Structure-borne Signal Segmentation
While structure-borne and airborne sound are both capable of car-
rying information indicative of the surrounding environment, air-
borne sound is less reliable as a metric due to distortions from the
multipath effect. The minute delay of airborne soundmay also intro-
duce noise to subsequent structure-borne sound transmissions due
to asynchronous arrival time, necessitating separation of the two in
order to maintain robust feature extraction and user identification.

Existing studies leverage the difference between the propaga-
tion speed of sound waves to distinguish between the structure-
borne and airborne signals [37]. Knowing that propagation is faster
through physical mediums, we can expect structure-borne sound
to always arrive at the microphone earlier compared to airborne
sound. Therefore, we apply cross-correlation to derive similarities
between the recorded acoustic signal with the original transmis-
sion and identify the structure-borne signal based on the time of
arrival. In particular, we compute correlation through the function∑∞
𝑚=0 𝑥

∗ (𝑚)𝑦 (𝑚 +𝑑) where 𝑥∗ (𝑚) is the complex conjugate of our
transmission and 𝑦 (𝑚 + 𝑑) is the recorded propagation sequence
time shifted by some unknown delay 𝑑 . Both 𝑥∗ (𝑚) and 𝑦 (𝑚 + 𝑑)
are normalized to compensate for amplitude differences in the dif-
fering sound propagation. By locating the index with the highest
correlation to our transmission, we can determine the start point
of our signal. This recorded signal contains both structure-borne
and airborne sound propagation, represented by several amplitude
peaks. Environmental reflections arrive at a much slower speed,
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Figure 4: Signal segmentation on a microphone recording
containing the desired acoustic signal.

thus we can safely eliminate interference by keeping our transmis-
sion short (i.e. milliseconds long), calculating the signal endpoint
based on sequence length, and segmenting audio at this point.

Due to the short distance between the speaker and microphone,
structure-borne sound usually overlaps with airborne sound. There-
fore, the obtained signals still contain partial airborne signals, which
must be accounted for. As such, we apply a third-order median filter
to mitigate undesirable outliers introduced by airborne sound in
our recorded signal. The output of the median filter is considered to
only contain the structure-borne signals. Figure 4 shows an exam-
ple acoustic signal before and after the proposed structure-borne
signal segmentation. A short chirp signal sweeping within the in-
audible frequency band is played during a 10 second recording and
successfully extracted using our outlined procedure. An inspec-
tion of the frequency domain confirms that we have preserved our
signal without any persisting interference from airborne sound or
environmental reflections.

5.4 Hand Geometry-Induced Chirp Selection
Although EchoLock utilizes a sequence of chirp signals to validate
the user, we find that not all n chirps necessarily provide equally
detailed information on hand geometry. The intuition behind our
proposed system is that the form and grip of the user’s hand would
shape the transmitted chirp signal in such a unique way that it can
be used for identification purposes. However, we observe during
development that some chirps signals were not transformed in a
meaningful way, bearing more resemblance to waveforms originat-
ing from scenarios depicted in Figure 3(b) than Figure 3(a).

The absence of new information in these signals may be attrib-
uted to a variety of factors, particularly if the user were to tem-
porarily disrupt physical contact with the device due to fidgeting.
This contributes to misidentification rates as separate users with
similarly uninformative chirp signals consequentially have similar
training inputs in our machine learning framework. As such, we
develop an optimal chirp selection method to quantify the impact
of the user’s hand on our n-chirp sequence. The optimal chirps iden-
tified by the method are used to build a particular user’s identity
profile and identify the user during geometry estimation.

In particular, we denote a chirp signal of 𝑘 points as a vector
ui = (𝑢1, 𝑢2, ..., 𝑢𝑘 ), where 𝑖 is the 𝑖-th chirp of the sequence such
that 1 ≤ 𝑖 ≤ 𝑛. We also denote the baseline chirp signal, originating
from the scenario where the phone is put on the desk (Figure 3(b)),
as vi = (𝑣1, 𝑣2, ..., 𝑣𝑘 ). Then we compute the absolute difference

between these vectors such that di = ( |𝑢1−𝑣1 |, |𝑢2−𝑣2 |, ..., |𝑢𝑘−𝑣𝑘 |)
with the intuition that a signal that is properly modified by hand
geometry would produce a noticeably distinct signal and therefore
a larger di vector. Next, we order the chirps based on the average
of di and select the first 𝑛/2 chirps as the optimal chirps to describe
the hand biometrics of the user.

These chirps are used for geometry estimation, wherewe develop
a final characterization of the user’s hand biometrics. Similar to
the previous selection process, each frequency step (i.e. 18𝑘Hz,
19kHz, etc.) is ordered based on the proportion of optimal chirp
signals the frequency produced, determined by the 𝑖 denotation. A
multidimensional array is constructed using all feature matrices
of the first frequency, followed by 𝑠 number of features matrices
from the second frequency. This subset 𝑠 is chosen to be 𝑛/10
through experimentation, with feature matrix selection based off
chirp signals with the largest 𝑑𝑖 score. The optimal chirp selection
method is performed in the profiling stage, where the index of
the selected optimal chirp is stored with the recorded acoustic
sound as a user’s profile. During hand biometric identification,
these chirps are referenced for geometry estimation. Note that
different users may have different combinations of optimal chirp
signals, which increase the diversity of users’ profiles and help
improve the identification accuracy.

Moreover, we use multiple consecutive 𝑛-chirp sequences in test-
ing to capture the user’s hand geometry at different times, aiming
to improve the robustness of the user identification by performing
a majority vote on the results from the acoustic response resulted
from the multiple consecutive 𝑛-chirp sequences. We specify an
odd number of optimal chirps in order to prevent ties when voting
on the final decision in the identification process.

6 HAND BIOMETRIC USER IDENTIFICATION
6.1 Acoustic Feature Extraction
After obtaining the structure-borne echos from the received desig-
nated signal, the system extracts from it unique features to analyze
the interferences caused by the user’s hand and derive a hand
biometric profile, which integrates both physiological and behav-
ioral traits. A series of candidate features are identified for their
potential responsiveness to different user hand biometrics. These
features include statistical properties in the time domain, the spec-
tral points in the frequency domain, and acoustic properties such
as Mel-Frequency Cepstral Coefficient (MFCC) and Chromagram
features.

Time-domain Statistic Features. In the time domain, we choose
to analyze signals by its statistics including mean, standard devi-
ation, maximum, minimum, range, kurtosis and skewness. We also
estimate the signal’s distribution by calculating second quantile,
third quantile, fourth quantile and signal dispersion. Additionally,
we examine peak change by deriving the index position of the data
point that deviates most significantly from the statistical average.
Figure 5 illustrates how these features may be applied to differenti-
ate hand geometry. We extract our time-domain features for two
distinct users while they are using the same model mobile device.
By plotting the kurtosis, standard deviation, and range features,
we can see an apparent clustering effect, indicating these statistics
show viability as distinguishing factors.



Figure 5: Illustration of the time-domain
statistical features to differentiate two
people’s hands.
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Frequency-domain Features. In the frequency domain, we
apply Fast Fourier Transformation (FFT) to the received acoustic
signal and derive 256 spectral points to capture the unique charac-
teristics of the user’s holding hand in the frequency domain. This
is because the holding hand can be considered as a filter, which
results in suppressing some frequencies while not affecting others.
Figure 6 shows an example spectral analysis of the received sound
for two separate users. We observe unique responses produced
by these individuals, which consequentially produce unique FFT
points when extracting our frequency-based features. While these
two users exhibit mostly identical responses within the 20-21kHz
range, our optimal chirp selection process ensures these similar-
ities are not heavily considered when attempting to differentiate
between different people.

Acoustic Features. We also derive the acoustic features from
the received sound using the MFCC [24] and Chromagram [27].
MFCC features are normally applied in speech processing studies
to describe the short-term power spectrum of the speech sound and
are good for reflecting both the linear and non-linear properties
of the sound’s dynamics. Chromagram, often referred to as "pitch
class profiles", is traditionally utilized to analyze the harmonic and
melodic characteristics of music and categorize the music pitches
into twelve categories. We have observed the sensitivity of the
MFCC and Chromagram to be sensitive enough to respond to phys-
ical biometrics as well. In this work, we derive 13MFCC features
and 12 chroma-based features to describe the different hand holding-
related interferences to the sound. Our MFCC features include 13
filter bank coefficients processed using Discrete Cosine Transform
whereas our chroma-based features describe a correlation between
the recorded signal and one of the 12 tonal pitches along a even-
tempered scale.

6.2 Hand Biometric Feature Selection
After feature extraction, we obtain 12 time-domain features, 256
frequency-based features, and 25 acoustic features for 293 total
features. Some features are more sensitive to the minute differences
of handwhile the others may not be very effective at distinguishing
between them. Moreover, mobile devices from different vendors
may have their speaker and microphone embedded at different po-
sitions. These hardware distinctions introduce further uncertainty
when measuring the user using our features. We choose a wrapper-
based strategy for selecting our features. Though computationally
intensive, we believe the optimization of the classifier problem to

be more valuable than filter-based methods such as variance thresh-
old or correlation coefficient, which are simpler to implement but
less model oriented. In this work, we develop a K-nearest neigh-
bour (KNN) based feature selection method to find the more salient
features for EchoLock.

In particular, we apply KNN to each type of feature to obtain
the clusters for different users. We then calculate the Euclidean
distance of each feature point to its cluster centroid and that to
centroids of other clusters. The purpose is to calculate the intra-
cluster and inter-cluster distances to measure whether a feature
is consistent for the same user and simultaneously distinct for
different users. Next, we divide the average intra-cluster distance
over the average inter-cluster distance and utilize an experimental
threshold to select the features. From our list of candidate features
described in Section 6.1, we narrow our selection to the best 6 time-
domain features, 12 frequency-domain features, and 12 acoustic
features. The selected features based on KNN are not only sensitive
to the user’ hand holding activity but also resilient to the other
factors such as acoustic noises.

6.3 Learning-based Holder Identification
We develop learning-based algorithms to learn the unique charac-
teristics of the user’s hand holding activity based on the derived
acoustic sensing features and determine whether the current de-
vice holder is the legitimate user or not. The classifiers are trained
during the user profile construction phase that is detailed in Sec-
tion 6.4. During the user verification phase, Echolock first classifies
the testing data to one user based on the user profile. For each
analyzed chirp signal, our algorithm utilizes the prediction proba-
bilities returned by the classifier as a confidence level and applies a
threshold-based method to examine the classification results. If the
confidence level of the classification is above the threshold, a user
label is predicted. A majority vote of user labels for all processed
chirp signals is conducted to determine the final identity. If the con-
fidence is beneath threshold certainty or the algorithm is unable
to achieve consensus during voting, our system will determine the
user as “unknown” and respond accordingly. This can be used for
multiple applications, such as immediately adjusting user settings
when a registered user is detected, or locking devices when an
unknown user attempts to gain access.

We explore various candidate machine learning-based classi-
fiers including Bagged Decision Trees (BDT), Linear Discriminant
Analysis (LDA), K-Nearest Neighbor (KNN), and Support Vector
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Figure 8: Classification accuracy for two available mi-
crophones based on signal transmission from a bottom-
positioned speaker.

Machines (SVM) and find SVM to be the most effective among all
the classifiers. The SVM architecture is thoroughly studied and well
suited for lightweight and mobile platforms such as Android, which
helps ensure our system is deployable on many devices. SVM relies
on a hyperplane to divide the input acoustic sensing feature space
into the categories with each representing a user. The hyperplane
is determined during the training phase with the acoustic sensing
data from the registered users. We use LIBSVM with a cubic kernel
to build the SVM classifier [11].

6.4 User Profile Construction
EchoLock requires the user to provide the training data for user
profile construction during registration. Our 𝑛-chirp sequence is
transmitted and, based on the optimal chirp selection, a subset of
the chirp signals are processed for features to represent the user.
These features are shaped not only by hand geometry, but the device
structure itself. As structure-borne sound propagation is specific
to material, dimensions, and external forces (i.e. a firm grip by the
user), we construct a secure credential that is specific to a particular
user and device pair. This also prevents an isolated security breach
from compromising other devices and services of a given user as
structure-borne properties will differ from model to model. An
existing data set of anonymized user profiles is included to serve
as negative labels when classifying the user during identification
attempts. Registering multiple users to the same device also serves
to expand this data set. To ensure robustness and low false negative
rates, the user is advised to vary holding behavior multiple times
rather than remain still to train the data. This can be verified using
motion sensors to detect change in device holding posture.

7 IMPLEMENTATION
7.1 Sensing Microphone Selection
Contemporary mobile devices are often built with multiple on-
board microphones, particularly smartphones which employ them
for noise cancellation during phone calls. These devices also usu-
ally contain multiple speakers, which are typically located at the
extremities to reserve central space for screens or buttons. We find
that for devices with more than a single on-board microphone, re-
ception of acoustic signals from the speakers can vary considerably.
For example, speakers and microphones positioned adjacently gen-
erally gather less structural information as the propagation path
is extremely short. When positioned at opposite ends, however,

the signal is able to propagate through nearly the entire device,
allowing it to be shaped by the positioning of palm and fingers.
Figure 8 shows a small-scale example of two microphones’ abil-
ity to distinguish 5 people on a device using a bottom-oriented
speaker. When evaluated using samples provided from 5 people,
we observe identification accuracy of 96% and 61% for the top and
bottom microphones, respectively.

This stipulates that our speaker and microphone must be orien-
tated further apart such that they encompass as much of the device
as possible for ideal measurement. As such, we implement our sig-
nal transmission and obtain our results using data provided from
speaker and microphone pairs with the greatest amount of separa-
tion when an option to select exists. This can be achieved through
a one-time configuration process by estimating time-of-flight of a
sample ultrasonic signal for all speaker-microphone combinations.

7.2 Posture Stabilization Detection
The design of EchoLock allows for the identification process to be
initiated by many types of actions. For seamless and low-effort us-
age, this process can be triggered by automatically detecting actions
such as the user picking or grabbing the intended device. Motions
such as picking the device are common triggers in existing API for
iOS and Android, enabling easy integration with our system. How-
ever, triggering acoustic sensing immediately after these actions
may risk recording unnecessary audio, such as shuffling of items
or accidental collisions while the user is moving their hand. To
circumvent this, we ensure our system initiates sensing only when
movement of the device has stabilized. When movement is not
yet stable, the user may still be adjusting their grip on the device,
leading us to obtain external sensor readings in order to monitor
this behavior. For smartphones and tablets in particular, we can
leverage motion sensors such as gyroscopes, accelerometers, and
magnetometers to obtain a trace of the motion path. We can then
compute variance of this trace across a sliding interval (e.g. every
0.1 seconds) and compare it with a pre-determined threshold to
pinpoint when major hand or arm movements have subsided. This
ensures minimal disturbances from non-acoustic sources.

7.3 Environmental Noise Removal
We capture our transmitted 𝑛-chirp sequence as an audio recording
using on-board microphones, which may also contain interference
in the form of ambient noise and high frequency distortions. Gener-
ally speaking, naturally occurring sound from daily activity such as
movement or light conversation is unlikely to reach the inaudible
frequency range used by EchoLock, however noise may still be in-
troduced as a result of speaker imperfections, loud public spaces, or
malicious actions by attackers. As a countermeasure, we filter our
obtained recording prior to detailed signal processing. In particular,
we design a band-pass filter with the pass band through 18kHz to
22kHz, which is the expected frequency range of the transmitted
chirp signal. We apply a Butterworth low-pass and high-pass filter
at the specified frequencies to achieve this. We use a third-order
filter in order to minimize passband ripple in our signal amplitude
and avoid distorting the biometric information embedded within.



(a) Nexus 5 (b) Galaxy Note 5 (c) Galaxy Tab A

(d) Example attack model setup.

Figure 9: Experimental setup for evaluating EchoLock. (a)
through (c) show example holding styles and devices spec-
ifications, (d) depicts evaluation of the adversary model.

8 PERFORMANCE EVALUATION
We study the performance of EchoLock in a variety of common use
case scenarios as well as on several mobile devices. Our experiments
test the capability of our system to lock or unlock access to mobile
devices as an example application, approved by our institute IRB.
We present our findings and detailed analysis below.

8.1 Experimental Setup
Devices and Scenarios. A prototype application for EchoLock was
developed for use on Android. Three smartphones, the Nexus 5,
Nexus 6, Galaxy Note 5, and two tablet devices, the Galaxy Tab
A and Lenovo Tab 4 , were selected for their varied designs (e.g.,
speaker and microphone positions) and dimensions, pictured in
Figure 9. The smartphone devices include two onboardmicrophones
whereas the tablets are equipped with one. We evaluate our system
in typical office and public scenarios. The office scenarios consist
of quiet, enclosed spaces with minimal disturbances whereas the
public scenarios are locations with large volumes of people and
traffic. We maintain an average noise level of approximately 30dB
and 60dB for the two environments, respectively. Sources of noise
for the public environment include nearby conversations, walking,
and dining.We gauge the ability of our system to accurately identify
the user in face of these obstacles. We also investigate the impact of
accessories that may transform the properties of the user’s hand or
device structure, such as gloves or smartphone cases. Additionally,
we assess the viability for adversaries to compromise our system
using various strategies. From these identified factors, we devised
several scenarios to study.

Data Collection. 10 use case experiments were conducted in
total, divided into 3 general categories. The first category examines
the ability of our prototype to successfully identify the current
user holding the device. The second category studies performance
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Figure 10: Overall performance for different mobile devices.

differences when used in a public environment. The third category
considers usage via indirect physical contact, which includes when
the user has equipped a protective case to their device and when
the user is wearing a glove while holding their device. To reduce
the number of factors at play, we confine our study to office en-
vironments unless otherwise noted. Mobile devices are provided
on a table for the participants to pick up, hold, and place down.
Although our system can support automatic data collection as de-
scribed in Section 7.2, we initiate collection manually through the
press of a button to eliminate the possibility of lost data due to
undetected triggers. No specific instruction was provided on how
to hold the device to encourage more natural interactions. However,
we find that almost all participants favored holding postures similar
to those shown in Figure 9. This is both beneficial and challenging
as this adds consistency to our data set while also making it less
simple to differentiate usage behaviors.

We recruit 20 volunteers, 14 males and 6 females ranging from
ages 18-35, to participate in our study. We collect 40 𝑛-chirp se-
quences, where 𝑛=10, for each test case based on the procedure in
Section 6.4 for a total of 80,000 hand geometry samples. The pro-
files of all volunteers collectively act as the negative label during
classification, with the exception of the target user undergoing iden-
tification. While this data is used for user identification purposes,
we do not consider it to be personally identifiable information (as
mentioned in Table 1). Nonetheless, we are currently maintain-
ing this data privately and do not plan to release it publicly as a
precaution.

8.2 Evaluation Metrics
We describe the accuracy of our system by evaluating the rela-
tion between precision and recall as well as usage of standard ROC
curves. Precision is defined as the percentage of True Positive (TP)
classifications out of all positive classifications recorded, notated
as 𝑃 = 𝑇𝑃

𝑇𝑃+𝐹𝑃 where FP is the false positive rate. Recall is defined
as 𝑅 = 𝑇𝑃

𝑇𝑃+𝐹𝑁 or the percentage of true positive classifications
out of all target class instances. For our purposes, higher precision
describes lower probability for different people to be mistaken for
the legitimate user while higher recall describes the lower proba-
bility that the legitimate user is misidentified as someone else. The
receiver operating characteristic (ROC) curve graphs the TP rate
over the FP rate. The ideal system has a simultaneous 100% TP rate
and 0% FP rate, i.e. all legitimate users are correctly identified while
all attackers are denied access.
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Figure 11: Performance under impersonation attacks.

8.3 User Identification Performance
From our signal processing procedures, we obtain several features
used to identify the user and present them to a machine learning
classifier for identification. To evaluate the performance of our
implementation, we consider Bagged Decision Trees (BDT), Lin-
ear Discriminant Analysis (LDA), K-Nearest Neighbor (KNN), and
Support Vector Machines (SVM) as our candidate classifiers. From
our initial comparisons of each classifier’s ability to distinguish
between 5 different users on a Nexus 5, we observe SVM utilizing a
cubic kernel function to demonstrate the strongest performance.
As a result, we present our findings for the SVM in our extended
evaluations. We choose 10-fold cross-validation during the training
process to best utilize our data set and minimize selective bias, allo-
cating 50% for training and the remaining 50% for testing. Figure
10 illustrates the capability of our system to correctly identify the
legitimate user, showing average TP rate of 94% for a 5% FP rate
across a variety of different mobile devices. We detail the effects
of adverse conditions and multiple impact factors in the following
subsections.

8.4 Attacks on User Credentials
Impersonation Attacks. We evaluate the possibility of potential
attackers to impersonate hand profiles of other users as a means
of gaining unauthorized access to devices and information. For
our assessment, we consider the worst case scenario; a limited (i.e.
5) training sample size for the victim user and multiple informed
attackers. Our system is trained on user samples from 10 of our 20
participants, with one user acting as our victim and the remainder
serving as negative labels. The 10 participants not involved in the
training process act as attackers in our study. Attackers are allowed
30 seconds to observe the designated victim using our hardware
platforms and given 10 attempts to imitate their hold. We conduct
this process for 2 of our smartphones and 1 of our tablet devices.
Observation of the victim is conducted from behind (i.e. shoulder
surfing) and directly across (i.e. sitting in front).

Our results suggest that visual observation alone is insufficient
to prepare an attacker for impersonation of another hand profile.
We measure the TPR and FPR, plotted as the ROC curve in Figure
11(a), showing FPR as low as 6% for a 90% TP rate for devices such
as the Nexus 5. Shoulder surfing in particular was found to be
unhelpful for the attackers as the victim hand is mostly obscured
by the device. This would suggest that successful impersonation is
dependent on physical similarity between the attacker and victim,
which the attacker cannot control.
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Figure 12: Eavesdropping and replay attack performance.
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Figure 13: Performance in successfully identifying the legit-
imate user under various common circumstances.

Eavesdropping and Replay Attacks. We assessed the viabil-
ity of eavesdropping information during our studies on standard
usage behavior. Figure 9(d) shows an example hardware config-
uration during these experiments. The victim is seated at a desk
and uses our system on a mobile device. A separate mobile device
positioned 0.2m from the victim acts as a malicious sensor, listen-
ing for the validating signal. Many smartphones and tablets are
able to activate their microphones without any obvious indicators
onscreen, making this attack strategy highly plausible. We recruit
10 of our participants to act as 9 victims and 1 attacker. The profiles
of the remaining 10 participants are used as negative labels dur-
ing identification. We train our system on data from the 9 victims,
though purposely exclude the attacker to simulate an attack by
an unknown user. Each victim first authenticates themselves to
generate a signal for the attacker to eavesdrop. The attacker then
uses this signal to attempt to falsify their identity to our system.

Our experiments show EchoLock is able to correctly recognize
each victim while also blocking the attacker when attempting to
use an eavesdropped 𝑛-chirp sequence. Filtered signals recovered
from these simulated attacks in an office setting showed recogniz-
able chirp patterns, however clarity is lost due to the multipath
effect. This is reflected in Figure 12, resulting in 0% false positive
readings and perfect precision and recall. Recorded signals must
travel through two airborne paths, once from the victim device
to the eavesdropper and vice versa, causing significant attenua-
tion and loss of genuine structure-borne properties. This level of
attenuation is too severe for an attacker to compensate without
intimate knowledge of the victim’s authentic signal. We note that
an attacker may attempt to deceive a naïve user into installing a
malicious app in the mobile device, compromising the security of
user identification techniques, including EchoLock. Protecting users
from deception by attackers is a larger security problem to study,
but beyond the scope of this paper.



8.5 Impact Factor Study
Impact of Device Models. We consider the performance discrep-
ancies when operating EchoLock on different mobile devices. Our
participants are provided devices with our prototype installed and
given a short explanation on its functionality. We note that a single
demonstration less than 10 seconds long is sufficient for our partic-
ipants to grasp how to operate EchoLock, indicating its ease of use.
We graph 𝑇𝑃 and 𝐹𝑃 in Figure 10 as a ROC curve for each of our
mobile devices and observe that performance can be correlated to
the size of the device used, as users more easily acclimate to a con-
sistent posture for smaller devices compared to larger devices. We
find an average TP of 94% for a fixed FP of 5%. In particular, we find
our top performing device, the Nexus 5, capable of TP consistently
exceeding 97%. For particularly large devices such as our tablets, the
size difference between the hand and physical medium diminishes
the impact of the holding posture. This suggests our measurements
are most reliable when conducted on a small, well-defined space.
We refer to these results as a benchmark for other experiments.

Impact of Environmental Noises.We study performance in
public environmnets using a subset of our mobile devices. Our
smartphone devices showed greater resilience under these con-
ditions compared to our tablet device. This may be attributed to
the lack of secondary microphones on tablet devices, which lim-
its noise-cancellation capabilities compared to smartphone. Figure
13(a) indicates the introduction of significant noise produces mea-
surable degradation, showing average TP decline ranging from
2% to 6% at a fixed 5% FP. We observe that the higher end of this
degradation may be produced by loud vocalizations, such as shouts
or laughter. We attribute this to our acoustic features, specifically
our usage of MFCC. As MFCCs are most commonly used in speech
processing, the presence of loud voices nearby causes our biometric
measurements to be overwritten by the more dominant speech
characteristics. This indicates that usage of our system may be
challenging in certain situations, such as if the user is in the middle
of a conversation.

Indirect Physical Contact.We also consider the influence of
factors that may transform properties of either the device or user’s
hand when using EchoLock. To simulate these conditions, we equip
our Galaxy Note 5 device with a smartphone case to change the
physical properties of the medium. We also provide wool gloves
roughly 2mm thick for the user to wear during separate sets of
experiments. Figure 13(b) shows our results for usage during situa-
tions where the user’s hand does not directly make contact with the
mobile device. Our findings do not show statistically significant de-
terioration for these conditions tested. On the contrary, some users
showed slightly improved accuracy ranging from 1-2%, particularly
when wearing gloves. We suggest that the material of the gloves
conformed well to the curvature of the hand while simultaneously
suppressing variance in grip behavior, such as minor shifting.

N-Chirp Sequence Length. We investigate the effect of chirp
sequence length on identification accuracy as a consideration to
improve performance. While increasing the size of 𝑛 used for sens-
ing enhances accuracy, we observe an onset of diminishing returns
rapidly after roughly 5 iterations. Stability around 90% can be main-
tained for 𝑛 values as low as 3 in optimal test cases (i.e. smaller
devices, quiet settings), shown in Figure 14.
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Figure 14: Performance over length of 𝑛-chirp sequence.

As mentioned in Section 5.2, a single chirp iteration requires
only 25ms, or 50ms when accounting for buffering between itera-
tions, meaning our current performance can be feasibly achieved in
execution times competitive with techniques such as fingerprinting.
This also indicates that an individual’s hand biometrics are recog-
nizable such that our machine learning framework may begin to
identify them with moderate success using relatively few samples.

9 DISCUSSION
Jamming Attacks.We also consider the possibility of acoustic dis-
ruptions to our performance via jamming strategies. To do so, we
study the ability for 10 users to use our system when an attacking
device plays a continuous signal within the operational frequency
of EchoLock. We play an attacking signal continuously sweeping
from 18kHz to 22kHz during ten identification attempts per user
at a distance of 0.2m. We find that detection of these jamming sig-
nals is feasible using a threshold scheme. We note that although
detection is possible, negating the interference still poses a chal-
lenge. However, jamming attempts from distances greater than 1m
were observed to lose potency, functioning more similar to public
environment conditions described in Section 8.5. Methods to avoid
threshold detection may attempt to limit the extent they exceed
normal intensity, however this requires careful synchronization on
the scale of milliseconds. Additionally, the jamming signal must
match the length of the 𝑛-chirp sequence, which the attacker can-
not predict. We are further improving resistance to these attacks as
part of our future work.

Potential Hardware Constraints.During our selection of can-
didate devices to experiment on, we became aware of certain hard-
ware configurations unsuitable to implement EchoLock on (e.g.
speakers on front face, microphone on back). We find that our
implementation requires our hardware components to be orien-
tated such that they are as distant from each other as possible to
allow for uninterrupted sound propagation, which cannot be accu-
rately measured with a opposite-facing components. Adherence to
this may be relaxed by leveraging additional sensor measurements
to compensate for inconvenient speaker or microphone placement,
though this also adds more hardware requirements to an intention-
ally minimalist design.

10 CONCLUSION
We have proposed EchoLock, a low-effort, and lightweight identifica-
tion protocol deployable on commodity mobile devices. Our system
verifies the user based on how the they hold their devices through
a novel technique leveraging acoustic sensing of structure-borne
sound to measure biometric characteristics. This technique can



enable seamless identification checks or personalize user services
when using smartphones, tablets, and similar devices. A prototype
of EchoLock has been implemented on Android and evaluated in
160 trials of key use case scenarios, obtaining 80,000 hand geome-
try samples from multiple participants. Our technique is quick to
conduct, low effort to use, and demonstrates accuracy over 94%. For
future work, we intend to integrate EchoLock with existing authen-
tication techniques and assess the possibility of elevating current
security rates. We also intend to improve our defense against more
sophisticated attack models and develop a more robust implemen-
tation to realize secure, low-effort identification.
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