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Abstract—Marine hydrokinetic (MHK) turbines extract renew-
able energy from harsh marine environments, where biofouling
and corrosion acting on turbine blades will affect system per-
formance and lead to progressively increasing damages. Thus,
accurately estimating a blade’s remaining useful life (RUL) is
important to achieving condition-based maintenance to ensure
secure and reliable operations of MHK turbines, and the re-
duced cost of hydrokinetic power. In this paper, we propose
a new RUL estimation method based on adaptive neuro-fuzzy
inference system (ANFIS) and particle filtering (PF) approaches,
establishing a relationship between blade imbalance faults and
the produced power signal. The ANFIS is trained via historical
failure data, and it constitutes with a m-order hidden Markov
model to describe the fault propagation process. The high-order
particle filter uses this Markov model to predict RUL in the form
of a probability density function through collected normalized
time series data. Results demonstrate the strong potential of the
proposed approach for MHK turbine lifetime prediction.

I. INTRODUCTION

Recently, marine hydrokinetic (MHK) energy production,
with the advantages including high power potential and the
predictability of tidal/ocean currents, is becoming a welcome
alternative to the use of fossil fuels for electrical power
generation on large scales [1]. However, MHK turbines usually
work in harsh marine environments [2] with challenges such
as biofouling and corrosion potentially inducing additional
faults. Corrosion and marine organisms (or pollutants) that
become attached to moving parts can lead to imbalance faults
(i.e., mass or hydrodynamics of blades no longer being equal),
resulting in the dynamic asymmetry of torque on the rotating
shaft. Blade imbalances reduce overall performances, and if
not detected and dealt with in a timely manner may further
damage MHK turbines or even lead to an interruption of
power generation. Therefore, it is highly desired to detect
blade imbalance faults at an early stage to prevent further
deterioration, reducing maintenance costs and downtime of
MHK turbines.

The knowledge of equipment health status and future evolu-
tion prediction are at the basis of condition based maintenance
strategies [3]. While traditional strategies such as breakdown
corrective maintenance and scheduled preventive maintenance
are becoming less capable of meeting the increasing industrial
demand of efficiency and reliability, intelligent prognostic
and health management (PHM) technologies are showing
promising abilities. Remaining useful life (RUL) estimation is
an indispensable part in PHM. The RUL is certainly a random
variable, depending on the current device state and operating

environment. Researchers refer the estimation of device RUL,
in a probabilistic way, to the formulation and estimation of
the probability density function of xt conditional based on
Yt, denoted as f(xt|Yt) or E(xt|Yt), where xt defined as
the random variable of the RUL at time t, Yt is the historic
operational profiles and condition monitoring data up to t. For
the case without the influence of Yt, the estimation of f(xt|Yt)
is trivial since [4]:

f(xt|Yt) = f(xt) =
f(t+ xt)

R(t)
(1)

where R(t) is the survival function at t.
Generally, there are two main categories of data for RUL

prediction in PHM: event data and condition monitoring (CM)
data [5]. Event data is recorded when the failures occurred in
the past, which is scarce due to situations not being able to run-
to-failure (i.e., measurements are not available to fully capture
the sequence of the events leading to failure). In contrast, CM
data is versatile and is easily and directly linked with RUL pre-
diction, such as monitored data and degradation signals. Using
these two types of data, existing methods for RUL estimation
in PHM can be grouped into the following three categories:
model-based [6], data driven [7] and hybrid approaches [8].
Model-based approaches, such as Weibull distribution, require
extensive prior knowledge to precisely model the complex
system degradation, which is usually unavailable in practice
[9]. In data driven approaches, including neural network (NN),
support vector machine (SVM) and hidden Markov models,
the degradation is modeled based on historical data. Hybrid
approaches aim to combine both advantages, but still remain
complex to develop.

Recently, mapping monitored feature data to corresponding
RUL using data-driven approaches has received increasing
attention, especially neural network-based approaches [10],
[11]. The integration of neural networks and fuzzy systems has
been employed successfully in the prediction of system health
condition degradation [12], [13]. To improve the prediction
accuracy in real applications, where fault degradation is a
complex nonlinear problem and updating system states in real
time via new data is required, this has been coupled with
sequential Monte Carlo methods such as particle filtering [14],
[15].

In this paper, the MHK turbine RUL estimation is inves-
tigated. Because of the high nonlinearity of this problem,
the first-order hidden Markov model (HMM) is not gener-
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ally applicable, and a high-order model is more appropriate
to describe the MHK blade fault growth trend. The major
contribution of this paper is two-fold:

1) A new form of Noise-to-Signal Ratio (NSR) fault feature
is defined based on the collected generator power signal
to represent the degradation of MHK turbine blades and
for fault prognosis and RUL prediction.

2) An adaptive neurofuzzy inference systems (ANFIS) and
4th-order particle filter (PF) based framework is pro-
posed to obtain the RUL in probability density function
(PDF) form with respect to each time step signal, which
possesses merits including nonlinear mapping and real-
time state estimation.

The rest of this paper is organized as follows: Section II
introduces the theoretical analysis of features in generator
power signals that are induced by blade faults. Section III
presents the proposed fault prognostic and RUL prediction
method. Section IV reports the validation results of the pro-
posed approach using data obtained from a blade run-to-failure
test. Section V provides concluding remarks.

II. POWER SIGNAL FAULT FEATURE ANALYSIS
In this paper, we mainly focused on permanent magnet syn-

chronous generators (PMSG) based MHK generation system
[16]. Due to the electro-mechanical coupling between gener-
ator and rotating components, the vibrations of the drivetrain
induced by an imbalance fault in the blade will modulate
the current signals of the generator, considering the transition
from current to power (i.e., P=V∗I), making it possible to use
generator power signals to conduct blade fault prognosis.

A. Signal Conditioning

When a faulty turbine with constant load and speed, the air
gap torque of the generator Te consists of a constant compo-
nent Teo and an oscillatory component at fault characteristic
frequency fi and phase ϕi:

Te = Teo +
∑

Ticos(2πfit+ ϕi) (2)

In a synchronously rotating reference frame, the stator cur-
rents can be decomposed into two components: a magnetizing
component isM , which is zero when the PMSG operates with
a unity power factor, and a torque producing component isT ,
which can be written as:

isT = isTo +
∑

AsT icos(2πfit+ ϕTi) (3)

where isT is the torque producing stator current of the PMSG,
consisting of average value of torque producing current isTo

and torque producing current at the characteristic frequency
fi with associated amplitude AsT i and phase ϕTi.

Let’s consider a periodic current signal isT with period T0.
The power of this signal over all periods is given by:

P = lim
n→∞

nE1

nT0
=

∫ T0
2

−T02
|isT (t)|2 dt (4)

where E1 is the signal energy in one period. This calculated
power P is directly related with the measured generator power.

For the MHK turbine health condition monitoring, the
power signal collected from the generator usually have low
signal-to-noise ratios because the blade imbalance fault related
information is typically weak in the power signals, particularly
when the fault is in initial stage. To overcome this short, high-
frequency sampling noise in power signal needs to be filtered
out. Then, the power spectral density (PSD) of the processed
signal is calculated and the fault feature is extracted from the
PSD spectrum for fault prognosis and RUL prediction.

B. Fault Feature Extraction

Around the fundamental frequency of f in the power signal,
the amplitudes at both the fundamental frequency f and
original sidebands at characteristic frequency fi will change
when an imbalanced fault occurs, along with new sidebands
excited. Therefore, the fluctuation of power at the fundamental
frequency and the sidebands can indicate the degradation of
blade imbalance. To specify, define noise-to-signal ratio (NSR)
as the characteristic feature associated with blade imbalance
fault:

NSR =
Pnoise

Psignal
=
Ptotal − Psignalo

Psignal
(5)

where Pnoise = Ptotal − Psignalo, Psignalo is the power of
fundamental frequency component (i.e., the amplitude at the
fundamental frequency of the PSD spectrum) at healthy state,
Ptotal is the total power of the signal at current state (i.e., fault
state) and Psignal is the fundamental frequency component of
the signal at current state.

When the NSR reaches a threshold, we can regard this as a
failure state. The threshold ξ can be calculated as the average
value of the NSRs of available imbalance fault cases:

ξ =
1

N

N∑
i=1

NSRi (6)

where N is the number of the total collected datasets.

III. PROPOSED RUL PREDICTION FRAMEWORK

Fig. 1 presents the flowchart of the framework for RUL
prediction, where fault feature NSR is extracted and defined
as the state x of the turbine health condition; The ANFIS
learns the degradation model of the fault feature; The PF is
applied to obtain the PDF of the RUL for turbine with blade
imbalance fault based on the learned degradation model and
new measurements.

A. Degradation Modeling using ANFIS

The ANFIS uses the current and previous state measure-
ments as inputs to learn the transition function, calculating
the output at next time instant. Instead of using a first order
model, a nth-order model Markov model is employed since
the imbalance evolution may depend on not only the previous
state, but also on several n-steps before the state:

xt+r = ft(xt, xt−r, · · · , xt−nr) + ut (7)

where ut is Gaussian white noise, ft is the non-linear state
transition function, xt+r is the forecasting variable, r denotes

Authorized licensed use limited to: Florida Atlantic University. Downloaded on July 27,2020 at 18:42:51 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1. Flowchart of the proposed framework for RUL prediction.

Fig. 2. The architecture of ANFIS [17].

the prediction step, and n defines the number of previous time
steps. The architecture utilized in this paper is a five-layer
ANFIS shown in Fig. 2, using 4th order Makov model (where
r = 1, n = 3), with 16 fuzzy “if-then” learning rules based
on first-order Sugeno model:

IF (xt−3 is A
1
i ) AND (xt−2 is A

2
i )

AND (xt−1 is A
3
i ) AND (xt is A

4
i )

THEN : xit+1 = wi
1xt−3 + wi

2xt−2

+ wi
3xt−1 + wi

4xt + wi
5

i = 1, 2, 3, ..., 16

(8)

where xit+1 is the output corresponding to the ith rule and
Aj

i (j = 1, 2, 3, 4) is the fuzzy set associated with the variables
in the ith rule. wi

j(i = 1, 2, ..., 16) is the weight parameters
corresponding to the jth input in the ith rule, determined
by the learning process based on least-squares and the back
propagation gradient descent method. Then calculate the final
output xt+1 (state at time instant t+ 1), which is the sum of
all the outputs of each rule:

xt+1 =
16∑
i=1

xit+1 (9)

B. Particle Filter for RUL PDF Estimation

The state estimation is achieved recursively in two steps:
propagate and update. The propagate step is to obtain the prior
PDF of the state for next time instant k + 1 by Chapman
Kolmogorove equation:

p(xk+1|z1:k) =
∫
p(xk+1|xk+1−n:k)p(xk|z1:k)dxk (10)

where n is the order of Markov process; p(xk+1|xk+1−n:k) is
the state transition probability defined via Equ. (5), reflecting
the imbalance evolution process, and p(xk|x1:k) represents the
state PDF at time k. Then the posterior state PDF can be
calculated by:

p(xk+1|z1:k+1) =
p(zk+1|xk+1)

p(zk+1|z1:k)
p(xk+1|z1:k) (11)

A sequential Monte Carlo method PF is adopted to approxi-
mate the posterior state PDF by a set of random particles with
associated weights:

p(xk+1|z1:k) ≈
N∑
i=1

wi
k+1δ(xk+1 − x̂ik+1) (12)

where N is the total number of particles, x̂ik+1 is the state
value estimated by Equ. (5) of the ith particle at time k + 1,
with associated weight wi

k+1, and δ is the Dirac delta measure.
The update step is conducted when a new state measurement

zk+1 is available. The weight of each particle is updated
according to the importance sampling principle, followed by
normalization so that weight sum is 1:

wi
k+1 ∝ wi

kp(zk+1|x̂ik+1) (13)

where p(zk+1|x̂ik+1) is Gaussian, with standard deviation of
uk in (5):

p(zk+1|x̂ik+1) =
1√
2πµ0

e
−(zk+1−x̂i

k+1
)2

2µ0 (14)

Resampling is then performed to eliminate the particles
with lowest weights, and a set of new particles is generated
by duplicating the remaining particles. Since each particle is
proportional to its weight so that the total number of particles
is unchanged.

When there’s no new measurement available, the update step
of the PF cannot be conducted. Then, the propagate step of
PF is implemented iteratively to calculate the prior PDF of the
state at time instants to label the RUL. Each particle is updated
recursively with a fixed state transition function trained by the
available data of the fault feature NSR as:

x̂ik+m = fk(x̂
i
k+m−1, x̂

i
k+m−2, x̂

i
k+m−3, x̂

i
k+m−4) + uk+1

(15)
Then, the prior PDF of the state at future time instants is

used to estimate the RUL followed by:

p(xk+T |z1:k) =
∫
p(xk|z1:k)

k+T∏
g=k+1

p(xg|xg−4:g−1)dxk

(16)
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When the state of the ith particle at a future time instant k+
m reaches a threshold, the RUL is calculated by the particle to
be the time between now and that future time instant, denoted
as RULi

k. When all the particle reach the threshold, the PDF
of the RUL p(RULk|z1:k) at current time instant k can be
obtained by:

p(RULk|z1:k) =
N∑
i=1

wi
kδ(RULk −RULi

k) (17)

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

In this paper, the dataset for evaluation of the proposed
method is generated by a recently developed high-fidelity
MHK simulation platform based on NREL’s Fatigue, Aero-
dynamics, Structures, and Turbulence (FAST) code. In this
simulation platform, the AeroDyn, ElastoDyn, ServoDyn and
InflowWind modules are used with input parameters setting
from a 20 kW MHK turbine located at the Southeast National
Marine Renewable Energy Center (SNMREC). Stochastic tur-
bulence models generated by NWTC’s TurbSim platform is
also utilized to provide realistic underwater operating envi-
ronments. More details of the simulation platform and the
parameters setting can refer to [18].

During the test, the hydrokinetic turbine was operated near a
speed of 60 rpm, which corresponds to a fundamental rotating
frequency f = 1Hz (considered as healthy status). The blade
imbalance fault is directly modeled by including an offset
into the pitch angle of one rotor blade within FAST. When
a blade imbalance fault occurs and develops, the vibration
of the system will increase. This increased vibration will
lead to the increase of the fault feature NSR, as well as the
degradation of the turbine health condition and RUL reduction.
To monitor the lifetime degradation process, we quantify
the degradation into several periods associated with linearly
accumulated pitch offset, 16 cases have been considered with
pitch angle values from 0◦ ∼ 15◦. This can represent an
increased biofouling and corrosion of the blade in reality,
which will cause imbalance to the system. In each pitch offset
mode 10 intervals were set during the monitoring, and data
were recorded for 120 seconds for each interval. As time
progresses, the blade imbalance accumulated, along with the
degradation of turbine until it reaches the threshold (set as
failure status). A total of 16 × 120 = 1920 seconds data
is recorded and 1500 seconds data is selected due to the
instability at initial stage of simulation. The run-to-failure
sensor records contain training datasets and testing datasets,
collected at sampling rate 2/3Hz (1.5s/unit) under different
fault levels. The training datasets and testing datasets were
collected when the turbine simulated under the same average
current velocity but different fluctuation (i.e. turbulent intensity
of 5% and 10% separately) [18].

B. Results Analysis

Fig. 3 shows the DC-centered PSD spectrum near the
fundamental frequency of the power signal when the blade is at
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Fig. 3. DC-centered PSD of the power signal showing the DC component
and its sidebands when the test blade is in the healthy and faulty condition
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Fig. 4. Normalized NSR of the power signal during the run-to-failure
experiments.

different health conditions, i.e., at different pitch angles of 0, 3,
6, 9, 12, 15 degrees. We can observe from the figure that when
the blade enters the imbalance condition, the DC component
(amplitudes of 0Hz) is decreased significantly from 15.466 dB
(0◦) to 9.5608 dB (12◦). The three main symmetric sidebands
appear at the characteristic frequencies f1, f2, f3 (±0.0195Hz,
±0.0293Hz and ±0.0391Hz). During the degradation, the
amplitudes at f1∼3 change, and the sidebands of 0.5759Hz is
restrained when pitch angle over 3◦, new sidebands are excited
at 0.0853. The results indicate that compared to the healthy
state, more energy decreases at DC component (0Hz), along
with energy changes at the sidebands of the power signal when
the blade is in the imbalance fault condition.

Fig. 4 shows the normalized NSR of the measured power
signal during the entire run-to-failure experiments. In this
paper, a Hilbert transform has been used to filter out the
high frequency noise of the NSR obtained directly from the
power signal, which has been chosen as a trade-off between
the noise elimination and trend retention of the NSR. As
Fig. 4 depicts, the NSR increases continuously during the
degradation process, along with the increased pitch angle.
The increase is stable at the beginning, and then accelerate
when the pitch angle exceed 5◦ (associated with time at 400),
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Equ. (17).

then level off at a high value 0.85 when pitch angle reach
at 12◦ (associated with time at 900). Therefore, the threshold
indicates the end of the blade’s life. The tendency of NSR
verifies that it is an appropriate fault-related feature for fault
prognosis.

Fig. 5 shows the PDF of the RUL prediction at time index of
500, 700, 800 using the proposed framework. The peak of each
PDF curve represents the highest probability of the predicted
failure time. According to Fig. 5, more particles predict the
RUL gathering to the peak of PDF as time goes on. The peak
of the PDF predicted at 800 is closed to 900, which is the
actual failure time when the NSR reaches 0.85, indicating that
the RUL prediction precise has positive correlation with the
time. The reason lies in is that the ANFIS and PF methods have
the ability to use new fault features to improve its accuracy in
the RUL prediction as time goes on.

V. CONCLUSIONS AND FUTURE WORK

This paper proposed a RUL prediction framework for MHK
turbine blade under imbalance fault based on ANFIS and
PF approaches. Considering the fault information is typically
weak in the generator power signal, a novel NSR based on the
power signal was defined for fault feature extraction, which
was then trained to model the blade imbalance fault propa-
gation trend. Additionally, the PF algorithm was implemented
to predict the RUL PDF of the turbine blade based on the
learned degradation model using ANFIS and the fault feature.
Experimental datasets collected from a high-fidelity simulated
MHK turbine subjected to blade imbalance faults were used to
evaluate the performance of the proposed framework. Results
have shown that the proposed method can effectively obtain
the RUL of the turbine blade, and the prediction becomes more
and more accurate as time goes on.

Future work will focus on testing the proposed framework
on other MHK generation system failures, such as the driv-
etrain system and gearbox failures. Additionally, the ANFIS
will be compared with deep learning methods, such as the deep
recurrent neural network (RNN), for more robust and efficient
fault prognostic and RUL estimation.
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