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Abstract  

This paper describes the propagation of shear waves in a Holzapfel-Gasser-Ogden (HGO) material and 

investigates the potential of magnetic resonance elastography (MRE) for estimating parameters of the HGO 

material model from experimental data.  In most MRE studies the behavior of the material is assumed to 

be governed by linear, isotropic elasticity or viscoelasticity.  In contrast, biological tissue is often nonlinear 

and anisotropic with a fibrous structure. In such materials, application of a quasi-static deformation (pre-

deformation) can influence plays an important role in shear wave propagation. Closed form expressions for 

shear wave speeds in an HGO material with a single family of fibers were found in a reference (undeformed) 

configuration and after imposed pre-deformations. These analytical expressions show that shear wave 

speeds are affected by the parameters (μ0, k1, k2, κ) of the HGO model and by the direction and amplitude 

of the pre-deformations. Simulations of corresponding finite element models confirm the predicted 

influence of HGO model parameters on speeds of shear waves with specific polarization and propagation 

directions. Importantly, the dependence of wave speeds on the parameters of the HGO model and imposed 

deformations could ultimately allow non-invasive estimation of material parameters in vivo from 

experimental shear wave image data. 
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1 Introduction 

    Elastographic techniques, including both ultrasound elastography and magnetic resonance elastography 

(MRE) have great potential for non-invasive evaluation of the mechanics of soft tissues. Harmonic MRE is 

based on MR imaging of shear waves induced by external vibration of the tissue, followed by inversion of 

the displacement fields to estimate material parameters. MRE has been used to quantify non-invasively the 

material properties of many biological tissues, such as skeletal muscle [1], liver [2, 3], and brain [4]. Most 

MRE studies use linear elastic or viscoelastic material models, and typically the material is assumed to be 

isotropic. Recently, MRE has been extended to use anisotropic material models, such as a three-parameter 

model [5-7] for nearly-incompressible, transversely isotropic, fibrous materials. However, these models 

still rely on the assumptions of linear elasticity, while many biological tissues exhibit nonlinear strain-stress 

relationships [8].  

    Nonlinear hyperelastic models have been successfully applied to describe the mechanics of soft 

biological materials [9, 10]. The Holzapfel-Gasser-Ogden (HGO) model in particular is straightforward and 

widely used to model fibrous soft tissues [11, 12]; it contains separate terms to describe the contributions 

of fiber deformation to the strain energy, and can model an isotropic nonlinear material (with 𝜅𝜅 = 1/3), or a 

strongly anisotropic material with single or multiple “families” of fibers. Estimating the parameters of 

hyperelastic models from experimental data remains an important challenge.  Here we demonstrate that 

wave speed data, such as those available from MRE studies, can be used for this purpose.  

    Shear waves in MRE consist of infinitesimal dynamic deformations, which may be superimposed on 

larger, quasi-static “pre-deformations.”  Shear wave speeds in a nonlinear material are determined by both 

its mechanical properties and its deformation state. In this study, closed-form expressions for shear wave 

speeds in the HGO model are obtained in terms of the model parameters and imposed pre-deformations. 

Analytical expressions for wave speeds were confirmed by performing finite element simulations of shear 

waves in a pre-deformed cube of HGO material with a single fiber family. Local frequency estimation (LFE) 

was used to estimate speeds of shear waves with various polarization and propagation directions from 
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simulated displacement fields. Finally, we demonstrate, using simulated data, the feasibility of estimating 

the material parameters of the HGO model from shear wave speeds. 

2 Theoretical Methods 

2.1  Wave speeds in transversely isotropic elastic materials 

    Shear wave speeds in an elastic material are calculated from the eigenvalues of the acoustic tensor[13, 

14], as in Eq. (1): 

𝜌𝜌𝑐𝑐2𝒎𝒎 = 𝑸𝑸(𝒏𝒏) ∙ 𝒎𝒎 (1) 

where 𝜌𝜌𝑐𝑐2 is the eigenvalue of the acoustic tensor 𝑸𝑸, 𝜌𝜌 is the density of material, 𝑐𝑐 is the shear wave speed, 

𝒏𝒏 is the propagation direction of wave, 𝒎𝒎 is the polarization direction vector of the shear wave. The 

acoustic tensor 𝑸𝑸  for a specific propagation direction, 𝒏𝒏, is obtained from Eq. (2) [13, 14] below,: 

𝑸𝑸 = 𝒏𝒏 ∙ 𝑨𝑨 ∙ 𝒏𝒏 (2) 

 where 𝑨𝑨 is a fourth-order elasticity tensor which relates the  incremental strain tensor, 𝜺𝜺�, and incremental 

stress tensor, 𝝈𝝈� . In Cartesian coordinates this relationship can be expressed in indicial notation, 

𝜎𝜎�𝑝𝑝𝑝𝑝 = 𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝜀𝜀𝑞̃𝑞𝑗𝑗. For nonlinear models, such as the HGO model, the components of the elasticity tensor can 

be obtained from the relationship  𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝐹𝐹𝑝𝑝𝑝𝑝𝐹𝐹𝑞𝑞𝑞𝑞
𝜕𝜕2𝑊𝑊

𝜕𝜕𝐹𝐹𝑖𝑖𝑖𝑖𝜕𝜕𝐹𝐹𝑗𝑗𝑗𝑗
 , where 𝑭𝑭 is the deformation gradient tensor 

which accounts for the effects of pre-deformation [13, 14], and 𝑊𝑊 is the strain energy function. Thus, in 

principle, shear wave speeds can be used to estimate material parameters.  

    Since the acoustic tensor, 𝑸𝑸, depends on the propagation direction, 𝒏𝒏, in general wave speeds depend on 

𝒏𝒏. Also, 𝑸𝑸, may have up to three distinct eigenvalues (wave speeds) and three corresponding eigenvectors 

(polarization directions) so that there may be three plane waves that propagate in the same direction.   

However, material symmetries and constraints reduce the number of possible wave speeds. In an isotropic 

linear elastic material with shear modulus, 𝜇𝜇 and bulk modulus, 𝛫𝛫, the acoustic tensor is the same for all 

propagation directions, and only two wave speeds exist: one longitudinal and one transverse (shear). 

Longitudinal waves in isotropic materials have𝑐𝑐2 = (𝛫𝛫 + 4𝜇𝜇
3

)/𝜌𝜌 [15], and polarization parallel to the 
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propagation direction (𝒎𝒎 = 𝒏𝒏); corresponding shear waves have 𝑐𝑐2 = 𝜇𝜇/𝜌𝜌 and polarization 𝒎𝒎 ⊥ 𝒏𝒏. In an 

isotropic, incompressible linear elastic material, the longitudinal wave speed becomes infinite, and only 

one parameter, 𝜇𝜇, remains to estimate.  

    A linear elastic, transversely isotropic (TI) material requires five parameters to describe its constitutive 

behavior. These can be, for example two tensile moduli (𝐸𝐸1, 𝐸𝐸2), two shear moduli (𝜇𝜇1, 𝜇𝜇2) and a bulk 

modulus (𝛫𝛫). If the material is incompressible, three parameters are sufficient, for example baseline shear 

modulus (𝜇𝜇2) and two ratios: shear anisotropy 𝜙𝜙𝑇𝑇𝑇𝑇 = �𝜇𝜇1
𝜇𝜇2

− 1� and tensile anisotropy 𝜁𝜁𝑇𝑇𝑇𝑇 = �𝐸𝐸1
𝐸𝐸2

− 1�. In a 

linear elastic, nearly-incompressible, transversely isotropic (TI) material, in which anisotropy is due to a 

single family of aligned fibers, the shear wave speeds depends in a relatively simple fashion on the material 

properties and the wave propagation direction relative to the fibers [15].  Shear waves can be separated into 

“slow” (or “pure transverse”) and “fast” (or “quasi-transverse”) shear waves with different polarization 

directions. The slow and fast shear wave polarization directions under no pre-deformation are defined by 

the following relationship (Eq. (3)): 

𝒎𝒎𝒔𝒔 =
𝒏𝒏 × 𝒂𝒂
|𝒏𝒏 × 𝒂𝒂|

             𝒎𝒎𝒇𝒇 = 𝒏𝒏 × 𝒎𝒎𝒔𝒔 (3) 

    where 𝒏𝒏 is the propagation direction of the shear wave, 𝒂𝒂 is the fiber orientation after deformation, and 

𝒎𝒎𝒔𝒔 and 𝒎𝒎𝒇𝒇 are the slow and fast polarization directions, respectively. The corresponding wave speeds in 

this linear elastic material, which depend on the angle, 𝜃𝜃, between fiber and propagation directions are:  

𝑐𝑐𝑠𝑠
2 =  

𝜇𝜇2

𝜌𝜌
[1 +  𝜙𝜙𝑇𝑇𝑇𝑇 cos2(𝜃𝜃)];         𝑐𝑐𝑓𝑓

2 =  
𝜇𝜇2

𝜌𝜌
[1 +  𝜙𝜙𝑇𝑇𝑇𝑇 cos2(2𝜃𝜃) +  𝜁𝜁𝑇𝑇𝑇𝑇 sin2(2𝜃𝜃)] (4)  
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Fig. 1 Wave propagating with two polarization directions in a transversely isotropic material. (a) A “slow” shear wave is produced 

by harmonic shear displacement in the slow polarization direction, 𝒎𝒎𝒔𝒔.  (b) A “fast” shear wave arises from harmonic shear 

displacement in the fast polarization direction, 𝒎𝒎𝒇𝒇. The wavelength of a fast shear wave is typically longer than that of a slow shear 

wave. Reproduced from reference [16]. 

2.2  The Holzapfel-Gasser-Ogden (HGO) model 

    The HGO model, which is an influential recent model for fibrous soft tissues, was proposed by Holzapfel 

et al. [17]. The strain energy density function is a sum of isotropic and anisotropic terms: 

𝑊𝑊 =  𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑊𝑊𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (5) 

    The isotropic part of its strain energy density function contains both volumetric and isochoric terms:  

𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑊𝑊𝑣𝑣𝑣𝑣𝑣𝑣 + 𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 

𝑊𝑊𝑣𝑣𝑣𝑣𝑣𝑣 =
𝐾𝐾
2

(𝐽𝐽 − 1)2,      𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 =
𝜇𝜇
2

(𝐼𝐼1̅ − 3), (6) 

    where 𝐾𝐾 and 𝜇𝜇 are the bulk modulus and the isotropic shear modulus respectively, 𝐼𝐼1̅ is the modified first 

invariant defined by 𝐼𝐼1̅ = 𝐽𝐽−2 3⁄ 𝐼𝐼1, (𝐽𝐽 = det 𝑭𝑭), where 𝐼𝐼1 is the first variant of Cauchy-Green strain tensor 

𝑪𝑪. Many soft materials have shear moduli roughly between 102-105 Pa, spanning acellular collagen and 

fibrin gels [18-21], brain tissue [22, 23], and muscle [24]. Anisotropic terms in the strain energy density 

function can have different forms depending on fiber arrangement: 
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    (1) Single fiber-family model (transversely isotropic, TI): Terms in the strain energy density function 

reflecting the effects of fibers with a distribution of orientations centered on the unit vector 𝒂𝒂𝟎𝟎, which is 

the fiber direction before pre-deformation:  

𝑊𝑊𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝐻𝐻𝐻𝐻𝐻𝐻1 =
𝑘𝑘1

2𝑘𝑘2
{exp[𝑘𝑘2(𝜅𝜅𝐼𝐼1̅ + (1 − 3𝜅𝜅)𝐼𝐼4̅ − 1)2] − 1},            𝑓𝑓𝑓𝑓𝑓𝑓 𝐼𝐼4̅ > 1. (7) 

    where 𝐼𝐼4̅ is the modified pseudo-variant defined by 𝐼𝐼4̅ = 𝐽𝐽−2 3⁄ 𝐼𝐼4,  𝐼𝐼4 = 𝒂𝒂𝟎𝟎 ⋅ 𝑪𝑪 ⋅ 𝒂𝒂𝟎𝟎  is the squared stretch 

in the fiber direction.  

    (2) Multiple fiber-family model (orthotropic): Additional fiber families (with a principal direction of 𝒂𝒂0𝑖𝑖, 

and the same properties 𝑘𝑘1, 𝑘𝑘2, and κ) can be modeled by adding contributions from 𝐼𝐼4𝑖𝑖 = 𝒂𝒂0𝑖𝑖 ⋅ 𝑪𝑪 ⋅ 𝒂𝒂0𝑖𝑖 to 

the strain energy, as: 

𝑊𝑊𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = �
𝑘𝑘1

2𝑘𝑘2
�exp �𝑘𝑘2𝐸𝐸�𝑖𝑖

2� − 1�
𝑖𝑖

;     𝐸𝐸�𝑖𝑖 = 𝜅𝜅𝐼𝐼1̅ + (1 − 3𝜅𝜅)𝐼𝐼4̅𝑖𝑖 − 1,   𝑓𝑓𝑓𝑓𝑓𝑓 𝐼𝐼4̅𝑖𝑖 > 1. (8) 

The effects of 𝑘𝑘1 and 𝑘𝑘2 on stress-strain behavior in simple shear are shown in Fig. 2. For example, for 

simple shear  𝛾𝛾𝑌𝑌𝑌𝑌 in a plane containing fibers at an angle of 𝜋𝜋/4 (𝒂𝒂 = (𝒋𝒋 + 𝒌𝒌)/√2), 𝑘𝑘1 describes the initial 

slope of the curve (Fig. 2a), 𝑘𝑘2 describes the nonlinearity of the curve (Fig. 2b).  

Fiber distributions corresponding to different values of 𝜅𝜅  are shown in Fig. 3 and 𝜅𝜅  captures the 

distribution of the fiber orientations, ranging from alignment in a single direction (𝜅𝜅 = 0) to no preferred 

direction (𝜅𝜅 = 1/3). When 𝜅𝜅 = 0, all fibers are assumed to be perfectly aligned, and when 𝜅𝜅 = 1/3, the material 

is isotropic. We note that, formally, fibers in the HGO model do not contribute to the stress or to the strain 

energy when they are in compression(𝐼𝐼4 < 1). We did not model the bi-linearity between fiber tension and 

compression for wave propagation in the HGO model in the undeformed case (assuming that the fibers can 

resist an infinitesimal compressive strain in wave propagation, or equivalently, an infinitesimal tensile pre-

strain). 
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Fig. 2 Effects of parameters in the HGO model on the stress-strain relationship during simple shear in a plane containing fibers at 

an angle of 𝜋𝜋/4. (a)The parameter 𝑘𝑘1 affects the initial slope of the stress-strain curves for deformations involving fiber stretch 

(𝜇𝜇0 = 1000Pa, 𝜅𝜅 = 1/12, 𝑘𝑘2 = 0.1). (b) The parameter 𝑘𝑘2 determines the nonlinearity of the relationships (𝜇𝜇0 = 1000Pa, 𝜅𝜅 =

1/12, 𝑘𝑘1/𝜇𝜇0 = 1) 

 

Fig. 3 The HGO dispersion parameter κ captures the distribution of fiber orientation in 2D domain, ranging from alignment in no 

preferred direction (κ=1/3) (a), κ=1/6 (b), κ=1/12 (c) and finally to a single direction (κ =0) (d). 

 
2.3  Closed-form expressions for the relationships between model parameters and wave speeds  

2.3.1 Closed-form expressions for speeds of waves superimposed on simple shear   

    Closed-form expressions that relate wave speeds to model parameters are highly desirable. Such 

expressions for the HGO model were determined from analytical solution of the eigenvalue problem (Eq. 

1) for shear waves propagating in the negative Z direction (𝒏𝒏 = −𝒌𝒌, Fig. 4) in the undeformed configuration 
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(Fig. 4a) and with imposed pre-deformations in simple shear corresponding to the configurations of Fig. 4b 

and Fig 4c. Symbolic solutions were obtained using Matlab Symbolic Toolbox (Mathworks, Natick, MA). 

𝑐𝑐𝑠𝑠𝑋𝑋𝑋𝑋 = �
𝜇𝜇
𝜌𝜌

+ 2
𝑘𝑘1

𝜌𝜌
𝛾𝛾𝑋𝑋𝑋𝑋

2 𝑀𝑀2 exp(𝑀𝑀2𝑘𝑘2𝛾𝛾𝑋𝑋𝑋𝑋
4 ) (9) 

𝑐𝑐𝑓𝑓𝑋𝑋𝑋𝑋 = �𝜇𝜇
𝜌𝜌

+ 𝑘𝑘1
𝜌𝜌

�𝑁𝑁2 + 6𝛾𝛾𝑋𝑋𝑋𝑋
2 𝑀𝑀2 + 2𝛾𝛾𝑋𝑋𝑋𝑋

4 𝑘𝑘2𝑀𝑀2(𝑁𝑁2 + 4𝛾𝛾𝑋𝑋𝑋𝑋
2 𝑀𝑀2)� exp(𝑀𝑀2𝑘𝑘2𝛾𝛾𝑋𝑋𝑋𝑋

4 ) . (10)         

𝑐𝑐𝑠𝑠𝑌𝑌𝑌𝑌 = �
𝜇𝜇
𝜌𝜌

+ 2
𝑘𝑘1

𝜌𝜌
𝛾𝛾𝑌𝑌𝑌𝑌𝑀𝑀(𝛾𝛾𝑌𝑌𝑌𝑌𝑀𝑀 + 𝑁𝑁) exp((𝛾𝛾𝑌𝑌𝑌𝑌𝑀𝑀 + 𝑁𝑁)2𝑘𝑘2𝛾𝛾𝑌𝑌𝑌𝑌

2 ) (11) 

𝑐𝑐𝑓𝑓𝑌𝑌𝑌𝑌 = �𝜇𝜇
𝜌𝜌

+ 𝑘𝑘1
𝜌𝜌

(𝑁𝑁2 + 6𝛾𝛾𝑌𝑌𝑌𝑌𝑀𝑀𝑀𝑀 + 6𝛾𝛾𝑌𝑌𝑌𝑌
2 𝑁𝑁2 + 2𝛾𝛾𝑌𝑌𝑌𝑌

2 (2𝛾𝛾𝑌𝑌𝑌𝑌𝑀𝑀 + 𝑁𝑁)2(𝛾𝛾𝑌𝑌𝑌𝑌𝑀𝑀 + 𝑁𝑁)2) exp((𝛾𝛾𝑌𝑌𝑌𝑌𝑀𝑀 + 𝑁𝑁)2𝑘𝑘2𝛾𝛾𝑌𝑌𝑌𝑌
2 )  (12) 

    where (𝑐𝑐𝑠𝑠𝑋𝑋𝑋𝑋 , 𝑐𝑐𝑓𝑓𝑋𝑋𝑋𝑋) and (𝑐𝑐𝑠𝑠𝑌𝑌𝑌𝑌, 𝑐𝑐𝑓𝑓𝑌𝑌𝑌𝑌 ) are the slow and fast shear wave speeds for pre-deformations 𝛾𝛾𝑋𝑋𝑋𝑋 

and 𝛾𝛾𝑌𝑌𝑌𝑌 respectively. The terms 𝑀𝑀 and 𝑁𝑁 are combinations of the dispersion parameter 𝜅𝜅 and the angle 𝜙𝜙 

between the fiber and the propagation direction: 

𝑀𝑀 = 2�(1 − 3𝜅𝜅) cos2 𝜙𝜙 + 𝜅𝜅�;    𝑁𝑁 = (1 − 3𝜅𝜅)sin2𝜙𝜙. (13) 

    With no imposed pre-deformation (𝛾𝛾𝑋𝑋𝑋𝑋 = 𝛾𝛾𝑌𝑌𝑌𝑌 = 0), the speeds reduce to  

𝑐𝑐𝑠𝑠 = 𝑐𝑐0 = �
𝜇𝜇
𝜌𝜌

;        𝑐𝑐𝑓𝑓 = �
𝜇𝜇
𝜌𝜌

+
𝑘𝑘1𝑁𝑁2

𝜌𝜌
(14) 

2.3.2 Closed-form expressions for speeds of waves superimposed on stretching  

Expressions for the speeds of slow and fast shear waves superimposed on isochoric, quasi-static 

lengthening deformations (Fig. 5) were also obtained. In this situation, the maximum stretch ratio, 𝜆𝜆1 = 𝜆𝜆 , 

is used to describe  the imposed deformation; other stretches are 𝜆𝜆2 = 𝜆𝜆3 = 1/√𝜆𝜆. Wave speeds were 

obtained with the help of Matlab Symbolic Toolbox (Mathworks, Natick, MA). 

𝐶𝐶𝑓𝑓𝑍𝑍 = �
𝜆𝜆2𝜇𝜇

𝜌𝜌
+

𝑘𝑘1

𝜌𝜌𝜌𝜌
(𝜆𝜆2𝑁𝑁2 + 𝜆𝜆2𝑀𝑀𝑀𝑀 + 2𝑁𝑁2𝐿𝐿2𝑘𝑘2) exp �

𝑘𝑘2𝐿𝐿2

𝜆𝜆2 � (15)  

𝐶𝐶𝑠𝑠𝑍𝑍 = �
𝜆𝜆2𝜇𝜇

𝜌𝜌
+

𝜆𝜆𝜆𝜆𝑘𝑘1

𝜌𝜌
exp �

𝑘𝑘2𝐿𝐿2

𝜆𝜆2 � (16) 
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    where (𝑐𝑐𝑠𝑠𝑍𝑍 , 𝑐𝑐𝑓𝑓𝑍𝑍) are the slow and fast shear wave speeds for stretch 𝜆𝜆 in Z direction. Definitions of 

 𝑀𝑀 and 𝑁𝑁 are from Eq. (13); the new variable 𝐿𝐿 is defined in terms of 𝑀𝑀 and the stretch ratio 𝜆𝜆. 

𝐿𝐿 = (𝜆𝜆 − 1) �
𝑀𝑀
2

(𝜆𝜆2 + 𝜆𝜆 + 1) − 1� (17) 

    With no imposed pre-deformation (𝜆𝜆 = 1), the wave speed expressions can be simplified, as above, to  

𝑐𝑐𝑠𝑠 = 𝑐𝑐0 = �
𝜇𝜇
𝜌𝜌

;        𝑐𝑐𝑓𝑓 = �
𝜇𝜇
𝜌𝜌

+
𝑘𝑘1𝑁𝑁2

𝜌𝜌
(18) 

 which are identical to Eq. (14). 

2.4  Computational modeling and simulations 

To verify the analytical results, finite element (FE) simulations of shear wave propagation were 

performed using finite element software (COMSOL Multiphysics v5.3, Burlington, MA). A static pre-

deformation step (either (i) simple shear or (ii)  tension) and a frequency-domain perturbation step were 

performed in a cubic domain (50× 50 × 50 mm3, Figs. 4 and 5). The HGO model was implemented in 

COMSOL to model elastic behavior; an isotropic loss factor of 0.1 was used to provide a small amount of 

viscoelastic damping. We set the frequency of excitation equal to 200 Hz, in order to provide multiple 

wavelengths in the model domain. The domain was discretized into 5000 hexahedral elements. To 

demonstrate convergence, the results were confirmed at higher resolution. In order to compare the 

undeformed case to the cases with finite pre-deformation, we assume the fibers can resist infinitesimal 

compressive loads during wave motion. A periodic boundary condition (PBC) was applied on the 𝑋𝑋𝑋𝑋 plane 

and 𝑌𝑌𝑌𝑌 plane, for fast and slow shear waves respectively. The PBCs eliminate boundary effects on the 

vertical sides of the cube, allowing for a closer comparison of the analytical and numerical results. The 

assigned default parameters are as follows: pre-deformation 𝛾𝛾𝑋𝑋𝑋𝑋 = 𝛾𝛾𝑌𝑌𝑌𝑌 = 0.2 ; initial isotropic shear 

modulus, 𝜇𝜇0 = 1 kPa; density 𝜌𝜌 = 1000 kg/m3; initial anisotropy ratio, 𝑘𝑘1/𝜇𝜇0 = 2; nonlinearity parameter, 

𝑘𝑘2 = 5; fiber dispersion parameter, 𝜅𝜅 = 1/12; and ratio of bulk modulus to initial shear modulus, 𝐾𝐾/𝜇𝜇0 =

104.  To obtain either slow or fast shear waves, a harmonic displacement (simple shear case) or harmonic 

force (lengthening/shortening cases) was imposed to the top surface in the corresponding polarization 



Zuoxian Hou    11 
 

direction, defined by the 𝒎𝒎𝒔𝒔 or 𝒎𝒎𝒇𝒇 unit vector, respectively. The local frequency estimation (LFE) method 

[25] was applied to estimate wavelength (and thus wave speed) from simulated data. LFE provides an 

estimate of wave speed at each “voxel” in a discretized version of the 3D wave field. The mean values and 

standard deviations of wave speeds from all voxels in a central region of interest are used to generate the 

symbols and error bars in plots [25, 26]. The LFE parameters used in this study are 𝜌𝜌0 = 1 for the center 

frequency and 𝐿𝐿0 = 11 for the number of filters [26]. 

 

Fig. 4 Geometry used in numerical simulations (50×50 ×50 mm3) of waves superimposed on simple shear. Green dashed arrows 

represent harmonic perturbations in two perpendicular directions, which correspond to fast and slow shear wave polarizations for 

shear waves propagating along the negative Z-axis (red arrows). Blue solid lines are the mean fiber direction, where 𝜙𝜙 = 45°. One 

fiber family in (a) the undeformed configuration (𝒂𝒂 = (𝒋𝒋 + 𝒌𝒌)/√2 ) and (b-c) pre-deformed configurations in simple shear (b) 𝛾𝛾𝑌𝑌𝑌𝑌 

in the 𝑌𝑌𝑌𝑌 plane (𝒂𝒂 = ((1 + 𝛾𝛾𝑌𝑌𝑍𝑍)𝒋𝒋 + 𝒌𝒌)/�(1 + 𝛾𝛾𝑌𝑌𝑌𝑌)2 + 1 ) or (c) 𝛾𝛾𝑋𝑋𝑋𝑋 in the 𝑋𝑋𝑋𝑋 plane (𝒂𝒂 = (𝛾𝛾𝑋𝑋𝑋𝑋𝒊𝒊 + 𝒋𝒋 + 𝒌𝒌)/�2 + 𝛾𝛾𝑋𝑋𝑋𝑋
2  ). 

 

Fig. 5 Geometry used in simulations (50×50×50 mm3) of waves superimposed on lengthening. Green dashed arrows represent 

harmonic loading in two perpendicular directions, which correspond to fast and slow shear wave polarizations for shear waves 

propagating along the negative Z-axis (red arrows). Blue solid lines are the mean fiber direction, where 𝜙𝜙 = 45°. One fiber family 

in (a) the undeformed configuration (𝒂𝒂 = (𝒋𝒋 + 𝒌𝒌)/√2 ) and (b) after imposed stretch λ in the Z direction (𝒂𝒂 = ( 1
√𝜆𝜆

𝒋𝒋 + 𝜆𝜆𝒌𝒌)/�𝜆𝜆2 + 1
𝜆𝜆
) 
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3 Results: shear wave speeds in undeformed and deformed configurations 

    Fig. 6 shows the simulation results for slow and fast shear waves propagating in the negative Z direction 

in the undeformed configuration and with shear pre-deformation in the 𝑌𝑌𝑌𝑌  or 𝑋𝑋𝑋𝑋  plane. Shear pre-

deformation in either the 𝑌𝑌𝑌𝑌 or 𝑋𝑋𝑋𝑋 plane (Fig. 6e and Fig. 6f) increases the wavelength of the fast shear 

wave compared to the undeformed configuration (Fig. 6d), corresponding to an increase in the fast wave 

speed. 

    Shear wave speeds are compared in analytical predictions and simulations estimations for the three 

configurations of Figure 4 and 5, shown in Figures 7-10 below. In each configuration, one parameter was 

varied while holding the remaining parameters at the default parameter values given above. The vertical 

axes of the panels in the top row of each figure display 𝑐𝑐𝑓𝑓/𝑐𝑐0, the normalized ratio between the fast shear 

wave speed and the initial wave speed 𝑐𝑐0 = �𝜇𝜇0 𝜌𝜌⁄ , where 𝜇𝜇0 = 1000𝑃𝑃𝑃𝑃 is the initial isotropic shear 

modulus, 𝜌𝜌 is the density of material. Similarly, the vertical axes of the panels on the bottom row of each 

figure depict the ratio 𝑐𝑐𝑠𝑠/𝑐𝑐0 between the slow shear wave speed and the initial wave speed. Results are 

shown for ranges of the HGO parameters isotropic shear modulus 𝜇𝜇 , HGO model parameters 

𝑘𝑘1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑘𝑘2, dispersion parameter 𝜅𝜅, and the imposed shear, 𝛾𝛾. In all three figures, orange solid lines depict 

the analytical predictions, and blue solid lines with error bars display corresponding wave speeds estimated 

from FE simulations. 
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Fig. 6  Harmonic displacement fields due to slow and fast wave shear waves in configurations corresponding to Figs. 4 and 5.  (a-

d) x component of harmonic displacement showing slow shear waves propagating in the negative Z direction  in the undeformed 

configuration (a) and after simple shear pre-deformation 𝛾𝛾𝑌𝑌𝑌𝑌 = 0.2 in the 𝑌𝑌𝑌𝑌 plane (b) or 𝛾𝛾𝑋𝑋𝑋𝑋 = 0.2 in the 𝑋𝑋𝑋𝑋 plane (c), or λ =

1.2 in the Z direction (d). (e-h) y component of harmonic displacement showing fast shear waves propagating in the negative Z 

direction in the undeformed configuration and after simple shear pre-deformation in the 𝑌𝑌𝑌𝑌, 𝑋𝑋𝑋𝑋 plane, or tension deformation in 

the Z direction. Green arrows on the top surface indicate the direction of applied harmonic excitation (200 Hz) in each panel. 

 

3.1 One family of fibers in the undeformed configuration 

    Fig. 7 shows the relationships between shear wave speeds and the parameters in the HGO model in the 

undeformed configuration. The horizontal axis represents three normalized parameters (𝜇𝜇/𝜇𝜇0, 𝑘𝑘1/𝜇𝜇0, 𝜅𝜅) in 

HGO model. There is no effect of changing 𝑘𝑘2 or 𝛾𝛾 because no pre-deformation is applied. The fast wave 

speed increases with increasing 𝑘𝑘1 and 𝜇𝜇 and decreases with increasing 𝜅𝜅. In contrast, the slow wave speed 

is affected only by 𝜇𝜇. 
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Fig. 7  Fast and slow wave speeds in relation to three parameters (𝜇𝜇/𝜇𝜇0, 𝑘𝑘1/𝜇𝜇0, 𝜅𝜅) in the HGO model when no pre-deformation is 

applied. Default parameters are: 𝜇𝜇0 = 1000 Pa, 𝜇𝜇/𝜇𝜇0 = 1,  𝑘𝑘1 𝜇𝜇0⁄ = 2, 𝜅𝜅 = 1 12⁄ . 

3.2 One fiber family with pre-deformation by simple shear in the 𝒀𝒀𝒀𝒀 plane 

    Fig. 8 shows the dependence of wave speed on HGO parameters when simple shear pre-deformation is 

imposed in the 𝑌𝑌𝑌𝑌 plane, i.e, in the direction that induces fiber stretch.  The horizontal axis of each panel 

displays values of one of the four parameters (𝜇𝜇/𝜇𝜇0,  𝑘𝑘1/𝜇𝜇0, 𝜅𝜅, 𝑘𝑘2) in the HGO model or the magnitude of 

shear 𝛾𝛾𝑌𝑌𝑌𝑌. The slow and fast wave speeds all increase with increasing 𝑘𝑘1, 𝑘𝑘2, 𝜇𝜇, and 𝛾𝛾𝑌𝑌𝑌𝑌, and decrease with 

fiber dispersion, 𝜅𝜅. The fast wave speed is larger than the slow wave speed due to the stiffening effect of 

the fibers. 
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Fig. 8 The effects on fast and slow wave speeds of the parameters (𝜇𝜇/𝜇𝜇0,  𝑘𝑘1/𝜇𝜇0, 𝜅𝜅, 𝑘𝑘2) of the HGO model. The parameter 𝛾𝛾𝑌𝑌𝑌𝑌 is 

the pre-deformation magnitude of simple shear in the 𝑌𝑌𝑌𝑌 plane, inducing fiber stretch of order 𝛾𝛾𝑌𝑌𝑌𝑌 in fibers at 𝜙𝜙 = 𝜋𝜋/4. Default 

parameters are: 𝜇𝜇0 = 1000 𝑃𝑃𝑃𝑃, 𝜇𝜇/𝜇𝜇0 = 1,  𝑘𝑘1 𝜇𝜇0⁄ = 2, 𝜅𝜅 = 1 12⁄ , 𝛾𝛾𝑌𝑌𝑌𝑌 = 0.2. 

 

3.3 One fiber family with pre-deformation by simple shear in the 𝑿𝑿𝑿𝑿 plane 

    The effects of the HGO parameters on shear wave speeds are illustrated in Fig. 9 for the configuration in 

which pre-deformation is applied perpendicular to the original fiber axis. The vertical axis of each panel on 

the top row shows the (normalized) fast wave speed, and on the bottom row depicts slow wave speed. The 

horizontal axis of each panel shows the value of the HGO model parameter or the magnitude of shear. Wave 

speed is influenced by all five parameters 𝜇𝜇/𝜇𝜇0,  𝑘𝑘1/𝜇𝜇0, 𝜅𝜅, 𝑘𝑘2 and 𝛾𝛾𝑌𝑌𝑌𝑌. Similar to pre-deformation in the 𝑌𝑌𝑌𝑌 

plane, the fast wave speed increases with increasing 𝜇𝜇/𝜇𝜇0,  𝑘𝑘1/𝜇𝜇0, 𝑘𝑘2, 𝛾𝛾𝑋𝑋𝑋𝑋 and decreases with increasing 𝜅𝜅. 

Slow wave speeds follow the same trend as the fast wave speeds, but to a lesser extent. 
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Fig. 9 The effects on fast and slow wave speeds of parameters (𝜇𝜇/𝜇𝜇0,  𝑘𝑘1/𝜇𝜇0, 𝜅𝜅, 𝑘𝑘2) of the HGO model and pre-deformation 

magnitude, 𝛾𝛾𝑋𝑋𝑋𝑋, when pre-deformation is simple shear in the 𝑋𝑋𝑋𝑋 plane, inducing fiber stretch of order (𝛾𝛾𝑋𝑋𝑋𝑋
2 ). Default parameters 

are: 𝜇𝜇0 = 1000 Pa, 𝜇𝜇/𝜇𝜇0 = 1,  𝑘𝑘1 𝜇𝜇0⁄ = 2, 𝜅𝜅 = 1 12⁄ , 𝑘𝑘2 = 5, 𝛾𝛾𝑋𝑋𝑋𝑋 = 0.2. 

 

3.4 One fiber family with pre-deformation consisting of imposed extension 

    The effect of stretch ratio on wave speed is shown in Fig. 10 for the case of imposed extension. Both fast 

and slow wave speeds increase with stretch ratio and the simulation results agree well with the analytical 

predictions. 
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Fig. 10 The effects on fast and slow wave speeds of imposed extension with stretch ratio λ in the Z direction. Default parameters 

are: 𝜇𝜇
𝜇𝜇0

= 1,  𝑘𝑘1 𝜇𝜇0⁄ = 2, 𝜅𝜅 = 1 12⁄ , 𝑘𝑘2 = 5, λ = 1.2. 

4 Estimation of Parameters in the HGO model 

    In the previous section we demonstrated that shear wave speeds can be calculated analytically from 

parameter values of the HGO model, for specific propagation direction and polarization directions. We also 

confirmed that the analytical solutions agree with simulated wave speeds in a finite cube-shaped domain. 

Conversely, the parameters of the HGO model can, in principle, be estimated from measured shear wave 

speeds, for given propagation and polarization directions, in pre-deformed specimens. In the following 

section we demonstrate the feasibility of this approach to parameter estimation. 

4.1 Estimation method 

    The example system is shown in Fig. 11. The angle 𝜙𝜙 of the fiber axis is chosen to be 𝜋𝜋/4 radians from 

the base of the specimen in the undeformed configuration, as in Figs. 4 and 5. The propagation direction 𝒏𝒏 

is along negative Z-axis, and fiber direction 𝒂𝒂 is in the 𝑌𝑌𝑌𝑌 plane. Experiments are separated into two steps. 

In the first step, the fast wave speed and slow wave speed are measured without pre-deformation, by 

applying horizontal, harmonic displacements to the top surface in the fast or slow polarization directions. 

The slow wave speed is a function of only the isotropic shear modulus, 𝜇𝜇, and density ρ, but the fast wave 
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speed is a function of 𝜇𝜇, 𝑘𝑘1, and 𝜅𝜅 (Eq. (19)). In the second step, the fast wave speed and slow wave speed 

are measured after applying a pre-deformation of simple shear in the 𝑌𝑌𝑌𝑌 plane). In this configuration, both 

fast and slow wave speeds are functions of all five parameters (𝜇𝜇, 𝑘𝑘1, 𝑘𝑘2, 𝜅𝜅, and 𝛾𝛾𝑌𝑌𝑌𝑌) (Eq. (20)). 

𝑐𝑐𝑠𝑠0 = �𝜇𝜇/𝜌𝜌;   𝑐𝑐𝑓𝑓0 = 𝑓𝑓(𝑘𝑘1, 𝜇𝜇, 𝜅𝜅)                                                  (19) 

𝑐𝑐𝑠𝑠 = 𝑓𝑓(𝑘𝑘1, 𝑘𝑘2, 𝜇𝜇, 𝜅𝜅, 𝛾𝛾𝑌𝑌𝑌𝑌);   𝑐𝑐𝑓𝑓 = 𝑓𝑓(𝑘𝑘1, 𝑘𝑘2, 𝜇𝜇, 𝜅𝜅, 𝛾𝛾𝑌𝑌𝑌𝑌)                                           (20) 

    For the analogous situation using imposed extension (stretch ratio λ), Eq. (20) can be written as: 

 𝑐𝑐𝑠𝑠 = 𝑓𝑓(𝑘𝑘1, 𝑘𝑘2, 𝜇𝜇, 𝜅𝜅, 𝜆𝜆);   𝑐𝑐𝑓𝑓 = 𝑓𝑓(𝑘𝑘1, 𝑘𝑘2, 𝜇𝜇, 𝜅𝜅, 𝜆𝜆)                                              (21) 

    In the proposed experiment, the density 𝜌𝜌 of the material is a known value, and the simple shear ratio 

𝛾𝛾𝑌𝑌𝑌𝑌 (or stretch ratio λ) can be controlled and measured. For a single value of the pre-deformation, the four 

independent linear equations can be solved simultaneously to determine the four independent parameters. 

If more data are available, the over-determined system can be solved in the least-squares sense. The 

MATLAB optimization tool lsqnonlin for solving nonlinear least square problems was used to find 

parameters that minimized the difference between predicted and measured values of wave speed.  

 

Fig. 11 Idealized experimental setup for estimating parameters of the HGO model. (a) No pre-deformation. (b) Simple shear 

γYZ = 0.2 imposed in the 𝑌𝑌𝑌𝑌 plane. (c) Imposed extension with stretch ratio λ = 1.2 in Z direction. 
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4.2 Sensitivity to noise 

    Because experimental data inevitably contain noise or measurement errors, it is necessary to quantify the 

robustness of parameter estimates. For each wave speed estimate, random noise was applied from a normal 

distribution, as shown in Eq. (22)  and Eq. (23). 

                                         𝑐𝑐𝑓𝑓
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) = 𝑐𝑐𝑓𝑓(1 + 𝜓𝜓𝜓𝜓)                                                                   (22) 

                                      𝑐𝑐𝑠𝑠
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) = 𝑐𝑐𝑠𝑠(1 + 𝜓𝜓𝜓𝜓)                                                                  (23) 

    Here, 𝜏𝜏 is a random value in the standard normal distribution (mean=0, std. dev. = 1), and 𝜓𝜓 is defined 

as a noise factor to control the range of noise variance. In this paper, the noise is defined on three levels. 

Values of 𝜓𝜓 = 0.01, 0.02 and 0.03 indicate wave speed variance ranges of ±3.3%, ±6.6% and ± 10%  

from the expected values, respectively.  

Table 1 Comparison of HGO model parameter estimates for different noise levels (imposed shear). 

Noise Level 𝜇𝜇[Pa] 𝑘𝑘1[Pa] 𝜅𝜅 𝑘𝑘2 

Expected  1000 2000 0.083 5 

(𝜓𝜓=0.01) 1000 ± 11 2034 ± 367 0.083 ± 0.023 5 ± 0.0 

(𝜓𝜓=0.02) 1000 ± 23 2050 ± 739 0.077 ± 0.044 4.8 ± 0.1 

(𝜓𝜓=0.03) 1001 ± 34 2161 ± 1107 0.079 ± 0.057 4.7 ± 0.2 

Table 2 Comparison of HGO model parameter estimates for different noise levels (imposed extension). 

Noise Level 𝜇𝜇[Pa] 𝑘𝑘1[Pa] 𝜅𝜅 𝑘𝑘2 

Expected  1000 2000 0.083 5 

(𝜓𝜓=0.01) 1000 ± 11 2007 ± 390 0.081 ± 0.023 4.9 ± 0.1 

(𝜓𝜓=0.02) 1000 ± 20 2044 ± 752 0.077 ± 0.043 4.7 ± 0.3 

(𝜓𝜓=0.03) 1002 ± 32 2068 ± 1125 0.075 ± 0.050 4.5 ± 0.5 

    For wave speed data without noise, the material parameters can be determined by four equations 

corresponding to two configurations, the undeformed configuration and one value of pre-deformation. 
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However, if wave speed data are noisy, more data are needed. In a Monte Carlo approach, ten additional 

simulated experiments with different pre-deformations were added to the original two simulated 

experiments, and these simulated experiments were repeated 1000 times with different random values. For 

various noise levels, the mean values (±std. dev.) of all four parameters were calculated (Table 1 and Table 

2). To improve accuracy, outliers (greater than three standard deviations from the mean) were excluded 

from wave speed data. 

As expected, the standard deviation of each parameter estimate increases with noise level. The mean 

value of some parameters also deviates from the expected value as noise increases. The parameters 𝑘𝑘2 and 

𝜇𝜇0 are relatively insensitive to the noise level; estimates of 𝑘𝑘1 and 𝜅𝜅 deviate more when noise increases.  

5 Discussion 

    In materials that can be modeled as nonlinear, anisotropic, and nearly incompressible, slow and fast wave 

speeds can be measured from MRE and used to estimate parameters of the material model. In the examples 

above, theoretical predictions of shear wave speed values in different configurations (undeformed 

configuration, simple shear in the 𝑋𝑋𝑋𝑋 plane or 𝑌𝑌𝑌𝑌 plane) agreed well with simulation results.  

    Fast and slow shear wave speeds provide complementary information. The fast shear wave speed is 

affected by the stiffness of the fibers, while the slow shear wave speed is not. In transversely isotropic 

materials, displacements in the direction of slow shear wave polarization do not induce fiber stretch. In 

addition, in the example of this paper, simple shear in the 𝑌𝑌𝑌𝑌 plane (which contains the principal fiber axis, 

𝒂𝒂) directly stretches the fibers and significantly affects fast shear wave speeds. In contrast, simple shear in 

the 𝑋𝑋𝑋𝑋 plane involves displacements perpendicular to the fibers, and does not stretch the fibers appreciably. 

The measured wave speed in this condition deviates little from the wave speed in the no pre-deformation 

condition. Extension in the Z direction also stretches the fibers, which increases shear wave speeds. 

    Using the closed-form expressions for wave speed, and data from either simulations or experiments, we 

can estimate the parameters of a nonlinear anisotropic material model. Unlike linear elastic materials, pre-

deformation plays an important role in determining wave speeds. Without pre-deformation, the slow shear 
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wave speed varies only with the isotropic shear modulus 𝜇𝜇 of material and the fast shear wave depends on 

𝜇𝜇,  𝑘𝑘1 and 𝜅𝜅. If pre-deformations that stretch the fibers are imposed, the fast shear wave speed depends on 

all the HGO parameters, 𝜇𝜇, 𝑘𝑘1, 𝑘𝑘2, 𝜅𝜅, as well as the magnitude of the pre-deformation.  

    The accuracy of material parameter estimates is affected by the levels of noise in the measured wave 

speed data. The isotropic shear modulus 𝜇𝜇 is the least sensitive to noise because it is directly derived from 

the slow wave speed with no pre-deformation. For the other three parameters, the nonlinearity 𝑘𝑘2 is less 

sensitive to noise than 𝑘𝑘1 and 𝜅𝜅, because 𝑘𝑘2 has fewer interactions with other factors in the experiment. 

Among the limitations of this paper, in computing wave speeds we do not impose the bi-linearity that 

excludes fibers from resisting infinitesimal levels of dynamic compressive strain. In practice, this 

assumption could be avoided by imposing a minimal pre-deformation greater than the wave amplitude.  We 

have considered the original version of the HGO model, which is still widely used. A new version of HGO 

model has recently been proposed [27], which might also be analyzed by this approach. Parameter estimates 

improve, in terms of both increased accuracy and reduced variance, with more MRE experiments. 

Balancing the desired precision of the result and the cost of experiments must be considered carefully, as 

in all experimental studies.  

Only one fiber family is considered in this paper, but it is plausible to generalize this approach to estimate 

wave speeds and material parameters in a material with multiple fiber families. Some special cases can be 

considered qualitatively. For simplicity, consider a second fiber family with 𝜙𝜙 = −45°. For the situation 

in which simple shear is imposed in the YZ plane, one fiber family will be stretched and the other will be 

compressed. In the original HGO model, fibers in compression (𝐼𝐼4 < 1) do not contribute to the stress or 

to the strain energy. Therefore, wave speeds in a material with two fiber families would be the same as with 

one fiber family. For the same reason, if the material is compressed in the Z direction (λ < 1), wave speeds 

are equal to those in an isotropic material because all fibers are under compression. For the idealized 

example of imposed extension, adding a second fiber family would simply double the effects of a single 

fiber family. For other configurations the addition of a second fiber family creates orthotropic material 
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symmetry, instead of the transverse isotropy considered in this paper, and would (in general) require further 

analysis.  

    Experimental studies that exploit this approach to characterize fibrous soft tissues are planned for future 

work; these studies would involve superimposing small amplitude shear waves on large finite deformations. 

Instead of the idealized simple shear deformations of the current paper, dense measurements of actual pre-

deformations would need to be combined with regional measurements of shear wave speed. While 

challenging, this approach promises the possibility of comprehensive, non-invasive tissue characterization 

in vivo. Tissue may already be in a pre-deformed state (like white matter in the brain) [28, 29], or quasi-

static loading might be imposed by respiration (liver [30]), ocular pressure (eye [31]), or external force 

(intervertebral disc, muscle or breast [32, 33]).   

6 Conclusion 

    MR elastography can be used, in principle, to estimate parameters of the HGO material model in soft 

fibrous materials from the speeds of slow and fast shear waves. To demonstrate the ability to obtain accurate 

results, closed-form expressions for the wave speeds, as functions of pre-deformation and material 

parameters, were derived and confirmed by numerical simulations. These results illustrate the feasibility of 

a new approach to parameter estimation for nonlinear material models of fibrous soft matter. 
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Nomenclature 

𝑨𝑨 = Elasticity tensor 

𝒂𝒂 = initial fiber direction vector 

𝑪𝑪 = Cauchy-Green strain tensor 

𝑐𝑐 = shear wave speed 

𝑐𝑐0 = initial shear wave speed 

𝑐𝑐𝑓𝑓 = fast wave speed under pre-deformation 

𝑐𝑐𝑓𝑓0 = fast wave speed under no pre-deformation 

𝑐𝑐𝑓𝑓
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)= slow wave speed with noise 

𝑐𝑐𝑠𝑠 = slow wave speed under pre-deformation 

𝑐𝑐𝑠𝑠0 = slow wave speed under no pre-deformation 

𝑐𝑐𝑠𝑠
(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)= slow wave speed with noise 

𝐸𝐸1, 𝐸𝐸2 = two tensile moduli in TI material 

F = deformation gradient tensor 

𝐼𝐼1 = first variant of Cauchy-Green strain tensor 

𝐼𝐼1̅ = modified first variant 

𝐼𝐼4 = squared stretch in the fiber direction 

𝐼𝐼4̅ = modified pseudo-variant 

𝐾𝐾 = bulk modulus of the material 

𝑘𝑘1 = initial slope of strain-stress curve in the HGO model 

𝑘𝑘2 = nonlinearity of strain-stress curve in the HGO model 

𝐿𝐿0 = number of filters 

𝐿𝐿 = abbreviation in closed-form expression of HGO model 

𝑀𝑀= abbreviation in closed-form expression of HGO model  

𝒎𝒎 = polarization direction vector 
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𝒎𝒎𝒇𝒇 = fast polarization direction 

𝒎𝒎𝒔𝒔 = slow polarization direction 

𝑁𝑁= abbreviation in closed-form expression of HGO model  

𝒏𝒏 = wave propagation direction vector 

𝑸𝑸 = acoustic tensor  

𝑊𝑊 = strain energy function 

𝛾𝛾 = shear pre-deformation 

λ = stretch ratio in Z direction 

𝜓𝜓 = noise factor in sensitivity analysis 

𝜏𝜏 = random value from normal distribution  

𝛾𝛾𝑋𝑋𝑋𝑋 = simple shear ratio in 𝑋𝑋𝑋𝑋 plane 

𝛾𝛾𝑌𝑌𝑌𝑌 = simple shear ratio in 𝑌𝑌𝑌𝑌 plane 

𝜙𝜙 = deviation angle between fiber direction and wave propagation direction 

𝜙𝜙𝑇𝑇𝑇𝑇 = parameter in TI material model 

𝜃𝜃 = angle between fiber and propagation directions 

𝜌𝜌 = density of the material 

𝜌𝜌0 = LFE parameter 

𝜅𝜅 = dispersion parameter of fibers in the HGO model 

𝜇𝜇 = isotropic shear modulus in the HGO model  

𝜇𝜇0 = initial value of isotropic shear modulus in the HGO model  

𝜇𝜇1, 𝜇𝜇2 = two shear moduli in TI material  

𝜁𝜁𝑇𝑇𝐼𝐼 = parameter in TI material model 
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List of table captions 

Table 1 Comparison of HGO model parameter estimates for different noise levels (imposed shear).  

Table 2 Comparison of HGO model parameter estimates for different noise levels (imposed extension).  

List of figure captions 

Fig. 1 Wave propagating with two polarization directions in a transversely isotropic material. (a) A “slow” 

shear wave is produced by harmonic shear displacement in the slow polarization direction, 𝒎𝒎𝒔𝒔.  (b) 

A “fast” shear wave arises from harmonic shear displacement in the fast polarization direction, 𝒎𝒎𝒇𝒇. 

The wavelength of a fast shear wave is typically longer than that of a slow shear wave. Reproduced 

from reference [16]. 

Fig. 2 Effects of parameters in the HGO model on the stress-strain relationship during simple shear in a 

plane containing fibers at an angle of 𝜋𝜋/4. (a)The parameter 𝑘𝑘1 affects the initial slope of the stress-

strain curves for deformations involving fiber stretch (𝜇𝜇0 = 1000Pa, 𝜅𝜅 = 1/12, 𝑘𝑘2 = 0.1). (b) The 

parameter 𝑘𝑘2 determines the nonlinearity of the relationships (𝜇𝜇0 = 1000Pa, 𝜅𝜅 = 1/12, 𝑘𝑘1/𝜇𝜇0 = 1) 

Fig. 3  The HGO dispersion parameter κ captures the distribution of fiber orientation in 2D domain, ranging 

from alignment in no preferred direction (κ=1/3) (a), κ=1/6 (b), κ=1/12 (c) and finally to a single 

direction (κ =0) (d). 

Fig. 4  Geometry used in numerical simulations (50×50 ×50 mm3) of waves superimposed on simple shear. 

Green dashed arrows represent harmonic perturbations in two perpendicular directions, which 

correspond to fast and slow shear wave polarizations for shear waves propagating along the negative 

Z-axis (red arrows). Blue solid lines are the mean fiber direction, where 𝜙𝜙 = 45°. One fiber family 

in (a) the undeformed configuration (𝒂𝒂 = (𝒋𝒋 + 𝒌𝒌)/√2 ) and (b-c) pre-deformed configurations in 

simple shear (b) 𝛾𝛾𝑌𝑌𝑌𝑌 in the 𝑌𝑌𝑌𝑌 plane (𝒂𝒂 = ((1 + 𝛾𝛾𝑌𝑌𝑍𝑍)𝒋𝒋 + 𝒌𝒌)/�(1 + 𝛾𝛾𝑌𝑌𝑌𝑌)2 + 1 ) or (c) 𝛾𝛾𝑋𝑋𝑋𝑋 in the 

𝑋𝑋𝑋𝑋 plane (𝒂𝒂 = (𝛾𝛾𝑋𝑋𝑋𝑋𝒊𝒊 + 𝒋𝒋 + 𝒌𝒌)/�2 + 𝛾𝛾𝑋𝑋𝑋𝑋
2  ). 
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Fig. 5 Geometry used in simulations (50×50×50 mm3) of waves superimposed on lengthening. Green 

dashed arrows represent harmonic loading in two perpendicular directions, which correspond to fast 

and slow shear wave polarizations for shear waves propagating along the negative Z-axis (red 

arrows). Blue solid lines are the mean fiber direction, where 𝜙𝜙 = 45°. One fiber family in (a) the 

undeformed configuration (𝒂𝒂 = (𝒋𝒋 + 𝒌𝒌)/√2 ) and (b) after imposed stretch λ in the Z direction (𝒂𝒂 =

( 1
√𝜆𝜆

𝒋𝒋 + 𝜆𝜆𝒌𝒌)/�𝜆𝜆2 + 1
𝜆𝜆
) 

Fig. 6 Harmonic displacement fields due to slow and fast wave shear waves in configurations corresponding 

to Figs. 4 and 5.  (a-d) x component of harmonic displacement showing slow shear waves propagating 

in the negative Z direction  in the undeformed configuration (a) and after simple shear pre-

deformation 𝛾𝛾𝑌𝑌𝑌𝑌 = 0.2 in the 𝑌𝑌𝑌𝑌  plane (b) or 𝛾𝛾𝑋𝑋𝑋𝑋 = 0.2 in the 𝑋𝑋𝑋𝑋  plane (c), or λ = 1.2 in the Z 

direction (d). (e-h) y component of harmonic displacement showing fast shear waves propagating in 

the negative Z direction in the undeformed configuration and after simple shear pre-deformation in 

the 𝑌𝑌𝑌𝑌, 𝑋𝑋𝑋𝑋 plane, or tension deformation in the Z direction. Green arrows on the top surface indicate 

the direction of applied harmonic excitation (200 Hz) in each panel. 

Fig. 7  Fast and slow wave speeds in relation to three parameters (𝜇𝜇/𝜇𝜇0, 𝑘𝑘1/𝜇𝜇0, 𝜅𝜅) in the HGO model when 

 no pre-deformation is applied. Default parameters are: 𝜇𝜇0 = 1000 Pa, 𝜇𝜇/𝜇𝜇0 = 1, 𝑘𝑘1/𝜇𝜇0 = 2, 𝜅𝜅 =

              1/12.  

Fig. 8 The effects on fast and slow wave speeds of the parameters (𝜇𝜇/𝜇𝜇0, 𝑘𝑘1/𝜇𝜇0, 𝜅𝜅, 𝑘𝑘2 ) of the HGO 

 model. The parameter 𝛾𝛾𝑌𝑌𝑌𝑌  is the pre-deformation magnitude of simple shear in the

 𝑌𝑌𝑌𝑌 plane, inducing fiber stretch of order 𝛾𝛾𝑌𝑌𝑌𝑌  in fibers at 𝜙𝜙 = 𝜋𝜋/4 . Default parameters 

 are: μ0 = 1000 Pa, μ/μ0=1,  k1/μ0=2,  κ =1/12,  k2=5, γYZ=0.2.  

Fig. 9 The effects on fast and slow wave speeds of parameters (𝜇𝜇/𝜇𝜇0, 𝑘𝑘1/𝜇𝜇0, 𝜅𝜅, 𝑘𝑘2) of the HGO  

 modeland pre-deformation magnitude, 𝛾𝛾𝑋𝑋𝑋𝑋, when pre-deformation is simple shear in the  𝑋𝑋𝑋𝑋 
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 plane, inducing fiber stretch of order (𝛾𝛾𝑋𝑋𝑋𝑋
2 ). Default parameters are:𝜇𝜇0  = 1000 Pa, 𝜇𝜇/𝜇𝜇0 = 1,

               𝑘𝑘1/𝜇𝜇0 = 2, 𝜅𝜅 = 1/12, 𝑘𝑘2 = 5, 𝛾𝛾𝑋𝑋𝑋𝑋 = 0.2.  

Fig. 10 The effects on fast and slow wave speeds of imposed extension with stretch ratio λ in the Z direction. 

Default parameters are: 𝜇𝜇
𝜇𝜇0

= 1,  𝑘𝑘1 𝜇𝜇0⁄ = 2, 𝜅𝜅 = 1 12⁄ , 𝑘𝑘2 = 5, λ = 1.2. 

Fig. 11  Idealized experimental setup for estimating parameters of the HGO model. (a) No pre-

deformation. (b) Simple shear γYZ = 0.2 imposed in the 𝑌𝑌𝑌𝑌 plane. (c) Imposed extension with 

stretch ratio λ = 1.2 in Z direction.    
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