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ON A TWISTED VERSION OF LINNIK AND SELBERG’S
CONJECTURE ON SUMS OF KLOOSTERMAN SUMS

RAPHAEL S. STEINER

Abstract. We generalize the work of Sarnak and Tsimerman to twisted sums
of Kloosterman sums and thus give evidence towards the twisted Linnik–Selberg
conjecture.

§1. Introduction. The study of Kloosterman sums

S(m, n; c) =
∑

a mod (c)
(a,c)=1

e
(

ma + na
c

)
, where e(z) = e2π iz and aa ≡ 1 mod (c)

is interesting for a variety of reasons. One of these reasons is their connection
to the spectral theory of automorphic forms. In particular the sign changes of
S(m, n; c), for c varying in the arithmetic progression c ≡ 0 mod (s), are related
to the Selberg conjecture about the smallest positive eigenvalue of the Laplacian
on the space 00(s)\H. Concretely, we have that the smallest positive eigenvalue
λs

1 >
1
4 if and only if the following conjecture holds (see [14, Theorem 16.9]).

CONJECTURE 1 (Smooth Linnik in arithmetic progression). Let m, s ∈ N,
g ∈ C3(R+,R+0 ) a compactly supported bump function with |g(a)|6 1 for a = 0,
1, 2, 3, and C > 1. Then we have for every ε > 0,∑

c≡0 mod (s)

1
c

S(m,m; c)g
(

C
c

)
�ε,m,s Cε .

In this paper, however, we are interested in the sharp cut-off variant of the
above conjecture. The first non-trivial progress towards this conjecture was made
by Kuznetsov [18], who managed to prove that∑

c6C

1
c

S(m, n; c)�m,n C1/6 log(2C)1/3 (1.1)

by exploiting the Kuznetsov trace formula (see Proposition 6), which was
established in the same paper. The bound (1.1) is still the best known bound
to date and the Kuznetsov trace formula has become a very powerful tool in a
variety of contexts.
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In their paper [23], Sarnak and Tsimerman have made the dependence on
m, n in (1.1) explicit and moreover achieved a non-trivial bound in the harder
“Selberg” range (C 6

√
|mn|). Their result has further been generalized to

the arithmetic progressions c ≡ 0 mod (s) by Ganguly and Sengupta [10].
Blomer and Milićević [1] have considered the different congruence restriction
c ≡ a mod (r) with (a, r) = 1 in (1.1), though in their work they only treated
the “Linnik” range (C >

√
|mn|). In a different context, Kiral and Young

[17] recently remarked how Kuznetsov trace formulas for different congruence
subgroups and characters can be combined to incorporate both congruence
conditions c ≡ 0 mod (s) and c ≡ a mod (r) in (1.1) simultaneously (assuming
that (r, as) = 1) in a simplified manner.

Motivated by an application to the efficiency of a certain universal set of
quantum gates, Browning, Kumaraswamy and Steiner [3] have proposed the
following twisted version of the Linnik–Selberg conjecture.

CONJECTURE 2 (Twisted Linnik–Selberg). Let B,C > 1 and let m, n ∈ Z
be non-zero. Let s ∈ N and let a ∈ Z/sZ. Then, for any α ∈ [−B, B], we have∑

c≡a mod (s)
c6C

1
c

S(m, n; c)e
(

2
√

mn
c

α

)
�ε,s,B (|mn|C)ε

for any ε > 0.

The same exponential twist arises also in a different context when establishing
a spectral large sieve; compare [7, Proposition 3 and Theorem 2]. Albeit, there
an additional average over m and n is present, which they made extensive use of
and then summed over c trivially.

In this paper we are concerned only with the sum over c. In other words
we shall establish some progress towards Conjecture 2. Before we state our
results we shall introduce some simplifying notation: F . G means |F | 6
Kε(Cmns(1+|α|))εG for some positive constant Kε , depending on ε, and every
ε > 0.

THEOREM 1. Let C > 1, α ∈ R, s ∈ N, and m, n ∈ Z with mn > 0, s �
min{(mn)1/4,C1/2

}, and (m, n, s) = 1. Then we have∑
c6C

c≡0 mod (s)

1
c

S(m, n; c)e
(

2
√

mn
c

α

)

+ 2π
∑

th∈i[0,θ ]

√
mn · ρh(m)ρh(n)

cos(π |th |)

∫
∞

4π
√

mn/C
Y2|th |(x)e

iαx dx
x

.
C1/6

s1/3 + |α| + (1+ |α|
1/3)

(mn)1/6

s2/3 +
m1/4(m, s)1/4 + n1/4(n, s)1/4

s1/2

+ min
{
(mn)1/8+θ/2(mn, s)1/8

s1/2 ,
(mn)1/4(mn, s)1/4

s

}
,
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where Yt is the Bessel function of the second kind of order t , θ is the best known
progress towards the Ramanujan–Selberg conjecture, and the summation th is
over all exceptional eigenfunctions h with eigenvalue 1

4 + t2
h of the Laplacian

for the manifold 00(s)\H, where ρh(n) denotes its n-th L2-normalized Fourier
coefficient.

A few remarks are in order about this theorem. First, we should remark that
one has θ 6 7

64 by the work of Kim and Sarnak [16]. Next, we observe the
appearance of a main term, which is contrary to [10]. Indeed, the latter has an
erroneous treatment of the exceptional spectrum1. One may further analyse the
main term by making use of asymptotics of the Bessel function of the second
kind Yt (y) for y → 0. However, the reader familiar with Bessel functions may
know that these asymptotics behave quite differently for t = 0 and t > 0 and
therefore it would generate uniformity issues in the parameter s. If one disregards
these uniformity issues by fixing all parameters except for C , one finds that each
exceptional eigenvalue th gives rise to a main term of the size C2|th | assuming
that ρh(m)ρh(n) 6= 0. One may also bound the main term altogether. In this case
one gets the following corollary.

COROLLARY 2. Assume the same assumptions as in Theorem 1. Then we
have ∑

c6C
c≡0 mod (s)

1
c

S(m, n; c)e
(

2
√

mn
c

α

)

.
C1/6

s1/3 + C2θ
+ (1+ |α|1/3)

(mn)1/6

s2/3 +
m1/4(m, s)1/4 + n1/4(n, s)1/4

s1/2

+min
{
(mn)1/8+θ/2(mn, s)1/8

s1/2 ,
(mn)1/4(mn, s)1/4

s

}
.

As far as the restrictions go in Theorem 1, they are not very limiting. Indeed,
if s > C1/2, then the Weil bound, which gives the bound s−1+εC1/2+ε , is more
than sufficient and, if (mn)1/4 6 s 6 C1/2, then one is automatically in the
easier Linnik range and for instance the holomorphic contribution is negligible.
One may also consider mn < 0, which would lead one to analyse different
Bessel transforms, or incorporate the further restriction c ≡ a mod (r) with
(a, r) = 1. However, for the latter, an analogue to Proposition 9 for the group
00(s)∩01(r) is required. In fact, the associated Kloosterman sums for this group
admit further cancellation. This can be observed in [12], for example, thereby
leading to stronger results in terms of the parameter r . Investigations of this sort
shall be considered by the author in future work.

1 At the end of page 161, the compact domain to which they apply the mean value theorem of calculus
varies with x . In order to make their argument rigorous, they would need to consider the domain
(ν, y) ∈ [− 7

32 ,
7

32 ] × [0, 1], say. However, the function Jν (y) has a singularity at y = 0 for ν < 0,
which in turn is responsible for the occurrence of a main term.
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The parameter α will play an important role in the discussion as it introduces
a phase in the Bessel transforms. Since the Bessel functions naturally possess
a phase of their own, some interesting phenomena will occur. In particular,
the case |α| = 1 stands out as this is where the stationary phase is at infinity
and transitions from being a point of stationary phase for the Bessel transform
corresponding to the holomorphic spectrum to the one corresponding to the non-
holomorphic or Maass spectrum. Therefore, it should come as no surprise that
the cases |α| < 1 and |α| > 1 behave differently in nature. In the case |α| < 1,
we are able to slightly improve upon Theorem 1, thereby recovering the results
of [23] and [10].

THEOREM 3. Let C > 1, α ∈ R with |α| < 1, s ∈ N, m, n ∈ Z with mn > 0,
s � min{(mn)1/4,C1/2

}, and (m, n, s) = 1. Then we have∑
c6C

c≡0 mod (s)

1
c

S(m, n; c)e
(

2
√

mn
c

α

)

+ 2π
∑

th∈i[0,θ ]

√
mn · ρh(m)ρh(n)

cos(π |th |)

∫
∞

4π
√

mn/C
Y2|th |(x)e

iαx dx
x

. (1− |α|)−1/2−ε
(

C1/6

s1/3 +
m1/8(m, s)1/8 + n1/8(n, s)1/8

s1/4

× min
{
(mn)θ/2,

m1/8(m, s)1/8 + n1/8(n, s)1/8

s1/4

}
+
(mn)1/6

s2/3 +min
{
(mn)1/16+3θ/4(mn, s)1/16

s1/4 ,
(mn)1/4(mn, s)1/4

s

})
and ∑

c6C
c≡0 mod (s)

1
c

S(m, n; c)e
(

2
√

mn
c

α

)

. (1− |α|)−1/2−ε
(

C1/6

s1/3 +
m1/8(m, s)1/8 + n1/8(n, s)1/8

s1/4

× min
{
(mn)θ/2,

m1/8(m, s)1/8 + n1/8(n, s)1/8

s1/4

}
+
(mn)1/6

s2/3

+ min
{
(mn)1/16+3θ/4(mn, s)1/16

s1/4 ,
(mn)1/4(mn, s)1/4

s

})
+ C2θ .

The main goal in [3] was to show that it is possible to improve Sardari’s
work on covering exponents for S3 [22] under the assumption that Conjecture 2
holds. It is unfortunate that the derived upper bounds in Theorems 1 and 3 are
not strong enough to offer any unconditional improvement. The reason behind
this is that in the application one is very deep in the Selberg range, for which
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the trivial bound is still the best known bound. Discussions on exactly why the
Selberg range poses great difficulties can be found in [23].

Finally, we would like to point out a little gem that is hidden inside
Theorem 1.

COROLLARY 4. Let C ∈ R+ and Q(T ) = mT 2
+ lT + n ∈ Z[T ] with

mn > 0. Then we have∑
c6C

1
c

∑
a mod (c)
(a,c)=1

e
(

Q(a)a
c

)
�ε C1/6+ε

+max{|l|, |m|, |n|}23/64+ε .

Upon noting that the inner sum is equal to S(m, n; c)e(l/c), this is essentially
a consequence of Theorem 1. Since there is no congruence restriction, the
relevant group is SL2(Z), which has no exceptional spectrum. One should further
remark that as there is no exceptional spectrum the term |α| in Theorem 1 can
be omitted as in the proof of Corollary 2. As a consequence, we find that either
there is cancellation in the sign or very often the inner exponential sum is much
smaller than

√
c.

§2. Holomorphic and Maass forms. In this section, we set up some notation
and recall necessary facts about holomorphic and Maass forms.

Let H be the upper half-plane and let SL2(R) act on it by Möbius
transformations:

γ · z = γ z =
az + b
cz + d

, j (γ, z) = cz + d, where γ =
(

a b
c d

)
∈ SL2(R).

We consider the following congruence subgroup:

00(s) =
{(

a b
c d

)
∈ SL2(Z)

∣∣∣∣ c ≡ 0 mod (s)
}
.

For a given cusp a of 00(s), we fix a matrix σa ∈ SL2(R) such that σa∞= a and,
if 0a denotes the stabilizer of a, then σ−1

a 0aσa = 0∞, where 0∞ = {±T n
|n ∈ Z}

is the stabilizer at∞ and T =
(

1 1
0 1
)
. Such a matrix is called a scaling matrix for

the cusp a.
The space of cuspidal Maass forms is spanned by the real-analytic square-

integrable eigenfunctions of the Laplacian on the space L2(00(s)\H) with
respect to the inner product

〈h1, h2〉 =

∫
00(s)\H

h1(z)h2(z)
dx dy

y2 . (2.1)

Such a Maass cusp form h possesses a Fourier expansion of the shape

h(z) =
∑
n∈Z
n 6=0

ρh(n)W0,ith (4π |n|y)e(nx), (2.2)
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where Wa,b is the Whittaker function, z = x + iy, and 1
4 + t2

h (th ∈ [0,∞)
∪ i[0, 1/2]) is the eigenvalue with respect to the Laplacian. A theory of Hecke
operators as well as Atkin–Lehner theory can be developed for this space. In
particular for a newform h we have

√
nρh(n) = λh(n)ρh(1) for all n ∈ N,

where λh(n) is the eigenvalue with respect to the n-th Hecke operator, which
furthermore satisfies λh(n)�ε nθ+ε , where θ = 7

64 is admissible by the work of
Kim and Sarnak [16].

We shall require a special basis of this space, which has been worked out in
[2]2. For a Maass newform of level r |s, define the arithmetic functions

rh(c) =
∑
b|c

µ(b)λh(b)2

b

(∑
d|b

χ0(d)
d

)−2

, A(c) =
∑
b|c

µ(b)χ0(b)2

b2 ,

B(c) =
∑
b|c

µ(b)2χ0(b)
b

,

where χ0 is the trivial character modulo r . For l|d, define

ξ ′d,h(l) =
µ(d/ l)λh(d/ l)

rh(d)1/2(d/ l)1/2 B(d/ l)
, ξ ′′d,h(l) =

µh(d/ l)
rh(d)1/2(d/ l)1/2 A(d)1/2

,

where µh(c) is a multiplicative function defined by the following equation of
Dirichlet series: (∑

c>1

λh(c)
cz

)−1

=

∑
c>1

µh(c)
cz .

Write d = d1d2 with d1 square-free and d2 square-full and (d1, d2) = 1. Then,
for l|d , define

ξd,h(l) = ξ ′d1,h((d1, l))ξ ′′d2,h((d2, l))�ε dε . (2.3)

Then an orthonormal basis of Maass forms of level s is given by

⋃
r |s

⋃
h new

of level r

{
hd(z) =

∑
l|d

ξd,h(l)h(lz)
∣∣∣∣ d
∣∣∣∣ sr
}
. (2.4)

We furthermore need a bound on the size of the Fourier coefficient of an element
of the above basis. We have

√
nρhd (n) =

∑
l|(d,n)

√
lξd,h(l)λh

(
n
l

)
ρh(1)

2 Corrections can be found at http://www.uni-math.gwdg.de/blomer/corrections.pdf.
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�ε (ns)εnθ |ρh(1)|
∑

l|(d,n)

l1/2−θ

�ε (ns)εnθ
(

s
r

)1/2

|ρh(1)|, (2.5)

where we have made use of (2.3) and λh(n)�ε nθ+ε . Since h is new of level r ,
but normalized with respect to the inner product of level s (2.1), we further have

|ρh(1)|�ε (s(1+ |th |))ε
(

cosh(π th)
s

)1/2

, (2.6)

due to Hoffstein and Lockhart [11].
Other Maass forms which are important in our discussion are the Eisenstein

series associated to a cusp c. They are defined for Re(τ ) > 1 as

Ec(z, τ ) =
∑

γ∈0∞\σ
−1
c 00(s)

Im(γ z)τ

and admit a meromorphic extension to the whole complex plane. They also admit
a Fourier expansion of the same shape (2.2), which at the point τ = 1

2 + it we
write as

Ec(z, 1
2 + it) = ϕc(0, t; z)+

∑
n 6=0

ϕc(n, t)W0,it (4π |n|y)e(nx).

For holomorphic forms the situation is quite analogous. A holomorphic cusp
form of weight k ∈ N of level s is a holomorphic function h : H → C that
satisfies j (γ, z)−kh(γ z) = h(z) for all γ ∈ 00(s) and is square-integrable with
respect to the inner product

〈h1, h2〉 =

∫
00(s)\H

h1(z)h2(z)yk dx dy
y2 . (2.7)

Holomorphic cusp forms also admit a Fourier expansion of a different shape

h(z) =
∑
n>1

ψh(n)e(nz)

and there is a theory of Hecke and Atkin–Lehner operators. For h a newform, we
have

ψh(n) = λh(n)ψh(1),

where λh(n) is the eigenvalue of the n-th Hecke operator, which furthermore
satisfies the bound λh(n)�ε n(k−1)/2+ε due to Deligne [4, 5] and Deligne and
Serre [6]. Analogous to the Maass case we have a nice orthonormal basis of the
space Sk(s) of holomorphic cusp forms of level s and weight k:⋃

r |s

⋃
h new

of level r

{
hd(z) =

∑
l|d

ξd,h(l)lk/2h(lz)
∣∣∣∣ d
∣∣∣∣ sr
}
. (2.8)
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We furthermore need a bound on the size of the Fourier coefficients of an element
of the above basis. We have

ψhd (n) =
∑

l|(d,n)

ξd,h(l)lk/2λh

(
n
l

)
ψh(1)

�ε (ns)εn(k−1)/2
|ψh(1)|

∑
l|(d,n)

l1/2

�ε (ns)εn(k−1)/2
(

s
r

)1/2

|ψh(1)|, (2.9)

where we have made use of the Deligne bound as well as (2.3). We further have
the bound

|ψh(1)|�ε

(4π)(k−1)/2

s1/20(k)1/2
(ks)ε, (2.10)

when h is new of level r , but normalized with respect to (2.7); see for example
[19, pp. 41 and 42].

§3. Proof of the theorem. We shall prove a dyadic version of Theorem 1 from
which we shall deduce Theorem 1.

THEOREM 5. Let α ∈ R, s ∈ N, m, n ∈ Z with mn > 0, and (m, n, s) = 1.
Assume that s � min{(mn)1/4,C1/2

}. Then we have

∑
C6c<2C

c≡0 mod (s)

1
c

S(m, n; c)e
(

2
√

mn
c

α

)

+ 2π
∑

th∈i[0,θ ]

√
mn · ρh(m)ρh(n)

cos(π |th |)

∫ 4π
√

mn/C

2π
√

mn/C
Y2|th |(x)e

iαx dx
x

.
C1/6

s1/3 + (1+ |α|)
(mn)1/2

C
+

m1/4(m, s)1/4 + n1/4(n, s)1/4

s1/2

+ min
{
(mn)θ/2+1/8(mn, s)1/8

s1/2 ,
(mn)1/4(mn, s)1/4

s

}
.

For |α| < 1, we can do slightly better:

∑
C6c<2C

c≡0 mod (s)

1
c

S(m, n; c)e
(

2
√

mn
c

α

)

+ 2π
∑

th∈i[0,θ ]

√
mn · ρh(m)ρh(n)

cos(π |th |)

∫ 4π
√

mn/C

2π
√

mn/C
Y2|th |(x)e

iαx dx
x

. (1− |α|)−1/2−ε
(

C1/6

s1/3 +
m1/8(m, s)1/8 + n1/8(n, s)1/8

s1/4
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× min
{
(mn)θ/2,

m1/8(m, s)1/8 + n1/8(n, s)1/8

s1/4

}
+
(mn)1/2

C
+min

{
(mn)3θ/4+1/16(mn, s)1/16

s1/4 ,
(mn)1/4(mn, s)1/4

s

})
.

We follow the argument in [23] and [10], and replace the sharp cut-off with
a smooth cut-off and then use the Kuznetsov trace formula. We shall require the
following version of the Kuznetsov trace formula.

PROPOSITION 6 (Kuznetsov trace formula). Let s ∈ N and m, n ∈ Z be two
integers with mn > 0. Then, for any C3-class function f with compact support
in ]0,∞), one has∑

c≡0 mod (s)

1
c

S(m, n; c) f
(

4π
√

mn
c

)
= Hs(m, n; f )+Ms(m, n; f )+ E s(m, n; f ),

where

Hs(m,n; f ) =
1
π

∑
k≡0 mod (2)

k>0

∑
{h j,k} j ONB

of Sk(s)

ik0(k)
(4π
√

mn)k−1ψh j,k (m)ψh j,k(n) f̃ (k− 1),

Ms(m, n; f ) = 4π
∑

h

√
mn

coshπ th
ρh(m)ρh(n) f̂ (th),

E s(m, n; f ) =
∑
c cusp

∫
∞

−∞

√
mn

cosh(π t)
ϕc(m, t)ϕc(n, t) f̂ (t) dt.

Here
∑

h is a sum over an orthonormal basis of Maass forms with respect to the
group 00(s) and the Bessel transforms are given by

f̃ (t) =
∫
∞

0
Jt (y) f (y)

dy
y
,

f̂ (t) =
i

sinhπ t

∫
∞

0

J2it (x)− J−2it (x)
2

f (x)
dx
x
,

where Jt (y) is the Bessel function of the first kind of order t .

Proof. See [21] or [7]. �

From now on let f (x) = eiαx g(x) with g ∈ C∞([0,∞),R+0 ) a smooth real-
valued bump function satisfying the following properties:
(i) g(x) = 1 for 2π

√
mn/C 6 x 6 4π

√
mn/C ;

(ii) g(x) = 0 for x 6 2π
√

mn/(C + T ) and x > 4π
√

mn/(C − T );
(iii) ‖g′‖1 � 1 and ‖g′′‖1 � C/(X · T ),
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where

X =
4π
√

mn
C

and 1 6 T 6
C
2
. (3.1)

The parameter T will be chosen at a later point. Note that we have Supp g ⊆
[X/3, 2X ].

We now wish to compare the smooth sum∑
c≡0 mod (s)

1
c

S(m, n; c) f
(

4π
√

mn
c

)
(3.2)

with the sum in Theorem 5 having the sharp cut-off. By making use of the Weil
bound for the Kloosterman sum, we find that their difference is bounded by∑

C−T6c6C or
2C6c62C+2T,

c≡0 mod (s)

1
c
|S(m, n; c)| 6

∑
C−T6c6C or
2C6c62C+2T

c≡0 mod (s)

τ(c)
√

c
(m, n, c)1/2

6
τ(s)
√

s

∑
e|(m,n)

∑
(C−T )/se6c′6C/se or
2C/se6c′6(2C+2T )/se

τ(ec′)
√

ec′
e1/2

.
1
√

s

∑
e|(m,n)

√
se
√

C

(
1+

T
se

)
.

1
√

C

(
(m, n)1/2 +

T
s

)
. (3.3)

Now we apply Kuznetsov (see Proposition 6) to the smooth sum (3.2). This leads
to the expression∑

c≡0 mod (s)

1
c

S(m, n; c) f
(

4π
√

mn
c

)
= Hs(m, n; f )+Ms(m, n; f )+ E s(m, n; f ).

We shall deal with each of these terms separately in §§3.2, 3.3 and 3.1,
respectively.

In what follows we will use many estimates on the Bessel transforms of f ,
which we summarize here, but postpone their proof until §4.

LEMMA 7. Let f be defined as it is immediately preceding (3.1). Then we
have

f̂ (t), f̃ (t)�
1+ |log(X)| + log+(|α|)

1+ X1/2 + ||α|2 − 1|1/2 X
for all t ∈ R, (3.4)

f̂ (it) = −
1
2

∫ X

X/2
Y2t (x)eiαx dx

x
+ Oε,δ

(
1+

T
C

X−2t−ε
)

for all 0 6 t 6
1
4
− δ, (3.5)
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where log+(x) = max{0, log(x)}. For t > 8, we have

∫ t/2

0
Jt (y) f (y)

dy
y
� 1[2X/3,∞)(t) · t−1/2e−(2/5)t , (3.6)∫ t−t1/3

t/2
Jt (y) f (y)

dy
y
� 1[1/4,∞)(X)1[X/3,4X ](t) · t−1(log(t))2/3, (3.7)∫ t+t1/3

t−t1/3
Jt (y) f (y)

dy
y
� 1[1/4,∞)(X)1[3X/16,3X ](t) · t−1, (3.8)∫

∞

t+t1/3
Jt (y) f (y)

dy
y
� 1[1/4,∞)(X)1[0,2X ](t) · t−1

× min
{

1+ |1− |α||−1/4,

(
X
t

)1/2}
, (3.9)

where 1I is the characteristic function of the interval I . Finally, when |t | > 1
and either |t | /∈ [( 1

12 )||α|
2
− 1|1/2 X, 2||α|2 − 1|1/2 X ] or |α| 6 1, we have

f̂ (t)� |t |−3/2
(

1+min
{(

X
|t |

)1/2

, ||α|2 − 1|−1
(

X
|t |

)−3/2})
, (3.10)

f̂ (t)�
C
T
|t |−5/2

(
1+min

{(
X
|t |

)3/2

, ||α|2 − 1|−2
(

X
|t |

)−5/2})
. (3.11)

One should mention that similar estimates have been derived previously by
Jutila [15, Lemma 3 and Remarks 1 and 2] for a slightly different class of
functions and ranges.

3.1. The continuous spectrum. The goal of this section is to prove the
following bound on the continuous contribution:

E s(m, n; f ) . 1. (3.12)

For this endeavour, we need the following lemma.

LEMMA 8. Let s = s?s2
� with s? square-free and let m, n be positive integers.

We have

∑
c cusp

√
mn

cosh(π t)
ϕc(m, t)ϕc(n, t)�ε

(m, s?s�)1/2(n, s?s�)1/2

s?s�
(mns(1+ |t |))ε .

Proof. This is part of [1, Lemma 1]. �
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Substituting this inequality into the definition of E s(m, n; f ) (see
Proposition 6) yields the bound

E s(m, n; f ) .
(m, s?s�)1/2(n, s?s�)1/2

s?s�

∫
∞

−∞

(1+ |t |)ε | f̂ (t)| dt

.
∫
∞

−∞

(1+ |t |)ε | f̂ (t)| dt.

We split the integral up into three parts:

I1 = ±[
1
12 ||α|

2
− 1|1/2 X, 2||α|2 − 1|1/2 X ],

I2 = [−max{1, X1/2
},max{1, X1/2

}]\I1,

I3 = ±[max{1, X1/2
},∞)\I1.

For I1, we use (3.4) and arrive at∫
I1

(1+ |t |)ε | f̂ (t)| dt�ε

∫
I1

(1+ |t |)ε
1+ |log(X)| + log+(|α|)
||α|2 − 1|1/2 X

dt

�ε (1+ X)ε(1+ |α|)ε(1+ |log(X)| + log+(|α|))
. 1.

For I2, we use (3.4) again and arrive at∫
I2

(1+ |t |)ε | f̂ (t)| dt�ε

∫
I2

(1+ |t |)ε
1+ |log(X)| + log+(|α|)

1+ X1/2 dt

�ε (1+ X)ε(1+ |log(X)| + log+(|α|))
. 1.

For I3, we use (3.10) and arrive at∫
I3

(1+ |t |)ε | f̂ (t)| dt�ε

∫
I3

|t |−3/2+ε
(

1+
(

X
|t |

)1/2)
dt

�ε min{1, X−1/4+ε
} + X1/2 min{1, X−1/2+ε

}

. 1.

This concludes the proof of (3.12).

3.2. The holomorphic spectrum. The goal of this section is to prove the
following inequality:

Hs(m, n; f ) . 1+ X. (3.13)

In order to prove this inequality, we choose our orthonormal basis as in (2.8).
Then

Hs(m, n; f ) =
1
π

∑
k≡0 mod (2)

k>0

∑
r |s

∑
h∈Sk(r)

new

∑
d| sr

ik0(k)
(4π
√

mn)k−1ψhd (m)ψhd (n) f̃ (k − 1)
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.
∑

k≡0 mod (2)
k>0

∑
r |s

∑
h∈Sk(r)

new

∑
d| sr

0(k)
(4π)k−1

s
r
|ψh(1)|2| f̃ (k − 1)|

.
∑

k≡0 mod (2)
k>0

∑
r |s

∑
h∈Sk(r)

new

1
r
| f̃ (k − 1)|

.
∑

k≡0 mod (2)
k>0

k1+ε
| f̃ (k− 1)|,

where we have made use of (2.9), (2.10), and dim Sk(r) � rk. The latter sum
we split up into k 6 9 and k > 9. Using (3.4), we find that∑

k≡0 mod (2)
9>k>0

k1+ε
| f̃ (k − 1)| � 1+ |log(X)| + log+(|α|) . 1.

We also find that ∑
k≡0 mod (2)

k>9

k1+ε
| f̃ (k − 1)| 6 S1 + S2 + S3 + S4,

where

S1 =
∑

k≡0 mod (2)
k>9

k1+ε
∣∣∣∣∫ (k−1)/2

0
Jk−1(y) f (y)

dy
y

∣∣∣∣,
S2 =

∑
k≡0 mod (2)

k>9

k1+ε
∣∣∣∣∫ (k−1)−(k−1)1/3

(k−1)/2
Jk−1(y) f (y)

dy
y

∣∣∣∣,
S3 =

∑
k≡0 mod (2)

k>9

k1+ε
∣∣∣∣∫ (k−1)+(k−1)1/3

(k−1)−(k−1)1/3
Jk−1(y) f (y)

dy
y

∣∣∣∣,
S4 =

∑
k≡0 mod (2)

k>9

k1+ε
∣∣∣∣∫ ∞
(k−1)+(k−1)1/3

Jk−1(y) f (y)
dy
y

∣∣∣∣.
Using (3.6), we find that

S1�ε

∑
k>9

k1/2+εe−(2/5)k�ε 1.

Using (3.7), we find that

S2�ε

∑
X/36k−164X

kε . 1+ X.
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Using (3.8), we find that

S3�ε

∑
3X/166k−163X

kε . 1+ X.

Using (3.9), we find that

S4�ε

∑
3X/2>k−1>8

kε
(

X
k

)1/2

. 1+ X.

The claim (3.13) now follows.

3.3. The non-holomorphic spectrum. In this section, we shall prove the
following two estimates:

Ms(m, n; f )+ 2π
∑

th∈i[0,θ ]

√
mn · ρh(m)ρh(n)

cos(π |th |)

∫ X

X/2
Y2|th |(x)e

iαx dx
x

.

(
C
T

)1/2

+ (1+ |α|)X +
(

1+
T
C

X−2θ
)(

1+
m1/4(m, s)1/4 + n1/4(n, s)1/4

s1/2

+ min
{
(mn)θ/2+1/8(mn, s)1/8

s1/2 ,
(mn)1/4(mn, s)1/4

s

})
(3.14)

and for |α| < 1 also

Ms(m, n; f )+ 2π
∑

th∈i[0,θ ]

√
mn · ρh(m)ρh(n)

cos(π |th |)

∫ X

X/2
Y2|th |(x)e

iαx dx
x

. (1− |α|)−1/2−ε
[(

C
T

)1/2

+

(
1+

T
C

X−2θ
)

×

(
1+

m1/8(m, s)1/8 + n1/8(n, s)1/8

s1/4

× min
{
(mn)θ/2,

m1/8(m, s)1/8 + n1/8(n, s)1/8

s1/4

}
+ min

{
(mn)3θ/4+1/16(mn, s)1/16

s1/4 ,
(mn)1/4(mn, s)1/4

s

})]
. (3.15)

We shall require the following proposition.

PROPOSITION 9. Let A > 1 and n ∈ N. Then we have for the group 00(s)

∑
|th |6A

n
cosh(π th)

|ρh(n)|2�ε A2
+

√
n

s
(n, s)1/2(ns)ε .
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Proof. For the full modular group this is due to Kuznetsov [18,
equation (5.19)] and only minor modifications yield the above; see for example
[24, Lemma 2.9] or [10, Theorem 9]3. �

Let us first prove (3.14). We split the summation over th in Ms(m, n; f ) into
various ranges I1, . . . ,I4, which are treated individually. They are

I1 = [0,max{1, X1/2
}],

I2 = [
1
12 ||α|

2
− 1|1/2 X, 2||α|2 − 1|1/2 X ]\I1,

I3 = [max{1, X1/2
},∞)\I2,

I4 = i[0, 1
2 ].

The first way to treat the range I1 is to choose the basis (2.4) and use (2.5) as
well as (2.6):∑

th∈I1

√
mn

cosh(π th)
ρh(m)ρh(n) f̂ (th)

. (mn)θ
∑
r |s

1
r

∑
th∈I1

new of level r

∑
d| sr

(1+ |th |)ε sup
t∈I1

| f̂ (t)|.

Next, we use (3.4) to bound the transform and a uniform Weyl law to bound the
number of Maass forms h of level r with th 6 T by r1+εT 2 (see for example
[20, Corollary 3.2.3]). We arrive at the bound

. (mn)θ (1+ X1/2). (3.16)

A second way to treat the range I1 is to apply the Cauchy–Schwarz inequality
in conjunction with Proposition 9 and (3.4):∑

th∈I1

√
mn

cosh(π th)
ρh(m)ρh(n) f̂ (th)

6

(∑
th∈I1

m
cosh(π th)

|ρh(m)|2
)1/2(∑

th∈I1

n
cosh(π th)

|ρ j (n)|2
)1/2

sup
t∈I1

| f̂ (t)|

.

(
1+ X +

√
m

s
(m, s)1/2

)1/2(
1+ X +

√
n

s
(n, s)1/2

)1/2 1
1+ X1/2

. 1+ X1/2
+

m1/4(m, s)1/4 + n1/4(n, s)1/4

s1/2

+
(mn)1/4(mn, s)1/4

s(1+ X1/2)
. (3.17)

3 The factor (n, s)1/2 is missing in this reference. The author assumes this is due to the ongoing
assumption in the paper that n is coprime to the level of the congruence subgroup, i.e. (n, s) = 1, since
the author of the current paper is unaware of a proof that allows omitting this factor.
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The range I2 we treat in exactly the same manner and we arrive at the
inequalities∑

th∈I2

√
mn

cosh(π th)
ρh(m)ρh(n) f̂ (th) . (mn)θ

(1+ ||α|2 − 1|1/2 X)2

1+ ||α|2 − 1|1/2 X

. (mn)θ (1+ ||α|2 − 1|1/2 X) (3.18)

and∑
th∈I2

√
mn

cosh(π th)
ρh(m)ρh(n) f̂ (th)

.
(1+ ||α|2 − 1|1/2 X + m1/4(m, s)1/4/s1/2)(1+ ||α|2 − 1|1/2 X + n1/4(n, s)1/4/s1/2)

1+ ||α|2 − 1|1/2 X

. 1+ ||α|2 − 1|1/2 X +
m1/4(m, s)1/4 + n1/4(n, s)1/4

s1/2

+
(mn)1/4(mn, s)1/4

s(1+ ||α|2 − 1|1/2 X)
. (3.19)

The range I3 we further split into dyadic ranges

I3(l) = [2l max{1, X1/2
}, 2l+1 max{1, X1/2

}]\I2, l > 0.

Again, we can estimate∑
th∈I3(l)

√
mn

cosh(π th)
|ρh(m)ρh(n)| . (mn)θ22l(1+ X) (3.20)

and ∑
th∈I3(l)

√
mn

cosh(π th)
|ρh(m)ρh(n)|

. 22l(1+ X)+ 2l(1+ X1/2)
m1/4(m, s)1/4 + n1/4(n, s)1/4

s1/2

+
(mn)1/4(mn, s)1/4

s
. (3.21)

However, this time we use (3.10) and (3.11) to deal with the transform. We have

sup
t∈I3(l)

| f̂ (t)|

.


min

{
1+ X 1/2

22l(1+ X)
,

C
T

1+ X 3/2

24l(1+ X)2

}
for l 6 log2(max{1, X 1/2

}),

min
{

1
2(3/2)l(1+ X)3/4

,
C
T

1
2(5/2)l(1+ X)5/4

}
for l > log2(max{1, X 1/2

}).

(3.22)
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Combining (3.20), (3.21), and (3.22), we find that the contribution stemming
from l 6 log2(max{1, X1/2

}) is

.
∑

l6log2(max{1,X1/2})

(
1+ X1/2

+ 2−l m1/4(m, s)1/4 + n1/4(n, s)1/4

s1/2

+ min
{
(mn)θ (1+ X)1/2, 2−2l (mn)1/4(mn, s)1/4

s(1+ X)1/2

})
. 1+ X1/2

+
m1/4(m, s)1/4 + n1/4(n, s)1/4

s1/2

+ min
{
(mn)θ/2+1/8(mn, s)1/8

s1/2 ,
(mn)1/4(mn, s)1/4

s

}
(3.23)

and the contribution from l > log2(max{1, X1/2
}) is

.
∑

l>log2(max{1,X1/2})

((
C
T

)1/2+δ

2−δl + 2−l/2 m1/4(m, s)1/4 + n1/4(n, s)1/4

s1/2

+ 2−l/2 min
{
(mn)θ/2+1/8(mn, s)1/8

s1/2 ,
(mn)1/4(mn, s)1/4

s

})
.

(
C
T

)1/2

+
m1/4(m, s)1/4 + n1/4(n, s)1/4

s1/2

+ min
{
(mn)θ/2+1/8(mn, s)1/8

s1/2 ,
(mn)1/4(mn, s)1/4

s

}
(3.24)

for a sufficiently small δ > 0.
For the contribution from I4, we first note that we have |th | 6 θ for th ∈ I4

by [16]. We first insert (3.5) and further find that

4π
∑

th∈i[0,θ ]

√
mn

cosh(π th)
ρh(m)ρh(n)

×

(
−

1
2

∫ X

X/2
Y2|th |(x)e

iαx dx
x
+ Oε

(
1+

T
C

X−2|th |−ε
))

= −2π
∑

th∈i[0,θ ]

√
mn · ρh(m)ρh(n)

cos(π |th |)

∫ X

X/2
Y2|th |(x)e

iαx dx
x

+ Oε

((
1+

T
C

X−2θ−ε
)

× min
{
(mn)θ , 1+

m1/4(m, s)1/4 + n1/4(n, s)1/4

s1/2

+
(mn)1/4(mn, s)1/4

s

})
. (3.25)

Combining the minimum of (3.16) and (3.17), the minimum of (3.18) and (3.19),
(3.23), and (3.24) with (3.25) gives (3.14).
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Let us now turn our attention to (3.15). This time we split up into the intervals

I1 = [0, 1],
I2 = [1,∞),
I3 = i

[
0, 1

2

]
.

By making use of (3.4), we find that the contribution from I1 is bounded by

. min
{
(mn)θ , 1+

m1/4(m, s)1/4 + n1/4(n, s)1/4

s1/2 +
(mn)1/4(mn, s)1/4

s

}
.

(3.26)
As before, we split up I2 into dyadic ranges I2(l) = [2l , 2l+1

], l > 0, and use

sup
t∈I2(l)

| f̂ (t)| . min
{
(1− |α|)−1/42−(3/2)l ,

C
T
(1− |α|)−3/42−(5/2)l

}
,

which follows from (3.10) and (3.11). Thus, we find that the contribution from
I2 is bounded by

. (1− |α|)−1/2−δ/2
∑
l>0

((
C
T

)1/2+δ

2−δl

+min
{
(mn)θ/2−θδ

m1/8+δ/4(m, s)1/8+δ/4 + n1/8+δ/4(n, s)1/8+δ/4

s1/4+δ/2 2−δl ,

m1/4(m, s)1/4 + n1/4(n, s)1/4

s1/2 2−(1/2)l
}

+ min
{
(mn)3θ/4−θδ

(mn)1/16+δ/4(mn, s)1/16+δ/4

s1/4+δ 2−2δl ,

(mn)1/4(mn, s)1/4

s
2−(3/2)l

})
. (1− |α|)−1/2−ε

((
C
T

)1/2

+
m1/8(m, s)1/8 + n1/8(n, s)1/8

s1/4

× min
{
(mn)θ/2,

m1/8(m, s)1/8 + n1/8(n, s)1/8

s1/4

}
+ min

{
(mn)3θ/4+1/16(mn, s)1/16

s1/4 ,
(mn)1/4(mn, s)1/4

s

})
(3.27)

for δ > 0 small enough. The contribution from I3 is the same as in (3.25).
Combining (3.26), (3.27), and (3.25) gives (3.15).

3.4. Putting things together. In order to show Theorem 5, we add up all the
inequalities (3.3), (3.12), (3.13), (3.14) respectively (3.15), and make the choice
T = O(s2/3C2/3), which is allowed since s � min{(mn)1/4,C1/2

}. One may
note that we have

(m, n)1/2
√

C
6 X1/2 6 1+ X
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and
T
C

X−2θ
� s2/3−4θC2θ−1/3

· s4θ (mn)−θ � 1.

Theorem 1 follows now at once by estimating the range c 6 min{(mn)1/2, (1+
|α|2/3)s2/3(mn)1/3} trivially using the Weil bound, which gives

∑
c6(1+|α|2/3)s2/3(mn)1/3

c≡0 mod (s)

1
c
|S(m, n; c)| .

(
(1+ |α|2/3)s2/3(mn)1/3

)1/2
s

. (1+ |α|1/3)
(mn)1/6

s2/3 .

For the remaining range min{(mn)1/2, (1 + |α|2/3)s2/3(mn)1/3} 6 c 6 C , we
use Theorem 5. Furthermore, note that∫

∞

1
|Y2t (x)|

dx
x
�

∫
∞

1
x−3/2 dx � 1

uniformly for t 6 θ and hence we have∑
th∈i[0,θ ]

√
mn · |ρh(m)ρh(n)|

cos(π |th |)

∫
∞

1
|Y2|th |(x)|

dx
x

. min
{
(mn)θ , 1+

m1/4(m, s)1/4 + n1/4(n, s)1/4

s1/2 +
(mn)1/4(mn, s)1/4

s

}
,

(3.28)

which allows us to extend the integral in the main term to infinity. This
proves Theorem 1. For Corollary 2, there is no need to extend the integral
to infinity, which allows us to use the Weil bound for the whole range c 6
(1 + |α|2/3)s2/3(mn)1/3 and Theorem 5 for the complementary range. Upon
recalling (3.28), it suffices to show that

∑
th∈i[0,θ ]

√
mn · |ρh(m)ρh(n)|

cos(π |th |)

∫ 1

X
|Y2|th |(x)|

dx
x
. C2θ

when C >
√

mn. This follows from the two estimates∫ 1

X
|Y2t (x)|

dx
x
�ε

∫ 1

X
x−2θ−1−ε dx�ε X−2θ−ε

and ∑
th∈i[0,θ ]

√
mn · |ρh(m)ρh(n)|

cos(π |th |)
�ε (mn)θ+ε .

Theorem 3 is proved analogously.
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§4. Transform estimates. In this section, we prove the claimed upper bounds
in Lemma 7 on the transforms of f . Since all the estimates are very different
in nature, we split them up into multiple lemmas. We generally follow the
arguments of [23] and [7], but tweak them to account for our introduced twist.
First, we shall need two preliminary lemmas, which will be used frequently.

LEMMA 10. Let F,G ∈ C([A, B],C) with G having a continuous
derivative. Then we have∣∣∣∣∫ B

A
F(x)G(x) dx

∣∣∣∣� (‖G‖∞ + ‖G ′‖1) sup
C∈[A,B]

∣∣∣∣∫ C

A
F(x) dx

∣∣∣∣.
Proof. We integrate by parts and find that∫ B

A
F(x)G(x) dx =

∫ B

A
F(x) dx · G(B)−

∫ B

A

∫ y

A
F(x) dx · G ′(y) dy,

from which the first statement is trivially deduced. �

LEMMA 11. Let G, H ∈ C1([A, B],C) and assume that G has a zero and
H ′ has at most K zeros. Then we have

‖G H‖∞ + ‖(G H)′‖1�K ‖G ′‖1‖H‖∞.

Proof. We have ‖G H‖∞ 6 ‖G‖∞‖H‖∞ and ‖G‖∞ 6 ‖G ′‖1 since we have
G(b) =

∫ b
a G ′(x) dx , where a is a zero of G. Furthermore, we have

‖(G H)′‖1 6 ‖G ′H‖1 + ‖G H ′‖1 6 ‖G ′‖1‖H‖∞ + ‖G‖∞‖H ′‖1
6 ‖G ′‖1(‖H‖∞ + ‖H ′‖1)

and
‖H ′‖1 6 2(K + 1)‖H‖∞

by splitting up the integral into intervals on which H ′ has a constant sign. �

LEMMA 12. Let f be defined as it is immediately preceding (3.1) and
|α| 6 1. Then we have

f̃ (t)�
1+ |log(X)|

1+ X1/2 + |1− |α|2|1/2 X
for all t ∈ R.

Proof. We follow the proof of Lemma 7.1 in [7] and Proposition 5 in [23].
To prove the first statement, we use the Bessel representation

Jt (x) =
1

2π

∫ 2π

0
ei(x sin ξ−tξ) dξ,
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which upon exchanging the order of integration yields

f̃ (t) =
1

2π

∫ 2π

0

∫
∞

0
eix sin ξ f (x)

x
dx e−itξ dξ.

Integration by parts yields∫
∞

0
eix sin ξ f (x)

x
dx =

∫
∞

0
eix(sin ξ+α) g(x)

x
dx

=
i

sin ξ + α

∫
∞

0
eix(sin ξ+α)

(
g(x)

x

)′
dx

� min{1, X−1
|sin ξ + α|−1

}.

Thus, we find that

f̃ (t)�
∫ 2π

0
min

{
1, X−1

|sin ξ + α|−1} dξ.

Now, clearly, f̃ (t) � 1. For X > 1, we can do better though. We have |sin ξ +
α| > ||sin ξ | − |α||; thus, we may assume that ξ ∈ [0, π/2] and α > 0. Set
α = sinϕ with ϕ ∈ [0, π/2]. Then we have

sin ξ − α = 2 sin
(
ξ − ϕ

2

)
sin
(
π − ξ − ϕ

2

)
.

Now, for x ∈ [−π/2, π/2], we have |sin(x)| � |x |; thus,

f̃ (t)�
∫ π/2

0
min{1, X−1

|ξ − ϕ|−1
|π − ξ − ϕ|−1

} dξ

�

∫ π/2

0
min

{
1, X−1

|ξ − ϕ|−1
∣∣∣∣π2 − ϕ

∣∣∣∣−1

, X−1
|ξ − ϕ|−2

}
dξ

� min
{

1+ log(X)
|π/2− ϕ|X

, X−1/2
}
.

The first estimate follows from splitting the region of integration into |ξ − ϕ| 6
X−1
|π/2 − ϕ|−1, for which we use the trivial bound of 1, and |ξ − ϕ| >

X−1
|π/2 − ϕ|−1, for which we use the bound X−1

|ξ − ϕ|−1
|π/2 − ϕ|−1. In

order to prove the second estimate, we split the integral into |ξ − ϕ| 6 X−1/2,
for which we use the trivial bound of 1, and |ξ−ϕ|> X−1/2, for which we use the
bound X−1

|ξ −ϕ|−2. Now, we just have to note that π/2−ϕ � sin(π/2−ϕ) =√
1− |α|2. �

LEMMA 13. Let f be defined as it is immediately preceding (3.1) and
|α| > 1. Then we have

f̃ (t)�
1+ |log(X)|

1+ X1/2 + ||α|2 − 1|1/2 X
for all t ∈ R.
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Proof. As before, we find that f̃ (t)� 1 and for X > 1 we have

f̃ (t)�
∫ π/2

0
min

{
1, X−1(|α| − |sin ξ |)−1} dξ

�

∫ π/2

0
min

{
1, X−1

(
|α| − 1+

1
π

(
π

2
− ξ

)2)−1}
dξ

�

∫ π/2

0
min

{
1, X−1(|α| − 1)−1, X−1(|α| − 1)−1/2

(
π

2
− ξ

)−1

,

X−1
(
π

2
− ξ

)2}
dξ

� min
{

1
||α| − 1|X

,
1+ log(X)
||α| − 1|1/2 X

, X−1/2
}
.

We also require some more refined estimates. For this, we consider the
different regions of the J -Bessel function.

LEMMA 14. Let f be defined as it is immediately preceding (3.1) and
|α| 6 1. Then we have for t > 8,∫ t/2

0
Jt (y) f (y)

dy
y
� 1[2X/3,∞)(t) · t−1/2e−(2/5)t ,∫ t−t1/3

t/2
Jt (y) f (y)

dy
y
� 1[1/4,∞)(X)1[X/3,4X ](t) · t−1(log(t))2/3,∫ t+t1/3

t−t1/3
Jt (y) f (y)

dy
y
� 1[1/4,∞)(X)1[3X/16,3X ](t) · t−1,∫

∞

t+t1/3
Jt (y) f (y)

dy
y
� 1[1/4,∞)(X)1[0,2X ](t) · t−1

× min
{
|1− |α||−1/4,

(
X
t

)1/2}
, (4.1)

where 1I is the characteristic function of the interval I .

Proof. We require some uniform estimates on the J -Bessel functions of real
order. For small argument, we have exponential decay

0 6 Jt (x) 6
e−t F(0,x/t)

(1− (x/t)2)1/4
√

2π t
for all x < t, (4.2)

where F(0, x) = log((1+
√

1− x2)/x)−
√

1− x2. The left-hand side follows
from the fact that the first zero of the Bessel function of order t is> t [25, p. 254]
and the right-hand side is [25, equation (9), p. 255]. We will also make use of
Langer’s formulas; see [9, pp. 30 and 89]. The first formula is

Jt (x) = w−1/2(w − arctan(w))1/2
(√

3
2

J1/3(z)−
1
2

Y1/3(z)
)
+ O(t−4/3)

for all x > t, (4.3)
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where

w =

√
x2

t2 − 1 and z = t (w − arctan(w)).

The second one is

Jt (x) =
1
π
w−1/2(artanh(w)−w)1/2K1/3(z)+ O(t−4/3) for all x < t, (4.4)

where

w =

√
1−

x2

t2 and z = t (artanh(w)− w).

And finally for the transitional range |x − t | 6 t1/3, we have

Jt (x)� t−1/3, (4.5)

by [25, equation (7), p. 247]. Although the required uniformity is not clearly
stated, in this special case it does follow from their proof (see [25, pp. 244–247]).

The first inequality follows directly from (4.2):∫ t/2

0
Jt (y) f (y)

dy
y
� t−1/2e−(2/5)t ·

X
X
.

Note that if X 6 1
2 , then the other integrals are equal to zero as f vanishes

identically on the range of integration. Thus, we may assume that X > 1
2 from

now on. For the range [t/2, t − t1/3
], we use (4.4) and

z1/2K1/3(z) =
(
π

2

)1/2

0

(
5
6

)−1

e−z
∫
∞

0
e−ξ

(
ξ

(
1+

ξ

2z

))−1/6

dξ

6

(
π

2

)1/2

e−z for all z > 0;

see [13, Appendix B] for the above integral representation. Thus, we find that

Jt (y)� (t2
− y2)−1/4e−z

+ O(t−4/3).

Now if y 6 min{t−9t1/3(log t)2/3, t−t1/3
}, we have z > log t and thus Jt (y)�

t−4/3; otherwise, we have Jt (y)� t−1/3. We conclude that∫ t−t1/3

t/2
Jt (y) f (y)

dy
y
� t−4/3

·
X
X
+ t−1/3

·
t1/3(log(t))2/3

t
.

For the range t − t1/3 6 y 6 t + t1/3, we use (4.5) and get∫ t+t1/3

t−t1/3
Jt (y) f (y)

dy
y
� t−1/3

·
t1/3

t
.
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We are left to deal with the range t + t1/3 6 y. We make a change of variable
y → t y and we are left to estimate∫

∞

1+t−2/3
Jt (t y)eiαt yg(t y)

dy
y
. (4.6)

We make use of (4.3) and find that z � 1 in this range of y. By making use of
Langer’s formula (4.3), we introduce an error of the size

� t−4/3
·

X
X
,

which is acceptable. Since z � 1, we are able to make use of the classical
estimates

J1/3(z) =

√
2
π z

(
cos
(

z −
π

6
−
π

4

)
+ O(z−1)

)
,

Y1/3(z) =

√
2
π z

(
sin
(

z −
π

6
−
π

4

)
+ O(z−1)

)
.

(4.7)

Inserting (4.7) into (4.6) introduces another error of the size

t−1/2
∫
∞

1+t−2/3
w−1/2z−1g(t y)

dy
y
,

where w =
√

y2 − 1 and z = t (w− arctan(w)). We have z � t min{w3, w} and
thus we are able to estimate the above as

� t−3/2
∫ 2

1+t−2/3

g(t y)
(y2 − 1)7/4 y

dy + t−3/2
∫
∞

2

g(t y)
(y2 − 1)3/4 y

dy

� t−3/2
∫ 2

1+t−2/3

g(t y)y
(y2 − 1)7/4

dy + t−3/2
∫
∞

2

g(t y)
y5/2 dy

� t−1
+ t−3/2

as g(y)� 1. This is again sufficient.
For the main term, we have to consider

t−1/2
∫
∞

1+t−2/3
eit (±ω(y)+αy) g(t y)

(y2 − 1)1/4 y
dy, (4.8)

where

ω(y) =
√

y2 − 1− arctan
√

y2 − 1,

ω′(y) =

√
y2 − 1

y
.

We would like to integrate t (±ω′(y) + α)eit (±ω(y)+αy) by parts, but for
the sign “−sign(α)” and y0 = (1 − α2)−1/2 we have ω′(y0) = |α| and
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we pick up a stationary phase. Let us first assume that α is close to 0
such that y0 < 1+ t−2/3. For |α| � t−1/3 or the sign “sign(α)”, we have
|± ω′(1+ t−2/3)+α| � t−1/3 and we get by means of Lemmas 10 and 11 with
F(y) = (±ω′(y)+α)eit (±ω(y)+αy),G(y) = g(t y), and H(y) = [(±ω′(y) +
α)(y2

− 1)1/4 y]−1 a bound of t−1/2 on the integral, which gives a satisfactory
contribution of t−1 by recalling the extra factor t−1/2 in front of the integral
(4.8). So from now on we can assume that α > 0, α > kt−1/3, for some small
constant k, and the sign being “−”. We treat first the case where α < 1, where
we make use of a Taylor expansion around y0. We split up the integral (4.8)
into three parts I1,I2,I3 corresponding to the intervals [1 + t−2/3, y0 − A],
[y0− A, y0+ A], [y0+ A,∞], respectively, where A will be suitably chosen at a
later stage. For I1 and I3, we again make use of Lemmas 10 and 11 with F(y) =
(ω′(y)−α)eit (ω(y)−αy),G(y) = g(t y), and H(y) = [(ω′(y)−α)(y2

−1)1/4 y]−1.
For this, we require lower bounds on

R(x) =
√

x2 − 1− αx and (x2
− 1)1/4.

We have

R′(x) =
x

√
x2 − 1

− α and R′′(x) = −
1

(x2 − 1)3/2
.

We have that R′(x) is decreasing and positive and hence R(x) is increasing with
a zero at y0. Furthermore, we have that R′′(x) is increasing and negative. We
conclude that

R(y0 + A) > R(y0)+ R′(y0) · A + R′′(y0) ·
A2

2

=
1− α2

α
· A −

(
1− α2

α2

)3/2

·
A2

2

=
1− α2

α
· A ·

(
1−

(1− α2)1/2

α2 ·
A
2

)
�

1− α2

α
· A

for A 6 α2(1− α2)−1/2. We also have

−R(y0 − A) > −R(y0)+ R′(y0)A

�
1− α2

α
· A.

For the second factor, we have

((y0 + A)2 − 1)1/4 >
(

α2

1− α2

)1/4
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and

((y0 − A)2 − 1)1/4 >
(

α2

1− α2 −
2A

(1− α2)1/2

)1/4

�

(
α2

1− α2

)1/4

for A 6 1
4α

2(1 − α2)−1/2. Thus, for A 6 1
4α

2(1 − α2)−1/2, we find that the
contribution from I3 is at most

t−3/2 1
((1− α2)/α)A · (α2/(1− α2))1/4

� t−3/2 α1/2

(1− α2)3/4 A

after recalling the extra factor of t−1/2 in front of the integral (4.8). We claim
that −R(x)(x2

− 1)1/4 increases first and then decreases in [1, y0]. For this, it
suffices to prove that its derivative has exactly one zero in that interval and is
positive at 1+ ε. Note that since our function is zero at the end points, we have
by Rolle’s theorem that there is at least a zero of the derivative. The derivative is

3αx2
− 3x(x2

− 1)1/2 − 2α
2(x2 − 1)3/4

,

which is clearly positive at 1+ ε. Assume now that we have two zeros y1, y2 in
[1, y0]. They both satisfy the equation

3αx2
− 3x(x2

− 1)1/2 − 2α = 0⇒ 9(1− α2)x4
+ (12α2

− 9)x2
− 4α2

= 0.

Now by Vieta’s formula we have

2 6 y2
1 + y2

2 =
9− 12α2

9(1− α2)
=

4
3
−

1
3(1− α2)

6
4
3

and thus a contradiction. With this information, we conclude that if α > K t−1/3,
for some large constant K , we have that the contribution from I1 to (4.8) is at
most

max
{

t−1, t−3/2 α1/2

(1− α2)3/4 A

}
.

Furthermore, we estimate the integral over I2 trivially and get the bound

t−1/2 A
(1− α2)3/4

α1/2 .

Choosing A = t−1/2α1/2(1 − α2)−1/2, which we are allowed to do for K large
enough, we get that (4.8) is bounded by

t−1(1− |α|)−1/4.

We are left to deal with the case α � t−1/3. In this case, we elongate the interval
I2 to [1 + t−2/3, y0 + A] and estimate trivially again. Letting A = 1

4α
2(1 −

α2)−1/2, we find that in this case one also has a bound of t−1 for I2,I3. This
proves the first half of (4.1).
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Let us assume now that α > 2
√

2/3, so that α is close to 1 and y0 > 3.
Assume that 2X/t 6 y0/2, in which case the integrals over I2 and I3 vanish.
We have

min
x∈[1+t−2/3,y0/2]

x∈ 1
t Supp g

−R(x)(x2
− 1)1/4 = min

x∈[1+t−2/3,y0/2]
x∈ 1

t Supp g

1− (1− α2)x2

αx +
√

x2 − 1
(x2
− 1)1/4

� min
{

t−1/6,

(
X
t

)−1/2}
and hence the contribution from I1 is bounded by

t−3/2
(

t1/6
+

(
X
t

)1/2)
.

Similarly for (1
3 )X/t > 2y0, we have that the integrals over I1 and I2 are 0 and

furthermore

min
x∈[2y0,∞)

x∈ 1
t Supp g

R(x)(x2
− 1)1/4 = min

x∈[2y0,∞)

x∈ 1
t Supp g

(1− α2)x2
− 1

αx +
√

x2 − 1
(x2
− 1)1/4

�

(
X
t

)−1/2

and hence the contribution from I3 is bounded by

t−3/2
(

X
t

)1/2

.

Finally, when X/t � y0, we are able to replace |1−|α||−1/4 by (X/t)1/2, which
proves the last inequality in full for |α| < 1.

Now let us have a look at α = 1. We proceed as before only that this time
the stationary phase is at infinity; thus, we can directly apply Lemmas 10 and 11
with F(y) = (ω′(y) − 1)eit (ω(y)−1y),G(y) = g(t y), and H(y) = [(ω′(y) −
1)(y2

− 1)1/4 y]−1. We need an upper bound on the quantity

1

(y −
√

y2 − 1)(y2 − 1)1/4
for y ∈ [1+ t−2/3,∞) and t y ∈ Supp g.

This function decreases and then increases; thus, it takes its maximum at the
boundary. The values at the boundary are easily bounded by

max
{

t1/6,

(
X
t

)1/2}
and therefore we find that the same upper bound as for the case |α| < 1 holds for
|α| = 1. �



464 R. S. STEINER

LEMMA 15. Let f be defined as it is immediately preceding (3.1) and
|α| > 1. Then we have for t > 8,∫ t/2

0
Jt (y) f (y)

dy
y
� 1[2X/3,∞)(t) · t−1/2e−(2/5)t ,∫ t−t1/3

t/2
Jt (y) f (y)

dy
y
� 1[1/4,∞)(X)1[X/3,4X ](t) · t−1(log(t))2/3,∫ t+t1/3

t−t1/3
Jt (y) f (y)

dy
y
� 1[1/4,∞)(X)1[3X/16,3X ](t) · t−1,∫

∞

t+t1/3
Jt (y) f (y)

dy
y
� 1[1/4,∞)(X)1[0,2X ](t) · t−1

× min
{

1+ ||α| − 1|−1/4,

(
X
t

)1/2}
,

where 1I is the characteristic function of the interval I .

Proof. We follow the argument as in the previous lemma. The first three
inequalities follow immediately. For the last inequality, we need a lower bound
on

min
y>1+t−2/3

y∼X/t

l|(|α| − ω′(y))(y2
− 1)1/4 y|

� min
y>1+t−2/3

y∼X/t

(
|α| − 1+

y −
√

y2 − 1
y

)
(y2
− 1)1/4 y

� min
y>1+t−2/3

y∼X/t

(
|α| − 1+

1
y2

)
(y2
− 1)1/4 y.

If X/t � 1, then the minimum is at least |α|t−1/6, which gives a contribution of
t−4/3
|α|−1

� t−1; otherwise X/t � 1, in which case the minimum is at least

max
{
||α| − 1|

(
X
t

)3/2

,

(
X
t

)−1/2}
� max

{
||α| − 1|1/4,

(
X
t

)−1/2}
giving a contribution of

t−3/2 min
{
||α|−1|−1/4,

(
X
t

)1/2}
.

LEMMA 16. Let f be defined as it is immediately preceding (3.1) and
|α| 6 1. Then we have

f̂ (t)�
1+ |log(X)|

1+ X1/2 + |1− |α|2|1/2 X
for all t ∈ R,
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f̂ (t)� |t |−3/2
(

1+min
{(

X
|t |

)1/2

, |1− |α|2|−1
(

X
|t |

)−3/2})
for all |t | > 1,

f̂ (t)�
C
T
|t |−5/2

(
1+min

{(
X
|t |

)3/2

, |1− |α|2|−2
(

X
|t |

)−5/2})
for all |t | > 1.

Proof. We follow the proof of Lemma 7.1 in [7] and Proposition 5 in [23].
To prove the first inequality, we use the equation

J2it (x)− J−2it (x) =
4i
π

sinhπ t
∫
∞

0
cos(x cosh ξ) cos(2tξ) dξ,

which follows from the integral representation found in [25, equation (12),
p. 180]. We have by partial integration∫

∞

0
ei(±x cosh ξ) f (x)

x
dx =

∫
∞

0
eix(± cosh ξ+α) g(x)

x
dx

=
i

± cosh ξ + α

∫
∞

0
eix(± cosh ξ+α)

(
g(x)

x

)′
dx

� min{1, X−1
|cosh ξ ± α|−1

}.

Thus, we find that

f̂ (t)�
∫
∞

0
min{1, X−1

|cosh ξ ± α|−1
} dξ.

Hence, it suffices to bound the latter integral. It is bounded by

�

∫ 1

0
min{1, X−1(ξ2

+ 1− |α|)−1
} dξ +

∫
∞

1
min{1, X−1e−ξ } dξ

�

∫ 1

0
min{1, X−1ξ−2, X−1ξ−1

|1− |α||−1/2, X−1
|1− |α||−1

} dξ

+

∫
∞

1
min{1, X−1e−ξ } dξ.

For X > 1, this is bounded by

� min
{

X−1/2,
1+ log(X)
|1− |α||1/2 X

, X−1
|1− |α||−1

}
+ X−1

and for X 6 1 it is bounded by

�ε1+ |log(X)|.

The first inequality follows immediately.
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The final two inequalities require some more work. Note that f̂ (t) is even in
t and thus we can restrict ourselves to t > 1. We make the substitution x → 2t x
in the definition of f̂ (t)

f̂ (t) =
i

sinhπ t

∫
∞

0

J2it (2t x)− J−2it (2t x)
2

f (2t x)
dx
x

and use the uniform asymptotic expansion of the function G iν(νs) from [8, pp.
1008–1010]4:

G2it (2t x) =
1

sinh(π t)
J2it (2t x)− J−2it (2t x)

2i

=

(
1
π t

)1/2

(1+ x2)−1/4
[

sin
(

2tω(x)−
π

4

)
− cos

(
2tω(x)−

π

4

)
3(1+ x2)−1/2

− 5(1+ x2)−3/2

48t

+
1
2i
(e−i(π/4)E2,1(2t, ω(x))− ei(π/4)E2,2(2t, ω(x)))

]
,

where

ω(x) =
√

1+ x2 + log
(

x

1+
√

1+ x2

)
and the error terms satisfy

E2,1(2t, ω(x)), E2,2(2t, ω(x))� |t |−2 exp(O(|t |−1)).

Let us first deal with the error term. The contribution of the error term is bounded
by

t−5/2
∫
∞

0
| f (2t x)|

dx
x
� t−5/2

� min
{
|t |−3/2,

C
T
|t |−5/2

}
.

For the remaining summands, we have to deal with integrals of the type

t−1/2
∫
∞

0

e±2itω(x)

(1+ x2)1/4+β
f (2t x)

dx
x
= t−1/2

∫
∞

0

e2it (±ω(x)+αx)

(1+ x2)1/4+β
g(2t x)

dx
x

with β ∈ {0, 1
2 ,

3
2 }. We rewrite the above as

1
2

t−3/2
∫
∞

0
(e2it (±ω(x)+αx)2t (±ω′(x)+ α))

g(2t x)
x(±ω′(x)+ α)(1+ x2)1/4+β

dx .

(4.9)
Since

ω′(x) =

√
1+ x2

x
> 1,

4 Unfortunately, [8, equation (5.16), p. 1010] only displays the odd expansions. The even expansions
follow in the same way from the preceding discussions in the reference.
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we have ω′(x) − |α| > 0. We apply Lemmas 10 and 11 with F(x) =
e2it (±ω(x)+α)2t (±ω′(x)+α),G(x) = g(2t x), and H(x) = [x(±ω′(x)+α)(1+
x2)1/4+β ]−1. Moreover, we have

min
x∼X/t

∣∣x(±ω′(x)+ α)(1+ x2)1/4+β
∣∣

� min
x∼X/t

∣∣∣∣x( 1

x
√

1+ x2
+ 1− |α|

)
(1+ x2)1/4

∣∣∣∣
� min

x∼X/t
max

{
(1+ x2)−1/4, (1− |α|)x(1+ x2)1/4

}
.

For x � 1, we see that the minimum is bounded below by 1. If x � 1, then the
minimum is bounded by below by

max
{(

X
t

)−1/2

, |1− |α||
(

X
t

)3/2}
.

Therefore, the integral (4.9) is bounded by

t−3/2
(

1+min
{(

X
t

)1/2

, |1− |α||−1
(

X
t

)−3/2})
.

This yields the second inequality. For the third inequality, we proceed from (4.9)
with integration by parts. We have to deal with four new integrals

I1 = t−5/2
∫
∞

0
(e2it (±ω(x)+α)2t (±ω′(x)+ α))

×
g(2t x)

x2(±ω′(x)+ α)2(1+ x2)1/4+β
dx,

I2 = t−5/2
∫
∞

0
(e2it (±ω(x)+α)2t (±ω′(x)+ α))

×
g(2t x)(±ω′′(x)x2)

x3(±ω′(x)+ α)3(1+ x2)1/4+β
dx,

I3 = t−5/2
∫
∞

0
(e2it (±ω(x)+α)2t (±ω′(x)+ α))

×
g(2t x)x2

x2(±ω′(x)+ α)2(1+ x2)5/4+β
dx,

I4 = t−5/2
∫
∞

0
(e2it (±ω(x)+α)2t (±ω′(x)+ α))

×
t x · g′(2t x)

x2(±ω′(x)+ α)2(1+ x2)1/4+β
dx .

Proceeding as before, we find that

I1 � t−5/2
(

1+min
{(

X
t

)3/2

, |1− |α||−2
(

X
t

)−5/2})
,
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I2 � t−5/2
(

1+min
{(

X
t

)3/2

, |1− |α||−3
(

X
t

)−9/2})
,

I3 � t−5/2
(

1+min
{(

X
t

)3/2

, |1− |α||−2
(

X
t

)−5/2})
,

I4 �
C
T

t−5/2
(

1+min
{(

X
t

)3/2

, |1− |α||−2
(

X
t

)−5/2})
.

We conclude the third inequality from this. �

LEMMA 17. Let f be defined as it is immediately preceding (3.1) and |α| >
1. Then we have

f̂ (t)�
1+ |log(X)| + log(|α|)

1+ X1/2 + ||α|2 − 1|1/2 X
for all t ∈ R.

When |t | /∈ [( 1
12 )||α|

2
− 1|1/2 X, 2||α|2 − 1|1/2 X ] and |t | > 1, we can do better

and find in that case that

f̂ (t)� |t |−3/2
(

1+min
{(

X
|t |

)1/2

, ||α|2 − 1|−1
(

X
|t |

)−3/2})
,

f̂ (t)�
C
T
|t |−5/2

(
1+min

{(
X
|t |

)3/2

, ||α|2 − 1|−2
(

X
|t |

)−5/2})
.

Proof. We follow the proof of the previous lemma, which leads us to estimate

f̂ (t)�
∫
∞

0
min

{
1, X−1

|cosh ξ − |α||−1} dξ.

Set cosh(ϕ) = |α| and note that we have eϕ � |α| and log(|α|) 6 ϕ 6
1+ log(|α|) for |α| > 1. This leads to

f̂ (t)�
∫
∞

0
min

{
1, X−1 sinh

(
ξ + ϕ

2

)−1

sinh
(
|ξ − ϕ|

2

)−1}
dξ.

Thus, it suffices to bound the latter integral. We split up the region of integration
into three parts I1,I2, and I3, where we restrict ourselves to |ξ − ϕ| > 1, |ξ −
ϕ| 6 1 ∧ ξ + ϕ > 1, and |ξ − ϕ| 6 1 ∧ ξ + ϕ 6 1, respectively. In particular,
the last case may only occur when ϕ 6 1. For X > 1, we have

I1 �

∫
∞

0
min{1, X−1e−max{ϕ,ξ}

} dξ

�

∫ ϕ

0

e−ϕ

X
dξ +

∫
∞

ϕ

e−ξ

X
dξ

�ε

1+ log(|α|)
|α|X

,
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I2 �

∫ ϕ+1

max{0,ϕ−1}
min{1, X−1e−(ξ+ϕ)/2|ξ − ϕ|−1

} dξ

�

∫ 1

−1
min{1, X−1e−ϕ|ψ |−1

} dψ

�

∫ 1/|α|X

0
dψ +

∫ 1

1/|α|X

1
|α|Xψ

dψ

�
1+ log(|α|X)
|α|X

,

I3 �

∫ 1−ϕ

max{0,ϕ−1}
min{1, X−1

|ξ2
− ϕ2
|
−1
} dξ

�

∫ 1−2ϕ

max{−1,−ϕ}
min{1, X−1ϕ−1

|ψ |−1, X−1
|ψ |−2

} dψ

� 1[0,1](ϕ)min
{

1,
1+ log+(Xϕ)

Xϕ
, X−1/2

}
� 1[0,1](ϕ)min

{
1,

1+ log(X)
||α| − 1|1/2 X

, X−1/2
}
.

For X 6 1, we have

I1 �

∫
∞

0
min{1, X−1e−max{ϕ,ξ}

} dξ

�

∫ max{ϕ,− log(X)}

0
min

{
1,

e−ϕ

X

}
dξ +

∫
∞

max{ϕ,− log(X)}

e−ξ

X
dξ

�
1+ log(|α|)+ |log(X)|

1+ |α|X
+

1
X

min{|α|−1, X}

�
1+ log(|α|)+ |log(X)|

1+ |α|X
,

I2 �

∫ ϕ+1

max{0,ϕ−1}
min{1, X−1e−(ξ+ϕ)/2|ξ − ϕ|−1

} dξ

�

∫ 1

−1
min{1, X−1e−ϕ|ψ |−1

} dψ

� min
{

1,
1+ log+(|α|X)
|α|X

}
,

I3 �

∫ 1−ϕ

max{0,ϕ−1}
min{1, X−1

|ξ2
− ϕ2
|
−1
} dξ

� 1[0,1](ϕ).

This completes the case X 6 1 of the first inequality.
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For the second inequality, we proceed as in Lemma 16 and have to consider
the integral

t−1/2
∫
∞

0

e2it (±ω(x)+αx)

(1+ x2)1/4+β
g(2t x)

dx
x
.

We would pick up a stationary phase at x0 = (α
2
− 1)−1/2; however, we have

x ∈ [ 16 (X/t), X/t], which does not intersect [12 x0, 2x0]. Thus, we split up the
integral into two parts I1 and I2 corresponding to the intervals [0, 1

2 x0] and
[2x0,∞). Without loss of generality, let α > 1.

Assume first that X/t 6 1. In this case, we have by Lemmas 10 and 11 with
the choice F(x) = (±ω′(x) + α)e2it (±ω(x)+α),G(x) = g(2t x), and H(x) =
[(1+ x2)1/4+β(

√
1+ x2 ± αx)]−1,

I1 � t−3/2 1

min
x∈[0, 1

2 x0]∩[
1
6 (X/t),X/t]

√
1+ x2 ± αx

,

I2 � t−3/2 1

min
x∈[2x0,∞)∩[

1
6 (X/t),X/t]

αx ±
√

1+ x2
.

In both estimates, the sign being “−” will give the larger contribution. The
allowed range for t leaves us with two cases, either x0 > 2X/t or x0 6

1
12 (X/t).

If x0 > 2X/t , then the integral over I2 is 0 and√
1+ x2 − αx =

1− x2(α2
− 1)

√
1+ x2 + αx

� 1 for x 6
1
2

x0 and x 6 1.

Thus, we get a total bound of t−3/2. Similarly, if x0 6
1

12 (X/t), we have that the
integral over I1 is 0 and

αx −
√

1+ x2 =
x2(α2

− 1)− 1
√

1+ x2 + αx
�

1
αx

for x > 2x0 and x 6 1.

Note that for x 6 1 we also have αx −
√

1+ x2 > αx −
√

2 and hence

αx −
√

1+ x2 � αx +
1
αx

for x > 2x0 and x 6 1.

This yields a total bound of t−3/2.
Assume now that X/t > 1. In this case, we have

I1 � t−3/2 1

min
x∈[0, 1

2 x0]∩[
1
6 (X/t),X/t]

(√
1+ x2 − αx

)
x1/2

,

I2 � t−3/2 1

min
x∈[2x0,∞)∩[

1
6 (X/t),X/t]

(
αx −

√
1+ x2

)
x1/2

.
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If x0 > 2X/t , then we have that the integral over I2 is 0 and(√
1+ x2 − αx

)
x1/2
=

1− x2(α2
− 1)

√
1+ x2 + αx

x1/2
� x−1/2

for x 6
1
2

x0 and x >
1
12
.

Thus, we get a total bound of t−3/2(X/t)1/2 � t−3/2
|α2
− 1|−1(X/t)−3/2.

Similarly, if x0 6
1
12 (X/t), we have that the integral over I1 is 0 and

(αx −
√

1+ x2) =
x2(α2

− 1)− 1
√

1+ x2 + αx
>

3
8

x2(α2
− 1)

αx
�

1
αx

for x > 2x0 and x >
1
6
.

This yields a total bound of

t−3/2
·min

{
α

(
X
t

)1/2

,
α

α2 − 1

(
X
t

)−3/2}
� t−3/2

(
1+min

{(
X
t

)1/2

,
1

α2 − 1

(
X
t

)−3/2})
since X/t > 1. This proves the second inequality.

For the third inequality, we integrate once by parts. We then have to consider
the integrals

I4 = t−5/2
∫
∞

0
(e2it (±ω(x)+α)2t (±ω′(x)+ α))

×
g(2t x)

x2(±ω′(x)+ α)2(1+ x2)1/4+β
dx,

I5 = t−5/2
∫
∞

0
(e2it (±ω(x)+α)2t (±ω′(x)+ α))

×
g(2t x)(±ω′′(x)x2)

x3(±ω′(x)+ α)3(1+ x2)1/4+β
dx,

I6 = t−5/2
∫
∞

0
(e2it (±ω(x)+α)2t (±ω′(x)+ α))

×
g(2t x)x2

x2(±ω′(x)+ α)2(1+ x2)5/4+β
dx,

I7 = t−5/2
∫
∞

0
(e2it (±ω(x)+α)2t (±ω′(x)+ α))

×
t x · g′(2t x)

x2(±ω′(x)+ α)2(1+ x2)1/4+β
dx .

By similar means as before, we have that

I4 � t−5/2
(

1+min
{(

X
t

)3/2

, ||α|2 − 1|−2
(

X
t

)−5/2})
,
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I5 � t−5/2
(

1+min
{(

X
t

)3/2

, ||α|2 − 1|−3
(

X
t

)−9/2})
,

I6 � t−5/2
(

1+min
{(

X
t

)3/2

, ||α|2 − 1|−2
(

X
t

)−5/2})
,

I7 �
C
T

t−5/2
(

1+min
{(

X
t

)3/2

, ||α|2 − 1|−2
(

X
t

)−5/2})
.

We conclude the last inequality from this. �

LEMMA 18. Let f be defined as it is immediately preceding (3.1). For 0 6
t 6 1

4 − δ, we have the following expansion:

f̂ (it) = −
1
2

∫ X

X/2
Y2t (x)eiαx dx

x
+ Oε,δ

(
1+

T
C

X−2t−ε
)
.

Proof. We have

f̂ (it) =
1

sin(2π t)

∫
∞

0

J−2t (x)− J2t (x)
2

f (x)
dx
x

= −
1
2

∫
∞

0

[
J2t (x) cos(2π t)− J−2t (x)

sin(2π t)
+

J2t (x)− J2t (x) cos(2π t)
sin(2π t)

]
× f (x)

dx
x

= −
1
2

∫
∞

0
[Y2t (x)+ J2t (x) tan(π t)] f (x)

dx
x
.

Now, we have∫
∞

0
J2t (x) tan(π t) f (x)

dx
x
�

∫
∞

0
min{x2t , x−1/2

}
g(x)

x
dx � 1

and (∫ X/2

2π
√

mn/(C+T )
+

∫ 4π
√

mn/(C−T )

X

)
Y2t (x) f (x)

dx
x
�

T
C

sup
x∼X
|Y2t (x)|.

The following inequality will imply the result:

|Y2t (x)|�ε

{
x−2t−ε if x 6 1,
x−1/2 if x > 1.

The range x > 1 can be found in [13, Appendix B.35] and for the range x 6 1
we make use of the following integral representation [25, p. 170]:

Y2t (x) = −
2(x/2)−2t

√
π0(1/2− 2t)

∫
∞

1

cos(xy)
(y2 − 1)2t+1/2 dy.
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The integral from 1 to 1/x is bounded by∫ 2

1

1
(y − 1)1−2δ dy +

∫ max{2,1/x}

2

1
(y2 − 1)1/2

dy

=
1
2δ
(y − 1)2δ

∣∣∣∣2
y=1
+ log

(√
y2
− 1+ y

)∣∣∣∣max{2,1/x}

y=2
�ε,δ x−ε

and the remaining integral is bounded by O(1), by Lemma 10 with F(y) =
cos(xy) and G(y) = (y2

− 1)2t+1/2. �
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