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Near Counterexamples to Weil’s Converse
Theorem

par RAPHAEL S. STEINER

RESUME. Nous démontrons que dans le théoréme réciproque de Weil les équa-

tions fonctionnelles pour les caracteres de Dirichlet modulo < % ne suf-

fisent pas & assurer la modularité relativement au groupe I'(p), ol p est un
nombre premier.

ABSTRACT. We show that in Weil’s converse theorem the functional equations

of multiplicative twists of the first 4/ % moduli are not sufficient to conclude

modularity for the group I'o(p), where p is a prime number.

1. Introduction

Let SLy(R) act on the upper half-plane H by Mébius transformations.
That is, we define as usual

az+b

a b
VE= for v = (c d> € SLa(R).

For such a matrix, we further define the cocycle j(v,z) = ¢z + d and an
action on the holomorphic functions f : HH — C on the upper half-plane as
(flx7)(2) = §(7, 2)"F f(72). For our convenience, let us denote the following
special matrices:

1
0 -1 11 0 —N3
S_<1 0)’ T_(O 1)’ WN_(Né 0 )

Let (am)meN, (bm)men be two complex sequences that satisfy |am,|, |bm| =
O(m?) for some o > 0, where we follow Landau’s big O convention. Asso-
ciated to these sequences, we define the two holomorphic functions on the
upper half-plane:

f(z) = Z ame(mz) and g(z) = Z bme(mz),

m>1 m>1
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where e(z) = €2™*. Let us further define their associated Dirichlet series
and completions thereof:

= Z amm™ %, L(g,s) = Z byym ™%,

m>1 m>1
A(f,s) = (2m)7°T(s)L(f,s), Alg,s) = (2m)7°T'(s)L(g, s),

where I'(s) is the Euler gamma function. These are a priori only defined for
R(s) > o + 1. For k € Z, Hecke [2] proved the equivalence of the following
two statements.

(1) f,g are cusp forms of weight k for SLa(Z), and (f[xS)(z) = g(2).

(2) The functions A(f, s) and A(g, s) admit a holomorphic continuation
to the whole complex plane, are bounded in any vertical strip, and
satisfy the functional equation

A(f,s) = i"Ag,k — 9).

An equivalent statement for

To(N) = {(i Z) S SLQ(Z)’MC}

is much harder. Especially, the implication going from the functional equa-
tions to proving that f and g must be cusp forms requires further informa-
tion. Weil [7] resolved this issue by assuming additional functional equations
coming from multiplicative twists. To this end, define for a primitive char-
acter 1) modulo ¢ with (¢, N) = 1 the Dirichlet series and their respective
completions

L(f,9,s) = Z amtp(m)m=?, L(g,v,s) Z b tp(m

m>1 m>1

A(f, 0, 8) = 2m) T (s)L(f, v, 5), Alg, ¥, s) = (2m)"°T'(s)L(g,%, 5).
Let M be a fixed positive integer. Assume for every primitive character
¥ modulo ¢ with (¢, MN) = 1 the holomorphic continuation of A(f,,s),
A(g,, s) to the whole complex plane and boundedness in any vertical strip.
Furthermore, assume all the functional equations
T()?

q

A(f, 1, 8) = % (@) (N) 2 (Ng?) 2 Mg, b, k — s),

for some fixed Dirichlet character x of modulus N, where (7)) is the Gauss
sum of . In this case, Weil [7] was able to prove that f, respectively g,
are cusp forms of weight k for I'g(N) with Nebencharakter x, respectively
X, and (f|gWn)(2) = g(z). Khoai [3] later refined the number of func-
tional equations of twists required. He proved that the primitive twists
of modulus ¢ < N? with (¢, N) = 1 suffice to come to the same conclusion.
Moreover, if N = p" is a power of a prime, then already ¢ < N suffices. In
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this paper, we are able to show that for N = p, a prime, it is not sufficient to
only assume the functional equations of the primitive multiplicative twists
of modulus at most (% +0(1))/p-

Theorem 1.1. Let p > 29 be a prime, x an even Dirichlet character
modulo p and k > 16 an even integer. There exist two compler sequences
(@m)meN, (bm)meN With |am|, |bm| = O(m?) for some o > 0 which satisfy
the following two properties:

(1) Both f(z) = X.,,>1 ame(mz) and g(z) = > ,,>1 bme(mz) are not
elements of U, n Si(T'(N)), that is to say f and g are not classical
cusp forms of any weight for any congruence subgroup.

(2) For any primitive character v» modulo q with (q,p) = 1, the func-
tions A(f,,s),A(g,,s) can be holomorphically continued to the
whole complex plane, are bounded in any wvertical strip. If q <

%, they furthermore satisfy the functional equation
(¥)?
q

(1.1) A(f, 0, 8) = P X(Q) 0 () = (pg®) s ~*Alg, ¥k — 5).

In the context of converse theorems for classical modular forms, it is
more natural to look at additive twists rather than multiplicative ones. For
this purpose, we define for (a,q) = 1:

(3= S e (") L{o) = e ()

m>1 m>1

A (f, %, s) = (27) " °T'(s)L (f, %, s) , A (g, %, s) = (27) " °T'(s)L (g, %, s) )

For additive twists, we are able to give the following converse theorem for
prime level p.

Theorem 1.2. Let p > 3 be a prime. There exists a (computable) set Q of
QL%J +3 natural numbers q, which satisfy 1 < q < p—2, such that for every
integer k > 0 and Dirichlet character x modulo p with x(—1) = (—1)F the
following holds. Given any two complex sequences (am)men and (bm)meN
with ||, |bm| = O(m?) for some o > 0, then the following two statements
are equivalent:

(1) f(2) = X,u>1ame(mz) is a cusp form of weight k for To(p) with

Nebencharakter x and (f|W,)(2) = g(2) = 3 n>1 bme(mz).

(2) For every q € Q, the functions A(f,_Tl,s) and A(g,w,s),

where 1 < ¢, < p and satisfies qq, = —1mod(p), can be holomor-
phically continued to the whole complex plane and are bounded in
every vertical strip, and satisfy the functional equation

12 A(2Ths) = i) Ea (o WU )



316 Raphael S. STEINER

Remark 1.3. The number of functional equations of additive twists to go
back from (2) to (1) in Theorem 1.2 is essentially optimal as one can con-
struct counterexamples similar to the proof of Theorem 1.1 if one assumes
at most 2| %] — 2 additive twists.

Note that this further strengthens Khoai’s result, since, by using Gauss
sums, one may reduce down to about p/6 moduli for which one needs to
consider the multiplicative twists.

The proofs of both theorems rely on Hecke’s converse theorem [2], which
in its most general form, proven by Bochner [1], establishes an equivalence of
a functional equation and a modular relation. Subsequently, Theorem 1.2
follows from a result of Rademacher [5] on the generators of I'g(p). The
proof of Theorem 1.1, however, relies on the interesting observation that
the modularity of | f| for a finite index subgroup I' C SLy(Z), i.e. |(f|xy)]| =
|f|,¥ v € T, does not always imply the modularity (in the classical sense)
of f on some congruence subgroup I'(IV), despite this being the case for the
full modular group I' = SLy(Z), where it would follow that f is modular
on I'(12). Essentially, this was shown by van Lint [4] as a consequence of
the fact that I'(12) is contained in the commutator subgroup of SLy(Z). In
general, it is no longer true that the commutator subgroup of a finite index
subgroup I" of SLg(Z) is a congruence subgroup. In fact, the abelianisation
of the group I'y(p) has rank approximately p/6 (see Corollary 2.2). It is this
large rank which will give us plenty of freedom to construct a multiplier
system v of infinite order satisfying certain equations stemming from the
imposed functional equations of multiplicative twists. Such a multiplier
system is of course never trivial on any congruence subgroup and therefore
cannot agree with a multiplier system that comes from a Dirichlet character.
Hence, any non-trivial cusp form with respect to the constructed multiplier
system v gives rise to the counterexample in Theorem 1.1.

2. Notation and Preliminaries

Let T" be a finite index subgroup of SL2(Z) that contains —I. We call a
group character v : T' — S! that satisfies v(—1I) = (—1)* a multiplier system
of weight k for I'. We call a holomorphic function f on the upper half-plane
modular of weight k for I' with respect to v if it satisfies (f|xy)(z) =
v(7y)f(2) for every 4 € I'. Such a function f admits an expansion of the
shape

(e 9]

(Fhr)@) = 3 ame (")

n
m=—o0o T

for every 7 € SLg(Z), where n, is the cusp width of the cusp 700 and
K. is the cusp parameter at the cusp 7oo. They are both independent of
the choice of representative of Too mod(I"). The former is characterised by
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being the smallest natural number n such that 777~ € T and the latter is
characterised by e(k,) = v(7T" 7~ !) and k. € [0,1). We say f is a modular
form of weight k for I' with respect to v if we can restrict the summation
to m + k; > 0 for every 7 € SLy(Z). Moreover, we say f is a cusp form
of weight k for I' with respect to v if the summation can be restricted to
m+ k; > 0 for every 7 € SLy(Z). We refer the interested reader to [6] for a
more detailed treatment on modular forms (of arbitrary real weight) with
respect to an arbitrary multiplier system.

Let I' =T'g(p), where p > 3 is a prime. The multiplier systems of weight
k for To(p) include all Dirichlet characters x : (Z/pZ)* — St with x(—1) =
(—1)%; they are given by

o) =x(@) it 7= (¢ 7)€ Tolo)

but, in fact, there are many more multiplier systems. They are in one-to-one
correspondence with group homomorphisms

v: "0 /i ) o) = S

satisfying v(—1I) = (—1)*. When k is even, we can characterise this quotient
completely by a proposition of Rademacher [5].

Proposition 2.1 (Rademacher). Let p > 3 be a prime. Then, we have
Fo(p)/ﬂ > Fy_gq_op % (Z)27  ZJ27)* % (Z)3Z x Z./3Z.)"

where | = 2| ] 4+ 3; a = 0, unless p = 1mod(4) in which case a = 1;
b =0, unless p = 1mod(3) in which case b = 1; and Fj_oq_2p is the free
group with | —2a — 2b generators. The isomorphism stems from a set of free
generators of Uo(p)/{xI}, which are given by S and some matrices of the

shape
—Qx -1
V, = ,
! (qq* +1 ¢ >

with 2 < q < p — 2, where ¢, is the integer such that 1 < ¢* < p and
q9x = —1mod(p).

Corollary 2.2. Let p > 3 be a prime. Then, we have

Fo(p) / L To(p). To(p)] = 2727 x (2/22) x (2/32)",

where | = 2| & | +3; a =0, unless p = 1 mod(4) in which case a = 1; and
b =0, unless p = 1mod(3) in which case b= 1.

Thus, we get plenty of freedom when p becomes large, which we may use
to satisfy certain equations.
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3. Proof of the Theorems

Let f(2) = >_,,50 ame(mz) be a cusp form of integer weight £ > 0 with
respect to a multiplier system v on I'g(p) with cusp parameters k; = kg = 0
and let us denote

9(2) = (FlsWp)(2) = Y bme(ma),

m>0

which is another cusp form with respect to a conjugated multiplier system
of v. Let ¢ € N with ¢ # p and 0 < a < ¢ with (a,q) = 1. Let B, D be two
integers that satisfy the relation ¢D + apB = 1, which admits a solution by
Bézout. We have the matrix identity

1 ¢ D a p%B p_%q*1
q | = Wp 1
0 1 —pB q —p2q 0

and therefore we get the identity

G o

By definition, this is just

(32) Y ame (‘””) e(mz)

m>0 q

core(B Dttt S (B0 2)

m>0

Now, f\k(é a{q) and g|k((1) *]f/q) are modular forms on I'(pg?) for some

multiplier system, respectively. Thus, by Hecke’s original proof, A(f, %, s)
and A(g, %, s) possess a holomorphic continuation to the whole complex
plane and are bounded in every vertical strip. Furthermore, by Bochner [1,
Theorem 4], the modular relation (3.2) is equivalent to the functional equa-
tion

(3.3) A (f, T s) = kv ((—?B Z)) (pq2)§_5A (g, %, k— s) .

Setting v = vy shows the direction (1) = (2) in Theorem 1.2. For the
reverse direction, we need to fix our set Q. It shall consist of 1 and those
q for which V; is needed to generate I'g(p) / & I in Proposition 2.1. We'll
make use of the equivalence of (3.3) and (3.1), where v(( _?B 7)) is to be
regarded as any fixed constant. First, we set (a,q, B, D) = (—1,1,—1,1—p)
and make use of the functional equation (1.2) for 1 € Q. This yields

<fk<(1, _11)>(2)=x(1) <qu(‘01 ) Wp) (%)
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or equivalently f(z) = (g[xWp)(2) and consequently (f[xW)p)(z) = g¢(2)
after applying |,W), to both sides. With this extra information, we further
find that (3.1) is equivalent to

(f (s q)> @=v((p 0)) @l

By using this with (a,q, B, D) = (1,q,—(qqx + 1)/p, —q), where ¢ € Q,
and the functional equation (1.2) for ¢, we find

(s

By combining this with Proposition 2.1 and the trivial facts that
(flsT)(2) = f(z) and (flx = I)(2) = (=1)*f(2) = x(=1)f(2), we find
that f is modular of weight k for I'g(p) with Nebencharakter y. The fact
that f is indeed a cusp form can be seen from the expansions at the cusps
oo and 0 which are given by the definitions of f, respectively g.

We move onto the proof of Theorem 1.1. Let k£ now be even and v, f
and ¢ be defined as in the beginning of this section. The restriction that
k1 = kg = 0 implies that the dependence on B in both

(2 ) minlots

k( 4 1)><z>:x<q>f<z>.

qgx+1 ¢

is only on B mod(q) (and thus only depends on ¢ and a mod ¢). We further
make the assumption that

(3.4) v <<—lp)B Z)) =x(q), for (a,g)=1land1<qg<Q,

where y is a fixed Dirichlet character modulo p. That is to say we want v
to pretend to be the Dirichlet character y for small values of q.
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Now, let 9 be a primitive Dirichlet character modulo ¢ with (¢,p) =1
and 1 < ¢ < Q. Then, we have

A(fvs) = —— 3 B (£.2.5)
7—(1/})am0d(q)
i - _
- DX eyt S Fapn (g, 2k — )
T(Q’Z)) amod(q)
_ *x(9)¥(=p) 2E—s NV ui—ap @
= m w0 am%(q)w( DINCEN I
T(¥)?

=ﬁﬂ@mm—;f@fﬁ*M%%k—@,

where the prime in the summation denotes that we are only summing over
(a,q) = 1 and @ denotes the multiplicative inverse of amod(gq). This is
the functional equation we would expect for classical modular forms with
Nebencharakter x. In order to prove Theorem 1.1, we shall construct such
a multiplier system v of infinite order as such a multiplier system cannot
be trivial on any congruence subgroup. We further have to show that there
is a non-zero cusp form with respect to that multiplier system for some
weight k.

Our assumptions on our multiplier system, that is (3.4) and k; = kg = 0,
form a system of linear equations with at most 2 + Q?/2 equations in
log v(7y), where « runs over the generators in Corollary 2.2. Moreover, this
system of equations admits a solution, namely, v, . Thus, if 2 + Q?*/2+5<
2|5 +3or Q@ < /(p—24)/3 we find that the kernel has dimension at
least 5. Thus, we can find an element v’ of infinite order in the kernel which
satisfies log v'(7y) = 0 for any generator + of finite order and hence v = v'vy,
is a multiplier system which satisfies our requirements. The construction
of a non-zero cusp form is now straightforward. As in [6, Theorem 5.1.2],
one can construct Eisenstein series for k > 4, which are non-zero, say for
example Gy(z;0;T9(p), k,v), and multiply it with the cusp form A(z) of
weight 12 for SLy(Z) to get a cusp form of weight k + 12 with respect to v
for T'g(p), which concludes the proof of Theorem 1.1.
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