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CANNOT BE UNIFORMLY APPROXIMATED BY (C? MAPPINGS
WITH DERIVATIVE OF RANK AT MOST 3

PAWEYL GOLDSTEIN AND PIOTR HAJLASZ

ABSTRACT. We find a counterexample to a conjecture of Galeski [1] by constructing for
some positive integers m < n a mapping f € C1(R",R") satisfying rank Df < m that,
even locally, cannot be uniformly approximated by C? mappings f. satisfying the same
rank constraint: rank D f. < m.

1. INTRODUCTION

In the context of geometric measure theory Jacek Galeski [1, Conjecture 1.1 and Sec-
tion 3.3] formulated the following conjecture.

Conjecture 1. Let 1 < m < n be integers and let Q C R™ be open. If f € C*(Q,R")
satisfies rank D f < m everywhere in ), then f can be uniformly approzimated by smooth
mappings g € C*(,R"™) such that rank Dg < m everywhere in €.

A weaker form of the conjecture is whether any mapping as in Conjecture 1 can be
approximated locally.

Conjecture 2. Let 1 < m < n be integers and let Q C R" be open. If f € C'(Q,R")
satisfies rank Df < m everywhere in ), then for every point x € ) there is a neighbor-
hood B"(x,e) C Q and a sequence f; € C°(B"(x,¢),R") such that rank D f; < m and f;
converges to f uniformly on B"(x,¢).

In fact Galteski formulated a stronger conjecture than Conjecture 1, expecting that f
can be approximated by g; € C*(Q, R"), rank Dg; < m, not only uniformly, but in the C!
norm, i.e. ||f —gilloo+ | Df — Dgil|lco = 0 as i — oco. Our main result, Theorem 4, answers
Conjecture 1 (and hence the original conjecture of Galeski) in the negative. However, in
a local form the original conjecture of Gatleski is true on an open and dense subset of ().
The following result is an easy consequence of the Rank Theorem.

Theorem 3. Let 1 < m < n be integers and let @ C R"™ be open. If f € C*(Q,R")
satisfies rank Df < m everywhere in 2, then there is an open and dense set G C §
such that for every point x € G there is a neighborhood B"(x,e) C G and a sequence
fi € C®(B"(x,e),R"™) such that rank Df; < m and f; converge to f in C*(B"(z,c),R")
(i.e. both f; and their first derivatives converge uniformly).
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The main result of the paper shows that, in general Conjecture 2 (and hence Conjec-
ture 1) is false by providing a family counterexamples for certain ranges of n and m.

Theorem 4. Suppose that m+1<k<2m—1,(>k+1,r>m-+ 1, and the homotopy

group 7, (S™) is non-trivial. Then there is a map f € C*(RY, R") with rank Df < m in R*
and a Cantor set E C R with the following property:

For every x, € E and € > 0 there is § > 0 such that
if g € C*=m+ (B (z,,¢),R") and |f(x) — g(x)| < § for all v € BY(z,,¢),
then rank Dg > m + 1 on a non-empty open set in B (x,, ).

(Here by a Cantor set we mean a set that is homeomorphic to the ternary Cantor set.)

Therefore the mapping f cannot be approximated in the supremum norm by C*=7+!
mappings with rank of the derivative < m in any neighborhood of any point of the set E.

Remark 5. In fact, the mapping f constructed in the proof of Theorem 4 is C'*° smooth
on R\ £, so G = R*\ F is an open and dense set where we can approximate f smoothly,
cf. Theorem 3.

Since the assumptions of the theorem are quite complicated, let us show explicit situa-
tions when the approximation cannot hold.
Example 1. If n > 3, ¢ > n+2 and r > n+1, then thereis f € CI(RE,RT) with rank D f <

n in RY that cannot be locally approximated in the supremum norm by mappings g €
C%(RY,R") satisfying rank Dg < n.

Indeed, if n > 3, k = n+1 and m = n, then m(S™) = Z (see [3]) and m+1 < k < 2m—1.

In particular, there is f € C'(R5 R®) with rank D f < 3 that cannot be locally approxi-
mated in the supremum norm by mappings g € C?(R5, R5) satisfying rank Dg < 3.
Example 2. 14(S*) = Zy, k=6, m =4, m+1 <k < 2m — 1, so there is f € C}(R",R"),
rank D f < 4, that cannot be locally approximated by mappings g € C3(R", R") satisfying
rank Dg < 4.

Example 3. 3(S?) = Zoy, k=8, m =5, m+1 <k <2m—1, so there is f € C*(R? R?),
rank D f < 5, that cannot be locally approximated by mappings g € C*(R?, R?) satisfying
rank Dg < 5.

Infinitely many essentially different situations when the assumptions of Theorem 4 are
satisfied can be easily obtained by examining the catalogue of homotopy groups of spheres.

While, in general, Gateski’s conjecture is not true, Theorem 4 covers only a certain
range of dimensions and ranks, leaving other cases unsolved. We believe that the following
special case of the conjecture is true.

Conjecture 6. If f € C*(R™,R¥), n, k > 2, satisfiestank Df < 1, then f can be uniformly
approzimated (at least locally) by mappings g € C=(R", R*) satisfying rank Dg < 1.

Our belief is based on the fact that in that case the structure of the mapping f is
particularly simple: on the open set where rank Df = 1, it is a C* curve that branches on
the set where rank D f = 0.
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2. PROOF OF THEOREM 3

Let G C Q) be the set of points where the function x +— rank Df(z) attains a local
maximum i.e.,

G={reQ:3e>0Vy e B"(z,e) rank Df(y) < rank Df(x)}.

We claim that the set G is open, and that rank Df is locally constant in G. Indeed, the
set {rank Df > k} is open so if z € G and rank D f(z) = k, then rank Df(y) > k in a
neighborhood B"(x, ¢) of x, but rank D f attains a local maximum at , so rank D f(y) = k
in B"(z,¢). Clearly, B"(z,e) C G and rank D f is constant in the neighborhood B"(z,¢) C
G.

We also claim that the set G C Q is dense. Let z € Q and B™(x,e) C Q. Since
rank D f can attain only a finite number of values, it attains a local maximum at some
point y € B"(x,¢). Clearly, y € G. That proves density of G.

It remains to prove now that f can be locally approximated in G. Let € G. Then
rank D f(x) = k < m. Since rank D f is constant in a neighborhood of z, it follows from the
Rank Theorem |6, Theorem 8.6.2/2| that there are C'' diffeomorphisms ® and ¥, defined
in neighborhoods of = and f(x), respectively, such that ®(z) =0, ¥(f(z)) =0, and

Vofod Yzy,...,z,) = (71,...,74,0,...,0) in a neighborhood of 0 € R".

Let m, : R® — R", mp(xy,...,2,) = (21,...,7%,0,...,0). Then o fod ! = m, so
f =U"1lom 0® in a neighborhood of x. If ®. = & x ¢, and (V). = (U7!) x . are
smooth approximations by mollification, then f. = (™1, o 7, 0 @, is C*° smooth and it
converges in C! to f in a neighborhood of z as € — 0. Indeed, uniform convergence of f.

to f is obvious and the uniform convergence of the derivatives follows from the chain rule
and the fact that D®. = (D®) * p. and D(U~1). = (D(¥1)) x ..

Clearly, rank D f. < k < m by the chain rule, since rank D, = k. O

Remark 7. It is easy to see that in fact rank D f, = k in a neighborhood of x, provided ¢ is
sufficiently small. Indeed, ®. = ®x¢p. (approximation by mollification) so D®. = (D®)x*¢..
Since det(D®(z)) # 0, for small € > 0 we also have that det(D®.)(z) # 0 and hence P, is
a diffeomorphism near z. Similarly, (¥~1). is a diffeomorphism near 0.

3. PROOF OF THEOREM 4

In the first step of the proof we shall construct a mapping F : B**1 — R™*+! defined on
the unit ball B¥* = B**1(0, 1), with the properties announced by Theorem 4.

Lemma 8. Suppose that m +1 < k < 2m — 1 and 7,(S™) # 0. Then there exists a map
F e CYB*, R™) with rank DF < m in B*™! and a Cantor set Er C B*"! such that
for every x, € Er and 1 — |x,| > € > 0 there is § > 0 with the following property:

if G € CH= L (BEL (), R™Y) satisfies |F(x) — G(z)] < § at all points v € B*(z,,¢),
then rank DG > m + 1 on an open, non-empty set in B (z,, ¢).

Before we prove Lemma 8, let us show how Theorem 4 follows from it. To this end,
let B! C B! be a ball concentric with B*™!, containing the Cantor set Er and let
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® : B"! — R**! be a diffeomorphism onto R¥"! that is identity on BFt so Fod! :
RF*+1 — R™*! coincides with £ on B¥*! and hence in a neighborhood of the set E. Denote
the points in R* and R” by

(z,y) e RFIT X RFI =R and (z,0) € R™™ x R™™™ 1 =R"
and let 7 : R — R™"! (2, v) = 2 be the orthogonal projection.

It easily follows that the mapping
R’ > (2,y) — f(z,y) == (Fo® }(x),0) € R’
satisfies the claim of Theorem 4 with £ = Ep x {0} C R¥! x R~ = R,
Indeed, in a neighborhood of z, € Er, f(z,y) = (F(x),0).
Suppose that g € C*="F(B¢((x,,0),¢),R") is such that

1f(z,y) — glx,y)| <0 for all (x,y) € B((x,,0),e).
Then G(z) = 7(g(z,0)) € CF(B*(z,,e), R™) satisfies
|F(z) — G(x)] < 6§ for all z € B*(z,,e)
provided ¢ > 0 is so small that f(z,y) = (F(x),0) for all z € B*"(z,,¢).

Hence rank DG > m + 1 on an open, non-empty set in B**!(x,, ¢) by Lemma 8. Since
rank Dg(z,0) > rank DG(z) and the set {rank Dg > m + 1} is open, rank Dg > m + 1
on an open, non-empty subset of B‘((z,,0),¢), which completes the proof of Theorem 4.
Therefore it remains to prove Lemma 8.

Proof of Lemma 8. Let I denote the unit cube [—3, 3]™*! in R™". Since, by assumption,
7, (S™) # 0 and Ol is homeomorphic to S™, there is a continuous mapping ngS . SF— ol
that is not homotopic to a constant map. Approximating ¢ by standard mollification, we
obtain a smooth mapping from S¥ to R™*!, uniformly close to qg, with the image lying in
a small neighborhood of JI. Then, composing it with a C'*° smooth mapping R that is
homotopic to the identity and maps a neighborhood of 0l onto 0l we obtain a mapping

¢ : S¥ — OI that is not homotopic to a constant map and is C™ smooth as a mapping to
R™H,

A smooth mapping R : R™*! — R™*! homotopic to the
identity, that maps a neighborhood of Ol onto Ol can be .
defined by a formula 57
1
R($1,$2,...,$m+1):()\5(1‘1),)\5(@'2),...,)\5<$m+1)), R # g?g #
where for s € (0, 1) the function A, : R — R is smooth, odd, -
non-decreasing and such that A\;(¢f) = ¢ when [|t| — 1| > 2s —1 2s
and A(t) = 1 when [[t| — ] < s, see the graph on the right. —4s-
Taking s — 0 gives a homotopy between R and the identity.

Lemma 8 is a simple consequence of the following result proved in |2, Lemma 5.1]. (Note
that in the statement of Lemma 5.1 in [2], k£ plays the role of m and m plays the role of
k.) The self-similarity property of the mapping F' in Lemma 9 is explicitly stated in the
proof of Lemma 5.1 in [2].
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Lemma 9. Suppose that m +1 <k <2m — 1 and m,(S™) # 0. Then there is a mapping
F € CYB*L 1) satisfying rank DE < m everywhere, such that F maps the boundary
OB* =Sk to Ol and F|ygrir = ¢, where ¢ has been defined above.

Moreover, F is self-similar in the following sense. There is a Cantor set Ep C BFt!
such that for every x, € Er there is a sequence of balls D; C B*, x, € I;, with radii
convergent to zero, and similarity transformations

Zi . Ek-ﬁ-l N @i’ ZZ(Ek+1) _ ]I_))“ 7’; : Rm-‘rl — ]Rm-‘rl7
each being a composition of a translation and scaling, such that

Ty 'oFlp 0% =F.

)

Here the C! regularity of F' means that it is C! as a mapping into R™*!, with the image
being the cube I.

The mappings 7; and ¥; are compositions 7; = 7;, o... o7, and ¥; = 05, 0...00j, of
similarity transformations 7; and o; that are used at the very end of the proof of Lemma 5.1
in [2]. The Cantor set Er is the same as the Cantor set C' in the proof of Lemma 5.1 in

2]

In other words, F restricted to an arbitrarily small ball D, that contains z, is a scaled
copy of F': BFf! — I

The mapping F' is obtained through an iterative construction, described in detail in [2].
We shall present here a sketch of that construction.

Sketch of the construction of the mapping F'.

By assumption, 7(S™) # 0. By Freudenthal’s theorem ([3, Corollary 4.24]), also
Te_1(S™71) # 0; let h : S¥=1 — S™~! be a mapping that is not homotopic to a constant.

We begin by choosing in the ball B**! disjoint, closed balls B;, i = 1,2,..., N = n™*!,
of radius 2, all inside $B**. This is possible, if n is chosen sufficiently large, since, for n
large, the (k 4 1)-dimensional volume of %Bkﬂ is much larger than the sum of volumes of
Bia 2—(k+1) > nm+12k+1n—(k+1).

We define a C*°-mapping F in B¥+1\ Ufil B;; then, the same mapping is iterated inside
cach of the balls B; = B,;, which defines F' outside a family of N 2 second generation
balls B; 2, and so on — in this way we obtain a mapping which is €' outside a Cantor
set. Finally, we extend F' continuously to the Cantor set C' defined by the subsequent

generations of balls B; ;, as the intersection C' = ()2, UY, B,,.

The mapping F in B*1\ (JY, B, is (in principle — see comments below) defined as a
composition of four steps (see Figure 1):

(1) First, we realign all the balls B; inside B**!, by a diffeomorphism G equal to the
identity near OB**!, so that the images of B; are identical, disjoint, closed balls
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lying along the vertical axis of B¥*!. Obviously, this diffeomorphism has to shrink
the balls B, somewhat.

(2) The next step, the mapping H : B¥*! — B™*! is defined in the following way:
it maps (k — 1)-dimensional spheres centered at the vertical axis of B**!, lying in
the hyperplane orthogonal to that axis, to (m — 1)-dimensional spheres of the same
radius, centered at analogous points on the vertical axis of B™*!. On each such
sphere, H is an appropriately scaled copy of the mapping h. This way, H restricted
to any k-sphere centered on the axis (in particular to 0By, and to O(G1(B;)))
equals (up to scaling) to the suspension of h.

(3) Next, we define the diffeomorphism G5: we inflate the ball B™! to %\/m + 1B+,
so that we can inscribe the unit cube [—%, ™ in it, and inside that ball, we
rearrange the N balls H(G1(B;)), so that each of them is almost inscribed in one of
the cubes of the grid obtained by partitioning the unit cube into N = n™*! cubes
of edge length %

(4) Finally, we project $v/m + 1B™\ UY, Go(H(G1(By))) onto the m-dimensional
skeleton of the grid: first, we project the outside of the unit cube onto the boundary
of the cube using the nearest point projection 7, then in each of the N closed cubes
of the grid we use the mapping R defined in the proof of Lemma 8. Even though
7 is not smooth, this composition turns out to be smooth (see |2, Lemma 5.3|).

In fact, this construction of F' outside | J; B; is almost correct — the resulting mapping is
not C*°, but Lipschitz: it is not differentiable at the points of the vertical axis, and some
technical modifications are necessary to make it C'*°. Similarly, some additional work is
necessary to glue F' with scaled copies of F' in each of the balls B; in a differentiable way.
These are purely technical difficulties, the details are provided in [2].

The third iteration of that construction is depicted in Figure 2.

One easily checks that the derivative of F' tends to 0 as we approach the points of the
Cantor set C, thus the limit mapping, extended to the whole B**! is C'. For each point
of B*1\ C, the image of its small neighborhood is mapped to the m-dimensional skeleton
of the grid, thus rank DF' < m at all these points, and since DF = 0 at the points of C,
the condition rank DF < m holds everywhere in B*+!.

O

Lemma 9 allows us to complete the proof of Lemma 8 as follows. Let z, € Er and
1 —|z,] > ¢ > 0 be given. Suppose to the contrary, that there is a sequence G; €
Cr=m+ (B (1,,¢), R™) with rank DG; < m, that is uniformly convergent to F on
B (x,, €).

Let D; be a sequence of balls convergent to z, as in the statement of Lemma 9. If ¢ is
sufficiently large, then D; C B¥*!(x,,¢) and the sequence G; converges uniformly to F' on
D;. Hence

G, =T "o Gilp, o i : BT — R
converges uniformly to
Tl._loF|®ioZZ-:F:IE3k+1—>]I.
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FIGURE 2. The third iteration: F' outside the third generation of balls | J, Bs ;.
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Obviously, rank Déj < m. Since éj is uniformly close to F on OB**! and F|ypr+1 : S — 01
is not homotopic to a constant map, it easily follows that for j sufficiently large the image
G;(B*™) contains the cube I that is concentric with I and has half the diameter.

Indeed, assume that sup,cgpes1 |G (z) — F(z)] < 1 — this ensures that G;(OB*1) does
not intersect %]1. We will show that %]I C C?j(IB%k“). Assume to the contrary, that there is
y € %]I\éj (B¥*1). Let P denote the ‘radial’ projection from I\ {y} to 9I, centered at y (we
set P(z), for z € T\ {y}, to be the unique intersection of the half-line {y+¢(z—y) : t > 0}
and OI). Then P is continuous and P|s = id. Note that P o éj is continuous on B*!,
because y does not belong to the image of Gj. Also, for large j, P o C~;’3| amk+1 1s uniformly
close to P o F' = F, in particular the two mappings are homotopic so P o éj‘aBk-H is not
homotopic to a constant map. However, H : [0,1] x OB*! — 01 given by the formula

H(t,x) = P o G,(ta)

is continuous homotopy between H(1l,z) = P o éj(x), and the constant map H(0,z) =
P o G;(0), which is a contradiction.

Recall that according to Sard’s theorem [4, 5|, the map G; € C*~™*! maps the set of
its critical points to a set of measure zero. Since rank Déj < m, all points in B**! are
critical, so the set @j (B¥+1) has measure zero, which contradicts the fact that it contains
the cube %]I. The proof is complete. O]
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