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Abstract. We find a counterexample to a conjecture of Gałęski [1] by constructing for
some positive integers m < n a mapping f ∈ C1(Rn,Rn) satisfying rankDf ≤ m that,
even locally, cannot be uniformly approximated by C2 mappings fε satisfying the same
rank constraint: rankDfε ≤ m.

1. Introduction

In the context of geometric measure theory Jacek Gałęski [1, Conjecture 1.1 and Sec-
tion 3.3] formulated the following conjecture.

Conjecture 1. Let 1 ≤ m < n be integers and let Ω ⊂ Rn be open. If f ∈ C1(Ω,Rn)
satisfies rankDf ≤ m everywhere in Ω, then f can be uniformly approximated by smooth
mappings g ∈ C∞(Ω,Rn) such that rankDg ≤ m everywhere in Ω.

A weaker form of the conjecture is whether any mapping as in Conjecture 1 can be
approximated locally.

Conjecture 2. Let 1 ≤ m < n be integers and let Ω ⊂ Rn be open. If f ∈ C1(Ω,Rn)
satisfies rankDf ≤ m everywhere in Ω, then for every point x ∈ Ω there is a neighbor-
hood Bn(x, ε) ⊂ Ω and a sequence fi ∈ C∞(Bn(x, ε),Rn) such that rankDfi ≤ m and fi
converges to f uniformly on Bn(x, ε).

In fact Gałęski formulated a stronger conjecture than Conjecture 1, expecting that f
can be approximated by gi ∈ C∞(Ω,Rn), rankDgi ≤ m, not only uniformly, but in the C1

norm, i.e. ‖f −gi‖∞+‖Df −Dgi‖∞ → 0 as i→∞. Our main result, Theorem 4, answers
Conjecture 1 (and hence the original conjecture of Gałęski) in the negative. However, in
a local form the original conjecture of Gałęski is true on an open and dense subset of Ω.
The following result is an easy consequence of the Rank Theorem.

Theorem 3. Let 1 ≤ m < n be integers and let Ω ⊂ Rn be open. If f ∈ C1(Ω,Rn)
satisfies rankDf ≤ m everywhere in Ω, then there is an open and dense set G ⊂ Ω
such that for every point x ∈ G there is a neighborhood Bn(x, ε) ⊂ G and a sequence
fi ∈ C∞(Bn(x, ε),Rn) such that rankDfi ≤ m and fi converge to f in C1(Bn(x, ε),Rn)
(i.e. both fi and their first derivatives converge uniformly).
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The main result of the paper shows that, in general Conjecture 2 (and hence Conjec-
ture 1) is false by providing a family counterexamples for certain ranges of n and m.
Theorem 4. Suppose that m+ 1 ≤ k < 2m− 1, ` ≥ k + 1, r ≥ m+ 1, and the homotopy
group πk(Sm) is non-trivial. Then there is a map f ∈ C1(R`,Rr) with rankDf ≤ m in R`

and a Cantor set E ⊂ R` with the following property:

For every xo ∈ E and ε > 0 there is δ > 0 such that
if g ∈ Ck−m+1(B`(xo, ε),Rr) and |f(x)− g(x)| < δ for all x ∈ B`(xo, ε),
then rankDg ≥ m+ 1 on a non-empty open set in B`(xo, ε).

(Here by a Cantor set we mean a set that is homeomorphic to the ternary Cantor set.)

Therefore the mapping f cannot be approximated in the supremum norm by Ck−m+1

mappings with rank of the derivative ≤ m in any neighborhood of any point of the set E.
Remark 5. In fact, the mapping f constructed in the proof of Theorem 4 is C∞ smooth
on R` \E, so G = R` \E is an open and dense set where we can approximate f smoothly,
cf. Theorem 3.

Since the assumptions of the theorem are quite complicated, let us show explicit situa-
tions when the approximation cannot hold.
Example 1. If n ≥ 3, ` ≥ n+2 and r ≥ n+1, then there is f ∈ C1(R`,Rr) with rankDf ≤
n in R` that cannot be locally approximated in the supremum norm by mappings g ∈
C2(R`,Rr) satisfying rankDg ≤ n.

Indeed, if n ≥ 3, k = n+1 andm = n, then πk(Sm) = Z2 (see [3]) andm+1 ≤ k < 2m−1.

In particular, there is f ∈ C1(R5,R5) with rankDf ≤ 3 that cannot be locally approxi-
mated in the supremum norm by mappings g ∈ C2(R5,R5) satisfying rankDg ≤ 3.
Example 2. π6(S4) = Z2, k = 6, m = 4, m+ 1 ≤ k < 2m− 1, so there is f ∈ C1(R7,R7),
rankDf ≤ 4, that cannot be locally approximated by mappings g ∈ C3(R7,R7) satisfying
rankDg ≤ 4.
Example 3. π8(S5) = Z24, k = 8, m = 5, m+ 1 ≤ k < 2m− 1, so there is f ∈ C1(R9,R9),
rankDf ≤ 5, that cannot be locally approximated by mappings g ∈ C4(R9,R9) satisfying
rankDg ≤ 5.

Infinitely many essentially different situations when the assumptions of Theorem 4 are
satisfied can be easily obtained by examining the catalogue of homotopy groups of spheres.

While, in general, Gałęski’s conjecture is not true, Theorem 4 covers only a certain
range of dimensions and ranks, leaving other cases unsolved. We believe that the following
special case of the conjecture is true.
Conjecture 6. If f ∈ C1(Rn,Rk), n, k ≥ 2, satisfies rankDf ≤ 1, then f can be uniformly
approximated (at least locally) by mappings g ∈ C∞(Rn,Rk) satisfying rankDg ≤ 1.

Our belief is based on the fact that in that case the structure of the mapping f is
particularly simple: on the open set where rankDf = 1, it is a C1 curve that branches on
the set where rankDf = 0.
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2. Proof of Theorem 3

Let G ⊂ Ω be the set of points where the function x 7→ rankDf(x) attains a local
maximum i.e.,

G = {x ∈ Ω : ∃ε > 0 ∀y ∈ Bn(x, ε) rankDf(y) ≤ rankDf(x)}.
We claim that the set G is open, and that rankDf is locally constant in G. Indeed, the
set {rankDf ≥ k} is open so if x ∈ G and rankDf(x) = k, then rankDf(y) ≥ k in a
neighborhood Bn(x, ε) of x, but rankDf attains a local maximum at x, so rankDf(y) = k
in Bn(x, ε). Clearly, Bn(x, ε) ⊂ G and rankDf is constant in the neighborhood Bn(x, ε) ⊂
G.

We also claim that the set G ⊂ Ω is dense. Let x ∈ Ω and Bn(x, ε) ⊂ Ω. Since
rankDf can attain only a finite number of values, it attains a local maximum at some
point y ∈ Bn(x, ε). Clearly, y ∈ G. That proves density of G.

It remains to prove now that f can be locally approximated in G. Let x ∈ G. Then
rankDf(x) = k ≤ m. Since rankDf is constant in a neighborhood of x, it follows from the
Rank Theorem [6, Theorem 8.6.2/2] that there are C1 diffeomorphisms Φ and Ψ, defined
in neighborhoods of x and f(x), respectively, such that Φ(x) = 0, Ψ(f(x)) = 0, and

Ψ ◦ f ◦ Φ−1(x1, . . . , xn) = (x1, . . . , xk, 0, . . . , 0) in a neighborhood of 0 ∈ Rn.

Let πk : Rn → Rn, πk(x1, . . . , xn) = (x1, . . . , xk, 0, . . . , 0). Then Ψ ◦ f ◦ Φ−1 = πk, so
f = Ψ−1 ◦ πk ◦ Φ in a neighborhood of x. If Φε = Φ ∗ ϕε and (Ψ−1)ε = (Ψ−1) ∗ ϕε are
smooth approximations by mollification, then fε = (Ψ−1)ε ◦ πk ◦ Φε is C∞ smooth and it
converges in C1 to f in a neighborhood of x as ε→ 0. Indeed, uniform convergence of fε
to f is obvious and the uniform convergence of the derivatives follows from the chain rule
and the fact that DΦε = (DΦ) ∗ ϕε and D(Ψ−1)ε = (D(Ψ−1)) ∗ ϕε.

Clearly, rankDfε ≤ k ≤ m by the chain rule, since rankDπk = k. 2

Remark 7. It is easy to see that in fact rankDfε = k in a neighborhood of x, provided ε is
sufficiently small. Indeed, Φε = Φ∗ϕε (approximation by mollification) soDΦε = (DΦ)∗ϕε.
Since det(DΦ(x)) 6= 0, for small ε > 0 we also have that det(DΦε)(x) 6= 0 and hence Φε is
a diffeomorphism near x. Similarly, (Ψ−1)ε is a diffeomorphism near 0.

3. Proof of Theorem 4

In the first step of the proof we shall construct a mapping F : Bk+1 → Rm+1 defined on
the unit ball Bk+1 = Bk+1(0, 1), with the properties announced by Theorem 4.

Lemma 8. Suppose that m + 1 ≤ k < 2m − 1 and πk(Sm) 6= 0. Then there exists a map
F ∈ C1(Bk+1,Rm+1) with rankDF ≤ m in Bk+1 and a Cantor set EF ⊂ Bk+1 such that
for every xo ∈ EF and 1− |xo| > ε > 0 there is δ > 0 with the following property:
if G ∈ Ck−m+1(Bk+1(xo, ε),Rm+1) satisfies |F (x)−G(x)| < δ at all points x ∈ Bk+1(xo, ε),
then rankDG ≥ m+ 1 on an open, non-empty set in Bk+1(xo, ε).

Before we prove Lemma 8, let us show how Theorem 4 follows from it. To this end,
let B̃k+1 ( Bk+1 be a ball concentric with Bk+1, containing the Cantor set EF and let
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Φ : Bk+1 → Rk+1 be a diffeomorphism onto Rk+1 that is identity on B̃k+1, so F ◦ Φ−1 :
Rk+1 → Rm+1 coincides with F on B̃k+1 and hence in a neighborhood of the set EF . Denote
the points in R` and Rr by

(x, y) ∈ Rk+1 × R`−k−1 = R` and (z, v) ∈ Rm+1 × Rr−m−1 = Rr

and let π : Rr → Rm+1, π(z, v) = z be the orthogonal projection.

It easily follows that the mapping

R` 3 (x, y) 7−→ f(x, y) := (F ◦ Φ−1(x), 0) ∈ Rr

satisfies the claim of Theorem 4 with E = EF × {0} ⊂ Rk+1 × R`−k−1 = R`.

Indeed, in a neighborhood of xo ∈ EF , f(x, y) = (F (x), 0).

Suppose that g ∈ Ck−m+1(B`((xo, 0), ε),Rr) is such that

|f(x, y)− g(x, y)| < δ for all (x, y) ∈ B`((xo, 0), ε).

Then G(x) = π(g(x, 0)) ∈ Ck−m+1(Bk+1(xo, ε),Rm+1) satisfies

|F (x)−G(x)| < δ for all x ∈ Bk+1(xo, ε)

provided ε > 0 is so small that f(x, y) = (F (x), 0) for all x ∈ Bk+1(xo, ε).

Hence rankDG ≥ m + 1 on an open, non-empty set in Bk+1(xo, ε) by Lemma 8. Since
rankDg(x, 0) ≥ rankDG(x) and the set {rankDg ≥ m + 1} is open, rankDg ≥ m + 1
on an open, non-empty subset of B`((xo, 0), ε), which completes the proof of Theorem 4.
Therefore it remains to prove Lemma 8.

Proof of Lemma 8. Let I denote the unit cube [−1
2
, 1
2
]m+1 in Rm+1. Since, by assumption,

πk(Sm) 6= 0 and ∂I is homeomorphic to Sm, there is a continuous mapping φ̂ : Sk → ∂I
that is not homotopic to a constant map. Approximating φ̂ by standard mollification, we
obtain a smooth mapping from Sk to Rm+1, uniformly close to φ̂, with the image lying in
a small neighborhood of ∂I. Then, composing it with a C∞ smooth mapping R that is
homotopic to the identity and maps a neighborhood of ∂I onto ∂I we obtain a mapping
φ : Sk → ∂I that is not homotopic to a constant map and is C∞ smooth as a mapping to
Rm+1.

A smooth mapping R : Rm+1 → Rm+1 homotopic to the
identity, that maps a neighborhood of ∂I onto ∂I can be
defined by a formula

R(x1, x2, . . . , xm+1) = (λs(x1), λs(x2), . . . , λs(xm+1)),

where for s ∈ (0, 1
4
) the function λs : R→ R is smooth, odd,

non-decreasing and such that λs(t) = t when ||t| − 1
2
| > 2s

and λ(t) = 1 when ||t| − 1
2
| < s, see the graph on the right.

Taking s→ 0 gives a homotopy between R and the identity.

1
2

−1
2

1
2

2s
4s

Lemma 8 is a simple consequence of the following result proved in [2, Lemma 5.1]. (Note
that in the statement of Lemma 5.1 in [2], k plays the role of m and m plays the role of
k.) The self-similarity property of the mapping F in Lemma 9 is explicitly stated in the
proof of Lemma 5.1 in [2].



C1 MAPPINGS WITH DERIVATIVE OF SMALL RANK 5

Lemma 9. Suppose that m + 1 ≤ k < 2m− 1 and πk(Sm) 6= 0. Then there is a mapping
F ∈ C1(Bk+1, I) satisfying rankDF ≤ m everywhere, such that F maps the boundary
∂Bk+1 = Sk to ∂I and F |∂Bk+1 = φ, where φ has been defined above.

Moreover, F is self-similar in the following sense. There is a Cantor set EF ⊂ Bk+1

such that for every xo ∈ EF there is a sequence of balls Di ⊂ Bk+1, xo ∈ Di, with radii
convergent to zero, and similarity transformations

Σi : Bk+1 → Di, Σi(Bk+1) = Di, Ti : Rm+1 → Rm+1,

each being a composition of a translation and scaling, such that

T−1i ◦ F |Di
◦ Σi = F.

Here the C1 regularity of F means that it is C1 as a mapping into Rm+1, with the image
being the cube I.

The mappings Ti and Σi are compositions Ti = τj1 ◦ . . . ◦ τji and Σi = σj1 ◦ . . . ◦ σji of
similarity transformations τj and σj that are used at the very end of the proof of Lemma 5.1
in [2]. The Cantor set EF is the same as the Cantor set C in the proof of Lemma 5.1 in
[2].

In other words, F restricted to an arbitrarily small ball Di that contains xo is a scaled
copy of F : Bk+1 → I.

The mapping F is obtained through an iterative construction, described in detail in [2].
We shall present here a sketch of that construction.

Sketch of the construction of the mapping F .

By assumption, πk(Sm) 6= 0. By Freudenthal’s theorem ([3, Corollary 4.24]), also
πk−1(Sm−1) 6= 0; let h : Sk−1 → Sm−1 be a mapping that is not homotopic to a constant.

We begin by choosing in the ball Bk+1 disjoint, closed balls Bi, i = 1, 2, . . . , N = nm+1,
of radius 2

n
, all inside 1

2
Bk+1. This is possible, if n is chosen sufficiently large, since, for n

large, the (k + 1)-dimensional volume of 1
2
Bk+1 is much larger than the sum of volumes of

Bi, 2−(k+1) � nm+12k+1n−(k+1).

We define a C∞-mapping F in Bk+1 \
⋃N

i=1 Bi; then, the same mapping is iterated inside
each of the balls Bi = Bi,1, which defines F outside a family of N2 second generation
balls Bi,2, and so on – in this way we obtain a mapping which is C∞ outside a Cantor
set. Finally, we extend F continuously to the Cantor set C defined by the subsequent
generations of balls Bi,j, as the intersection C =

⋂∞
j=1

⋃Nj

i=1 Bi,j.

The mapping F in Bk+1 \
⋃N

i=1 Bi is (in principle – see comments below) defined as a
composition of four steps (see Figure 1):

(1) First, we realign all the balls Bi inside Bk+1, by a diffeomorphism G1 equal to the
identity near ∂Bk+1, so that the images of Bi are identical, disjoint, closed balls
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lying along the vertical axis of Bk+1. Obviously, this diffeomorphism has to shrink
the balls Bi somewhat.

(2) The next step, the mapping H : Bk+1 → Bm+1, is defined in the following way:
it maps (k − 1)-dimensional spheres centered at the vertical axis of Bk+1, lying in
the hyperplane orthogonal to that axis, to (m−1)-dimensional spheres of the same
radius, centered at analogous points on the vertical axis of Bm+1. On each such
sphere, H is an appropriately scaled copy of the mapping h. This way, H restricted
to any k-sphere centered on the axis (in particular to ∂Bk+1 and to ∂(G1(Bi)))
equals (up to scaling) to the suspension of h.

(3) Next, we define the diffeomorphism G2: we inflate the ball Bm+1 to 1
2

√
m+ 1Bm+1,

so that we can inscribe the unit cube [−1
2
, 1
2
]m+1 in it, and inside that ball, we

rearrange the N balls H(G1(Bi)), so that each of them is almost inscribed in one of
the cubes of the grid obtained by partitioning the unit cube into N = nm+1 cubes
of edge length 1

n
.

(4) Finally, we project 1
2

√
m+ 1Bm+1 \

⋃N
i=1G2(H(G1(Bi))) onto the m-dimensional

skeleton of the grid: first, we project the outside of the unit cube onto the boundary
of the cube using the nearest point projection π, then in each of the N closed cubes
of the grid we use the mapping R defined in the proof of Lemma 8. Even though
π is not smooth, this composition turns out to be smooth (see [2, Lemma 5.3]).

In fact, this construction of F outside
⋃

i Bi is almost correct – the resulting mapping is
not C∞, but Lipschitz: it is not differentiable at the points of the vertical axis, and some
technical modifications are necessary to make it C∞. Similarly, some additional work is
necessary to glue F with scaled copies of F in each of the balls Bi in a differentiable way.
These are purely technical difficulties, the details are provided in [2].

The third iteration of that construction is depicted in Figure 2.

One easily checks that the derivative of F tends to 0 as we approach the points of the
Cantor set C, thus the limit mapping, extended to the whole Bk+1, is C1. For each point
of Bk+1 \C, the image of its small neighborhood is mapped to the m-dimensional skeleton
of the grid, thus rankDF ≤ m at all these points, and since DF = 0 at the points of C,
the condition rankDF ≤ m holds everywhere in Bk+1.

�

Lemma 9 allows us to complete the proof of Lemma 8 as follows. Let xo ∈ EF and
1 − |xo| > ε > 0 be given. Suppose to the contrary, that there is a sequence Gj ∈
Ck−m+1(Bk+1(xo, ε),Rm+1) with rankDGj ≤ m, that is uniformly convergent to F on
Bk+1(xo, ε).

Let Di be a sequence of balls convergent to xo as in the statement of Lemma 9. If i is
sufficiently large, then Di ⊂ Bk+1(xo, ε) and the sequence Gj converges uniformly to F on
Di. Hence

G̃j := T−1i ◦Gj|Di
◦ Σi : Bk+1 → Rm+1

converges uniformly to
T−1i ◦ F |Di

◦ Σi = F : Bk+1 → I.
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Bk+1 Bk+1

G1 H

Bm+1

G2

1
2

√
m+ 1Bm+1

R

Figure 1. The construction of F in Bm+1 \
⋃N

i=1 Bi.

F

Figure 2. The third iteration: F outside the third generation of balls
⋃

i B3,i.
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Obviously, rankDG̃j ≤ m. Since G̃j is uniformly close to F on ∂Bk+1 and F |∂Bk+1 : Sk → ∂I
is not homotopic to a constant map, it easily follows that for j sufficiently large the image
G̃j(Bk+1) contains the cube 1

2
I that is concentric with I and has half the diameter.

Indeed, assume that supx∈∂Bk+1 |G̃j(x) − F (x)| < 1
4
– this ensures that G̃j(∂Bk+1) does

not intersect 1
2
I. We will show that 1

2
I ⊂ G̃j(Bk+1). Assume to the contrary, that there is

y ∈ 1
2
I\G̃j(Bk+1). Let P denote the ‘radial’ projection from I\{y} to ∂I, centered at y (we

set P (z), for z ∈ I\{y}, to be the unique intersection of the half-line {y+ t(z−y) : t > 0}
and ∂I). Then P is continuous and P |∂I = id. Note that P ◦ G̃j is continuous on Bk+1,
because y does not belong to the image of G̃j. Also, for large j, P ◦ G̃j|∂Bk+1 is uniformly
close to P ◦ F = F , in particular the two mappings are homotopic so P ◦ G̃j|∂Bk+1 is not
homotopic to a constant map. However, H : [0, 1]× ∂Bk+1 → ∂I given by the formula

H(t, x) = P ◦ G̃j(tx)

is continuous homotopy between H(1, x) = P ◦ G̃j(x), and the constant map H(0, x) =

P ◦ G̃j(0), which is a contradiction.

Recall that according to Sard’s theorem [4, 5], the map G̃j ∈ Ck−m+1 maps the set of
its critical points to a set of measure zero. Since rankDG̃j ≤ m, all points in Bk+1 are
critical, so the set G̃j(Bk+1) has measure zero, which contradicts the fact that it contains
the cube 1

2
I. The proof is complete. �
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