C^1 MAPPINGS IN \mathbb{R}^5 WITH DERIVATIVE OF RANK AT MOST 3 CANNOT BE UNIFORMLY APPROXIMATED BY C^2 MAPPINGS WITH DERIVATIVE OF RANK AT MOST 3

PAWEŁ GOLDSTEIN AND PIOTR HAJŁASZ

ABSTRACT. We find a counterexample to a conjecture of Gałęski [1] by constructing for some positive integers m < n a mapping $f \in C^1(\mathbb{R}^n, \mathbb{R}^n)$ satisfying rank $Df \leq m$ that, even locally, cannot be uniformly approximated by C^2 mappings f_{ε} satisfying the same rank constraint: rank $Df_{\varepsilon} \leq m$.

1. Introduction

In the context of geometric measure theory Jacek Gałęski [1, Conjecture 1.1 and Section 3.3] formulated the following conjecture.

Conjecture 1. Let $1 \leq m < n$ be integers and let $\Omega \subset \mathbb{R}^n$ be open. If $f \in C^1(\Omega, \mathbb{R}^n)$ satisfies rank $Df \leq m$ everywhere in Ω , then f can be uniformly approximated by smooth mappings $g \in C^{\infty}(\Omega, \mathbb{R}^n)$ such that rank $Dg \leq m$ everywhere in Ω .

A weaker form of the conjecture is whether any mapping as in Conjecture 1 can be approximated locally.

Conjecture 2. Let $1 \leq m < n$ be integers and let $\Omega \subset \mathbb{R}^n$ be open. If $f \in C^1(\Omega, \mathbb{R}^n)$ satisfies rank $Df \leq m$ everywhere in Ω , then for every point $x \in \Omega$ there is a neighborhood $\mathbb{B}^n(x,\varepsilon) \subset \Omega$ and a sequence $f_i \in C^{\infty}(\mathbb{B}^n(x,\varepsilon), \mathbb{R}^n)$ such that rank $Df_i \leq m$ and f_i converges to f uniformly on $\mathbb{B}^n(x,\varepsilon)$.

In fact Gałęski formulated a stronger conjecture than Conjecture 1, expecting that f can be approximated by $g_i \in C^{\infty}(\Omega, \mathbb{R}^n)$, rank $Dg_i \leq m$, not only uniformly, but in the C^1 norm, i.e. $||f - g_i||_{\infty} + ||Df - Dg_i||_{\infty} \to 0$ as $i \to \infty$. Our main result, Theorem 4, answers Conjecture 1 (and hence the original conjecture of Gałęski) in the negative. However, in a local form the original conjecture of Gałęski is true on an open and dense subset of Ω . The following result is an easy consequence of the Rank Theorem.

Theorem 3. Let $1 \leq m < n$ be integers and let $\Omega \subset \mathbb{R}^n$ be open. If $f \in C^1(\Omega, \mathbb{R}^n)$ satisfies rank $Df \leq m$ everywhere in Ω , then there is an open and dense set $G \subset \Omega$ such that for every point $x \in G$ there is a neighborhood $\mathbb{B}^n(x,\varepsilon) \subset G$ and a sequence $f_i \in C^{\infty}(\mathbb{B}^n(x,\varepsilon),\mathbb{R}^n)$ such that rank $Df_i \leq m$ and f_i converge to f in $C^1(\mathbb{B}^n(x,\varepsilon),\mathbb{R}^n)$ (i.e. both f_i and their first derivatives converge uniformly).

²⁰¹⁰ Mathematics Subject Classification. Primary: 41A29; Secondary: 26B05, 26B10, 57R12. Key words and phrases. approximation by smooth mappings, rank of the derivative, Sard's theorem. P.G. was partially supported by National Science Center grant no 2012/05/E/ST1/03232.

P.H. was supported by NSF grant DMS-1800457.

The main result of the paper shows that, in general Conjecture 2 (and hence Conjecture 1) is false by providing a family counterexamples for certain ranges of n and m.

Theorem 4. Suppose that $m+1 \le k < 2m-1$, $\ell \ge k+1$, $r \ge m+1$, and the homotopy group $\pi_k(\mathbb{S}^m)$ is non-trivial. Then there is a map $f \in C^1(\mathbb{R}^\ell, \mathbb{R}^r)$ with rank $Df \le m$ in \mathbb{R}^ℓ and a Cantor set $E \subset \mathbb{R}^\ell$ with the following property:

```
For every x_o \in E and \varepsilon > 0 there is \delta > 0 such that if g \in C^{k-m+1}(\mathbb{B}^{\ell}(x_o, \varepsilon), \mathbb{R}^r) and |f(x) - g(x)| < \delta for all x \in \mathbb{B}^{\ell}(x_o, \varepsilon), then rank Dg \geq m+1 on a non-empty open set in \mathbb{B}^{\ell}(x_o, \varepsilon).
```

(Here by a Cantor set we mean a set that is homeomorphic to the ternary Cantor set.)

Therefore the mapping f cannot be approximated in the supremum norm by C^{k-m+1} mappings with rank of the derivative $\leq m$ in any neighborhood of any point of the set E.

Remark 5. In fact, the mapping f constructed in the proof of Theorem 4 is C^{∞} smooth on $\mathbb{R}^{\ell} \setminus E$, so $G = \mathbb{R}^{\ell} \setminus E$ is an open and dense set where we can approximate f smoothly, cf. Theorem 3.

Since the assumptions of the theorem are quite complicated, let us show explicit situations when the approximation cannot hold.

Example 1. If $n \geq 3$, $\ell \geq n+2$ and $r \geq n+1$, then there is $f \in C^1(\mathbb{R}^\ell, \mathbb{R}^r)$ with rank $Df \leq n$ in \mathbb{R}^ℓ that cannot be locally approximated in the supremum norm by mappings $g \in C^2(\mathbb{R}^\ell, \mathbb{R}^r)$ satisfying rank $Dg \leq n$.

```
Indeed, if n \geq 3, k = n+1 and m = n, then \pi_k(\mathbb{S}^m) = \mathbb{Z}_2 (see [3]) and m+1 \leq k < 2m-1.
```

In particular, there is $f \in C^1(\mathbb{R}^5, \mathbb{R}^5)$ with rank $Df \leq 3$ that cannot be locally approximated in the supremum norm by mappings $g \in C^2(\mathbb{R}^5, \mathbb{R}^5)$ satisfying rank $Dg \leq 3$.

Example 2. $\pi_6(\mathbb{S}^4) = \mathbb{Z}_2$, k = 6, m = 4, $m + 1 \le k < 2m - 1$, so there is $f \in C^1(\mathbb{R}^7, \mathbb{R}^7)$, rank $Df \le 4$, that cannot be locally approximated by mappings $g \in C^3(\mathbb{R}^7, \mathbb{R}^7)$ satisfying rank $Dg \le 4$.

Example 3. $\pi_8(\mathbb{S}^5) = \mathbb{Z}_{24}$, k = 8, m = 5, $m + 1 \le k < 2m - 1$, so there is $f \in C^1(\mathbb{R}^9, \mathbb{R}^9)$, rank $Df \le 5$, that cannot be locally approximated by mappings $g \in C^4(\mathbb{R}^9, \mathbb{R}^9)$ satisfying rank $Dg \le 5$.

Infinitely many essentially different situations when the assumptions of Theorem 4 are satisfied can be easily obtained by examining the catalogue of homotopy groups of spheres.

While, in general, Gałęski's conjecture is not true, Theorem 4 covers only a certain range of dimensions and ranks, leaving other cases unsolved. We believe that the following special case of the conjecture is true.

Conjecture 6. If $f \in C^1(\mathbb{R}^n, \mathbb{R}^k)$, $n, k \geq 2$, satisfies rank $Df \leq 1$, then f can be uniformly approximated (at least locally) by mappings $g \in C^{\infty}(\mathbb{R}^n, \mathbb{R}^k)$ satisfying rank $Dg \leq 1$.

Our belief is based on the fact that in that case the structure of the mapping f is particularly simple: on the open set where rank Df = 1, it is a C^1 curve that branches on the set where rank Df = 0.

2. Proof of Theorem 3

Let $G \subset \Omega$ be the set of points where the function $x \mapsto \operatorname{rank} Df(x)$ attains a local maximum i.e.,

$$G = \{x \in \Omega : \exists \varepsilon > 0 \ \forall y \in \mathbb{B}^n(x, \varepsilon) \ \text{rank} \ Df(y) \le \text{rank} \ Df(x)\}.$$

We claim that the set G is open, and that rank Df is locally constant in G. Indeed, the set $\{\operatorname{rank} Df \geq k\}$ is open so if $x \in G$ and $\operatorname{rank} Df(x) = k$, then $\operatorname{rank} Df(y) \geq k$ in a neighborhood $\mathbb{B}^n(x,\varepsilon)$ of x, but $\operatorname{rank} Df$ attains a local maximum at x, so $\operatorname{rank} Df(y) = k$ in $\mathbb{B}^n(x,\varepsilon)$. Clearly, $\mathbb{B}^n(x,\varepsilon) \subset G$ and $\operatorname{rank} Df$ is constant in the neighborhood $\mathbb{B}^n(x,\varepsilon) \subset G$.

We also claim that the set $G \subset \Omega$ is dense. Let $x \in \Omega$ and $\mathbb{B}^n(x,\varepsilon) \subset \Omega$. Since rank Df can attain only a finite number of values, it attains a local maximum at some point $y \in \mathbb{B}^n(x,\varepsilon)$. Clearly, $y \in G$. That proves density of G.

It remains to prove now that f can be locally approximated in G. Let $x \in G$. Then rank $Df(x) = k \le m$. Since rank Df is constant in a neighborhood of x, it follows from the Rank Theorem [6, Theorem 8.6.2/2] that there are C^1 diffeomorphisms Φ and Ψ , defined in neighborhoods of x and f(x), respectively, such that $\Phi(x) = 0$, $\Psi(f(x)) = 0$, and

$$\Psi \circ f \circ \Phi^{-1}(x_1, \dots, x_n) = (x_1, \dots, x_k, 0, \dots, 0)$$
 in a neighborhood of $0 \in \mathbb{R}^n$.

Let $\pi_k : \mathbb{R}^n \to \mathbb{R}^n$, $\pi_k(x_1, \dots, x_n) = (x_1, \dots, x_k, 0, \dots, 0)$. Then $\Psi \circ f \circ \Phi^{-1} = \pi_k$, so $f = \Psi^{-1} \circ \pi_k \circ \Phi$ in a neighborhood of x. If $\Phi_{\varepsilon} = \Phi * \varphi_{\varepsilon}$ and $(\Psi^{-1})_{\varepsilon} = (\Psi^{-1}) * \varphi_{\varepsilon}$ are smooth approximations by mollification, then $f_{\varepsilon} = (\Psi^{-1})_{\varepsilon} \circ \pi_k \circ \Phi_{\varepsilon}$ is C^{∞} smooth and it converges in C^1 to f in a neighborhood of x as $\varepsilon \to 0$. Indeed, uniform convergence of f_{ε} to f is obvious and the uniform convergence of the derivatives follows from the chain rule and the fact that $D\Phi_{\varepsilon} = (D\Phi) * \varphi_{\varepsilon}$ and $D(\Psi^{-1})_{\varepsilon} = (D(\Psi^{-1})) * \varphi_{\varepsilon}$.

Clearly, rank
$$Df_{\varepsilon} \leq k \leq m$$
 by the chain rule, since rank $D\pi_k = k$.

Remark 7. It is easy to see that in fact rank $Df_{\varepsilon} = k$ in a neighborhood of x, provided ε is sufficiently small. Indeed, $\Phi_{\varepsilon} = \Phi * \varphi_{\varepsilon}$ (approximation by mollification) so $D\Phi_{\varepsilon} = (D\Phi) * \varphi_{\varepsilon}$. Since $\det(D\Phi(x)) \neq 0$, for small $\varepsilon > 0$ we also have that $\det(D\Phi_{\varepsilon})(x) \neq 0$ and hence Φ_{ε} is a diffeomorphism near x. Similarly, $(\Psi^{-1})_{\varepsilon}$ is a diffeomorphism near 0.

3. Proof of Theorem 4

In the first step of the proof we shall construct a mapping $F: \mathbb{B}^{k+1} \to \mathbb{R}^{m+1}$ defined on the unit ball $\mathbb{B}^{k+1} = \mathbb{B}^{k+1}(0,1)$, with the properties announced by Theorem 4.

Lemma 8. Suppose that $m+1 \leq k < 2m-1$ and $\pi_k(\mathbb{S}^m) \neq 0$. Then there exists a map $F \in C^1(\mathbb{B}^{k+1}, \mathbb{R}^{m+1})$ with rank $DF \leq m$ in \mathbb{B}^{k+1} and a Cantor set $E_F \subset \mathbb{B}^{k+1}$ such that for every $x_o \in E_F$ and $1-|x_o| > \varepsilon > 0$ there is $\delta > 0$ with the following property: if $G \in C^{k-m+1}(\mathbb{B}^{k+1}(x_o, \varepsilon), \mathbb{R}^{m+1})$ satisfies $|F(x) - G(x)| < \delta$ at all points $x \in \mathbb{B}^{k+1}(x_o, \varepsilon)$, then rank $DG \geq m+1$ on an open, non-empty set in $\mathbb{B}^{k+1}(x_o, \varepsilon)$.

Before we prove Lemma 8, let us show how Theorem 4 follows from it. To this end, let $\tilde{\mathbb{B}}^{k+1} \subseteq \mathbb{B}^{k+1}$ be a ball concentric with \mathbb{B}^{k+1} , containing the Cantor set E_F and let

 $\Phi: \mathbb{B}^{k+1} \to \mathbb{R}^{k+1}$ be a diffeomorphism onto \mathbb{R}^{k+1} that is identity on $\tilde{\mathbb{B}}^{k+1}$, so $F \circ \Phi^{-1}: \mathbb{R}^{k+1} \to \mathbb{R}^{m+1}$ coincides with F on $\tilde{\mathbb{B}}^{k+1}$ and hence in a neighborhood of the set E_F . Denote the points in \mathbb{R}^{ℓ} and \mathbb{R}^r by

$$(x,y) \in \mathbb{R}^{k+1} \times \mathbb{R}^{\ell-k-1} = \mathbb{R}^{\ell}$$
 and $(z,v) \in \mathbb{R}^{m+1} \times \mathbb{R}^{r-m-1} = \mathbb{R}^r$

and let $\pi: \mathbb{R}^r \to \mathbb{R}^{m+1}$, $\pi(z, v) = z$ be the orthogonal projection.

It easily follows that the mapping

$$\mathbb{R}^{\ell} \ni (x,y) \longmapsto f(x,y) := (F \circ \Phi^{-1}(x),0) \in \mathbb{R}^{r}$$

satisfies the claim of Theorem 4 with $E = E_F \times \{0\} \subset \mathbb{R}^{k+1} \times \mathbb{R}^{\ell-k-1} = \mathbb{R}^{\ell}$.

Indeed, in a neighborhood of $x_o \in E_F$, f(x,y) = (F(x), 0).

Suppose that $g \in C^{k-m+1}(\mathbb{B}^{\ell}((x_o,0),\varepsilon),\mathbb{R}^r)$ is such that

$$|f(x,y) - g(x,y)| < \delta$$
 for all $(x,y) \in \mathbb{B}^{\ell}((x_o,0),\varepsilon)$.

Then $G(x) = \pi(g(x,0)) \in C^{k-m+1}(\mathbb{B}^{k+1}(x_o,\varepsilon),\mathbb{R}^{m+1})$ satisfies

$$|F(x) - G(x)| < \delta$$
 for all $x \in \mathbb{B}^{k+1}(x_o, \varepsilon)$

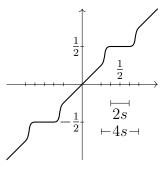
provided $\varepsilon > 0$ is so small that f(x,y) = (F(x),0) for all $x \in \mathbb{B}^{k+1}(x_o,\varepsilon)$.

Hence rank $DG \ge m+1$ on an open, non-empty set in $\mathbb{B}^{k+1}(x_o,\varepsilon)$ by Lemma 8. Since rank $Dg(x,0) \ge \operatorname{rank} DG(x)$ and the set $\{\operatorname{rank} Dg \ge m+1\}$ is open, rank $Dg \ge m+1$ on an open, non-empty subset of $\mathbb{B}^{\ell}((x_o,0),\varepsilon)$, which completes the proof of Theorem 4. Therefore it remains to prove Lemma 8.

Proof of Lemma 8. Let \mathbb{I} denote the unit cube $[-\frac{1}{2}, \frac{1}{2}]^{m+1}$ in \mathbb{R}^{m+1} . Since, by assumption, $\pi_k(\mathbb{S}^m) \neq 0$ and $\partial \mathbb{I}$ is homeomorphic to \mathbb{S}^m , there is a continuous mapping $\hat{\phi}: \mathbb{S}^k \to \partial \mathbb{I}$ that is not homotopic to a constant map. Approximating $\hat{\phi}$ by standard mollification, we obtain a smooth mapping from \mathbb{S}^k to \mathbb{R}^{m+1} , uniformly close to $\hat{\phi}$, with the image lying in a small neighborhood of $\partial \mathbb{I}$. Then, composing it with a C^{∞} smooth mapping R that is homotopic to the identity and maps a neighborhood of $\partial \mathbb{I}$ onto $\partial \mathbb{I}$ we obtain a mapping $\phi: \mathbb{S}^k \to \partial \mathbb{I}$ that is not homotopic to a constant map and is C^{∞} smooth as a mapping to \mathbb{R}^{m+1} .

A smooth mapping $R: \mathbb{R}^{m+1} \to \mathbb{R}^{m+1}$ homotopic to the identity, that maps a neighborhood of $\partial \mathbb{I}$ onto $\partial \mathbb{I}$ can be defined by a formula

$$R(x_1, x_2, \ldots, x_{m+1}) = (\lambda_s(x_1), \lambda_s(x_2), \ldots, \lambda_s(x_{m+1})),$$
 where for $s \in (0, \frac{1}{4})$ the function $\lambda_s : \mathbb{R} \to \mathbb{R}$ is smooth, odd, non-decreasing and such that $\lambda_s(t) = t$ when $||t| - \frac{1}{2}| > 2s$ and $\lambda(t) = 1$ when $||t| - \frac{1}{2}| < s$, see the graph on the right. Taking $s \to 0$ gives a homotopy between R and the identity.



Lemma 8 is a simple consequence of the following result proved in [2, Lemma 5.1]. (Note that in the statement of Lemma 5.1 in [2], k plays the role of m and m plays the role of k.) The self-similarity property of the mapping F in Lemma 9 is explicitly stated in the proof of Lemma 5.1 in [2].

Lemma 9. Suppose that $m+1 \le k < 2m-1$ and $\pi_k(\mathbb{S}^m) \ne 0$. Then there is a mapping $F \in C^1(\overline{\mathbb{B}}^{k+1}, \mathbb{I})$ satisfying rank $DF \le m$ everywhere, such that F maps the boundary $\partial \mathbb{B}^{k+1} = \mathbb{S}^k$ to $\partial \mathbb{I}$ and $F|_{\partial \mathbb{B}^{k+1}} = \phi$, where ϕ has been defined above.

Moreover, F is self-similar in the following sense. There is a Cantor set $E_F \subset \mathbb{B}^{k+1}$ such that for every $x_o \in E_F$ there is a sequence of balls $\mathbb{D}_i \subset \mathbb{B}^{k+1}$, $x_o \in \mathbb{D}_i$, with radii convergent to zero, and similarity transformations

$$\Sigma_i: \overline{\mathbb{B}}^{k+1} \to \overline{\mathbb{D}}_i, \quad \Sigma_i(\overline{\mathbb{B}}^{k+1}) = \overline{\mathbb{D}}_i, \qquad T_i: \mathbb{R}^{m+1} \to \mathbb{R}^{m+1},$$

each being a composition of a translation and scaling, such that

$$T_i^{-1} \circ F|_{\overline{\mathbb{D}}_i} \circ \Sigma_i = F.$$

Here the C^1 regularity of F means that it is C^1 as a mapping into \mathbb{R}^{m+1} , with the image being the cube \mathbb{I} .

The mappings T_i and Σ_i are compositions $T_i = \tau_{j_1} \circ \ldots \circ \tau_{j_i}$ and $\Sigma_i = \sigma_{j_1} \circ \ldots \circ \sigma_{j_i}$ of similarity transformations τ_j and σ_j that are used at the very end of the proof of Lemma 5.1 in [2]. The Cantor set E_F is the same as the Cantor set C in the proof of Lemma 5.1 in [2].

In other words, F restricted to an arbitrarily small ball $\overline{\mathbb{D}}_i$ that contains x_o is a scaled copy of $F: \overline{\mathbb{B}}^{k+1} \to \mathbb{I}$.

The mapping F is obtained through an iterative construction, described in detail in [2]. We shall present here a sketch of that construction.

Sketch of the construction of the mapping F.

By assumption, $\pi_k(\mathbb{S}^m) \neq 0$. By Freudenthal's theorem ([3, Corollary 4.24]), also $\pi_{k-1}(\mathbb{S}^{m-1}) \neq 0$; let $h: \mathbb{S}^{k-1} \to \mathbb{S}^{m-1}$ be a mapping that is not homotopic to a constant.

We begin by choosing in the ball \mathbb{B}^{k+1} disjoint, closed balls \mathbb{B}_i , $i = 1, 2, ..., N = n^{m+1}$, of radius $\frac{2}{n}$, all inside $\frac{1}{2}\mathbb{B}^{k+1}$. This is possible, if n is chosen sufficiently large, since, for n large, the (k+1)-dimensional volume of $\frac{1}{2}\mathbb{B}^{k+1}$ is much larger than the sum of volumes of \mathbb{B}_i , $2^{-(k+1)} \gg n^{m+1}2^{k+1}n^{-(k+1)}$.

We define a C^{∞} -mapping F in $\mathbb{B}^{k+1} \setminus \bigcup_{i=1}^{N} \mathbb{B}_{i}$; then, the same mapping is iterated inside each of the balls $\mathbb{B}_{i} = \mathbb{B}_{i,1}$, which defines F outside a family of N^{2} second generation balls $\mathbb{B}_{i,2}$, and so on – in this way we obtain a mapping which is C^{∞} outside a Cantor set. Finally, we extend F continuously to the Cantor set C defined by the subsequent generations of balls $\mathbb{B}_{i,j}$, as the intersection $C = \bigcap_{j=1}^{\infty} \bigcup_{i=1}^{N^{j}} \mathbb{B}_{i,j}$.

The mapping F in $\mathbb{B}^{k+1} \setminus \bigcup_{i=1}^{N} \mathbb{B}_i$ is (in principle – see comments below) defined as a composition of four steps (see Figure 1):

(1) First, we realign all the balls \mathbb{B}_i inside \mathbb{B}^{k+1} , by a diffeomorphism G_1 equal to the identity near $\partial \mathbb{B}^{k+1}$, so that the images of \mathbb{B}_i are identical, disjoint, closed balls

lying along the vertical axis of \mathbb{B}^{k+1} . Obviously, this diffeomorphism has to shrink the balls \mathbb{B}_i somewhat.

- (2) The next step, the mapping $H: \mathbb{B}^{k+1} \to \mathbb{B}^{m+1}$, is defined in the following way: it maps (k-1)-dimensional spheres centered at the vertical axis of \mathbb{B}^{k+1} , lying in the hyperplane orthogonal to that axis, to (m-1)-dimensional spheres of the same radius, centered at analogous points on the vertical axis of \mathbb{B}^{m+1} . On each such sphere, H is an appropriately scaled copy of the mapping h. This way, H restricted to any k-sphere centered on the axis (in particular to $\partial \mathbb{B}_{k+1}$ and to $\partial (G_1(\mathbb{B}_i))$) equals (up to scaling) to the suspension of h.
- (3) Next, we define the diffeomorphism G_2 : we inflate the ball \mathbb{B}^{m+1} to $\frac{1}{2}\sqrt{m+1}\mathbb{B}^{m+1}$, so that we can inscribe the unit cube $[-\frac{1}{2},\frac{1}{2}]^{m+1}$ in it, and inside that ball, we rearrange the N balls $H(G_1(\mathbb{B}_i))$, so that each of them is almost inscribed in one of the cubes of the grid obtained by partitioning the unit cube into $N = n^{m+1}$ cubes of edge length $\frac{1}{n}$.
- (4) Finally, we project $\frac{1}{2}\sqrt{m+1}\mathbb{B}^{m+1}\setminus\bigcup_{i=1}^NG_2(H(G_1(\mathbb{B}_i)))$ onto the m-dimensional skeleton of the grid: first, we project the outside of the unit cube onto the boundary of the cube using the nearest point projection π , then in each of the N closed cubes of the grid we use the mapping R defined in the proof of Lemma 8. Even though π is not smooth, this composition turns out to be smooth (see [2, Lemma 5.3]).

In fact, this construction of F outside $\bigcup_i \mathbb{B}_i$ is almost correct – the resulting mapping is not C^{∞} , but Lipschitz: it is not differentiable at the points of the vertical axis, and some technical modifications are necessary to make it C^{∞} . Similarly, some additional work is necessary to glue F with scaled copies of F in each of the balls \mathbb{B}_i in a differentiable way. These are purely technical difficulties, the details are provided in [2].

The third iteration of that construction is depicted in Figure 2.

One easily checks that the derivative of F tends to 0 as we approach the points of the Cantor set C, thus the limit mapping, extended to the whole \mathbb{B}^{k+1} , is C^1 . For each point of $\mathbb{B}^{k+1} \setminus C$, the image of its small neighborhood is mapped to the m-dimensional skeleton of the grid, thus rank $DF \leq m$ at all these points, and since DF = 0 at the points of C, the condition rank $DF \leq m$ holds everywhere in \mathbb{B}^{k+1} .

Lemma 9 allows us to complete the proof of Lemma 8 as follows. Let $x_o \in E_F$ and $1 - |x_o| > \varepsilon > 0$ be given. Suppose to the contrary, that there is a sequence $G_j \in C^{k-m+1}(\mathbb{B}^{k+1}(x_o,\varepsilon),\mathbb{R}^{m+1})$ with rank $DG_j \leq m$, that is uniformly convergent to F on $\mathbb{B}^{k+1}(x_o,\varepsilon)$.

Let \mathbb{D}_i be a sequence of balls convergent to x_o as in the statement of Lemma 9. If i is sufficiently large, then $\overline{\mathbb{D}}_i \subset \mathbb{B}^{k+1}(x_o, \varepsilon)$ and the sequence G_j converges uniformly to F on $\overline{\mathbb{D}}_i$. Hence

$$\tilde{G}_j := T_i^{-1} \circ G_j|_{\overline{\mathbb{D}}_i} \circ \Sigma_i : \overline{\mathbb{B}}^{k+1} \to \mathbb{R}^{m+1}$$

converges uniformly to

$$T_i^{-1} \circ F|_{\overline{\mathbb{D}}_i} \circ \Sigma_i = F : \overline{\mathbb{B}}^{k+1} \to \mathbb{I}.$$

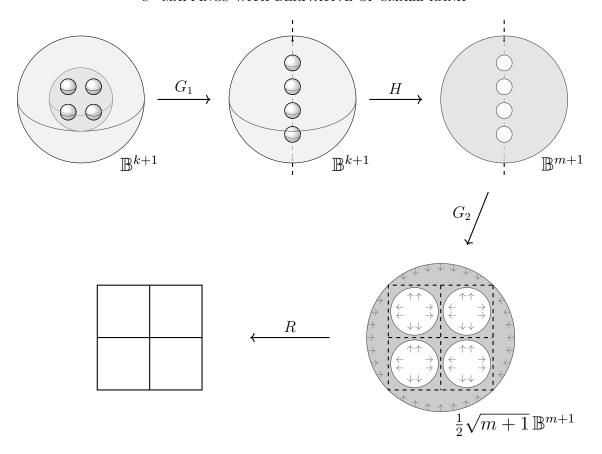


FIGURE 1. The construction of F in $\mathbb{B}^{m+1} \setminus \bigcup_{i=1}^{N} \mathbb{B}_{i}$.



FIGURE 2. The third iteration: F outside the third generation of balls $\bigcup_i \mathbb{B}_{3,i}$.

Obviously, rank $D\tilde{G}_j \leq m$. Since \tilde{G}_j is uniformly close to F on $\partial \mathbb{B}^{k+1}$ and $F|_{\partial \mathbb{B}^{k+1}} : \mathbb{S}^k \to \partial \mathbb{I}$ is not homotopic to a constant map, it easily follows that for j sufficiently large the image $\tilde{G}_j(\mathbb{B}^{k+1})$ contains the cube $\frac{1}{2}\mathbb{I}$ that is concentric with \mathbb{I} and has half the diameter.

Indeed, assume that $\sup_{x \in \partial \mathbb{B}^{k+1}} |\tilde{G}_j(x) - F(x)| < \frac{1}{4}$ – this ensures that $\tilde{G}_j(\partial \mathbb{B}^{k+1})$ does not intersect $\frac{1}{2}\mathbb{I}$. We will show that $\frac{1}{2}\mathbb{I} \subset \tilde{G}_j(\mathbb{B}^{k+1})$. Assume to the contrary, that there is $y \in \frac{1}{2}\mathbb{I} \setminus \tilde{G}_j(\mathbb{B}^{k+1})$. Let P denote the 'radial' projection from $\mathbb{I} \setminus \{y\}$ to $\partial \mathbb{I}$, centered at y (we set P(z), for $z \in \mathbb{I} \setminus \{y\}$, to be the unique intersection of the half-line $\{y+t(z-y): t>0\}$ and $\partial \mathbb{I}$). Then P is continuous and $P|_{\partial \mathbb{I}} = \mathrm{id}$. Note that $P \circ \tilde{G}_j$ is continuous on \mathbb{B}^{k+1} , because y does not belong to the image of \tilde{G}_j . Also, for large j, $P \circ \tilde{G}_j|_{\partial \mathbb{B}^{k+1}}$ is uniformly close to $P \circ F = F$, in particular the two mappings are homotopic so $P \circ \tilde{G}_j|_{\partial \mathbb{B}^{k+1}}$ is not homotopic to a constant map. However, $H : [0,1] \times \partial \mathbb{B}^{k+1} \to \partial \mathbb{I}$ given by the formula

$$H(t,x) = P \circ \tilde{G}_j(tx)$$

is continuous homotopy between $H(1,x) = P \circ \tilde{G}_j(x)$, and the constant map $H(0,x) = P \circ \tilde{G}_j(0)$, which is a contradiction.

Recall that according to Sard's theorem [4, 5], the map $\tilde{G}_j \in C^{k-m+1}$ maps the set of its critical points to a set of measure zero. Since rank $D\tilde{G}_j \leq m$, all points in \mathbb{B}^{k+1} are critical, so the set $\tilde{G}_j(\mathbb{B}^{k+1})$ has measure zero, which contradicts the fact that it contains the cube $\frac{1}{2}\mathbb{I}$. The proof is complete.

REFERENCES

- [1] Gałęski, J.: Besicovitch–Federer projection theorem for continuously differentiable mappings having constant rank of the Jacobian matrix. *Math. Z.* 289 (2018), 995-1010.
- [2] Goldstein, P., Hajłasz, P., Pankka, P.: Topologically nontrivial counterexamples to Sard's theorem. *Int. Math. Res. Not. IMRN* (to appear).
- [3] HATCHER, A.: Algebraic topology. Cambridge University Press, Cambridge, 2002.
- [4] SARD, A.: The measure of the critical values of differentiable maps. Bull. Amer. Math. Soc. 48 (1942), 883–890.
- [5] Sternberg, S.: Lectures on differential geometry. Chelsea Publishing Co., New York, second edition, 1983. With an appendix by Sternberg and Victor W. Guillemin.
- [6] ZORICH, V. A.: Mathematical analysis. I. Second edition. Universitext. Springer-Verlag, Berlin, 2015.

PAWEŁ GOLDSTEIN, INSTITUTE OF MATHEMATICS, FACULTY OF MATHEMATICS, INFORMATICS AND MECHANICS, UNIVERSITY OF WARSAW, BANACHA 2, 02-097 WARSAW, POLAND

E-mail address: P.Goldstein@mimuw.edu.pl

PIOTR HAJŁASZ, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF PITTSBURGH, PA 15260, USA

E-mail address: hajlasz@pitt.edu