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Abstract

The paper deals with forward and inverse homogeniza-
tion of Maxwell’s equations with a geometry on a micro-
scopic scale given by a quasiperiodic distribution of piece-
wise constant components defined by the use of a mapping
R:R" = R™, m > n, and a periodic unit cell in R”. Inverse
homogenization makes use of a Stieltjes analytic represen-
tation for the effective complex permittivity, which depends
upon R, unlike for the periodic case.

1 Introduction

The standard setting in homogenization problems for elec-
tromagnetic wave propagation is to study periodic material
properties in the long wavelength/quasistatic regime. In this
paper we consider a heterogeneous material that is periodic
in a dimension higher than three, and we use the discovery
by Shechtman [12] that quasicrystals can be modeled by
taking the cut-and-projection of a periodic structure from a
higher dimensional space (typically R® or R'?) onto a hy-
perplane (such as the Euclidean space R?). This problem
was mathematically formulated in [8] thanks to a mapping
R from physical space R” to higher dimensional space R™.
This procedure makes it possible to homogenize a class of
quasiperiodic materials of physical interest. We refer to
[1, 13, 2] for earlier work on this topic. As noted in [1, 13],
the homogenized result does not depend upon R : R" — R,
provided it fulfills the criterion

Rk #0,VkezZ™\ {0} (1.1

which corresponds to an irrational slope in the one-
dimensional case (e.g., RT = (1,a), @ € R\ Q satisfies
(1.1)). Some (but not necessarily all) entries of R are ir-
rational, as a minimum requirement. We call such projec-
tions irrational, as in [9]. For example, the permittivity of
the quasi-crystal Algz sFejz 5Cup4 is given by R : R3 - RS,

S(Rx) = e(nf(xl +1x2),ne(TX1 +x3), 10 (X2 + Tx3),
ne(—=x1 4 7x2),ne(Tx1 — x3),n7(—x2 + Tx3))

where n. is the normalization constant 1/4/2(2+ T), with

=

7 the Golden number and € € Lﬁ (Yf’), i.e.,itis periodic and

Figure 1. Composites at different scales.

bounded almost everywhere on the hypercube Y° = 10,1 [6.

2 Definition of cut-and-projection partial
differential operators

To carry out the analysis of partial differential equations
(PDEs) defined on quasiperiodic domains, we need to de-
fine differential operators acting in the higher dimensional
space R™. We let u € L>(Y™), and assume that u is regu-
lar enough to make sense to define the cut-and-projected
function, ug € L*(Q) as ur(x) = u(Rx). The mapping
y = Rx and the chain rule yield the gradient of ug given
by Vug(x) = RTV,u(Rx). We define R-dependent differ-
ential operators acting on functions defined on domains in
Rm

gradg u(y) =R"Vy u(y)

divg u(y) = (R"V,) -u(y)
curlg u(y) = (RTVy) x u(y)

Decompose Wﬁl ’2(Y’") into two orthogonal spaces,
1,2
W, =X X,
where
X = {u e W2 (Y™)| RR Vyu = 0}
and

xt = {u € W2 (y™)| (I, —RR’) V,u= 0} @.1)
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with I, the identity matrix in R”. The space W~12(Y™)
can be decomposed of the direct sum of X~ and X~ which
denotes the dual spaces of X and X. The R-projected
Laplace operator defines a Poisson equation projected on
a hyperplane in higher dimension

—ARO=f, feXx* (2.2)

where 6 € X+ and the R-projected Laplace-operator is
given by Ag := VR - Vg = div, RR” grad,. Excluding all
potentials with gradient components in Ker RR”, which is
the same as looking for a solution in X, makes the problem

well posed. Equation (2.2) corresponds to solving Poisson’s
equation in the projected hyperplane, as in [4, 10].

2.1 Two-scale cut-projection convergence

We define the following function spaces.
J(dive, Y™) 1= {u € L2(Y™;R") | divgue Lg(ym)}
Jt,(curlg,Y™) := {u € Li(Y"’;H@) | curlg u € Li(Y’”;H@)}
H(div,Q) == {u cX(QR") | divue LZ(Q)}

H(curl,Q) := {u e L*(QR?) | curlue LZ(Q;R3)}

Definition 2.1 (Weak two-scale convergence). Let Q be
an open bounded set in R" and Y™ =10,1[". We say
that the sequence (uy) two-scale converges weakly towards
the function ug € L*(Q x Y™) for a matrix R if for every
9 € L2(Q.C(r))

) Rx
(2.3)

We denote weak two-scale convergence for a matrix R with

Un, B\A up. The following result [1] ensures the existence
of such two-scale limits when the sequence (uy,) is bounded
in L?(Q) and R satisfies (1.1).

Proposition 2.1. Let Q be an open bounded set in R" and
Y™ =10,1[". If R:R" — R™ is a linear map satisfying (1.1)
and (un) is a bounded sequence in L*(Q), then there exist a
vanishing subsequence My and a limit ug(x,y) € L*(Q x Y™)
(Y™-periodic in'y) such that uy, R, uy as N — 0.

Proposition 2.2. Let {uy} be a uniformly bounded se-
quence in H(curl, Q). Then there exist a subsequence {uy, }
and functions uy € H(curl, Q, 5% (curlg,,Y"™)), gradg ¢ €
L;(Q,L%(Ym;R3)), and curlg u; € Lz(Q,Lg(Ym;R3)) such
that

ne R g (x,y) = u(x) + gradg O(x,y)  (2.4)

curl uy, R. curl u(x) + curlg u; (x,y) (2.5)

as Ny — 0, where

u(x) = /Ym uo(x,y) dy

Figure 2. Typical geometry of the scattering problem. The
domain Q, its boundary d<, the unit normal vector V and
the exterior Q..

Proposition 2.3. Ler {uy} be a uniformly bounded se-
quence in H(div,Q). Then there exist a subsequence {uy, }
and functions uy € H(div,Q, 74 (divg,,Y")) and divg u; €
LZ(Q,LT?(Y’”)) such that

R
y, = uo(x,y) (2.6)

div up, R. div u(x) +divg ug (x,y) 2.7)

as Ny — 0, where

@) = [ () dy

2.2 The heterogeneous Maxwell’s equations

Let Q be an open, bounded domain in R? with simply con-
nected Lipschitz boundary dQ2. We denote the exterior of
the domain Q by Q. = R3 \ﬁ, which is assumed to be sim-
ply connected.

The scattered electromagnetic field satisfies the exterior
problem outside the scattering domain

{V X Eg(x) = ikoH(x), xeQ,. (2.8)

V x Hy(x) = —ikoEs(x),

where kg is the wavenumber in vacuum. The scattered fields
satisfy the Silver—Miiller radiation condition at infinity, i.e.,
one of the following conditions (see [7]):

{‘A/XES(X)_Hs(x) =o(1/]x1), as x| oo
V x Hs(x)+Eg(x) =o(1/ | x])
2.9)

uniformly in all directions.

In Q, the sum of the incident and the scattered fields is de-
fined as the total field, i.e.,

E/(x) = E;(x) + Es(x), .
{ Hi(x) = Hi(x) + Hy(x), e
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The boundary conditions on < are

{ VX Eila+ 9 x Edag =9 x Elag. 5 10

VX Hilgo+V X Hlyo =V x Hlsq,

where E and H solve an interior problem (in Q). The sys-
tem (2.8) with the radiation condition (2.9) supplied with
the boundary condition

VX Eylyq=m €H 2(div,0Q),

has a unique solution (Ey, Hy) € Hyoe(curl, Q) X Hioc (curl,
Q,) for any m € H~2 (div, Q) [3, p. 107].

The permittivity and permeability are assumed to be coer-
cive and bounded. The interior problem for a heterogeneous
material contained in the domain € reads

{ V x E"(x) = ikoB" (x), o

V x H" (x) = —ikoD" (x),

almost everywhere, with boundary conditions given by
(2.10). By using the constitutive relations for the higher
dimensional periodic material,

{ D"(x) = £()-

x€Q,

we eliminate D", B and obtain the quasiperiodic formula-
tion of the Maxwell’s equations

M(y) =g Rx

{ V x E"(x) = ikopt (%) - H' (x), ceQ @i

V x H(x) = —ikoe(5¥) - EM (x)
where the solution (E",H™) is in H(curl,Q) x H(curl, Q).
In the homogenization procedure we identify the limit of
the fields E",H" when 1 — 0. This limit satisfies the ho-
mogenized system with constant coefficients, which is a
model of a homogeneous material. We have the uniform
a priori estimate

||E77 ”H(curLQ) + ”Hn HH(curl,Q) <C,

2.3 The homogenized Maxwell’s equations

The homogenized Maxwell’s equations for periodic com-
posites is given in [14] and read

(2.12)

V x E(x) = ikou" - H(x),
V x H(x) = —ikoe" - E(x)

where E and H belongs to H(curl,Q). The system is cou-
pled to the exterior problem (2.8) via the boundary condi-
tions (2.10). The homogenized permeability and permittiv-
ity €" and " are defined by

h __ - L k
& = - &ij () (5/k Vije (y)) dy

h k
ul= [ 1 0) (8= V,,20)) ay

where the potentials x* and X;]f solve the local equations
/m gij (y) (6ﬂ< - Vy,%f()’)) V},¢(y) dy =0 (213)

[ 0) (85 =V, 240)) Vo900 dy =0 @.14)

Propositions 2.1, 2.2, and 2.3 yields the quasiperiodic case
of the homogenized material properties

= [ o0 (85— (RI¥) 20)) ay

pl= [ i) (85— (R]V,) 260)) v

where the projected gradients (RJT.V)) x¥ and (RJT.Vy) x}’f
solve the local equations

[, &) (81— (RIV,) 240)) (RV,) 0(3) dy =0
(2.15)

[, 0) (8= (RIV,) 25)) (RTV,) 0(3) dy = 0
(2.16)

3 Stieltjes analytic representation for the ef-
fective conductivity

From now on we assume that the electric permittivity is
piecewise constant on the unit cell in R™, i.e.,

ey)=eax1(yv)+ax®) =axn@y)+1-x®)e, 3.1

where € and & are coercive (complex) and scalar valued
bounded constants, ); and ) are the characteristic func-
tions of medium 1 and 2, respectively. They are periodic in
R™, hence the scaled (and projected) permittivity function,
8(%), is quasiperiodic in R”. A similar assumption is as-
sumed for the permeability, 1. The local equation (2.15) in

a strong formulation reads
—div, Rs(y)RTgrady x5 (v) = —divy Re(y)ex

The material distribution in the unit cell as given in (3.1)
and some algebra yields

(sL, —Tr x1(y)) <€k — VR %f(ﬁ) = se

where s = &, /(€ — &) and ' := VR(AR) "' Vr-. Applying
the inverse of the operator on the left hand side yields

e~ VR () =s(L—Tr 0100) " e

The spectral resolution of I'r¥; with the R-projected pro-
jection valued measure Qg gives [11]

1
EMs) e~ Ve k) = || ~—dOr@e G2
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We define a function Fy; which measures how the homog-
enized property of the composite depends on the contrast
between the components

h k
£ ek
Fkl(s)zl,ﬂzl,w

—1 k
= E
& & (s 0 E" ep)

The integral representation of this function is obtained us-
ing (3.2) as

Fu(s) = (0100) L —Tr x1(y)) " ex,er) =
/1 (x1dOr(2) ek, e1)
0

§—2

Let .#},; be a positive tensor measure corresponding to the
spectral measure QR, so that d.#Zj;(z) = (x1 dOr(2)ex, €1,

then |
Fu(s) = / d.Muz)
0 Ss—z

This representation separates information about the mi-
crostructure of the composite material, which is contained
in the spectral measure .# from information about the
properties of the materials. It was shown in [6, 5] that in the
case of random or periodic composites, the spectral mea-
sure .# in this integral representation can be uniquely re-
constructed from values of the function F available on an
arc in the complex plane. Here we extend the result to the
quasiperiodic case.
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