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Abstract

The paper deals with forward and inverse homogeniza-

tion of Maxwell’s equations with a geometry on a micro-

scopic scale given by a quasiperiodic distribution of piece-

wise constant components defined by the use of a mapping

R : Rn →Rm, m > n, and a periodic unit cell in Rm. Inverse

homogenization makes use of a Stieltjes analytic represen-

tation for the effective complex permittivity, which depends

upon R, unlike for the periodic case.

1 Introduction

The standard setting in homogenization problems for elec-

tromagnetic wave propagation is to study periodic material

properties in the long wavelength/quasistatic regime. In this

paper we consider a heterogeneous material that is periodic

in a dimension higher than three, and we use the discovery

by Shechtman [12] that quasicrystals can be modeled by

taking the cut-and-projection of a periodic structure from a

higher dimensional space (typically R6 or R12) onto a hy-

perplane (such as the Euclidean space R3). This problem

was mathematically formulated in [8] thanks to a mapping

R from physical space Rn to higher dimensional space Rm.

This procedure makes it possible to homogenize a class of

quasiperiodic materials of physical interest. We refer to

[1, 13, 2] for earlier work on this topic. As noted in [1, 13],

the homogenized result does not depend upon R :Rn →Rm,

provided it fulfills the criterion

RT k 6= 0 , ∀k ∈ Zm \{0} (1.1)

which corresponds to an irrational slope in the one-

dimensional case (e.g., RT = (1,α), α ∈ R \Q satisfies

(1.1)). Some (but not necessarily all) entries of R are ir-

rational, as a minimum requirement. We call such projec-

tions irrational, as in [9]. For example, the permittivity of

the quasi-crystal Al63.5Fe12.5Cu24 is given by R : R3 →R6,

ε
(

Rx
)

= ε
(

nτ(x1 + τx2),nτ(τx1 + x3),nτ(x2 + τx3),
nτ(−x1 + τx2),nτ(τx1 − x3),nτ(−x2 + τx3)

)

where nτ is the normalization constant 1/
√

2(2+ τ), with

τ the Golden number and ε ∈ L∞

♯ (Y
6), i.e., it is periodic and

Figure 1. Composites at different scales.

bounded almost everywhere on the hypercube Y 6 = ]0,1[6.

2 Definition of cut-and-projection partial

differential operators

To carry out the analysis of partial differential equations

(PDEs) defined on quasiperiodic domains, we need to de-

fine differential operators acting in the higher dimensional

space Rm. We let u ∈ L2(Y m), and assume that u is regu-

lar enough to make sense to define the cut-and-projected

function, uR ∈ L2(Ω) as uR(x) = u(Rx). The mapping

y = Rx and the chain rule yield the gradient of uR given

by ∇uR(x) = RT
∇yu(Rx). We define R-dependent differ-

ential operators acting on functions defined on domains in

Rm

gradR u(y) = RT
∇y u(y)

divR u(y) =
(

RT
∇y

)

·u(y)

curlR u(y) =
(

RT
∇y

)

×u(y)

Decompose W
1,2
♯ (Y m) into two orthogonal spaces,

W
1,2
♯ (Y m) = X ⊕X⊥,

where

X =
{

u ∈W
1,2
♯ (Y m)| RRT

∇yu = 0
}

and

X⊥ =
{

u ∈W
1,2
♯ (Y m)|

(

Im −RRT
)

∇yu = 0
}

(2.1)
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with Im the identity matrix in Rm. The space W−1,2(Y m)
can be decomposed of the direct sum of X− and X−⊥ which

denotes the dual spaces of X and X⊥. The R-projected

Laplace operator defines a Poisson equation projected on

a hyperplane in higher dimension

−∆R θ = f , f ∈ X−⊥ (2.2)

where θ ∈ X⊥ and the R-projected Laplace-operator is

given by ∆R := ∇R ·∇R = divy RRT grady. Excluding all

potentials with gradient components in Ker RRT , which is

the same as looking for a solution in X⊥, makes the problem

well posed. Equation (2.2) corresponds to solving Poisson’s

equation in the projected hyperplane, as in [4, 10].

2.1 Two-scale cut-projection convergence

We define the following function spaces.

H♯(divR,Y
m) :=

{

u ∈ L2
♯ (Y

m;Rn) | divR u ∈ L2
♯ (Y

m)
}

H♯(curlR,Y
m) :=

{

u ∈ L2
♯ (Y

m;R3) | curlR u ∈ L2
♯ (Y

m;R3)
}

H(div,Ω) :=
{

u ∈ L2(Ω;Rn) | div u ∈ L2(Ω)
}

H(curl,Ω) :=
{

u ∈ L2(Ω;R3) | curl u ∈ L2(Ω;R3)
}

Definition 2.1 (Weak two-scale convergence). Let Ω be

an open bounded set in Rn and Y m = ]0,1[m. We say

that the sequence (uη) two-scale converges weakly towards

the function u0 ∈ L2(Ω×Y m) for a matrix R if for every

ϕ ∈ L2(Ω,C♯(Y
m))

lim
η→0

∫

Ω

uη(x)ϕ

(

x,
Rx

η

)

dx =
∫ ∫

Ω×Y m
u0(x,y)φ(x,y)dxdy

(2.3)

We denote weak two-scale convergence for a matrix R with

uηk

R
⇀⇀ u0. The following result [1] ensures the existence

of such two-scale limits when the sequence (uη) is bounded

in L2(Ω) and R satisfies (1.1).

Proposition 2.1. Let Ω be an open bounded set in Rn and

Y m = ]0,1[m. If R :Rn →Rm is a linear map satisfying (1.1)

and (uη) is a bounded sequence in L2(Ω), then there exist a

vanishing subsequence ηk and a limit u0(x,y)∈ L2(Ω×Y m)

(Y m-periodic in y) such that uηk

R
⇀⇀ u0 as ηk → 0.

Proposition 2.2. Let {uη} be a uniformly bounded se-

quence in H(curl,Ω). Then there exist a subsequence {uηk
}

and functions u0 ∈ H(curl,Ω,H♯(curlR0
,Y m)), gradR φ ∈

L2(Ω,L2
♯ (Y

m;R3)), and curlR u1 ∈ L2(Ω,L2
♯ (Y

m;R3)) such

that

uηk

R
⇀⇀ u0(x,y) = u(x)+gradR φ(x,y) (2.4)

curl uηk

R
⇀⇀ curl u(x)+ curlR u1(x,y) (2.5)

as ηk → 0, where

u(x) =
∫

Y m
u0(x,y) dy

ν̂

∂Ω

Ωe

Ω

Figure 2. Typical geometry of the scattering problem. The

domain Ω, its boundary ∂Ω, the unit normal vector ν̂ and

the exterior Ωe.

Proposition 2.3. Let {uη} be a uniformly bounded se-

quence in H(div,Ω). Then there exist a subsequence {uηk
}

and functions u0 ∈ H(div,Ω,H♯(divR0
,Y m)) and divR u1 ∈

L2(Ω,L2
♯ (Y

m)) such that

uηk

R
⇀⇀ u0(x,y) (2.6)

div uηk

R
⇀⇀ div u(x)+divR u1(x,y) (2.7)

as ηk → 0, where

u(x) =
∫

Y m
u0(x,y) dy

2.2 The heterogeneous Maxwell’s equations

Let Ω be an open, bounded domain in R3 with simply con-

nected Lipschitz boundary ∂Ω. We denote the exterior of

the domain Ω by Ωe =R3 \Ω, which is assumed to be sim-

ply connected.

The scattered electromagnetic field satisfies the exterior

problem outside the scattering domain

{

∇×Es(x) = ik0Hs(x),

∇×Hs(x) =−ik0Es(x),
x ∈ Ωe. (2.8)

where k0 is the wavenumber in vacuum. The scattered fields

satisfy the Silver–Müller radiation condition at infinity, i.e.,

one of the following conditions (see [7]):

{

ν̂ ×Es(x)−Hs(x) = o(1/ | x |),

ν̂ ×Hs(x)+Es(x) = o(1/ | x |)
as | x |→ ∞

(2.9)

uniformly in all directions.

In Ωe the sum of the incident and the scattered fields is de-

fined as the total field, i.e.,

{

Et(x) = E i(x)+Es(x),

Ht(x) = H i(x)+Hs(x),
x ∈ Ωe.
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The boundary conditions on ∂Ω are

{

ν̂ × E i|∂Ω
+ ν̂ × Es|∂Ω

= ν̂ × E|∂Ω
,

ν̂ × H i|∂Ω
+ ν̂ × Hs|∂Ω

= ν̂ × H|∂Ω
,

(2.10)

where E and H solve an interior problem (in Ω). The sys-

tem (2.8) with the radiation condition (2.9) supplied with

the boundary condition

ν̂ × Es|∂Ω
= m ∈ H− 1

2 (div,∂Ω),

has a unique solution (Es,Hs) ∈ Hloc(curl,Ωe)×Hloc(curl,

Ωe) for any m ∈ H− 1
2 (div,∂Ω) [3, p. 107].

The permittivity and permeability are assumed to be coer-

cive and bounded. The interior problem for a heterogeneous

material contained in the domain Ω reads
{

∇×Eη(x) = ik0Bη(x),

∇×Hη(x) =−ik0Dη(x),
x ∈ Ω,

almost everywhere, with boundary conditions given by

(2.10). By using the constitutive relations for the higher

dimensional periodic material,

{

Dη(x) = ε(Rx
η ) ·Eη(x),

Bη(x) = µ(Rx
η ) ·Hη(x),

x ∈ Ω,

we eliminate Dη , Bη and obtain the quasiperiodic formula-

tion of the Maxwell’s equations

{

∇×Eη(x) = ik0µ(Rx
η ) ·Hη(x),

∇×Hη(x) =−ik0ε(Rx
η ) ·Eη(x)

x ∈ Ω, (2.11)

where the solution (Eη ,Hη) is in H(curl,Ω)×H(curl,Ω).
In the homogenization procedure we identify the limit of

the fields Eη ,Hη when η → 0. This limit satisfies the ho-

mogenized system with constant coefficients, which is a

model of a homogeneous material. We have the uniform

a priori estimate

‖Eη‖H(curl,Ω)+‖Hη‖H(curl,Ω) ≤C,

2.3 The homogenized Maxwell’s equations

The homogenized Maxwell’s equations for periodic com-

posites is given in [14] and read

{

∇×E(x) = ik0µh ·H(x),

∇×H(x) =−ik0εh ·E(x)
(2.12)

where E and H belongs to H(curl,Ω). The system is cou-

pled to the exterior problem (2.8) via the boundary condi-

tions (2.10). The homogenized permeability and permittiv-

ity εh and µh are defined by

εh
ik =

∫

Y n
εi j (y)

(

δ jk −∇y j
χk

e (y)
)

dy

µh
ik =

∫

Y m
µi j (y)

(

δ jk −∇y j
χk

h(y)
)

dy

where the potentials χk
e and χk

h solve the local equations

∫

Y m
εi j (y)

(

δ jk −∇y j
χk

e (y)
)

∇yi
φ(y) dy = 0 (2.13)

∫

Y m
µi j (y)

(

δ jk −∇y j
χk

h(y)
)

∇yi
φ(y) dy = 0 (2.14)

Propositions 2.1, 2.2, and 2.3 yields the quasiperiodic case

of the homogenized material properties

εh
ik =

∫

Y m
εi j (y)

(

δ jk −
(

RT
j ∇y

)

χk
e (y)

)

dy

µh
ik =

∫

Y m
µi j (y)

(

δ jk −
(

RT
j ∇y

)

χk
h(y)

)

dy

where the projected gradients
(

RT
j ∇y

)

χk
e and

(

RT
j ∇y

)

χk
h

solve the local equations

∫

Y m
εi j (y)

(

δ jk −
(

RT
j ∇y

)

χk
e (y)

)

(

RT
i ∇y

)

φ(y) dy = 0

(2.15)
∫

Y m
µi j (y)

(

δ jk −
(

RT
j ∇y

)

χk
h(y)

)

(

RT
i ∇y

)

φ(y) dy = 0

(2.16)

3 Stieltjes analytic representation for the ef-

fective conductivity

From now on we assume that the electric permittivity is

piecewise constant on the unit cell in Rm, i.e.,

ε(y)= ε1χ1(y)+ε2χ2(y)= ε1χ1(y)+(1−χ1(y))ε2, (3.1)

where ε1 and ε2 are coercive (complex) and scalar valued

bounded constants, χ1 and χ2 are the characteristic func-

tions of medium 1 and 2, respectively. They are periodic in

Rm, hence the scaled (and projected) permittivity function,

ε(Rx
η ), is quasiperiodic in Rn. A similar assumption is as-

sumed for the permeability, µ . The local equation (2.15) in

a strong formulation reads

−divy Rε(y)RT grady χk
e (y) =−divy Rε(y)ek

The material distribution in the unit cell as given in (3.1)

and some algebra yields

(sIn −ΓR χ1(y))
(

ek −∇R χk
e (y)

)

= sek

where s= ε2/(ε2−ε1) and ΓR :=∇R(∆R)
−1

∇R·. Applying

the inverse of the operator on the left hand side yields

ek −∇R χk
e (y) = s(sIn −ΓR χ1(y))

−1
ek

The spectral resolution of ΓRχ1 with the R-projected pro-

jection valued measure QR gives [11]

Ek(s) = ek −∇R χk
e (y) =

∫ 1

0

s

s− z
dQR(z)ek (3.2)
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We define a function Fkl which measures how the homog-

enized property of the composite depends on the contrast

between the components

Fkl(s) = 1−
εh

kl

ε2
= 1−

〈εEk,el〉

ε2
= 〈s−1 χ1 Ek, el 〉

The integral representation of this function is obtained us-

ing (3.2) as

Fkl(s) = 〈χ1(y) (sIn −ΓR χ1(y))
−1

ek,el〉=
∫ 1

0

〈χ1 dQR(z)ek, el〉

s− z

Let Mkl be a positive tensor measure corresponding to the

spectral measure QR, so that dMkl(z) = 〈χ1 dQR(z)ek,el〉,
then

Fkl(s) =
∫ 1

0

dMkl(z)

s− z

This representation separates information about the mi-

crostructure of the composite material, which is contained

in the spectral measure M from information about the

properties of the materials. It was shown in [6, 5] that in the

case of random or periodic composites, the spectral mea-

sure M in this integral representation can be uniquely re-

constructed from values of the function F available on an

arc in the complex plane. Here we extend the result to the

quasiperiodic case.
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