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Abstract – With recent technological advances, quasiperiodic and aperiodic

materials present a novel class of metamaterials that possess very unusual, ex-

traordinary properties such as superconductivity, unusual mechanical properties

and diffraction patterns, extremely low thermal conductivity, etc. As all these

properties critically depend on the microgeometry of the media, the methods that

allow characterizing the effective properties of such materials are of paramount

importance. In this paper, we analyze the effective properties of a class of mul-

tiscale composites consisting of periodic and quasiperiodic phases appearing at

different scales. We derive homogenized equations for the effective behavior of

the composite and discover a variety of new effects which could have interesting

applications in the control of wave and diffusion phenomena.

I. Introduction

Discovery of a quasicrystalline material by Shechtman [5], exhibiting unusual ten-fold electron diffrac-
tion pattern, has overturned our notion of crystallographic symmetries and led to a completely new class
of materials with very unusual properties and with the microstructures possessing a long-range order
and lacking translational symmetry. Though the first quasicrystalline materials were thermodynami-
cally unstable, since their discovery, many stable materials were found and efficient technologies able to
produce them, were developed [4]. Mathematically, quasicrystals can be modeled by cutting and pro-
jecting a periodic structure from a higher dimensional space (typically R

6 or R
12) onto a hyperplane

(such as the Euclidean space R
3), that was formulated in [3] using a mapping R from physical space R

n

to upper dimensional space R
m. This cut-and-projection procedure allows to homogenize quasiperiodic

materials of physical interest [2, 6]. As noted in [2, 6], the homogenized result does not depend upon
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Fig. 1: Multiscale homogenization:
cut-and-projection slope α = tan φ

R : Rn → R
m, provided it fulfills the criterion

RT
k 6= 0 , ∀k ∈ Z

m \ {0} (1)

This criterion corresponds to an irrational slope in the one-
dimensional case (e.g. RT = (1, α) where α is irrational, satisfies (1),
see Fig. 1 where the slope α = tanφ ). As an example, the conduc-
tivity of the quasicrystal Al63.5Fe12.5Cu24 is given by R : R3 → R

6,

σ
(

Rx
)

= σ
(

nτ (x1 + τx2), nτ (τx1 + x3), nτ (x2 + τx3),
nτ (−x1 + τx2), nτ (τx1 − x3), nτ (−x2 + τx3)

) (2)

where nτ is the normalization constant 1/
√

2(2 + τ) with the Golden number τ and σ ∈ L∞

# (Y 6), i.e. it

is periodic and bounded almost everywhere on the hypercube Y 6 = ]0, 1[
6
. Here we extend the cut-and-

projection method to multiscale reiterated homogenization, see Fig.1.
Let Ω denote a bounded open set in R

n. Let us recall the definition of the cut-and-project two-scale
convergence as introduced by Bouchitté and co-authors in 2010 [2].
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Definition I..1 Given a matrix R ∈ Mm×n satisfying the condition (1), a family uη(x) in L2(Ω) is
said to two-scale cut-and-project converge to a multiscale limit u0(x, y) ∈ L2(Ω × Y m) if the following
limit holds

lim
η→0

∫

Ω

uη(x)ψ

(

x,
Rx

η

)

dx =

∫

Ω

∫

Y m

u0(x, y)ψ(x, y) dy dx

for all ψ(x, y) ∈ L2(Ω; C#(Y m)).

The two scale cut-and-project method makes it possible to homogenize a class of quasiperiodic mate-
rials [2, 6], for which one cannot easily define a concept of long wavelength limit (due to the fact that
quasiperiods can be arbitrarily large). Here we are extending the method to multiscale quasiperiodic
composites. In particular, we are interested in finding answers to the following questions:

• Is it possible to extend the theory to handle both periodic and quasiperiodic oscillations of the
structure at the same scale?

• Is it possible to extend the theory to handle quasiperiodic oscillations at multiple scales?

II. Reiterated Convergence and Homogenization

To address these questions, we consider reiterated convergence following the approach developed by
Allaire and Briane [1]. We consider here the case when the scales of microstructural oscillations are well
separated and introduce multiscale cut-and-project convergence.

Definition II..1 Let Ω ⊂ R
d be a bounded open set and let Y m := [0, 1)m denote the m-dimensional unit

cubes for any m ∈ N. Given the matrices Ri ∈ Mmi×d satisfying the condition (1) for each i ∈ {1, . . . , N}
with mi ∈ N and mi ≥ d. A family uη(x) in L2(Ω) is said to multiscale cut-and-project converge to a
limit u0(x, y1, . . . , yN ) ∈ L2(Ω × Y m1 × · · ·Y mN ) if the following limit holds

lim
η→0

∫

Ω

uη(x)ψ

(

x,
R1x

η1
, . . . ,

RNx

ηN

)

dx

=

∫

Ω

∫

Y m1

· · ·

∫

Y mN

u0(x, y1, . . . , yN )ψ(x, y1, . . . , yN ) dyN · · · dy1 dx

for all ψ(x, y1, . . . , yN ) ∈ L2(Ω; C#(Y m1) × · · · × C#(Y mN )).

Now we can formulate our main theorem.

Theorem II..1 Let uη(x) be a uniformly bounded family in H1(Ω), i.e.

‖uη‖H1(Ω) ≤ C

with C being independent of η. Then, up to extraction of subsequence, we have

uη ⇀ u0(x, y1, . . . , yN ) (3)

∇uη ⇀ ∇xu0(x, y1, . . . , yN ) +
N
∑

i=1

R⊤

i ∇yi
ui(x, y1, . . . , yi) (4)

in the sense of multiscale cut-project convergence (see Definition II..1). Furthermore

R⊤

i ∇yi
u0(x, y1, . . . , yN ) = 0 ∀i ∈ {1, . . . , N}. (5)

Consider the following multiscale boundary value problem with quasiperiodic microstructure described
by the matrices R1, · · · ,RN corresponding to different scales η1, · · · , ηN :











−div

(

A

(

x,
R1x

η1
, · · · ,

RNx

ηN

)

∇uη(x)

)

= f(x) in Ω,

uη(x) = 0 on ∂Ω.

(6)
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Dictated by the multiscale limits, we test the above equation by the test functions

ϕ0

(

x,
R1x

η1
, · · · ,

RNx

ηN

)

+
N
∑

k=1

ηk ϕk

(

x,
R1x

η1
, · · · ,

RNx

ηN

)

(7)

where the ϕk’s satisfy for each k ∈ {0, 1, . . . .N − 1},

R⊤

k+j∇yk+j
ϕk = 0 ∀j = 1, . . . , N − k. (8)

Passing to the limit in the weak formulation of the problem results in the variational formulation of
the following N + 1-scale homogenized problem:


















































−divyN

(

RNA

(

∇xu0 +

N
∑

k=1

R⊤

k ∇yk
uk

))

= 0,

−divyj





∫

Y
mj+1

· · ·

∫

Y mN

RjA

(

∇xu0 +
N
∑

k=1

R⊤

k ∇yk
uk

)

N
∏

l=j+1

dyl



 = 0 for 1 ≤ j ≤ N − 1,

−divx

(

∫

Y m1

· · ·

∫

Y mN

A

(

∇xu0 +

N
∑

k=1

R⊤

k ∇yk
uk

)

N
∏

l=1

dyl

)

= f(x)

(9)

This result shows that the homogenized effective property is obtained by reiteration of n quasiperiodic (in
the sense of cut-and-projection) homogenization problems, successively from the smallest to the largest
scale.

III. Conclusion

Based on two-scale reiterated convergence and the cut-and-projection method, we have developed an
approach to the homogenization of multiscale periodic and quasiperiodic media or different quasiperiodic
media mixed on different scales. We have shown that the effective property and homogenized fields can be
obtained by iteratively solving a sequence of homogenization problems. This is the first theoretical result
on homogenization of multiscale quasiperiodic materials that lays the foundation for further theoretical
developments and numerical methods for a novel class of composites that could be termed as ’multiscale
irrational metamaterials’.
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