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In heterogeneous composite materials, the behaviour
of the medium on larger scales is determined by the
microgeometry and properties of the constituents on
finer scales. To model the influence of the microlevel
processes in composite materials, they are described
as materials with memory in which the constitutive
relations between stress and strain are given as time-
domain convolutions with some relaxation kernel.
The paper reveals the relationship between the
viscoelastic relaxation kernel and the spectral measure
in the Stieltjes integral representation of the effective
properties of composites. This spectral measure
contains all information about the microgeometry
of the material, thus providing a link between
the relaxation kernel and the microstructure of the
composite. We show that the internal resonances of the
microstructure determine the characteristic relaxation
times of the fading memory kernel and can be used
to introduce a set of internal variables that captures
dissipation at the microscale.

This article is part of the theme issue ‘Modelling
of dynamic phenomena and localization in structured
media (part 2)’.

1. Introduction

Multiscale hierarchical composite materials exhibit
different types of behaviour on different scales with
the finest scales determining the properties of the
constituents on larger scales. Viscoelastic properties of
materials are the result of dissipative processes on fine
scales which could stem from nonlinear wave energy
dissipation [1-3] in atomic lattices, from grain boundaries
dislocations in thin films and polycrystalline materials
[4,5], from damage, fracturing and repairing at the
microscale in polymers and biological materials [6].
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The wave propagating through a composite medium excites microlevel processes of different
characteristic wavelengths and internal scales. At the macroscale, the propagation of time-
dependent signals or stresses in such materials is influenced by these microlevel processes and is
characterized by frequency dispersion and energy dissipation. In a non-dispersive homogeneous
medium, all waves in a packet of waves of different frequencies propagate at the same speed,
so that the packet travels without changing its shape. In a medium with microstructure, every
wave in the packet experiences multiple scatterings from the boundaries of inclusions or
inhomogeneities; this leads to dissipation of the energy of the wave that depends on the particular
wavelength. Hence, waves of different frequencies dissipate different amounts of energy and
travel at different speeds, this results in changing the shape of the wave packet with time
and propagation distance. Due to thermodynamic constraints and Kramers—Kronig relations,
these two processes, frequency dispersion and energy dissipation, are necessarily present in
all microstructured materials. It is known that the presence of viscoelastic constituents in the
composite results in long memory effects in the homogenized material [7]. To model the influence
of the microlevel processes in such materials, they are described as materials with memory
[8-10] in which the constitutive relations between stress and strain are given as time-domain
convolutional relations with some relaxation kernel. These relaxation kernels, often built from
the spring and the dashpot building blocks connected in parallel and/or in series, provide
phenomenological models that describe the viscoelastic behaviour of many materials [11-13].
However, the relationships between the relaxation kernels and the properties and structure of the
medium are not quite known. Revealing the actual relationships between the relaxation function
and the structure of the composite is a challenging problem.

In the present paper, we derive an exact relationship between the viscoelastic relaxation
memory kernel in composite materials and the spectral measure in the Stieltjes analytic
representation of the effective properties. As the spectral measure contains all information about
the microgeometry of the material, the derived relationship between the spectral measure and
the relaxation function provides a link between the relaxation kernel and the microstructure
of the composite. The parameters of a composite’s microgeometry are incorporated into the
spectral measure in the analytic representation through the n-point correlation functions of
the microstructure. We show that the spectral measure and the internal resonances of the
microstructure determine the characteristic relaxation times of the fading memory kernel and
can be used to introduce a set of internal variables that capture dissipation at the microscale and
to derive equations for their evolution.

Stieltjes analytic representation of the effective properties of composite materials is a powerful
tool developed in the course of homogenization of electric, transport and elasticity problems
for heterogeneous materials [5,14-22]. This integral representation establishes a relation between
the effective moduli of a composite and its microgeometry through the spectral measure of a
corresponding operator. In particular, the moments of the spectral measure in this representation
are linked to the n-point correlation functions of the microstructure. An important characteristic
of the Stieltjes representation of the effective properties is that it factors out the dependence on
the constituents in the composite from the dependence on the microstructure. The information
about the microstructure is contained in the spectral measure in this representation. This feature
can be used to solve the inverse homogenization problem [22-24], which requires to recover
microstructural information from known effective properties. It was shown that the spectral
measure can be uniquely recovered from the measurements of the effective property over a
range of frequencies [5,24], however, the problem is ill-posed and needs regularization. Inverse
homogenization for viscoelastic composites [22,25] was used to recover bone porosity from
simulated measurements of the complex shear modulus. The spectral measure can be numerically
calculated using the discretized structure of composites [26]. It was shown that the spectral
measure of random composites and the eigenvalue spacing distributions have features similar
to the features of the spectra of random matrices [27] and could have a very complex structure.
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The idea that the convolution in the viscoelastic constitutive relation may be eliminated by
introducing internal or memory variables has been efficiently used in many works in simulations
of wave propagation in viscoelastic media [28-33], and in modelling and simulations of effective
behaviour of linear viscoelastic composite materials [34-37]. For a linear isotropic viscoelastic
material, an existing approach to the internal memory variables in numerical simulations of
wave propagation in viscoelastic media [28-33] uses the integral representation of the complex
modulus approximated with a low-order rational approximation. This allows transforming the
time-domain viscoelastic stress—strain relation into a system of first-order differential equations
for the unknown internal variable functions to be solved together with the wave equation
of motion in viscoelastic wave-field numerical simulations. The internal variables approach
extended to modelling of the relaxation in viscoelastic composite materials [34-37] is based
on approximation of the relaxation kernel using the collocation method. The description of
the viscoelastic constitutive law using a finite set of internal variables was discussed in [34],
where an approximation of the relaxation spectrum was developed. It was noted that this
description is exact for Hashin-Shtrikman composite and the analytical expressions for the
relaxation parameters were derived. In the case of a continuous relaxation spectrum, the internal
variables formulation was considered in [35,37]. In particular cases when a formula for the
effective property of the composite is available, discrete approximation of the relaxation kernel
can be used to formulate a system of first-order differential equations for the internal variables to
be solved at each time step during the evolution of the stress history instead of keeping it in the
computer memory.

The current work extends the previous results and relates the relaxation function and the
memory kernel to the spectral function of the composite and thus to the structure of the material
at the microscale, the results do not rely on any particular microgeometry. In the case when
an analytic formula for the effective properties is available, the geometric parameters can be
directly related to the relaxation constants in the memory kernel, but even when no analytic
formula is known, the spectral measure u can be numerically calculated as in [26] and used to
characterize the relaxation behaviour or to formulate a system of differential equations for the
internal variables. We show that the coefficients of the system of the differential equations can
be derived from poles and residues of the Padé approximant of the spectral measure. We show
that the internal resonances dependent on the microstructure of the composite determine the
relaxation times of the memory kernel as well as equations for the evolution of internal memory
variables characterizing dispersion and dissipation in a wave propagating through the composite
material.

The outline of the paper is as follows. A short introduction to the viscoelastic problem is
presented in §2. Then, in §3, we develop the Stieltjes analytic representation of the effective
properties of a composite made of two materials. We assume further that one of the materials
is viscoelastic described by the basic Maxwell model, and the second material is elastic. A general
relation between the spectral measure in the analytic representation and the relaxation function
is derived in §4. We also find the effective relaxation function and parameters of the relaxation
kernel for several composites’ microgeometries using corresponding spectral measures. A brief
summary of results concerning the Padé approximation is presented in §5. In §6, we show how
parameters of the effective relaxation kernel and poles and residues of the Padé approximation of
the spectral function determine equations for the evolution of the internal memory variables in
application to simulation of waves propagation in viscoelastic media.

2. Viscoelastic convolutional stress—strain relation in time domain

We consider a time-domain equation of motion for a scalar potential as a model for a plane
compressional or shear wave propagating in a homogeneous isotropic linear viscoelastic medium

o0—=V-o. (2.1)
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Here, u(x,t) is the displacement, ¢ is the mass density and o(x,¢) is the time-dependent stress
which is related to the strain ¢ = Vu with a convolutional in time constitutive relation. We consider
equation (2.1) to be a result of homogenization of a microscale problem in which the coefficients
in the equation are spatially oscillating functions changing on a very fine scale. This corresponds
to the waves propagating in composite materials and materials with microstructure.

Based on the Boltzman principle, the relationship between the time-dependent stress o and
the time-dependent strain rate ¢ is represented in viscoelasticity as a convolution of the strain
rate with the relaxation function y, which provides a generalization of Hooke’s law applicable to
viscoelastic materials.

o= *xde= Jt ¥t — v)de(r). (2.2)

The relaxation function characterizes the fading memory effects in the material and is determined
by characteristic relaxation times or relaxation constants. We will show later that these relaxation
times are related to the internal scales in the composite.

Taking the Fourier transform of the convolution

o=y *e, (2.3)

we have the relationship between the stress and strain in the frequency domain o (w) = M(w)e(w),
where M(w) is the complex viscoelastic modulus and w is the frequency. We use the same notation
o and ¢ for stress and strain in both time and frequency domains as this should not cause any
confusion. The complex viscoelastic modulus M(w) is given as

o0

(1) exp(—iwt) dt. (2.4)

M(@) = F(oy)(w) = J

It is assumed that the relaxation function of the medium v (t) is zero for t <0, so that it can be
represented as

() =Y (OHE) and 3y (t) =¥ (0)8(t) + 3P (HH(H) (2.5)

for some function v (t); here H(t) is the Heaviside function. Using this representation the function
M(w) can be written as

M(w) =y (%) + J:O 3 (t) exp(—iwt) dt. (2.6)

Using the constitutive relation between the stress o and strain ¢ in the frequency domain, the
complex velocity and the quality factor Q in an attenuating medium are given as [12]

(M) _ ReM(w)

The dimensionless quality factor Q, uniquely determined by M(w), and its reciprocal Q™! (w)
representing the internal friction, are often used for evaluation of the absorption, attenuation and
dissipation of the waves in engineering, materials and geophysical applications.

To discuss the time-dependent stress and strain in viscoelastic materials, we consider one of
the most general relationships that relates the derivatives of the stress and strain as

ak—ka = ka& (2.8)
o dt o dt

Taking the Fourier transform, we have a representation of the viscoelastic modulus on the
complex plane as a quotient of two polynomials Q(iw) and P(iw) with coefficients by, a; and the
roots o and & :

o (i) = 22 i) = 3 _ Q) (iw). (2.9)

P(iw) — /(e )i - «0)’

Here, the last equality is obtained by using the Lagrange interpolation formula and expanding
the quotient of polynomials in terms of partial fractions. The time-domain series (Prony series) is
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obtained by taking the Fourier (or Laplace with s = iw) transform

Qo)
P'af)

M) = ZMk exp(aft) and M=
k

(2.10)

Taking into account the behaviour of the viscoelastic modulus at time equal to zero and infinity,
these series are often put into the form

N t N t
M(t)_MR—f—;Mlexp( Ti>_MU ;M, [1 exp< Ti)], (2.11)
where 1; are the relaxation times of the medium, Mg is the relaxed modulus at t =00, My
is the unrelaxed modulus at t =0 and their difference M is the relaxation of the modulus,
8M = My — MRg. The relaxed MR and unrelaxed My moduli can be obtained using corresponding
asymptotics in frequency as

N
My = lim M(w), Mpg=lim M(w) withdM= ZMi =My — Mg, (2.12)
@ @=0 i=1
so that the relaxed modulus Mg >0 is an equilibrium modulus corresponding to a very long
time (t — 0o, @ — 0, with MR = 0 for viscoelastic fluids), and the unrelaxed modulus My > 0 is an
elastic modulus corresponding to the instantaneous response of material (f — 0, @ — 00).
Finally, in the case of a continuous relaxation spectrum, the viscoelastic modulus in the
frequency domain can be expressed as

M(w) =My — 6M ro dn)

ety (2.13)

1

where x~1 =1 is the relaxation time and dp(x) = ¢ (x) dx or dn(x)= @®(—Int)dx, and the non-

negative distribution @ is the normalized relaxation spectrum of the medium.

3. Spectral representation of the effective property

On a microscale, we consider a random or periodic two-phase composite with the values of the
parameters c; in the region £21 and c; in the region £2;. To describe the geometry of the regions £2;
and £2;, we introduce the characteristic function y = x(x) of domain £21. The function x(x) takes
value 1 if x € £21 and zero if x € £2»

1 ifxesq,
) = , (3.1)
0 otherwise.

Then, the material property of the medium is c(x),
c(x) = c1x (%) + ca(1 = x(x))- (32)

We assume that the scale of variation of the microstructure is much smaller than the wavelengths
of the effective displacement u in (2.1), then

Ve (e1x (%) + c2(1 = x(x)))e =0. (3.3)
The last expression can be brought to the form

1

V.xe=sV-¢ where s=——+.
1-c1/e

(3.4)

Let V¢ be a mean zero perturbation of the constant field e , so that ¢ =e; + V¢. Then,

V- x(Vo +ex) =sA¢, (3.5)
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where (—A) is the Laplace operator, and
1
(Vo +e) + V(=AY x(V+ep) =ex. (3.6)

Let I' = V(—A)~1(V-), so that I is an operator projecting vector fields onto a subspace of curl-
free, zero mean fields. Then,

e=s(sl+ I'x) 'e. (3.7)

With the function x in the inner product, I x is a self-adjoint operator, || I"x || < 1. Formula (3.7)
represents ¢ as a function of the operator I'x. Using the spectral resolution of I'x with the
projection valued measure Q, one can derive the following representation for :

1

s

e(s) = J — dQ(z) e. (3.8)
0S—2

Next, we obtain the Stieltjes integral representation on the plane of the complex variable s.

Consider a function F(s) assuming that ¢* is isotropic,

F(s)=1-—

% =1— ((e1x + 2l = x)e,e) = (s xe, ex)- (39)

Using (3.8), we obtain

1
E(s) = (x(sI + 'x) ey, ep) = ,[0 %.

(3.10)
Introduce a function u corresponding to the spectral measure Q, dujx(z) = (x dQ(2)ej, ex). We

note that generally this measure is a matrix measure, however, assuming the homogenized

medium is isotropic, we focus on the diagonal element p4x which is a positive function of bounded

variation. We have now for function F(s)

c* Jl du(z) 1

Fis)=1—- — = and s=-——.
¢ Jos—z 1-c1/c

(3.11)

This gives the representation of F(s) as an analytic function on the complex plane of variable s.
For a two-phase composite of materials c1, c2, the analytic representation for effective c* separates

parameter information in s from information about the microgeometry contained in p. From
(3.11), we have

1
=01 —-F@)=c—0c Jo %

(3.12)
Geometric information about the microstructure is incorporated into u via its moments, which
can be calculated from the correlation functions of the medium

1
W= L 2 du@) = (1" (U x)"e] - ex)- (3.13)

In particular, the zeroth moment g is the volume fraction f of one component in the composite

1
uo=j0 du@) = (1) =f. (3.14)

The relationships between the composite’s microstructure and the spectral measure in the
Stieltjes representation (3.11) was a topic of previous investigations in forward and inverse
homogenization. The uniqueness of reconstruction of the measure u was shown in the case when
the effective property ¢* is known in a range of frequency [24]. The moments of the measure
can also be uniquely reconstructed under the same conditions [38], and in particular, the zeroth
moment po, which defines the volume fraction of one component in the composite, is uniquely
recoverable. The gaps in support of the spectral measure characterize the inclusions separation
[39,40].
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4. Viscoelastic modulus for a two-phase composite material

Now, we specify the materials in the domain and assume that 2 is filled with a heterogeneous
two-phase composite material. We will calculate the effective modulus ¢* and the relaxation
function ¢* of such a composite. We assume that the phase occupying a subdomain £2; is a
viscoelastic phase with viscoelastic modulus ¢; given by the Maxwell model with parameters
M, (the elastic constant of the spring), no (viscosity of the dashpot), and the relaxation constant
7 =19/My. In accordance with (2.8) this model is described by solution of the equation

o + Tt = ngote. 4.1)

The second phase is isotropic elastic material with the stiffness cp in the subdomain 2y, and
2 =2, U .

The relaxation function corresponding to the Maxwell model of the viscoelastic material and
its time derivative are

Y (t) =M, exp <—£) H(t) and 8y =M, 48(t) — % exp (—%) H(t). (4.2)
The complex viscoelastic modulus ¢y is calculated as
Floiw)= | sntep(-ion dr @3)
Using (4.2),
c1(w)=M, — % J:O exp (—;) exp(—iwt)dt =M, — % (4.4)

Introduce the complex parameter s which, in this case, is s =1/(1 — c1/cp) and s =s(w) as ¢1 =
c1(w). To simplify the notation, we assume that M, =co = 1. Then, s =1 + iwr.

Proposition 4.1. The relaxation function y* of a composite, made of two materials with properties co

and cy introduced above, is determined by the spectral measure  in the Stieltjes spectral representation
(3.11):

1
V() =H(b) + J A@e"Odu@HY, A@=1—r TE=7—. @45
0 _ _
Indeed, using the Fourier transform we represent F(s) in (3.11) as
* 1 d 1 1 o0 1—
Fs)=1- < =J 13 =J - dlL(Z)J exp (—t [ia) 4 Z)D dt. (4.6)
o 0 S—2 0T 0 T
Changing the order of integration in the last integral, we have
oo 11
J e it J —e t1-9/T quu(z) dt. 4.7)
0 0T
This gives us the time derivative of the relaxation function 3;1/* of the composite
11
() =0) — | e 07 duia) HO). 48)
0T
This can be presented as
L A* .
=30 - | S e du(z) D, @9)
0 ()
The relaxation function can now be written in terms of the spectral measure p:
1 o—t(1-2)/7 1 X
Y () =H(t) + J 5 du@)H(H) =H(t) + J A*(z) e /T du(2)H(b), (4.10)
0 - 0
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where the parameters A*(z) and t*(z) of the relaxation function ¥* as functions of the spectral
parameter z in the unit interval are

T

* 1 *
A(Z)ZE and T(Z)=1_z

(4.11)

Example 4.2 (One-pole spectrum). Let us consider a composite material for which the spectral
representation derived in the previous section reduces to a one-pole representation. An example
of such composites are given by the Hashin—Shtrikman coated sphere model, or the materials in
which the volume fraction of the viscoelastic phase is small. In this case, the function F(s) in (3.11)
takes the form

F)=1- — = = 4.12)

c* JldM(Z) mg
o Jos—z s—z

where the values of mg and z( are determined by the microgeometry of the composite. We express
the effective modulus c* from (4.12)

mo

c*(w) =co — coF(s) =co — ¢ (4.13)

s(w) —zg

Here, cg =1 is the elastic modulus of the elastic phase in the composite and does not depend
on frequency. Substituting s(w) and taking the Fourier transform, we find the derivative of the
relaxation function of the composite

12 Mo (<[ ) )= A, s

Cs(w)—zo T Jo

Here, the time derivative of the effective relaxation function dvy* is

Ax t mg T
dy* =8(t) — —L —— JH®), Al= , = 4.15
w0 Ten (a0, A=t gty e
and the effective relaxation function ¢* is

t

Y* =H(t) + A] exp (——*) Hi(t). (4.16)
T
1

As expected, the composite is not a viscoelastic fluid but has the elastic modulus as the
elastic phase; however, the viscoelastic parameters of the microstructured material differ from
the corresponding parameters of the viscoelastic component.

Example 4.3 (Discrete spectrum). Next, we extend the consideration to the case of the spectral
function F(s) with n poles in the spectral interval. In this case,

F(s) = Jl du@ _ P 4.17)

s—z s—zp
0 k=1 k

We deal with the same materials in the composite with properties cg =1 and cj(w) given in (4.4)
with M,, =1, so that s =1 + iwt. Then, from (4.17),

F)=Y ? J:o exp (—t [ia) + @D dt. (4.18)
k

Introducing 7 = 7/(1 — z), we have

=00~ ) " exp (—f) H(D), @19)

k k

This allows us to find the relaxation function ¢* of the composite

v*H)=H(®) + ZAZ exp (—;) H(t), (4.20)
k

k
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and present the time derivative d;y*(t) in the form

A% t
wYr(E)=8(t)— Y —X exp (—*) H(), (4.21)
.k T
with relaxation parameters A;, t,:‘
my T
Af = d of= , 4.22
FET o M T a2z (4.22)

intrinsically related to the microstructure of the composite material. Hence the internal resonances
of the microstructure determine the characteristic relaxation times of the fading memory kernel
in (2.2).

Proposition 4.4. For the same two phases in the composite, the continuous relaxation kernel n(x) in
(2.13) is determined by the spectral measure in the Stieltjes representation (3.11).

To show this, we substitute s =1 4+ iwr and make a change of variables in the integral in (3.11)

Jl dyu(z) :Jl du(z)/t

05—z oiw+1t;z'

(4.23)

Making a change of variables x=(1 —z)/t, we end up with the integral in (2.13) with the
relaxation kernel n(x). Alternatively, one could approximate the measure pu using the Padé
approximation and after changing variables, let the number of terms go to infinity.

5. Resonances at the microlevel and the Padé approximation

For composites with a discrete spectrum the spectral function ;v describes the resonances in the
fine scale problem. For such composites u has the form

du(z) = Z mpé(z —z)dz and wu(z)= Z meH(z — zg), (5.1)
k k

where H(z) is the Heaviside function. In this case, the poles z; are the internal resonances
generated by the microgeometry of the composite, and the representation for the function F(s)
has the form

1
F(s) = J du@ _ 3T (5.2)

s—z s—zp
0 X k

In the case of a continuous function p, an efficient way to construct a discrete approximation to
the spectral function is to use the Padé approximation [41]. The Padé approximation to the scalar
spectral function p was constructed in [42]. In a scalar case, a diagonal Padé approximant of order
n to the function F(s) is a unique rational function

~ Quls)
B Pr(s)

1
T s.t.  Pu(s)F(s) — Qu(s)=0 (s”ﬁ) , (5.3)
where polynomial P;(s) has degree degP,(s) <n, and Q(s) is a polynomial part of the series
Py (s)F(s). The solution to this problem always exists with deg Py(s) =n and deg Q(s) <n — 1.
The rational function 7, can be represented in a form (5.2), indeed m; has a partial fraction

decomposition of the form

_ Q) T

TT,
" Puls) §—2Znj

(5.4)
j=1

where z,; are zeros of the denominator polynomial Py(s), and the residues r,; are Christoffel
coefficients

On(znj) .
r”jzresszz"fn"(s)zP/Z(zz]]-)' ji=1,...,n. (5.5)
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A similar result can be derived for a more general case, when p is a matrix-valued measure
which corresponds to anisotropic effective properties of the composite [5]. A numerical solution
of the problem can be obtained [33,42] solving a constrained optimization problem.

6. Internal variables and waves propagation in viscoelastic media

We consider an application of the Padé approximation of the relaxation spectrum efficiently used
in modelling of internal memory variables in the time domain finite-difference simulations of
propagation of plane waves through a viscoelastic medium [28-33]. The relation between stress
o and strain € in equation (2.1) governing the waves in a dispersive and dissipative medium is
given in the frequency domain by a complex viscoelastic modulus M(w) (2.6), o (w) = M(w)e(w).
Taking into account asymptotic behaviour (2.12) of M(w) with unrelaxed My and relaxed Mg
moduli, and §M = My — Mg, it is convenient to introduce a normalized function G(1) for A = iw
as G(A) = (My — M(A/i))/6M and rewrite (2.13) for A € C \ (—o0,0) as

_ [ dn(x)

6.1)

The function G(1) is analytic outside the negative real semiaxis in the complex A-plane, all its
singular points are in the interval (—oo, 0). Padé approximation of order n gives representation of
the function n(x) as a sum of Heaviside functions, so that

n n
n(@)~Y AHx+x) and dy(x)~ ) As(x +x)dx, x€[0,00). (6.2)
k=1 k=1
The function n(x) defined for x € [0,00) is a non-decreasing, non-negative function. Thus, the
approximation of the function G(1) is given by

n

G~y A (6.3)

A‘ _ 7
=1 Tk

with xi being the kth simple pole on the negative real semiaxis with positive residue Ay, and n is
the total number of poles. The approximation of the complex modulus M(w) is given now by

Ay
iw—x;

M(w)~My — M) (6.4)
k=1

Equation (6.4) gives a discrete approximation of the complex modulus M(w) and represents it as
a partial fraction. The real parameters Ay and xj in this representation contain all the information
about the relaxation spectrum of the medium and can be obtained from the parameters of the
Padé approximation of the spectral function F(s) discussed in previous section.

Padé approximation of the complex modulus M(w) provides a relationship between the stress
o and strain € in the time domain

n

o (t) =My [e(t) - ck(t)} : (65)
k=1

Equation (6.5) represents the stress o as a sum of the elastic part Mye(t) and an anelastic part

defined by 1 internal memory variable functions Zi(f). These internal variables satisfy the system

of the first-order differential equations

dg(t)
dt
The coefficients of this system of differential equations can be calculated using the poles and
residues of the Padé approximant of the spectral function F(s) discussed in the previous section.
As an example, we consider a wave propagating in a Hashin-Shtrikman composite with the
spectral function (4.12). In this example, we assume that the composite is made of the same

— xg(t) = M SMAe(t), k=1,...,n. (6.6)
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materials as before with properties co =1 and c;(w), so that s =1+ iwt. Then, substituting s in
(4.13) and using the effective relaxation constant for the composite 7 =7/(1 —zp) we have a
one-pole approximation for G(A) = G(1)6M

my/T

50 —
G() A+ X

1
and xp=—.

(6.7)
1
From this, we immediately have the coefficients of the differential equation (6.6) for the
evolution of the memory function ¢1(f). The number of internal memory functions equals the
number of terms in the approximation of the spectral function F(s). So modelling processes
in a microstructured medium with the spectral measure p having n poles requires n internal
functions ¢i(t). Similar to the one-pole Hashin-Shtrikman composite example, the coefficients of
the differential equations governing the evolution of these memory functions ¢(t) can be obtained
from the poles and residues of the Padé approximation of the spectral function of the composite.
This approach can be used for modelling and simulation of the waves propagating in the
medium that is evolving in time. When the microstructure of the composite changes depending
on applied forces, ageing, temperature or other factors, the microstructural changes are reflected
in the spectral measure evolving with the microstructure as its moments are determined by the
correlation functions (3.13). The evolution of the spectral measure then results in the evolution of
the coefficients of the differential equations (6.6) governing the internal variables ¢.

7. Conclusion

This paper shows that the parameters of the relaxation function of a composite medium are
determined by the spectral measure of the operator I'x naturally arising in the problem
considered at the microscale. We show that the resonances at the microlevel determine the
material’s relaxation times and the relaxation spectrum. In application to the modelling of waves
propagation through a viscoelastic composite medium, we show that the internal resonances in a
composite determine the equations for the evolution of internal memory variables characterizing
dispersion and dissipation in wave propagation through the composite material.
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