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In heterogeneous composite materials, the behaviour

of the medium on larger scales is determined by the

microgeometry and properties of the constituents on

finer scales. To model the influence of the microlevel

processes in composite materials, they are described

as materials with memory in which the constitutive

relations between stress and strain are given as time-

domain convolutions with some relaxation kernel.

The paper reveals the relationship between the

viscoelastic relaxation kernel and the spectral measure

in the Stieltjes integral representation of the effective

properties of composites. This spectral measure

contains all information about the microgeometry

of the material, thus providing a link between

the relaxation kernel and the microstructure of the

composite. We show that the internal resonances of the

microstructure determine the characteristic relaxation

times of the fading memory kernel and can be used

to introduce a set of internal variables that captures

dissipation at the microscale.

This article is part of the theme issue ‘Modelling

of dynamic phenomena and localization in structured

media (part 2)’.

1. Introduction
Multiscale hierarchical composite materials exhibit

different types of behaviour on different scales with

the finest scales determining the properties of the

constituents on larger scales. Viscoelastic properties of

materials are the result of dissipative processes on fine

scales which could stem from nonlinear wave energy

dissipation [1–3] in atomic lattices, from grain boundaries

dislocations in thin films and polycrystalline materials

[4,5], from damage, fracturing and repairing at the

microscale in polymers and biological materials [6].

2019 The Author(s) Published by the Royal Society. All rights reserved.
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The wave propagating through a composite medium excites microlevel processes of different

characteristic wavelengths and internal scales. At the macroscale, the propagation of time-

dependent signals or stresses in such materials is influenced by these microlevel processes and is

characterized by frequency dispersion and energy dissipation. In a non-dispersive homogeneous

medium, all waves in a packet of waves of different frequencies propagate at the same speed,

so that the packet travels without changing its shape. In a medium with microstructure, every

wave in the packet experiences multiple scatterings from the boundaries of inclusions or

inhomogeneities; this leads to dissipation of the energy of the wave that depends on the particular

wavelength. Hence, waves of different frequencies dissipate different amounts of energy and

travel at different speeds, this results in changing the shape of the wave packet with time

and propagation distance. Due to thermodynamic constraints and Kramers–Kronig relations,

these two processes, frequency dispersion and energy dissipation, are necessarily present in

all microstructured materials. It is known that the presence of viscoelastic constituents in the

composite results in long memory effects in the homogenized material [7]. To model the influence

of the microlevel processes in such materials, they are described as materials with memory

[8–10] in which the constitutive relations between stress and strain are given as time-domain

convolutional relations with some relaxation kernel. These relaxation kernels, often built from

the spring and the dashpot building blocks connected in parallel and/or in series, provide

phenomenological models that describe the viscoelastic behaviour of many materials [11–13].

However, the relationships between the relaxation kernels and the properties and structure of the

medium are not quite known. Revealing the actual relationships between the relaxation function

and the structure of the composite is a challenging problem.

In the present paper, we derive an exact relationship between the viscoelastic relaxation

memory kernel in composite materials and the spectral measure in the Stieltjes analytic

representation of the effective properties. As the spectral measure contains all information about

the microgeometry of the material, the derived relationship between the spectral measure and

the relaxation function provides a link between the relaxation kernel and the microstructure

of the composite. The parameters of a composite’s microgeometry are incorporated into the

spectral measure in the analytic representation through the n-point correlation functions of

the microstructure. We show that the spectral measure and the internal resonances of the

microstructure determine the characteristic relaxation times of the fading memory kernel and

can be used to introduce a set of internal variables that capture dissipation at the microscale and

to derive equations for their evolution.

Stieltjes analytic representation of the effective properties of composite materials is a powerful

tool developed in the course of homogenization of electric, transport and elasticity problems

for heterogeneous materials [5,14–22]. This integral representation establishes a relation between

the effective moduli of a composite and its microgeometry through the spectral measure of a

corresponding operator. In particular, the moments of the spectral measure in this representation

are linked to the n-point correlation functions of the microstructure. An important characteristic

of the Stieltjes representation of the effective properties is that it factors out the dependence on

the constituents in the composite from the dependence on the microstructure. The information

about the microstructure is contained in the spectral measure in this representation. This feature

can be used to solve the inverse homogenization problem [22–24], which requires to recover

microstructural information from known effective properties. It was shown that the spectral

measure can be uniquely recovered from the measurements of the effective property over a

range of frequencies [5,24], however, the problem is ill-posed and needs regularization. Inverse

homogenization for viscoelastic composites [22,25] was used to recover bone porosity from

simulated measurements of the complex shear modulus. The spectral measure can be numerically

calculated using the discretized structure of composites [26]. It was shown that the spectral

measure of random composites and the eigenvalue spacing distributions have features similar

to the features of the spectra of random matrices [27] and could have a very complex structure.
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The idea that the convolution in the viscoelastic constitutive relation may be eliminated by

introducing internal or memory variables has been efficiently used in many works in simulations

of wave propagation in viscoelastic media [28–33], and in modelling and simulations of effective

behaviour of linear viscoelastic composite materials [34–37]. For a linear isotropic viscoelastic

material, an existing approach to the internal memory variables in numerical simulations of

wave propagation in viscoelastic media [28–33] uses the integral representation of the complex

modulus approximated with a low-order rational approximation. This allows transforming the

time-domain viscoelastic stress–strain relation into a system of first-order differential equations

for the unknown internal variable functions to be solved together with the wave equation

of motion in viscoelastic wave-field numerical simulations. The internal variables approach

extended to modelling of the relaxation in viscoelastic composite materials [34–37] is based

on approximation of the relaxation kernel using the collocation method. The description of

the viscoelastic constitutive law using a finite set of internal variables was discussed in [34],

where an approximation of the relaxation spectrum was developed. It was noted that this

description is exact for Hashin–Shtrikman composite and the analytical expressions for the

relaxation parameters were derived. In the case of a continuous relaxation spectrum, the internal

variables formulation was considered in [35,37]. In particular cases when a formula for the

effective property of the composite is available, discrete approximation of the relaxation kernel

can be used to formulate a system of first-order differential equations for the internal variables to

be solved at each time step during the evolution of the stress history instead of keeping it in the

computer memory.

The current work extends the previous results and relates the relaxation function and the

memory kernel to the spectral function of the composite and thus to the structure of the material

at the microscale, the results do not rely on any particular microgeometry. In the case when

an analytic formula for the effective properties is available, the geometric parameters can be

directly related to the relaxation constants in the memory kernel, but even when no analytic

formula is known, the spectral measure µ can be numerically calculated as in [26] and used to

characterize the relaxation behaviour or to formulate a system of differential equations for the

internal variables. We show that the coefficients of the system of the differential equations can

be derived from poles and residues of the Padé approximant of the spectral measure. We show

that the internal resonances dependent on the microstructure of the composite determine the

relaxation times of the memory kernel as well as equations for the evolution of internal memory

variables characterizing dispersion and dissipation in a wave propagating through the composite

material.

The outline of the paper is as follows. A short introduction to the viscoelastic problem is

presented in §2. Then, in §3, we develop the Stieltjes analytic representation of the effective

properties of a composite made of two materials. We assume further that one of the materials

is viscoelastic described by the basic Maxwell model, and the second material is elastic. A general

relation between the spectral measure in the analytic representation and the relaxation function

is derived in §4. We also find the effective relaxation function and parameters of the relaxation

kernel for several composites’ microgeometries using corresponding spectral measures. A brief

summary of results concerning the Padé approximation is presented in §5. In §6, we show how

parameters of the effective relaxation kernel and poles and residues of the Padé approximation of

the spectral function determine equations for the evolution of the internal memory variables in

application to simulation of waves propagation in viscoelastic media.

2. Viscoelastic convolutional stress–strain relation in time domain
We consider a time-domain equation of motion for a scalar potential as a model for a plane

compressional or shear wave propagating in a homogeneous isotropic linear viscoelastic medium

̺
∂2u

∂t2
= ∇ · σ . (2.1)
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Here, u(x, t) is the displacement, ̺ is the mass density and σ (x, t) is the time-dependent stress

which is related to the strain ε = ∇u with a convolutional in time constitutive relation. We consider

equation (2.1) to be a result of homogenization of a microscale problem in which the coefficients

in the equation are spatially oscillating functions changing on a very fine scale. This corresponds

to the waves propagating in composite materials and materials with microstructure.

Based on the Boltzman principle, the relationship between the time-dependent stress σ and

the time-dependent strain rate ε̇ is represented in viscoelasticity as a convolution of the strain

rate with the relaxation function ψ , which provides a generalization of Hooke’s law applicable to

viscoelastic materials.

σ = ψ ∗ ∂tε =

∫ t

−∞
ψ(t − τ ) dε(τ ). (2.2)

The relaxation function characterizes the fading memory effects in the material and is determined

by characteristic relaxation times or relaxation constants. We will show later that these relaxation

times are related to the internal scales in the composite.

Taking the Fourier transform of the convolution

σ = ∂tψ ∗ ε, (2.3)

we have the relationship between the stress and strain in the frequency domain σ (ω) = M(ω)ε(ω),

where M(ω) is the complex viscoelastic modulus and ω is the frequency. We use the same notation

σ and ε for stress and strain in both time and frequency domains as this should not cause any

confusion. The complex viscoelastic modulus M(ω) is given as

M(ω) =F{∂tψ}(ω) =

∫∞

−∞
∂tψ(t) exp(−iωt) dt. (2.4)

It is assumed that the relaxation function of the medium ψ(t) is zero for t < 0, so that it can be

represented as

ψ(t) = ψ̂(t)H(t) and ∂tψ(t) = ψ̂(0)δ(t) + ∂tψ̂(t)H(t) (2.5)

for some function ψ̂(t); here H(t) is the Heaviside function. Using this representation the function

M(ω) can be written as

M(ω) = ψ(0+) +

∫∞

0
∂tψ(t) exp(−iωt) dt. (2.6)

Using the constitutive relation between the stress σ and strain ε in the frequency domain, the

complex velocity and the quality factor Q in an attenuating medium are given as [12]

V(ω) =

(

M(ω)

̺

)1/2

and Q(ω) =
Re M(ω)

Im M(ω)
. (2.7)

The dimensionless quality factor Q, uniquely determined by M(ω), and its reciprocal Q−1(ω)

representing the internal friction, are often used for evaluation of the absorption, attenuation and

dissipation of the waves in engineering, materials and geophysical applications.

To discuss the time-dependent stress and strain in viscoelastic materials, we consider one of

the most general relationships that relates the derivatives of the stress and strain as

m
∑

k=0

ak
dk

dtk
σ =

n
∑

k=0

bk
dk

dtk
ε. (2.8)

Taking the Fourier transform, we have a representation of the viscoelastic modulus on the

complex plane as a quotient of two polynomials Q(iω) and P(iω) with coefficients bk, ak and the

roots αǫ
k and ασ

k :

σ (iω) =
Q(iω)

P(iω)
ε(iω) =

∑

k

Q(ασ
k )

P′(ασ
k )(iω − ασ

k )
ε(iω). (2.9)

Here, the last equality is obtained by using the Lagrange interpolation formula and expanding

the quotient of polynomials in terms of partial fractions. The time-domain series (Prony series) is
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obtained by taking the Fourier (or Laplace with s = iω) transform

M(t) =
∑

k

Mk exp(ασ
k t) and Mk =

Q(ασ
k )

P′(ασ
k )

. (2.10)

Taking into account the behaviour of the viscoelastic modulus at time equal to zero and infinity,

these series are often put into the form

M(t) = MR +

N
∑

i=1

Mi exp

(

−
t

τi

)

= MU −

N
∑

i=1

Mi

[

1 − exp

(

−
t

τi

)]

, (2.11)

where τi are the relaxation times of the medium, MR is the relaxed modulus at t = ∞, MU

is the unrelaxed modulus at t = 0 and their difference δM is the relaxation of the modulus,

δM = MU − MR. The relaxed MR and unrelaxed MU moduli can be obtained using corresponding

asymptotics in frequency as

MU = lim
ω→∞

M(ω), MR = lim
ω→0

M(ω) with δM =

N
∑

i=1

Mi = MU − MR, (2.12)

so that the relaxed modulus MR ≥ 0 is an equilibrium modulus corresponding to a very long

time (t → ∞, ω → 0, with MR = 0 for viscoelastic fluids), and the unrelaxed modulus MU > 0 is an

elastic modulus corresponding to the instantaneous response of material (t → 0, ω → ∞).

Finally, in the case of a continuous relaxation spectrum, the viscoelastic modulus in the

frequency domain can be expressed as

M(ω) = MU − δM

∫∞

0

dη(x)

iω + x
, (2.13)

where x−1 = τ is the relaxation time and dη(x) = Φ̂(x) dx or dη(x) = Φ(− ln τ ) dx, and the non-

negative distribution Φ is the normalized relaxation spectrum of the medium.

3. Spectral representation of the effective property
On a microscale, we consider a random or periodic two-phase composite with the values of the

parameters c1 in the region Ω1 and c2 in the region Ω2. To describe the geometry of the regions Ω1

and Ω2, we introduce the characteristic function χ = χ (x) of domain Ω1. The function χ (x) takes

value 1 if x ∈ Ω1 and zero if x ∈ Ω2

χ (x) =

{

1 if x ∈ Ω1,

0 otherwise.
(3.1)

Then, the material property of the medium is c(x),

c(x) = c1χ (x) + c2(1 − χ (x)). (3.2)

We assume that the scale of variation of the microstructure is much smaller than the wavelengths

of the effective displacement u in (2.1), then

∇ · (c1χ (x) + c2(1 − χ (x)))ε = 0. (3.3)

The last expression can be brought to the form

∇ · χε = s∇ · ε where s =
1

1 − c1/c2
. (3.4)

Let ∇φ be a mean zero perturbation of the constant field ek , so that ε = ek + ∇φ. Then,

∇ · χ (∇φ + ek) = s�φ, (3.5)
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where (−�) is the Laplace operator, and

(∇φ + ek) +
1

s
∇(−�)−1∇ · χ (∇φ + ek) = ek. (3.6)

Let Γ = ∇(−�)−1(∇·), so that Γ is an operator projecting vector fields onto a subspace of curl-

free, zero mean fields. Then,

ε = s(sI + Γ χ )−1ek. (3.7)

With the function χ in the inner product, Γ χ is a self-adjoint operator, ‖Γ χ‖ ≤ 1. Formula (3.7)

represents ε as a function of the operator Γ χ . Using the spectral resolution of Γ χ with the

projection valued measure Q, one can derive the following representation for ε:

ε(s) =

∫ 1

0

s

s − z
dQ(z) ek. (3.8)

Next, we obtain the Stieltjes integral representation on the plane of the complex variable s.

Consider a function F(s) assuming that c∗ is isotropic,

F(s) = 1 −
c∗(s)

c2
= 1 − 〈(c1χ + c2(1 − χ ))ε, ek〉 = 〈s−1χε, ek〉. (3.9)

Using (3.8), we obtain

F(s) = 〈χ (sI + Γ χ )−1ek, ek〉 =

∫ 1

0

〈χ dQ(z)ek, ek〉

s − z
. (3.10)

Introduce a function µ corresponding to the spectral measure Q, dµjk(z) = 〈χ dQ(z)ej, ek〉. We

note that generally this measure is a matrix measure, however, assuming the homogenized

medium is isotropic, we focus on the diagonal element µkk which is a positive function of bounded

variation. We have now for function F(s)

F(s) = 1 −
c∗

c2
=

∫ 1

0

dµ(z)

s − z
and s =

1

1 − c1/c2
. (3.11)

This gives the representation of F(s) as an analytic function on the complex plane of variable s.

For a two-phase composite of materials c1, c2, the analytic representation for effective c∗ separates

parameter information in s from information about the microgeometry contained in µ. From

(3.11), we have

c∗ = c2(1 − F(s)) = c2 − c2

∫ 1

0

dµ(z)

s − z
. (3.12)

Geometric information about the microstructure is incorporated into µ via its moments, which

can be calculated from the correlation functions of the medium

µn =

∫ 1

0
zn dµ(z) = (−1)n〈χ [(Γ χ )nek] · ek〉. (3.13)

In particular, the zeroth moment µ0 is the volume fraction f of one component in the composite

µ0 =

∫ 1

0
dµ(z) = 〈χ〉 = f . (3.14)

The relationships between the composite’s microstructure and the spectral measure in the

Stieltjes representation (3.11) was a topic of previous investigations in forward and inverse

homogenization. The uniqueness of reconstruction of the measure µ was shown in the case when

the effective property c∗ is known in a range of frequency [24]. The moments of the measure

can also be uniquely reconstructed under the same conditions [38], and in particular, the zeroth

moment µ0, which defines the volume fraction of one component in the composite, is uniquely

recoverable. The gaps in support of the spectral measure characterize the inclusions separation

[39,40].
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4. Viscoelastic modulus for a two-phase composite material
Now, we specify the materials in the domain and assume that Ω is filled with a heterogeneous

two-phase composite material. We will calculate the effective modulus c∗ and the relaxation

function ψ∗ of such a composite. We assume that the phase occupying a subdomain Ω1 is a

viscoelastic phase with viscoelastic modulus c1 given by the Maxwell model with parameters

Mu (the elastic constant of the spring), η0 (viscosity of the dashpot), and the relaxation constant

τ = η0/Mu. In accordance with (2.8) this model is described by solution of the equation

σ + τ∂tσ = η0∂tǫ. (4.1)

The second phase is isotropic elastic material with the stiffness c0 in the subdomain Ω0, and

Ω = Ω1 ∪ Ω0.

The relaxation function corresponding to the Maxwell model of the viscoelastic material and

its time derivative are

ψ(t) = Mu exp

(

−
t

τ

)

H(t) and ∂tψ = Muδ(t) −
Mu

τ
exp

(

−
t

τ

)

H(t). (4.2)

The complex viscoelastic modulus c1 is calculated as

F{∂tψ}(ω) =

∫∞

−∞
∂tψ(t) exp(−iωt) dt. (4.3)

Using (4.2),

c1(ω) = Mu −
Mu

τ

∫∞

0
exp

(

−
t

τ

)

exp(−iωt) dt = Mu −
Mu

1 + iωτ
. (4.4)

Introduce the complex parameter s which, in this case, is s = 1/(1 − c1/c0) and s = s(ω) as c1 =

c1(ω). To simplify the notation, we assume that Mu = c0 = 1. Then, s = 1 + iωτ .

Proposition 4.1. The relaxation function ψ∗ of a composite, made of two materials with properties c0

and c1 introduced above, is determined by the spectral measure µ in the Stieltjes spectral representation

(3.11):

ψ∗(t) = H(t) +

∫ 1

0
A∗(z) e−t/τ ∗(z) dµ(z) H(t), A∗(z) =

1

1 − z
τ , τ∗(z) =

τ

1 − z
. (4.5)

Indeed, using the Fourier transform we represent F(s) in (3.11) as

F(s) = 1 −
c∗

c0
=

∫ 1

0

dµ(z)

s − z
=

∫ 1

0

1

τ
dµ(z)

∫∞

0
exp

(

−t

[

iω +
(1 − z)

τ

])

dt. (4.6)

Changing the order of integration in the last integral, we have

∫∞

0
e−iωt

∫ 1

0

1

τ
e−t(1−z)/τ dµ(z) dt. (4.7)

This gives us the time derivative of the relaxation function ∂tψ
∗ of the composite

∂tψ
∗(t) = δ(t) −

∫ 1

0

1

τ
e−t(1−z)/τ dµ(z) H(t). (4.8)

This can be presented as

∂tψ
∗(t) = δ(t) −

∫ 1

0

A∗(z)

τ∗(z)
e−t/τ ∗(z) dµ(z) H(t). (4.9)

The relaxation function can now be written in terms of the spectral measure µ:

ψ∗(t) = H(t) +

∫ 1

0

e−t(1−z)/τ

1 − z
dµ(z)H(t) = H(t) +

∫ 1

0
A∗(z) e−t/τ ∗(z) dµ(z)H(t), (4.10)
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where the parameters A∗(z) and τ∗(z) of the relaxation function ψ∗ as functions of the spectral

parameter z in the unit interval are

A∗(z) =
1

1 − z
and τ∗(z) =

τ

1 − z
. (4.11)

Example 4.2 (One-pole spectrum). Let us consider a composite material for which the spectral

representation derived in the previous section reduces to a one-pole representation. An example

of such composites are given by the Hashin–Shtrikman coated sphere model, or the materials in

which the volume fraction of the viscoelastic phase is small. In this case, the function F(s) in (3.11)

takes the form

F(s) = 1 −
c∗

c0
=

∫ 1

0

dµ(z)

s − z
=

m0

s − z0
, (4.12)

where the values of m0 and z0 are determined by the microgeometry of the composite. We express

the effective modulus c∗ from (4.12)

c∗(ω) = c0 − c0F(s) = c0 − c0
m0

s(ω) − z0
. (4.13)

Here, c0 = 1 is the elastic modulus of the elastic phase in the composite and does not depend

on frequency. Substituting s(ω) and taking the Fourier transform, we find the derivative of the

relaxation function of the composite

1 −
m0

s(ω) − z0
= 1 −

m0

τ

∫∞

0
exp

(

−t

[

(1 − z0)

τ
+ iω

])

dt =F{∂tψ
∗}(ω). (4.14)

Here, the time derivative of the effective relaxation function ∂ψ∗ is

∂tψ
∗ = δ(t) −

A∗
1

τ∗
1

exp

(

−
t

τ∗
1

)

H(t), A∗
1 =

m0

(1 − z0)
τ , τ∗

1 =
τ

(1 − z0)
(4.15)

and the effective relaxation function ψ∗ is

ψ∗ = H(t) + A∗
1 exp

(

−
t

τ∗
1

)

H(t). (4.16)

As expected, the composite is not a viscoelastic fluid but has the elastic modulus as the

elastic phase; however, the viscoelastic parameters of the microstructured material differ from

the corresponding parameters of the viscoelastic component.

Example 4.3 (Discrete spectrum). Next, we extend the consideration to the case of the spectral

function F(s) with n poles in the spectral interval. In this case,

F(s) =

∫ 1

0

dµ(z)

s − z
=

n
∑

k=1

mk

s − zk
. (4.17)

We deal with the same materials in the composite with properties c0 = 1 and c1(ω) given in (4.4)

with Mu = 1, so that s = 1 + iωτ . Then, from (4.17),

F(ω) =
∑

k

mk

τ

∫∞

0
exp

(

−t

[

iω +
(1 − zk)

τ

])

dt. (4.18)

Introducing τ∗
k = τ/(1 − zk), we have

∂tψ
∗(t) = δ(t) −

∑

k

mk

τ
exp

(

−
t

τ∗
k

)

H(t), (4.19)

This allows us to find the relaxation function ψ∗ of the composite

ψ∗(t) = H(t) +
∑

k

A∗
k exp

(

−
t

τ∗
k

)

H(t), (4.20)
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and present the time derivative ∂tψ
∗(t) in the form

∂tψ
∗(t) = δ(t) −

∑

k

A∗
k

τ∗
k

exp

(

−
t

τ∗
k

)

H(t), (4.21)

with relaxation parameters A∗
k , τ∗

k

A∗
k =

mk

1 − zk
and τ∗

k =
τ

(1 − zk)
, (4.22)

intrinsically related to the microstructure of the composite material. Hence the internal resonances

of the microstructure determine the characteristic relaxation times of the fading memory kernel

in (2.2).

Proposition 4.4. For the same two phases in the composite, the continuous relaxation kernel η(x) in

(2.13) is determined by the spectral measure in the Stieltjes representation (3.11).

To show this, we substitute s = 1 + iωτ and make a change of variables in the integral in (3.11)

∫ 1

0

dµ(z)

s − z
=

∫ 1

0

dµ(z)/τ

iω + 1−z
τ

. (4.23)

Making a change of variables x = (1 − z)/τ , we end up with the integral in (2.13) with the

relaxation kernel η(x). Alternatively, one could approximate the measure µ using the Padé

approximation and after changing variables, let the number of terms go to infinity.

5. Resonances at the microlevel and the Padé approximation
For composites with a discrete spectrum the spectral function µ describes the resonances in the

fine scale problem. For such composites µ has the form

dµ(z) =
∑

k

mkδ(z − zk) dz and µ(z) =
∑

k

mkH(z − zk), (5.1)

where H(z) is the Heaviside function. In this case, the poles zk are the internal resonances

generated by the microgeometry of the composite, and the representation for the function F(s)

has the form

F(s) =

∫ 1

0

dµ(z)

s − z
=

∑

k

mk

s − zk
. (5.2)

In the case of a continuous function µ, an efficient way to construct a discrete approximation to

the spectral function is to use the Padé approximation [41]. The Padé approximation to the scalar

spectral function µ was constructed in [42]. In a scalar case, a diagonal Padé approximant of order

n to the function F(s) is a unique rational function

πn =
Qn(s)

Pn(s)
s.t. Pn(s)F(s) − Qn(s) = O

(

1

sn+1

)

, (5.3)

where polynomial Pn(s) has degree deg Pn(s) ≤ n, and Qn(s) is a polynomial part of the series

Pn(s)F(s). The solution to this problem always exists with deg Pn(s) = n and deg Qn(s) ≤ n − 1.

The rational function πn can be represented in a form (5.2), indeed πn has a partial fraction

decomposition of the form

πn =
Qn(s)

Pn(s)
=

n
∑

j=1

rnj

s − znj
, (5.4)

where znj are zeros of the denominator polynomial Pn(s), and the residues rnj are Christoffel

coefficients

rnj = ress=znjπn(s) =
Qn(znj)

P′n(znj)
, j = 1, . . . , n. (5.5)
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A similar result can be derived for a more general case, when µ is a matrix-valued measure

which corresponds to anisotropic effective properties of the composite [5]. A numerical solution

of the problem can be obtained [33,42] solving a constrained optimization problem.

6. Internal variables and waves propagation in viscoelastic media
We consider an application of the Padé approximation of the relaxation spectrum efficiently used

in modelling of internal memory variables in the time domain finite-difference simulations of

propagation of plane waves through a viscoelastic medium [28–33]. The relation between stress

σ and strain ǫ in equation (2.1) governing the waves in a dispersive and dissipative medium is

given in the frequency domain by a complex viscoelastic modulus M(ω) (2.6), σ (ω) = M(ω)ǫ(ω).

Taking into account asymptotic behaviour (2.12) of M(ω) with unrelaxed MU and relaxed MR

moduli, and δM = MU − MR, it is convenient to introduce a normalized function G(λ) for λ = iω

as G(λ) = (MU − M(λ/i))/δM and rewrite (2.13) for λ ∈ C \ (−∞, 0) as

G(λ) =

∫∞

0

dη(x)

λ + x
. (6.1)

The function G(λ) is analytic outside the negative real semiaxis in the complex λ-plane, all its

singular points are in the interval (−∞, 0). Padé approximation of order n gives representation of

the function η(x) as a sum of Heaviside functions, so that

η(x) ≈

n
∑

k=1

AkH(x + xk) and dη(x) ≈

n
∑

k=1

Akδ(x + xk) dx, x ∈ [0, ∞). (6.2)

The function η(x) defined for x ∈ [0, ∞) is a non-decreasing, non-negative function. Thus, the

approximation of the function G(λ) is given by

G(λ) ≈

n
∑

k=1

Ak

λ − xk
, (6.3)

with xk being the kth simple pole on the negative real semiaxis with positive residue Ak, and n is

the total number of poles. The approximation of the complex modulus M(ω) is given now by

M(ω) ≈ MU − δM
n

∑

k=1

Ak

iω − xk
. (6.4)

Equation (6.4) gives a discrete approximation of the complex modulus M(ω) and represents it as

a partial fraction. The real parameters Ak and xk in this representation contain all the information

about the relaxation spectrum of the medium and can be obtained from the parameters of the

Padé approximation of the spectral function F(s) discussed in previous section.

Padé approximation of the complex modulus M(ω) provides a relationship between the stress

σ and strain ǫ in the time domain

σ (t) = MU

[

ǫ(t) −

n
∑

k=1

ζk(t)

]

. (6.5)

Equation (6.5) represents the stress σ as a sum of the elastic part MUǫ(t) and an anelastic part

defined by n internal memory variable functions ζk(t). These internal variables satisfy the system

of the first-order differential equations

dζk(t)

dt
− xkζk(t) = M−1

U δMAkε(t), k = 1, . . . , n. (6.6)

The coefficients of this system of differential equations can be calculated using the poles and

residues of the Padé approximant of the spectral function F(s) discussed in the previous section.

As an example, we consider a wave propagating in a Hashin–Shtrikman composite with the

spectral function (4.12). In this example, we assume that the composite is made of the same
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materials as before with properties c0 = 1 and c1(ω), so that s = 1 + iωτ . Then, substituting s in

(4.13) and using the effective relaxation constant for the composite τ∗
1 = τ/(1 − z0) we have a

one-pole approximation for G̃(λ) = G(λ)δM

G̃(λ) =
m0/τ

λ + x0
and x0 =

1

τ∗
1

. (6.7)

From this, we immediately have the coefficients of the differential equation (6.6) for the

evolution of the memory function ζ1(t). The number of internal memory functions equals the

number of terms in the approximation of the spectral function F(s). So modelling processes

in a microstructured medium with the spectral measure µ having n poles requires n internal

functions ζk(t). Similar to the one-pole Hashin–Shtrikman composite example, the coefficients of

the differential equations governing the evolution of these memory functions ζk(t) can be obtained

from the poles and residues of the Padé approximation of the spectral function of the composite.

This approach can be used for modelling and simulation of the waves propagating in the

medium that is evolving in time. When the microstructure of the composite changes depending

on applied forces, ageing, temperature or other factors, the microstructural changes are reflected

in the spectral measure evolving with the microstructure as its moments are determined by the

correlation functions (3.13). The evolution of the spectral measure then results in the evolution of

the coefficients of the differential equations (6.6) governing the internal variables ζk.

7. Conclusion
This paper shows that the parameters of the relaxation function of a composite medium are

determined by the spectral measure of the operator Γ χ naturally arising in the problem

considered at the microscale. We show that the resonances at the microlevel determine the

material’s relaxation times and the relaxation spectrum. In application to the modelling of waves

propagation through a viscoelastic composite medium, we show that the internal resonances in a

composite determine the equations for the evolution of internal memory variables characterizing

dispersion and dissipation in wave propagation through the composite material.
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