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and quaternary ammonium grafted samples showed the highest uptake, 0.21 mmol
acetic acid/g SBA-15, with secondary and tertiary amines showing nominally lower,
0.18 mmol/g, at 0.5 mmol aminosilane loaded per gram SBA-15. Solution conditions
during uptake were varied to conclude that only associated acetic acid could be
bound and that the mechanism relied heavily on electrostatic interactions. The
aminosilane packing density was found to be crucial to performance with variation
depending on the ligand bulk as well as the silica support's pore size. Relevant solu-
tion conditions for cellulose depolymerization were also explored by comparing
uptake of multiple organic acids and with dextrose added. Here, it was shown that
the most hydrophobic organic acid was preferentially extracted, and the uptake was

enhanced in the presence of dextrose.
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1 | INTRODUCTION

waste molecules as well as of organic acids>® and aromatic com-

pounds®* relevant to biomass production.

Organic-inorganic hybrid materials are an intellectually interesting Converting cellulosic biomass (corn stover, switch grass,

and technologically important class of matter. By combining the desir-
able properties of both hard and soft matter, it is possible to design
materials with superior mechanical, thermal, optical, and chemical
properties.)™” One subgroup of hybrid materials are amine-
functionalized silicas.»®*! This class of hybrids, where simple amine
groups, often propylamine groups, are grafted to the silica surface

have been explored for many applications. Carbon dioxide capture

12,13

has received the most attention, as the carbon dioxide uptake of

these materials has been well studied under a variety of conditions

15,16

and both the basic physical'*'* and engineering properties of

these materials have been well determined. These studies are not lim-

ited to primary amines, with gas-phase CO, capture,'”"2° hazardous

21-23

molecule capture, and catalysis®* compared with secondary and

tertiary amines as well. Additionally, these materials have been used

8

as liquid sorbents of hazardous metal ions,>>?” dyes,?® and other

woodchips, and so on) into fuel for energy production or chemical
upgrading is ideally a carbon neutral process.>>*° However, it suffers
from the high energy input needed for chemical separation and recov-

ery. Cellulose depolymerization, which can be achieved by

pyrolysis,3”4¥%5 hydrolysis,** or gasification, is an inherently non-
selective process.*” In particular, hydrolysis produces dilute (defined
here as 10 vol% or less) quantities of organic acids that are detrimental
to subsequent processing steps. Organic acids removal often uses liquid
aliphatic amine extractants and the mechanism of acid removal pro-

cesses has been extensively studied by varying the pH*&>!

52,53 54,55

concentration, and temperature on pure and mixed organic

acid systems.>®>? Extractions have been reported with primary,>%51>°

48,50-55,57-61 48,59,61,62

tertiary, and quaternary aliphatic amine based

extractants. The main factors governing the extraction process have

49,60

been reported as extractant basicity, acidity of organic acid,>*
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extractant polarity,®* organic acid polarity,*° diluent polarity,3#4?:57-57
and ability to anion exchange.®? However, due to organic diluents
required for the extractants to be soluble, the many component system
is complicated to characterize and requires a potentially energy inten-
sive separation. The use of solid sorbents could potentially eliminate
this challenge. In addition, solid sorbents have been utilized in many
separation processes'® to reduce energy consumption by eliminating
distillation or a solvent regeneration step. Liquid amines in particular
also have the disadvantage of being caustic causing an increase in mate-
rials handling costs and decrease equipment longevity, which solid sor-
bents amine sorbents would improve.®®

Here we study propylamine groups with varying degrees of meth-
ylation supported on ordered mesoporous silica (OMS) as a model sys-
tem for understanding acetic acid capture using a solid sorbent. Acetic
acid is a common component of processed biomass streams, and thus
represents an interesting and technologically relevant target for
removal from liquid streams. Depending on the initial biomass feed
composition and the pretreatment method,®*° acetic acid concentra-
tion can vary, but is typically at or below 10 wt%. Accordingly, this
work will focus on relatively dilute concentrations of acetic acid that
would be applicable to other relevant biomass molecules or to more
general dilute capture applications, such as water purification. How
propylamine methylation, solution conditions, and the presence of
competitor molecules affect the uptake of acetic acid is described.

2 | EXPERIMENTAL

21 | Materials

Tetraethoxysilane (TEOS, 99.9%) and (1-hexadecyl) trimethylammonium
bromide (CTAB, 98%) were purchased from Alfa Aesar. 2M
hydrochloric acid (HCI), 0.5 M sulfuric acid (H,SO4), sodium hydroxide
(NaOH), sodium acetate trihydrate (NaAc), sodium chloride (NaCl), and
toluene were purchased from BDH (ACS reagent grade). Pluronic
P123 (EO,oPO70EQ,0, MW = 5,800), (3-aminopropyl)trimethoxysilane
(APTMS, 99%), (3-iodopropyl)trimethoxysilane (IPTMS, 97%), butyric
acid (99%), hexanoic acid (99%), and dextrose were purchased from
Sigma-Aldrich. N-methylaminopropyltrimethoxysilane (MAPTMS, 99%)
and (N,N-dimethyl-3-amino)propyltrimethoxysilane (DMAPTMS,99%)
were purchased from Gelest. ACS grade methanol was purchased from
EMD Millipore. N® sodium silicate (28.7 wt% SiO,, SiO,/NayO = 3.22
[weight]) was provided by the PQ corporation. Trimethylamine (TMA,
4.2 M in ethanol) was provided by Acros Organics. ACS grade glacial
acetic acid was purchased from AMRESCO. Toluene was purified using
an MBRAUN MB-SPS solvent purification system. All other chemicals

were used as received.

2.2 | OMS synthesis

The protocol reported by Zhao and coworkers®® was used for SBA-15
synthesis. 13.18 g of Pluronic P123 were dissolved in 395 ml of 2 M

HCI and 82 ml of deionized water by stirring for 5 hr at room temper-
ature until the solution was clear without any solid surfactant visible.
28 g of TEOS were then added to that solution and stirred for 24 hr
at 35°C in a water bath. The mixture was then placed into an oven at
80°C for 24 hr under static conditions. The mixture was then cooled,
the solid products filtered, washed with deionized water, and dried at
80°C overnight. The solid products were then calcined to remove the
Pluronic. The calcination procedure was as follows: the air-dried sam-
ples were heated from room temperature to 100°C at a rate of
1°C/min; held at 100°C for 2 hr; subsequently increased from 100 to
550°C at a rate of 1°C/min; and then held at 550°C for 8 hr.

MCM-41 was synthesized using the synthesis procedure of Edler
and White.®” As an example, 15.8 g of sodium silicate solution were
added to a Teflon vessel, and mixed with 75.2 ml deionized water.
Then, 0.54 g of solid NaOH were added to the solution followed by
the addition of 14.58 g CTAB. The sample was stirred for 1 hr at room
temperature. Subsequently, 31.2 ml of 0.5 M H,SO,4 were added to
this and stirred for 15 min at room temperature. The mixture was then
placed in an oven at 100°C for 24 hr under static conditions. After
24 hr the sample was taken from the oven, cooled down to room tem-
perature, and 1.0 N H,SO4 was added to the solution dropwise to
adjust the pH to approximately 10. The sample was then put back in
the oven at 100°C. The titration step was performed two additional
times in regular 24-hr intervals. The total heating period was 96 hr.
The mixture was then cooled, the solid products filtered, washed with
deionized water, and dried at 80°C overnight. The solid products were
then calcined to remove the organic molecule used in synthesis. The
calcination procedure was as follows: the air-dried samples were
heated from room temperature to 100°C at a rate of 1°C/min; held at
100°C for 2 hr; subsequently increased from 100 to 550°C at a rate
of 1°C/min; and then held at 550°C for 8 hr.

2.3 | Synthesis of amine-functionalized OMS
Amine-functionalized SBA-15 and MCM-41 were prepared by post-
synthetic grafting. An aliquot of APTMS, MAPTMS, or DMAPTMS
(87, 99, and 109 pl for 0.5 mmol, respectively) was added to 1 g of cal-
cined SBA-15 or MCM-41 in 100 ml of anhydrous toluene under argon.
This mixture was stirred overnight in a closed container at room tempera-
ture. The product was collected by filtration, washed sequentially with tol-
uene, methanol, deionized water, and then dried under vacuum for 24 hr.
For the quaternary ammonium grafted sample, an aliquot of
IPTMS (99 ul for 0.5 mmol) was added to 1 g of calcined SBA-15 or
MCM-41 in 100 ml of anhydrous toluene under argon. The flask was
covered to prevent light exposure and stirred overnight. Then 5 ml of
4.2 M TMA in ethanol was added and stirred for 24 hr. The product
was collected by filtration, washed sequentially with toluene, metha-
nol, deionized water, and then dried under vacuum for 24 hr. The
sample was then stirred in 100 ml of 100 mM NacCl for 2 hr then col-
lected by filtration, washed sequentially with methanol, deionized
water, and then dried under vacuum for 24 hr. Scheme 1 shows the

silica surface of the four samples after amine grafting.
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this work
2.4 | Acid uptake on grafted OMS

Grafted SBA-15 or MCM-41(0.1 g) was added to a 11 ml vial and
mixed with 2 ml of aqueous acid solution. The slurry was mixed for
2 hr then centrifuged at 5,000 rpm for 10 minutes. The supernatant
was then removed and filtered with a 0.45 pm cellulose acetate
syringe filter. For the experiments performed where the pH was var-
ied, 0.087 M sodium acetate (NaAc) was used to adjust the pH of a
0.087 M acetic acid solution to the desired value. For experiments
that investigated the effect of dextrose and salt on acetic acid uptake
the desired amount of dextrose or salt was added to a 0.087 M acetic
acid solution.

Equilibrium concentrations were determined using high-
performance liquid chromatography (HPLC) on an Agilent 1,260 Infin-
ity fitted with a Hamilton PRP-1 Polymeric Reversed Phase Column. A
mobile phase flow rate of 0.6 ml/min and the absorbance at 210 nm
on a UV-vis detector was used for all measurements. The mobile
phase varied based on experiments as follows, for solutions with only
acetic acid, 5 mM H,SO,4, for mixed acid solutions, a gradient of
5 mM H,SO4/acetonitrile (100/0-50/50 from O to 15 min then
50/50-100/0 from 15 to 17 min), and for pH adjusted samples,
50 mM H,SO,4. The HPLC injections were done in triplicate for each
experimental point. Uptake was calculated with Equation (1) where Co
is initial concentration, C.q is equilibrium concentration, m is mass of
powder used, and V is volume of the solution.

Calculation of the equilibrium uptake as follows:

Co—Ceq

m
v

2.5 | Analytical methods

X-ray diffraction patterns were collected using a Rigaku MiniFlex
600 instrument. Thermogravimetric analysis (TGA) measurements
were conducted on a TA Q500 instrument over a temperature range
of 25-600°C and a ramp rate of 1°C/min. Nitrogen adsorption experi-
ments were measured on a Micromeritics ASAP 2020 instrument
using approximately 50 mg of sample. Prior to analysis the samples
were degassed at 100°C for 24 hr. The mesopore volume and surface
area was determined from the as-method. The mesopore size distribu-

tions were calculated from the desorption branch of the isotherms

AI?BEJ RNA LJ?‘;flo

using the Barrett-Joyner-Halenda with a modified equation for statis-

tical film thickness.

3 | RESULTS AND DISCUSSION

3.1 | OMS characterization

Figure 1 shows the powder X-ray diffraction (PXRD) patterns and the
nitrogen adsorption isotherms of the parent SBA-15 and MCM-41.
The patterns show the characteristic (100), (110), and (200) peaks of
the hexagonally ordered pore structure of SBA-15% as well as the
(100), (110), (200), and (220) of the MCM-41.%? The decrease in the
MCM-41 (100) reflection intensity for the amino-functionalized sam-
ples (Figures S1 and S2) is consistent with prior literature that shows
upon incorporation of an organic layer one observes an attenuation of
the reflections.>37° This signal attenuation is not due to any disrup-
tion of the ordering of the pores. Transmission electron microscopy
(Figures S3-S5) is consistent with this conclusion. A list of the meso-
pore volumes for SBA-15 samples (Table S1) as well as pore distribu-
tions and nitrogen adsorption isotherms are shown in Figures S6-S9.
A silane loading of 0.5 mmol/g loading was chosen to ensure uniform
coverage of the various sizes and charges of the functional groups.

7172 states that 4 molecules/nm? for similar mole-

Previous literature
cules to APTMS is the theoretical max loading for monolayer cover-
age, with 0.5 mmol/g being close to the max loading for the
calculated surface area of SBA-15. However, it should be noted that
practically much higher ligand loading has been obtained and that sur-
face functionalization is likely not a monolayer due to heterogeneities

on the silica surface.”®

3.2 | Pure acetic acid uptake
Figure 2a shows the acetic acid uptake for a suite of aminosilicas
(0.5 mmol/g) containing primary, secondary, tertiary amines and qua-
ternary ammonium groups (denoted 1°, 2°, 3°, and 4°, respectively)
using a 0.5 vol% (0.087 M) solution of acetic acid, which has an initial
solution pH of 3.15. The primary and quaternary materials took up
the most acetic acid, whereas the secondary and tertiary amines took
up less acetic acid. The primary amine sample captured 0.21 mmol of
acetic acid per gram of silica, corresponding to 0.42 mmol of acetic
acid per mmol of amine group. This equated to 12% of the acetic acid
removed from solution. The actual ligand loadings for the samples, cal-
culated from TGA weight loss curves (Figure S10), were comparable
to the theoretical loading (£5%) except for the quaternary sample
which had a loading that was 70% of theoretical. Experiments per-
formed with multiple samples made using the same protocols
(Table S2) gave very similar results, indicating the results in Figure 2
were reproducible.

Figure 2b shows the uptake curves for the samples. Consistent
with the results in Figure 2a, at low acetic acid concentrations there

were differences between the various ligands. These differences
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FIGURE 1 (a) Nitrogen adsorption
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YT —
00 02 04 06 08 00 02
Relative Pressure (P/Pg,

—
(¢
~
—

o
~

04 06 08

Relative Pressure (P/Py)

s 8
2 2
: T T T T T T 1 : T T T T 1
3 12 14 16 18 20 22 24 a 30 40 50 60 70
(&) (&)
I T I T I T I T l T ' 1 Ll I T T T l T T T T I 1
08 12 16 20 24 28 2.5 50 7.5
26 (Degrees) 26 (Degrees)
(a) FIGURE 2 (a) Uptake of acetic acid
0.2 -~ (b) from a 0.5 v% (0.087 M) solution on a
@ 0.25 - o series of aminosilicas with a nominal
E ° . '. s aminosilane loading of 0.5 mmol/g on
£ 0.1 0.20 — . s '. s SBA-15. (b) Uptake isotherm comparing
e ’§) . : s the four amine functional groups loaded
© 0154 ° + at 0.5 mmol/g on SBA-15. (c) Uptake of
0 1o 90 30 4° Pristine g acetic acid from a 5 v% (0.87 M) solution
(c) ~ 0.10 on a series of aminosilicas with a nominal
0.8 = log + aminosilane loading of 0.5 mmol/g on
@ 0.6 - 0.05 < o 1° @ 2° SBA-15 [Color figure can be viewed at
E ) - : g’ris?in:o wileyonlinelibrary.com]
+
£ 04 0.00 4
= T | | | T
o 02 0.02 004 006 0.08 0.10
0 Ceq (mol/L)
1° 2° 3° 4° Pristine

become less apparent at higher concentration. The bare, that is, non-
functionalized SBA-15 is also shown in Figure 2 for comparison. At
higher concentrations, uptake on bare SBA-15 converged to the
grafted samples as seen in Figure 2c with an initial acetic acid con-
centration of 5 vol%. Bare SBA-15 uptake was likely due to hydro-
gen bonding of the surface silanol groups with the acetic acid —OH
group. The increase in uptake as a function of concentration was
due to clustering of acetic acid with an increase in concentration.

This had been observed for other organic molecules with —OH

groups.”*”> Additionally, it should be noted that for all experiments
only the bulk concentration of acid was monitored and it was
assumed there was little volume change due to adsorption of the
solute and solvent. As noted in recent literature,’® these assump-
tions are important aspects of accurately quantifying batch adsorp-
tion experiments and since the concentrations in this work are dilute
these assumptions likely hold. However, at higher concentrations a
more rigorous approach to probe the adsorbed acid on the adsor-

bents surface would likely be required.
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TABLE 1

Langmuir model

K. (L/Mol) am (mmol/g) X2
1° 147.3 + 6.7 0.234 + 0.002 51x107*
2° 1522 +16.1 0.204 + 0.004 20x107°
3° 146.1 + 19 0.193 + 0.005 27 %1078
4° 90.4 + 14.1 0.248 + 0.009 59 x 1072

x2=Z<

To further study the nature of the interaction, the adsorption iso-
therm data was fit using the Langmuir and Freundlich absorption
models at low concentrations (<0.1 M) to minimize the effects of the
nonselective uptake observed over bare SBA-15 at higher acetic acid
concentrations. The Langmuir isotherm is given by the following
equation”’”:

_ QmKLCeq
e =
1+K.Ceq

where g, is maximum adsorption capacity (mmol/g) and K is the
equilibrium adsorption constant related to the adsorption energy
(L/mol). The Freundlich isotherm is represented by the following
equation”®:

Qe = KF(Ceq)n

where K¢ is a constant related to the adsorption capacity and n is a
constant related to intensity. The results of the fits for the grafted
aminosilane isotherms from Figure 2b are shown in Table 1. Neither
model does an exceptional job fitting the data; however based
purely on the ;(2 values the Langmuir model offers a slightly better
fit. Given that the fits are comparable for both models in terms of
the quality, one simple explanation for this is that at very low con-
centrations binding is primarily on amine groups, but because the
amine grafting process leads to an uneven distribution (i.e., not
monolayer) of surface tethered amine groups, the materials are het-
erogeneous which is likely the reason for the Langmuir model fit's
shortcomings. This is further confounded by the well-known hetero-
geneity of the SBA-15 surface, for example, roughness, presence of
microporosity in the walls, etc. The model fits on the experimental
isotherm data can be seen in Figure S11.

For the amine-grafted samples the uptake mechanism was an
acid-base interaction leading to near monolayer coverage at low con-
centrations. However, because there are still exposed surface silanol
groups on the grafted samples, at acetic acid concentrations above
200 mM the primary extraction mechanism became similar to bare
SBA-15. Finally, the kinetics of uptake were rapid in that the system
equilibrates in less than 15 min for all cases based on transient uptake
measurements (Figure 3).

i
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Calculated fitting parameters for Langmuir and Freundlich fits of acetic acid uptake on amine-functionalized SBA-15 (Ceq < 0.1 M)

Freundlich model

Kr n ){2
0.398 + 0.028 0.231 + 0.022 5.6x 1072
0.347 + 0.023 0.227 + 0.020 39x107°
0.336 + 0.024 0.237 + 0.023 3.7x107°
0.485 + 0.035 0.301 + 0.023 48x107°
y-vi\°
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FIGURE 3 Acetic acid uptake as a function of time for
0.5 mmol/g primary amine-SBA-15

3.3 | Varying ligand loading

With the information above in hand subsequent work focused on the
primary and quaternary functionalized materials as they showed the
highest uptakes, likely for different physical reasons. Figure 4a shows
the effect of ligand loading on uptake at a fixed acetic acid concentra-
tion of 0.087 M (0.5 vol%). In the case of the primary amine
functionalized silicas, a simple linear increase in uptake was observed
until 1 mmol/g, above which uptake plateaued. This corresponded to
18% of the amine sites binding acetic acid assuming a 1:1 complex,
and acetic acid removal of 31%.

By contrast, it was difficult to make quaternary ammonium
functionalized silicas with loadings above 1 mmol/g. We attributed
this to the bulk of the quaternary ammonium group as well as the fact
that this silane has a strong ionic character, which also inhibited high
ligand densities on the surface. The quaternary ammonium samples
were also less efficient; in the case of the highest loadings 11% of the
sites bind acetic acid and there was a 7% removal of acetic acid.

It should also be noted that although values calculated from TGA
results (weight loss curves shown in Figures S12 and S13) seen in

Figure 4b showed a maximum loading at 1.5 mmol/g of amine
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functional groups, it had been previously shown in literature that only
~30% of bound amines were accessible to probe molecules.”® To con-

firm the loading of the primary amine grafted samples in this study, a
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FIGURE 4 (a) Acetic acid uptake as a function of ligand loading

during functionalization and (b) calculated ligand loading from TGA
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ninhydrin assay for primary amines’? was employed and showed
(Figure S14) amine accessibility increasing from 30% at 0.1 mmol/g to
a maximum of 50% at 0.5 mmol/g, consistent with previous studies.*’
The low accessibility was attributed to grafting preferentially at micro-
SBA-15 slight
microporosity,” and polymeric layers forming at higher grafting densi-

pore openings, as is well known to have

ties that restrict access to the bulk solution.

3.4 | Pore size variation

The effect of mesopore size on uptake was determined by using MCM-
41 as a support. The MCM-41 materials used had a nominal pore size of
3.7 nm, in contrast to the SBA-15 which had a pore size of 7.5 nm.
Figure 5a shows the uptake comparison for the four types of
aminosilicas grafted at 0.5 mmol/g on MCM-41. It can be observed in
Figure 5b, that the MCM-41 functionalized materials had higher uptakes
than the corresponding SBA-15 materials at 0.5 mmol/g ligand loading,
with the exception of the primary amine. The modestly higher uptake
observed for MCM-41 was attributed to confinement effects and
increased surface area for loading of bulkier ligands (TGA comparison
shown in Figure S15). Analysis of these samples via the Langmuir and
Freundlich models is summarized in Table 2. Here the chi-squared values
are similar for both models. It is interesting to note that the K; values for
the Langmuir model are higher as compared to the SBA-15 data in
Table 1. One interpretation of this is that there is a stronger interaction
in MCM-41 due to the smaller pore size as compared to SBA-15. The

model fits to the experimental data can be seen in Figure S16.

3.5 | Recycle measurements

One issue that could complicate the results above is stability, specif-
ically does the ligand become hydrolyzed from the surface due to
the acetic acid? Figure 6 shows the uptake loss as the samples go
through multiple cycles. The cycles were completed by washing the
solid, obtained by centrifugation, from a standard uptake experi-
ment six times with 20 ml of DI water and centrifuged after each

washing. The resulting powder was dried under vacuum for 24 hr

1]
. ]
]
o
1° SBA-15
; 1°0 “SACM_41 FIGURE 5 (a) Comparison of
e 4°SBA-15 aminosilanes grafted to MCM-41for
o 4°MCM-41 . . .
acetic acid uptake and (b) comparison of
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uptake on primary and quaternary amines
for SBA-15 and MCM-41 [Color figure
can be viewed at wileyonlinelibrary.com]
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TABLE 2 Calculated fitting parameters for Langmuir and Freundlich fits of acetic acid uptake on amine-functionalized MCM-41

(Ceq < 0.04 M)

Langmuir model

Freundlich model

2

Kr n X

0.428 + 0.038 0.270 + 0.023 8.0x10™*
0.582 + 0.067 0.286 + 0.029 214 x10™*
0.810 £ 0.23 0.434 £ 0.073 491x 107"
0.732 + 0.074 0.334 £ 0.026 1.04 x 107*

K. (L/Mol) Gm (mmol/g) 72
1° 1936 £9.1 0.199 + 0.002 1.04 x 107
2° 191.7 £ 10.8 0.255 + 0.004 2.54 x 107%
3° 109.1+£4.5 0.259 + 0.003 1.13x 107
4° 150.9 £ 10.5 0.281 + 0.006 451 %107
0.25 —
(]
0.20
—_ [ ]
g 0.15
S 0.15
£ > *
E 410- ¢
[
o
0.05
e 1°
e 4°
0.00 -
I I 1
0 1 2
Recycle Number
FIGURE 6 Equilibrium uptake of acetic acid for the primary and

quaternary functionalized SBA-15 materials as a function of recycle
[Color figure can be viewed at wileyonlinelibrary.com]

then a standard uptake measurement was completed. It should be
noted there was always a slight mass loss during the washing steps.
Interestingly, while there is clearly a modest loss of uptake capacity
over multiple cycles, TGA results (Figure S17) show that there is
negligible loss of ligand over multiple cycles. Thus, while there is
clearly some loss of uptake capacity over the time scale of tens of
hours, the differences in the samples observed in Figure 2 are not
due to loss of ligand.

3.6 | Effects of solution conditions, other probe
molecules

Multiple solution parameters were studied to determine the uptake
mechanism. Figure 7a shows the effect of salt on acetic acid uptake.
These experiments showed that the extraction mechanism was simi-
lar for both primary amine and quaternary ammonium grafted sam-
ples as the loss in uptake was similar. As the salt content increased
acetic acid uptake decreased, consistent with electrostatic forces
playing a role in uptake. By increasing the salt concentration, the
effective length of the electrostatic force (Debye Length) was
reduced resulting in a lower electrostatic potential farther away
from the interface.

The effect of pH was also studied, the results of which are

shown in Figure 7b. As one might expect the uptake decreased with

increasing pH (adjusted with sodium acetate) and by the time a pH
of seven was reached, the primary amine functionalized silica effec-
tively did not take up acetic acid. This result showed that only the
protonated acid was extracted for both samples and that no ion
exchange for the quaternary amine salt occurred (the pKa of acetic
acid is 4.75). This result combined with the salt and recycle experi-
ments showed that the primary extraction mechanism was electro-
static due to the charge of the amine group and —OH group of the
acetic acid.

3.7 | Competitive uptake
Experiments were performed to determine if the presence of com-
petitor molecules perturbed acetic acid uptake. Figure 8a shows the
uptake of acetic acid over the various aminosilicas in the presence
of dextrose. Interestingly a modest enhancement of acetic acid
uptake was observed for all samples. Figure 8b then shows how the
acetic acid uptake varied for the primary and quaternary samples as
the dextrose concentration was varied. A modest increase in acetic
acid uptake was observed as the dextrose concentration was
increased. The reason for this was likely a formation of a complex
between acetic acid and dextrose due to the hydroxyl groups of the
dextrose and the protonated acid group of the acetic acid. This
resulted in a more electrophilic molecule causing a stronger interac-
tion with the basic amine groups. A similar phenomenon had been
described previously with boronic acid and diol containing
molecules.®°

Figure 9a shows the uptake of three different acids: acetic,
butyric, and hexanoic, from solution as a function of individual acid
concentration. The acid molar ratios were 1:1:1 in the initial solution.
For comparison purposes, uptake of each pure acid at 0.05M is
shown in Figure 9b. The simple conclusion from these figures is that
the more hydrophobic the acid, the more efficiently it is captured
from solution. Acetic acid and butyric acid uptake were lower in the
mixtures as compared to uptake from solutions of a single acid. When
comparing how much acid was removed from the mixed solution at
0.05 M each, 10% acetic, 14% butyric, and 46% hexanoic acid were
removed which represents 23% of the total acid in solution removed.
Finally, it should be pointed out that one reason for the low total con-
centrations of acid used here is that the hexanoic acid has a low solu-
bility in water, 0.968 g/100 ml.5!
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4 | CONCLUSIONS

The current work provides a full picture of the macroscopic uptake
properties of acetic acid, an undesirable byproduct of biomass depoly-
merization. Clear trends emerge as to how the degree of methylation
influences acetic acid uptake. The effects of solution conditions are
also reported, as well as how the presence of competitor molecules
influences uptake properties. From these results it is clear that uptake

depends on the electrostatic charge on the amine, polarity of the
amine and acid, and the dissociation constant of the amine and acid.
The inorganic support also plays a crucial role in that ligand loading
can differ based on the support's pore size and volume, which can
increase or decrease the loading based on the ligand's steric bulk and
charge. This work provides a foundational basis for developing deeper
insights into how model adsorbent materials can be used to remove

dilute species from aqueous media. Ongoing work is probing the
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binding dynamics of acetic acid at the molecular level and will be

reported elsewhere.
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