
Blending Containers and Virtual Machines:
A Study of Firecracker and gVisor

Anjali
University of Wisconsin-Madison

anjali@wisc.edu

Tyler Caraza-Harter
University of Wisconsin-Madison

tharter@wisc.edu

Michael M. Swift
University of Wisconsin-Madison

swift@cs.wisc.edu

Anjali
University of Wisconsin-Madison

anjali@wisc.edu

Tyler Caraza-Harter
University of Wisconsin-Madison

tharter@wisc.edu

Michael M. Swift
University of Wisconsin-Madison

swift@cs.wisc.edu

Abstract
With serverless computing, providers deploy application
code and manage resource allocation dynamically, eliminat-
ing infrastructure management from application develop-
ment.
Serverless providers have a variety of virtualization plat-

forms to choose from for isolating functions, ranging from
native Linux processes to Linux containers to lightweight
isolation platforms, such as Google gVisor [7] and AWS Fire-
cracker [5]. These platforms form a spectrum as they move
functionality out of the host kernel and into an isolated guest
environment. For example, gVisor handles many system calls
in a user-mode Sentry process while Firecracker runs a full
guest operating system in each microVM. A common theme
across these platforms are the twin goals of strong isolation
and high performance.
In this paper, we perform a comparative study of Linux

containers (LXC), gVisor secure containers, and Firecracker
microVMs to understand how they use Linux kernel services
differently: how much does their use of host kernel function-
ality vary? We also evaluate the performance costs of the
designs with a series of microbenchmarks targeting different
kernel subsystems.
Our results show that despite moving much functional-

ity out of the kernel, both Firecracker and gVisor execute
substantially more kernel code than native Linux. gVisor
and Linux containers execute substantially the same code,
although with different frequency.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
VEE ’20, March 17, 2020, Lausanne, Switzerland
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7554-2/20/03. . . $15.00
https://doi.org/10.1145/3381052.3381315

CCSConcepts •Computer systems organization→Cloud
computing; • Software and its engineering → Operat-
ing systems; Cloud computing; • Security and privacy
→ Virtualization and security.

Keywords serverless computing, virtualization, operating
systems, code coverage, benchmarking, firecracker, gvisor
ACM Reference Format:
Anjali, Tyler Caraza-Harter, Michael M. Swift, Anjali, Tyler Caraza-
Harter, andMichaelM. Swift. 2020.BlendingContainers andVirtual
Machines: A Study of Firecracker and gVisor. In 16th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Environ-
ments (VEE ’20), March 17, 2020, Lausanne, Switzerland. ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/3381052.3381315

1 Introduction
Serverless computing is a new execution model in which
tenants provide lightweight functions to a platform provider,
which is responsible for finding a host and launching them
on that host. As public clouds are multi-tenant, serverless
computing naturally seeks to run functions from multiple
tenants on the same physical machine, which requires strong
isolation between tenants. For example, AWS ran serverless
functions in Linux containers inside virtual machines, with
each virtual machine dedicated to functions from a single
tenant [36]. In contrast, Azure multiplexed functions from
multiple tenants on a single OS kernel in separate contain-
ers [36]. As a result, a kernel bug could compromise inter-
tenant security on Azure but not AWS.
Recently, lightweight isolation platforms have been in-

troduced as a bridge between containers and full system
virtualization. Amazon Web Services (AWS) Firecracker [4]
and Google’s gVisor [7] both seek to provide additional de-
fense and isolation in their respective serverless environ-
ments. Both are based on the principles of least privilege
and privilege separation. Firecracker takes advantage of the
security and workload isolation provided by traditional VMs
but with much less overhead via lightweight I/O services and
a stripped-down guest operating system. gVisor, in contrast,
implements a new user-space kernel in Go to provide an ad-
ditional layer of isolation between containerized applications
and the host operating system.

https://doi.org/10.1145/3381052.3381315
https://doi.org/10.1145/3381052.3381315

VEE ’20, March 17, 2020, Lausanne, Switzerland Anjali, Tyler Caraza-Harter, Michael M. Swift, Anjali, Tyler Caraza-Harter, and Michael M. Swift

Native
Linux

Linux
Containers

gVisor
Containers

Firecracker
microVMs

KVM/QEMU
Full VMs

Host Kernel Guest Kernel

Location of Functionality

Figure 1. Spectrum of OS functionality location in isolation
platforms.

In order to make sense of these new platforms and how
they compare with containers and heavyweight system vir-
tual machines, we can organize the platforms on a spectrum,
illustrated in Figure 1. The position illustrates how much of
their functionality resides in the host operating system. At
the left, the host operating system provides all functionality.
With Linux containers (LXC), a user-mode daemon plays an
important role in provisioning and configuring containers.
gVisor sits in the middle, as it moves execution of most sys-
tem calls out of the kernel into a user-mode Sentry process.
Firecracker runs a lightweight virtual machine (microVM)
with a complete guest kernel, but relies on the host operating
system to securely isolate the Firecracker hosting process.
Full virtualization, such as QEMU/KVM, moves most func-
tionality out of the host kernel into either the guest operating
system or the host QEMU process.

This paper evaluates the architectures of lightweight iso-
lation platforms based on how they use functionality in the
host kernel. We compare the Linux kernel code footprint and
performance of three isolation platforms: Linux containers,
AWS Firecracker, and Google gVisor. We perform the first
fine-grained code coverage analysis of these isolation plat-
forms to determine how kernel services are used differently
by each isolation platform: we compare which kernel code
executes for different workloads as well as the frequency of
invocation across platforms. For example, we investigate the
impact of gVisor’s user-mode networking stack on its usage
of kernel networking code.
We also perform microbenchmarking of the three plat-

forms compared to native Linux to measure the performance
impact of the architectural choices. For CPU, networking,
memory, and file system workloads, we measure the achiev-
able performance on all three platforms.

Some highlights of our findings are:
• The code coverage analysis shows that despite moving
much operating system functionality out of the kernel,
both gVisor and Firecracker execute substantiallymore
Linux kernel code than native Linux alone, and that
much of the code executed is not in different functions,
but rather conditional code within the same functions
executed by native Linux.

• The frequency of invocation varies widely: gVisor, for
example, handles most memory mapping operations
internally, and hence invokes the kernel much less
frequency than Linux containers.

• Our performance results show that neither gVisor nor
Firecracker are best of all workloads; Firecracker has
high network latency while gVisor is slower for mem-
ory management and network streaming.

The rest of the paper is organized as follows. First, we de-
scribe how various isolation mechanisms work (§2). We then
evaluate the system calls available from each platform and
the amount of kernel code executed on each platform (§3).
Next, we separately look at the code coverage and perfor-
mance of CPU (§4), networking (§5), memory management
(§6), and file access (§7). Finally, we summarize our findings
and discuss the limitations of our work (§8), describe related
work (§9), and conclude (§10).

2 Isolation Platforms
In this section, we describe the four isolation platforms that
we will analyze (§4-7). First, we introduce LXC-based con-
tainers (§2.1), as implemented by Docker’s default container
engine, runc. Although LXC is sometimes used to refer specif-
ically to the liblxc library [18] that creates and manages con-
tainers, we use LXC to more broadly refer to the "capabilities
of the Linux kernel (specifically namespaces and control
groups) which allow sandboxing" [15]; we explore these fea-
tures as used by runc. Second, we describe KVM/QEMU
(§2.2), a popular virtual machine platform. Finally, we give
an overview of gVisor (§2.3) and Firecracker (§2.4), two new
platforms that both use a mix of LXC and KVM/QEMU com-
ponents. gVisor’s OCI-compliant [20] runsc engine and ongo-
ing efforts to implement a similar engine for Firecracker [16]
suggest it will soon be trivial to choose and switch between
LXC, gVisor, and Firecracker when deploying with tools such
as Docker and Kubernetes.

2.1 Linux Containers (LXC)
Linux Containers (LXC) [1, 19] are an OS-level virtualization
method for running multiple isolated applications sharing
an underlying Linux kernel. A container consists of one or
more processes (generally running with reduced privileges)
having shared visibility into kernel objects and a common
share of host resources.

Shared visibility into kernel objects is governed by names-
paces, which prevent processes in one container from inter-
acting with kernel objects, such as files or processes, in an-
other container. Resource allocation is governed by cgroups
(control groups), provided by the kernel to limit and priori-
tize resource usage. An LXC container is a set of processes
sharing the same collection of namespaces and cgroups.
Docker is an extension of LXC that adds a user-space

Docker daemon to instantiate and manage containers. The
Docker daemon needs root privileges, although a version
that drops this requirement is under development. The dae-
mon can be configured to launch containers with different
container engines; by default, Docker uses the runc engine.

Blending Containers and Virtual Machines:
A Study of Firecracker and gVisor VEE ’20, March 17, 2020, Lausanne, Switzerland

It can also be configured to use other container engines
such as runsc, which wraps gVisor (§2.3). Unless otherwise
stated, any evaluation of “Docker” in this paper refers to
an evaluation of “runc”. The runc engine enables isolation
for a running container by creating a set of namespaces and
cgroups. Kubernetes functions like Docker in managing and
launching containers.

Docker can also initialize storage and networking for the
container engine to then use. The storage driver provides
a union file system, using the Linux kernel, which allows
sharing of read-only files. Files created inside a Docker con-
tainer are stored on a writable layer private to the container
provided through a storage driver. Each container has its
own virtual network interface. By default, all containers on
a given Docker host communicate through bridge interfaces,
which prevents a container from having privileged access to
the sockets or interfaces of another container. Interactions
between containers are possible through overlay networks
or through containers’ public ports.

2.2 KVM/QEMU
KVM (Kernel-based Virtual Machine) [10] is a type-2 hyper-
visor built into the Linux kernel that allows a host machine
to run multiple, isolated virtual machines. QEMU [13] is a
full-system emulation platform that uses KVM to execute
guest code natively using hardware-assisted virtualization
and provides memory management, device emulation, and
I/O for guest virtual machines. KVM/QEMU provides each
guest with private virtualized hardware, such as a network
card and disk. On this platform, most operating system func-
tionality resides in the guest OS running inside a virtual
machine and in the QEMU process that performs memory
management and I/O.
While commonly used for full-system virtualization and

in infrastructure-as-a-service clouds, KVM/QEMU virtualiza-
tion is heavyweight, due to both the large and full-featured
QEMU process and to full OS installations running inside
virtual machines. As a result, it is too costly to run individual
functions in a serverless environment.

2.3 gVisor
Google gVisor [7, 23] is a sandboxed container runtime that
uses paravirtualization to isolate containerized applications
from the host system without the heavy-weight resource
allocation that comes with full virtual machines. It imple-
ments a user space kernel, Sentry, that is written in the Go
Language and runs in a restricted seccomp container. Fig-
ure 2 shows gVisor’s architecture. All syscalls made by the
application are redirected into the Sentry, which implements
most system call functionality itself for the 237 syscalls it
supports. Sentry makes calls to 53 host syscalls to support
its operations. This prevents the application from having
any direct interaction with the host through syscalls. gVisor
supports two methods of redirecting syscalls: ptrace-mode

Container Sentry	(userspace	kernel)

User

Kernel

Gofer

Host	Kernel

File	accessSyscalls(limited)KVM/ptrace

9P

Sandbox

netstack

Figure 2. gVisor architecture

vCPU Block
Storage Memory vNIC

microVM

KVM

Filesystem	and	Network

Linux	Kernel

Hardware
Emulation

Firecracker
VMM

Figure 3. Firecracker architecture

uses ptrace in the Linux kernel to forward syscalls to the
sentry and KVM-mode uses KVM to trap syscalls before they
hit the Linux kernel so they can be forwarded to the sentry.
As KVM-mode performs better than ptrace for many work-
loads [38] and has several benefits over the ptrace platform
according to the gVisor documentation [17], we perform all
experiments with it enabled.
gVisor starts a Gofer process with each container that

provides the Sentry with access to file system resources.
Thus, a compromised Sentry cannot directly read or write
any files. A writable tmpfs can be overlaid on the entire
file system to provide complete isolation from the host file
system. To enable sharing between the running containers
and with the host, a shared file access mode may be used.
gVisor has its own user-space networking stack written

in Go called netstack. The Sentry uses netstack to handle
almost all networking, including TCP connection state, con-
trol messages, and packet assembly, rather than relying on
kernel code that shares much more state across containers.
gVisor also provides an option to use host networking for
higher performance.

2.4 Firecracker
AWS Firecracker [4, 26, 32] is a new virtualization technol-
ogy that uses KVM to create and run virtual machines. Like
KVM/QEMU, it uses the KVM hypervisor to launch VM

VEE ’20, March 17, 2020, Lausanne, Switzerland Anjali, Tyler Caraza-Harter, Michael M. Swift, Anjali, Tyler Caraza-Harter, and Michael M. Swift

instances on a Linux host and with Linux guest operating
system. It has a minimalist design and provides lightweight
virtual machines termed microVMs. Firecracker excludes un-
necessary devices and guest-facing functionality to reduce
the memory footprint and attack surface of each microVM.
Multiple microVMs can be launched by running separate
instances of Firecracker, each running one VM. Compared
to KVM/QEMU, Firecracker has a minimal device model to
support the guest operating system and stripped-down func-
tionality. Both of these allow it to make fewer syscalls and
execute with fewer privileges than KVM/QEMU.
As shown in Figure 3, each microVM runs as a process

within the host OS, which is associated with a dedicated
socket and API endpoint. Firecracker provides VirtIO/block
and VirtIO/net emulated devices which are backed by files
and TAP devices on the host respectively. To ensure fair
usage of resource, it enforces rate limiters on each volume
and network interface, which can be created and configured
by administrators.

Each Firecracker process is started by a jailer process. The
jailer sets up system resources that require elevated permis-
sions (e.g., cgroups, namespaces, etc.), drops privileges, and
then launches the Firecracker binary with exec, which then
runs as an unprivileged process. To further limit the syscalls,
Firecracker uses the kernel’s seccomp filters to restrict the
set of available operations.

Both Firecracker and gVisor rely on host kernel functional-
ity. Firecracker provides a narrower interface to the kernel by
starting guest VMs and providing full virtualization, whereas
gVisor has a wider interface by being paravirtualized. Al-
though Firecracker uses a minimal device model, its design
can be viewed as more heavy-weight than gVisor. They both
have low overhead in terms of memory footprint. Firecracker
and gVisor are written in Rust and Golang respectively, both
being type safe languages adding to their security models.

3 Isolation Platform Comparison
A major distinction between isolation platforms is the loca-
tion of operating system functionality: is it all handled by
the host kernel, or is it moved out to user-space processes or
guest kernels within a VM? We evaluate isolation platforms
by comparing how they utilize Linux kernel functionality.
We measure the code coverage of common operations: how
much Linux kernel code executes in response to different
workloads on each platform? This assists us in understanding
how functionality is split between system components.
Furthermore, isolation can directly reduce performance:

additional safety checks, layers of indirection such as names-
paces, overlay file systems, and virtual networking all add
extra code to system call and I/O paths. For multiple work-
loads, we evaluate the performance of isolation platforms
in order to determine the runtime cost of isolation. As a
baseline, we compare against native Linux processes with

Platform Total allowed syscalls
to the host kernel

LXC all except 44
Firecracker 36
gVisor w/o host networking 53
gVisor w/ host networking 68
Table 1. Total number of system calls allowed out of 350

no special isolation. We have not evaluated KVM/QEMU in
this paper.

3.1 Methodology
We run all our experiments on Cloudlab [2] xl170 machine,
with a ten-core Intel E5-2640v4 running at 2.4 GHz, 64GB
ECC Memory (4x 16 GB DDR4-2400 DIMMs), Intel DC S3520
480 GB 6G SATA SSD and 10Gbps NIC. We run on Ubuntu
18.04 (kernel v5.4.13). We performed all the experiments on
gVisor release-20200127.0 version and Firecracker v0.19.1.
Since these systems are in continuous development, results
might vary with the older and future versions.
We run all experiments across four configurations: host

Linux with no special isolation, Linux containers (labeled
LXC), Firecracker, and gVisor. For gVisor we use KVM-mode
to trap system calls from a container. The official perfor-
mance guide of gVisor [21] uses ptrace mode in almost all
their experiments, so many of our performance results are
different. For starting a Firecracker microVM, we set the
memory to 8GB, storage to 4GB and vCPU to 1. For gVisor
and LXC memory was set to 8GB by passing the –memory
flag with docker run. Each platform’s default file systems are
used for the measurements.

3.2 Security Policies
The Linux kernel provides over 350 syscalls as entry points
to operating system functionality. Each syscall is a possible
vector for attack against the kernel, as a flaw in the kernel
could allow user-mode code to subvert OS protection and
security mechanisms. However, most programs use only a
subset of the available system calls. The remaining system
calls should never occur. If they do occur, it is perhaps be-
cause of a compromised program.

Linux provides a secure computing mode—seccomp [12]—
to restrict the system calls a running process may make.
We focus on use of seccomp-bpf, which allows a user space-
created policy to define (a) the permitted syscalls, (b) allowed
arguments for those syscalls, and (c) the action to be taken
when an illegal syscall is made.

All three systems we study (LXC, gVisor, and Firecracker)
use seccomp filters to reduce application-host kernel inter-
action, thereby increasing isolation and reducing the attack
surface. A summary of the allowed syscalls in each system
is shown in Table 1.

LXC can use seccomp [3] to limit actions available to the
process running inside the container. By default, Docker

Blending Containers and Virtual Machines:
A Study of Firecracker and gVisor VEE ’20, March 17, 2020, Lausanne, Switzerland

Host Firecracker LXC gVisor
Lines 63,163 77,392 90,595 91,161
Coverage 7.83% 9.59% 11.23% 11.31%

Table 2. Union of line coverage across all workloads out of
806,318 total lines in the Linux kernel.

blocks 44 system calls that are obsolete, can only be called
with root privilege, or are not protected by kernel names-
paces.

Firecracker has a whitelist of 36 syscalls [6] that it re-
quires to function. It supports two levels of seccomp filtering.
With simple filtering, only the 36 calls are permitted and the
remainder denied; with advanced filtering, Firecracker adds
constraints on the values allowed as arguments to system
calls as well. A syscall is blocked if the argument values do
not match the filtering rule.

gVisor limits the syscalls to the host by implementing
most of them in the Sentry process [34]. The Sentry itself
is only allowed to make a limited set of syscalls to the host.
As of November 2019, Sentry supports 237 syscalls out of
350 within the 5.3.11 version of the Linux kernel. It uses a
seccomp whitelist of 68 syscalls to the host with host net-
working enabled and 53 without networking.

Overall, both gVisor and Firecracker providemuch stronger
system call limits than Linux containers, with Firecracker
being a bit stricter due to its use of fewer system calls and
tighter controls over the arguments to those system calls.
In contrast, Linux containers allow isolated applications to
make most system calls.

3.3 Total Code Footprint
Wemeasure the code coverage for four different microbench-
marks, described in later sections: CPU, network, memory,
and file write on the four systems (host, LXC, Firecracker
and gVisor).

Each workload runs for ten minutes. We run the lcov [11]
code coverage tool, version 1.14 on kernel v5.4.13, which
reports which lines of source code were executed and what
fraction of functions, lines, and branches of total kernel code
were executed. It also reports how many times each line of
code was executed. Using these results, we can compare the
kernel code coverage for the same workload across different
isolation platforms to see first, how much code they exe-
cute, and second, whether a platform uses the same code as
another platform or does something different.

Table 2 shows the union of line coverage across the work-
loads. The lines row shows the number of lines of code ex-
ecuted at least once out of the total 806,318 lines of code
in the linux kernel. Overall, we find that native Linux exe-
cutes the least code and that both Firecracker and gVisor,
despite having a separate guest kernel and a user-space ker-
nel respectively, execute substantially more Linux kernel
code.

While this gives us a broad picture, it does not tell us
anything about whether the platforms are largely executing
the same code andmore, or if there are large non-overlapping
bodies of code. In the following sections, we take a detailed
look at the code executed for different kernel subsystems
when running microbenchmarks exercising that subsystem.
Figures 4, 6, 13, and 18 show the intersection of code executed
by each system, represented as a set of Venn diagrams.
When determining whether to consider a line of code as

executed by a platform, we filter out invocations not related
to the application running in the isolation platform. To do
this, we measure the code coverage of an idle host Linux
system for 10 minutes and calculate the hit rate of every line
of code—how often it is called. When determining which
code was executed by a platform, we compare the hit rates of
the code with the platform against the idle system and only
include the code if it was executed more frequently with the
isolation platform present. With this mechanism, we mini-
mize the noise from the background processes, though we
cannot eliminate it completely in our measurements. Strip-
ping idle code removes approximately 10k-15k lines of code,
depending on platform.

4 CPUWorkload
4.1 Coverage Analysis
We run the sysbench CPU benchmark [14] on each virtual-
ization platform and identify the footprint in case. Figure 4a
shows the lines of code in each footprint across the entire
Linux kernel, and how the footprints overlap: darker por-
tions of the diagrams corresponding to larger line counts.
We see a majority of the lines (35,692) are shared by all

three platforms; Firecracker has the most unique lines (7,403)
not shared by any other platform, and LXC and gVisor share
a significant footprint not exercised by Firecracker (33,557
lines). We note that although gVisor implements many sys-
tem calls in the Sentry, it exercises more host code than
LXC; although surprising, the same was found in prior anal-
ysis [24]). Overall, gVisor has the largest total footprint (78k
LOC) and Firecracker has the smallest (49k LOC).
We illustrate the source of the differences between plat-

forms by analyzing code in specific Linux source directories.
The code in /virt directory shown in Figure 4b is executed
only in Firecracker and gVisor, because they virtualize with
KVM. Firecracker has the highest footprint here of 1,190 LOC
(541+649) as it uses VirtIO emulated Network and Block de-
vices, while gVisor relies on system calls for I/O, resulting in
a footprint that is 43% smaller than and nearly a subset of
Firecracker’s footprint.

Firecracker and gVisor have a much larger /arch footprint
than LXC (Figure 4c); most of the additional code is under
/arch/x86/kvm, as shown in Figure 4d. Here, we see gVi-
sor’s footprint is 42% smaller than and nearly a subset of
Firecracker’s exercised lines of code. KVM code is used by

VEE ’20, March 17, 2020, Lausanne, Switzerland Anjali, Tyler Caraza-Harter, Michael M. Swift, Anjali, Tyler Caraza-Harter, and Michael M. Swift

7403 2079
864

2725

6026 33557

35692

Firecracker LXC

gVisor

(a) CPU workload overall

541 0
0

32

649 0

0

Firecracker LXC

gVisor

(b) /virt

2825 118
104

227

3537 399

1752

Firecracker LXC

gVisor

(c) /arch

2701 0
0

151

3354 0

16

Firecracker LXC

gVisor

(d) /arch/x86/kvm

Figure 4. CPU workload coverage

2 4 6 8 10

No. of instances

0

100

200

300

400

C
P
U

 s
p
e
e
d
(e

v
e
n
ts

 p
e
r

s
e
c
o
n
d
)

host Firecracker LXC gVisor

(a) CPU Speed

2 4 6 8 10

No. of instances

0

10000

20000

30000

T
o
ta

l
p
ro

b
e
s
 p

e
r

in
s
ta

n
c
e

host Firecracker LXC gVisor

(b) LLC Probe
Figure 5. CPU workload

Firecracker for microVMs and by gVisor to redirect system
calls to the Sentry; however, Firecracker has 2,550 more lines
of code than gVisor. This difference is mostly from the emu-
lation code that Firecracker executes but gVisor does not.

Despite these substantial differences in functionality, much
of the new code executed by gVisor and Firecracker is not
in new functions. Rather, it is conditional code in the same
functions exercised by containers. For instance most of the
code in the file block/blk-cgroup.c is executed just by gVisor
as an extra check. We will see more such examples in the
following sections.

4.2 Performance
We conduct two experiments to measure how choice of iso-
lation platform affects CPU performance. First, we run the
sysbench CPU benchmark [14] for ten seconds and observe
the number of events it executes. An event is the loop that
finds prime numbers up to a limit. This workload is CPU-
bound, and hence measures the processing overhead of the
platforms. We observe in Figure 5a that all the platforms
perform similarly. As we increase the number of instances
to ten, performance per instance drops 23%.
In the second experiment, we execute LLCProbe [35],

which sequentially probes 4B from every 64B of data within
an LLC-sized buffer, using cache coloring to balance access

across cache sets. To measure the performance, we measure
the number of probes completed in 10 seconds. Figure 5b
reports the average probes observed per instance. There is
a slight drop in performance as the number of instances in-
creases across all the environment, due to overhead of the
platform. All platforms achieve approximately 33k probes
per instance.

4.3 Insights
Despite the user-mode Sentry, gVisor has the largest footprint
and Firecracker the smallest. But, all three platforms exercise
a significant body of code not exercised by the other two.
While not all lines of code are equally likely to be vulnerable
to an exploit, more code indicates potentially higher risk.
Firecracker and gVisor require more architecture-specific

code due to their dependence on hardware virtualization,
which may make portability to other processor architectures
more difficult. Firecracker depends on KVM to achieve the
lightweight virtualization, adding to the lines of code it exe-
cutes in the kernel. gVisor is heavily paravirtualized and also
uses a smaller fraction of this functionality when running
with the KVM platform. LXC does not use this functionality
as it lies on the leftmost side of the isolation spectrum as
seen in Figure 1.

Blending Containers and Virtual Machines:
A Study of Firecracker and gVisor VEE ’20, March 17, 2020, Lausanne, Switzerland

The CPU performance corresponding to these architec-
tural differences does not vary significantly for both the
workloads, as overall there is fairly little kernel involvement.

5 Networking
5.1 Coverage Analysis
We measure code coverage of network operations for each
platform using iperf3 [9], which streams data over TCP/IP.
Figure 6a shows the overall kernel footprints and Figure 6b
shows the footprints in the /net directory alone. Despite
having an in-Sentry networking stack (including TCP, UDP,
IP4, IP6 and ICMP), gVisor has the highest overall coverage
and surprisingly exercises much of the same code as LXC
under /net. Some parsing of packets still happens in the host
kernel as a sanity check before routing them. Similarly, when
Generic Segmentation Offload (GSO) is enabled in gVisor, the
host kernel does more processing of packets. The /net/bridge
and /net/core directories also show a high overlap among
them with 1,426 and 2,231 lines shared by LXC and gVisor
as presented in Figures 6c and 6d respectively.

Firecracker runs the fewest lines of networking code. This
reflects that most networking happens in the guest OS.

5.2 Code Differences
In comparison to the host, all three isolation platforms ex-

ecute more setup code for their network interfaces and more
extra checks across all networking code. dev_get_by_index(),
defined in /net/core/dev.c, searches for a network device; it
only gets executed in LXC and gVisor but not on host and
Firecracker which suggests that gVisor and LXC have the
same type of network interface, i.e., a bridge network.
There are some functions that execute only on some of

the platforms, such as tcp_sum_lost in /net/ipv4/tcp_input.c,
which checks the sum of the packets lost on the wire. This
gets executed 27,719 times in LXC, 3 times in Firecracker and
not executed in gVisor. This shows functionality that gVisor
handles in Sentry; hence not using the kernel network stack
for this processing.

Figure 7a shows the code snippet and Figure 7b shows the
hits (number of times a line executes) for some of the lines.
LXC has the highest hits, more than 100 million, followed by
gVisor, which calls this function 1,805,02012 times showing
that it handles part of this inside netstack. Firecracker does
not execute this code.

5.3 Performance
We evaluate network performance by measuring bandwidth
and latency. The network bandwidth is measured by run-
ning iperf3 between two Cloudlab machines with a 10 Gbps
1https://stackoverflow.com/questions/46447674/function-coverage-is-
lesser-even-with-100-code-coverage-when-objects-created-in
2https://stackoverflow.com/questions/2780950/gcov-line-count-is-
different-from-no-of-lines-in-source-code

Host Firecracker LXC gVisor
RTT (𝜇s) 146 371 149 319

Table 3. Round-trip time

network link and the latency by measuring the round-trip
time with ping.

Host and Firecracker achieve the highest bandwidth; LXC
is slightly slower while gVisor is the slowest with 0.805
Gbps3, (805 Mbps) but the aggregate increases to 3.294 Gbps
at 10 instances. This is likely due to its user space network
stack, which is not as optimized as the Linux network stack.
When using the host networking stack, gVisor is still slowest,
but achieves 3.03 Gbps. The performance of ptrace platform
as stated in the gVisor official guide [21] is faster. The gVisor
network performance for the KVM platform has increased
substantially from its release-20190304 version, nearly by
800%.

To better understand how the different platform architec-
tures use the kernel differently, we show flame graphs [28]
for the sys_write system call in Figures 9–12. Each rectangle
represents a function, and the stacks represent call stacks.
The width represents the fraction of time that function was
on the call stack. Several patterns are visible. Compared to
host networking in Figure 9, LXC in Figure 11 has a much
taller stack, which represents the cost of traversing two net-
work interfaces to implement bridging. For gVisor, the trace
is done for the Sentry process that does a lot of processing on
the packet. Firecracker runs TCP in the guest, so it invokes
packet forwarding code at the IP layer and has a much flatter
profile.
We show the aggregate bandwidth as the number of in-

stances increases in Figure 8.With increasing instances, there
is almost no change in aggregate and average bandwidth in
most cases. For gVisor with host networking, the aggregate
increases with more instances, but peaks below the other
platforms at 10 instances.

We measured the round-trip time (RTT) by running ping
for ten seconds and taking the average RTT shown in Table 3.
Firecracker incursmaximum latency followed by gVisor, LXC
and host. In case of Firecracker, a packet traverses through
two levels of kernel network stack, that explains its high
latency. gVisor does not go through all the layers of host
network making its latency slightly better than Firecracker,
but still far from host or LXC.

5.4 Insights
For the network workload we observe that Firecracker has
most of the implementation inside the guest and uses less func-
tionality of the host compared to gVisor and LXC. It also shows
high performance. Even though gVisor has its own network-
ing stack, it touches a lot of kernel code. LXC uses much of
3We get similar result on Google Cloud Platform (GCP).

VEE ’20, March 17, 2020, Lausanne, Switzerland Anjali, Tyler Caraza-Harter, Michael M. Swift, Anjali, Tyler Caraza-Harter, and Michael M. Swift

7280 2453
2280

3378

5777 30200

41237

Firecracker LXC

gVisor

(a) Network workload overall

2449 808
1923

1003

357 10047

7627

Firecracker LXC

gVisor

(b) /net

0 14
0

0

0 1426

25

Firecracker LXC

gVisor

(c) /net/bridge

239 156
136

69

127 2231

2224

Firecracker LXC

gVisor

(d) /net/core

Figure 6. Network Workload Coverage

1823bool is_skb_forwardable(const struct net_device ∗dev,
const struct sk_buff ∗skb){

1824unsigned int len;
1825if (!(dev−>flags & IFF_UP))
1826return false;
1827len = dev−>mtu + dev−>hard_header_len +

VLAN_HLEN;
1828if (skb−>len <= len)
1829return true;
1830if (skb_is_gso(skb))
1831return true;
1832return false;
1833}

(a) net/core/dev.c

Hits
Lines LXC gVisor Firecracker
1823 1.012e+8 1.805e+6 0
1825 2.111e+8 5.099e+6 0
1827 2.111e+8 5.099e+6 0
1828 2.111e+8 5.099e+6 0
1830 8.270e+6 9.974e+5 0

(b) Number of hits in net/core/dev.c

Figure 7. Hits in net/core/dev.c

2 4 6 8 10

No. of instances

2.5

5.0

7.5

10.0

A
g
g
r.

 b
a
n
d
w

id
th

 (
G

b
p
s
)

host

Firecracker

LXC

gVisor

gVisor+host

Figure 8. Aggregate Network Bandwidth

06/12/2019 host_net.svg

file:///Users/shally/Downloads/profiling/host_net.svg 1/1

Flame GraphReset Zoom

new_sync_write

i..

all

__GI___libc_write

vfs_write

_..
copy_user_enhanced_fast_string

tcp_write_xmit

sk_

iperf3

nf_..

entry_SYSCALL_64_after_hwframe

_..

__tcp_tran..
r..

ipv4..

t..
skb

sock_write_iter

release_sock

sock_sendmsg

[unknown]

t..

__ip_loca..
ip_local_out

tcp_tsq_handle..
_copy_from_iter_full_..

__vfs_write

inet_sendmsg

ip_queue_..

tcp_sendmsg_locked

t..

tcp_sendmsg

sys_write

nf_hoo..

tcp_release_cb

do_syscall_64

Figure 9. Host network profile

06/12/2019 fc_net.svg

file:///Users/shally/Downloads/profiling/fc_net.svg 1/1

Flame GraphReset Zoom

alloc_skb_with_frags
copy_user_enhanced_fast_string

netif_receive_skb_internal

ip..

ip_forward_finish

entry_SYSCALL_64_after_hwframe

i..

__syscall

nf..neigh_..

skb_copy_datagram_from_iter

n..
s..

tun_get_user

get_page_from_f

ip_forward

copy_page_from_iter

n..

nf..

__alloc_pages_nodem

_..

ip_rcv

all

__netif_receive_skb

nf..

__dev..

alloc_pages_current

fc_vmm

ip_output

d..

sock_alloc_send_pskb

vfs_write

do_syscall_64

dev_q..

ip_finish_output

nf_h..

ip_finish_outp..

ip_rcv_finish

sys_write

netif_receive_skb

__vfs_write

ip..

ipv..

de..
sch..

new_sync_write
tun_chr_write_iter

__netif_receive_skb_core

Figure 10. Firecracker network profile

the same code as the host, but adds substantially to it for
bridging, which comes at little performance cost.

Although LXC has high performance, it relies completely
on the kernel for all the packet processing and sanity checks,
which lowers its isolation. gVisor does most of the process-
ing inside netstack, but some checks are still performed at
the host, which provides more isolation. Firecracker has al-
most all the processing inside the guest, which makes its
networking stack relatively more isolated.

Blending Containers and Virtual Machines:
A Study of Firecracker and gVisor VEE ’20, March 17, 2020, Lausanne, Switzerland

06/12/2019 runc_net.svg

file:///Users/shally/Downloads/profiling/runc_net.svg 1/1

Flame GraphReset Zoom

get..

nf_hook_..

ip_queue_xmit

n..

t..

tcp_xm..

i..

i..

__netif_..

__softirq..

i..

rele..

do_syscall_64

__tcp..

irq_exit

__vfs_write

__..
i..

tcp_ret..

nf_ho..

tcp_xm..

__tcp..

br_handl..

ip_..

br_nf_pr..

ip..

process_..

__tcp_push_pe..

entry_SYSCALL_64_after_hwframe

br_nf_p..

do_IRQ

i..

alloc_pa..

ip_rcv

__sk_flush_backlog

tcp_sendmsg

netif_rec..

__softirq..

tcp_sendmsg_locked
sk_page_f..

ip_finish_o..

ret_from_..

n..

n..

ip_rcv..

ip..

_..

sys_write

ip_..

ip_local_out

do_softir..

net..

tcp_ack

ip_finish_ou..

br_nf_h..

__release_sock

do_softir..

na..

iperf3

br_hand..

__allo..

tcp_write_xmit

tcp_v4_do_rcv

__GI___libc_write

net_rx_..

s

br_netif..

tcp..

net_rx_ac..

sock_sendmsg
sock_write_iter

tcp_xm..

__netif_r..

i..

ip_sa..

tcp..
tcp_rcv_established

i..

i..

__netif_r..

tc..

_copy_from_iter_full

__net..

ip_f..

new_sync_write

i..

all

vfs_write

skb_page..

__local_..

mlx..

br_pass..

mlx..
__tcp_transm..

i..

_

_.. i..
ip..

ip_output

ip..

copy_user_enhanced_fast_string

inet_sendmsg

ip_..

__re..

t..

_..

netif_rec..

ml..
i..

[unknown]

ip..

Figure 11. LXC network profile
12/02/2020 runsc_net_new.svg

file:///Users/shally/Documents/runsc_net_new.svg 1/1

Flame GraphReset Zoom

ip_rcv

[runsc]

n..

nf_hook_slow

__local_bh_enable_ip copy_user_enhanced_fast_string

entry_SYSCALL_64_after_hwframe

netif_receive_skb

dev_queue_xmit

n..

[runsc]

skb_copy_datagram_from_iter

nf..

[runsc]

alloc_skb_with_

br_pass_frame_up

[runsc]

[runsc]

do_syscall_64

__softirqentry_text_start
net_rx_action

[runsc]

br_netif_receive_skb

ipt..

[runsc]

vfs_writev

copy_page_from_iter

br_handle_frame

packet_sendmsg

_..

nf_..

sock_sendmsg

[runsc]

mlx5..

nf_con..

ip..

va..

br_nf_hook_thresh
br_nf_pre_routing_finish

netif_receive_skb_internal

do_writev

[runsc]

all

[runsc]

do_softirq_own_stack

dev..

dev_ha..

get_

sock_alloc_send

nf_hook_..

ip_finish_output

__netif_receive_skb_core

ve..

do_iter_write

do_softirq.part.17

[runsc]

i..

ip..

[runsc]

[runsc]

sys_writev

__dev_queue..

ip_rcv_finish

alloc_pag

ipv4_c..

ip_finish_output2

sock_write_iter

[runsc]

ip_sabotage_in

i..

do_iter_readv_writev

process_backlog

[runsc]

dev_queue_xmit

[runsc]

f..
ip_forward_finish

n..

__netif_receive_skb

[runsc]

ip_output

ip_forward

__netif_receive_skb

[runsc]

exe

__dev_queue_xmit

[runsc]

__netif_receive_skb_core

[runsc]

sch_direct..

[runsc]

[runsc]

br_handle_frame_finish

[runsc]

[runsc]

[runsc]

nf_hook_slow

d..
__alloc_

br_nf_pre_routing

Figure 12. gVisor network profile

6 Memory management
6.1 Coverage Analysis
We show the overall kernel coverage in Figure 13a for a work-
load that mmaps and munmaps regions. The /mm directory
in 13b shows 1,743 lines of common code between LXC and
gVisor. Memory management in gVisor [8] has two levels of
virtual to physical page mapping, one from application to
Sentry and the other from Sentry to host. Sentry requests
memory from host in 16MB chunks to minimize the number
of mmap() calls. For a 1GB memory request by an applica-
tion, Sentry will make 64 mmap() calls to the host. Although
gVisor reduces the number of such calls, it still executes the
same lines of code as LXC for any memory request. Thus,
we observe both having similar coverage in this directory.
Firecracker has lower coverage here with only 54 unique
lines of code. It does not make any mmap() calls to the host

after the first initialization needed to run the microVM and
has only 54 unique lines of code.
Figure 13c shows the architecture specific memory man-

agement code with Firecracker having 211 unique lines of
code. LXC and gVisor have similar footprints in this direc-
tory. Although gVisor implements memory management in
the Sentry, it still depends on the host for this functionality
like LXC, whereas Firecracker implements the whole mem-
ory stack inside the guest and does not use this after running
some initial architecture specific setup code.

6.2 Code Differences
Several kernel functions show significant differences in in-
vocation frequency. The do_mmap() function inmm/mmap.c
for the memory workload is called more than 1 million times
by LXC, but only 5,382 times from gVisor, due to the two-level
page table implemented in Sentry that reduces the number
of syscalls to the host. Firecracker invokes this function only
3,741 times, as it is only used by the VMM for physical page
management and not in response to guest mmap() calls.
zap_page_range_single() defined in mm/memory.c which

removes user pages in a given range is executed 459,984
times in gVisor and 0 times in Firecracker and LXC. This
is likely due to the memory management implementation
inside the Sentry process.
The vma_wants_writenotify() in /mm/mmap.c checks for

write events in pages marked read-only. This function gets
called in all the three platforms, but only Firecracker and
gVisor execute the conditional code inside it.

6.3 Performance
We benchmark memory allocation cost by allocating and
freeing memory with mmap() and munmap() system calls.
The benchmark allocates 1 GB of memory using mmap()
calls with varying granularity from 4KB to 1MB, so with
larger requests there are far fewer allocations. After each
call, the test program touches one word of each allocated
page by writing to it. We also run the same experiment with
calling munmap() after touching the pages of each allocation
so physical memory and virtual addresses can be recycled.

In Figures 14 and 15, we present the time taken for mmap()
and touch respectively. In this case we do not unmap pages
after each allocation. In Figure 16, time includes mmap() and
munmap(), and the touch time is presented separately in
Figure 17.

For both the cases, gVisor is expensive, taking the highest
time for allocation, allocation+munmap, and touch. However,
we observe that it becomes competitive with the increase in
mmap size. We suspect this is due to the two levels of page
mapping, from application to Sentry and then to the host
which needs management of more code and data structures
contributing to this overhead. Firecracker and LXC perform
similarly to the host in most of the cases, but becomes more

VEE ’20, March 17, 2020, Lausanne, Switzerland Anjali, Tyler Caraza-Harter, Michael M. Swift, Anjali, Tyler Caraza-Harter, and Michael M. Swift

8830 2562
977

2280

6039 31215

37243

Firecracker LXC

gVisor

(a) Memory workload overall

54 130
43

305

313 1743

5125

Firecracker LXC

gVisor

(b) /mm

211 0
0

3

61 105

468

Firecracker LXC

gVisor

(c) /arch/x86/mm

Figure 13.Memory workload coverage

4KB 8KB 16KB 64KB 256KB 1MB

mmap size

0

250

500

750

1000

T
im

e
(m

s
)

host

Firecracker

LXC gVisor

Figure 14. Total allocation time (without munmap) for 1GB

4KB 8KB 16KB 64KB 256KB 1MB

mmap size

0

200

400

600

T
im

e
(m

s
)

host

Firecracker

LXC gVisor

Figure 15. Total touch time (without munmap) for 1GB

expensive if we unmap, likely due to higher costs of shoot-
downs on virtualized platforms.

6.4 Insights
The large difference in invocation frequency for gVisor occurs
because it has moved some of the memory management
inside Sentry. This design makes it very expensive for work-
loads that do allocation in smaller chunks sizes. Firecracker
does not use any of the host functionality after initializing
the microVM, making the memory stack fully isolated with
high performance in most cases. But system virtualization
becomes slower when we start unmapping and re-mapping,
so for workloads that do a lot of mmap() and munmap(), this

4KB 8KB 16KB 64KB 256KB 1MB

mmap size

0

2000

4000

6000

T
im

e
(m

s
)

host

Firecracker

LXC gVisor

Figure 16. Total allocation+unmap time for 1GB

4KB 8KB 16KB 64KB 256KB 1MB

mmap size

0

500

1000

T
im

e
(m

s
)

host

Firecracker

LXC gVisor

Figure 17. Total touch time (with munmap) for 1GB

might come with an overhead. LXC heavily uses the kernel
code with very high hit rates, which makes it less isolated.
But it has high performance, better than Firecracker in some
cases.

7 File access
7.1 Coverage Analysis
Wemeasure coverage with a workload that opens, reads, and
writes to files. Figure 18a shows the overall kernel footprints
and Figure 18b shows the footprints in the /fs directory,
which includes VFS code as well as the implementations
for various file systems. We observe that most lines (about

Blending Containers and Virtual Machines:
A Study of Firecracker and gVisor VEE ’20, March 17, 2020, Lausanne, Switzerland

8826 2041
758

3511

6829 22371

46658

Firecracker LXC

gVisor

(a) File write workload overall

486 579
49

555

568 6349

12491

Firecracker LXC

gVisor

(b) /fs

66 194
0

10

368 667

3339

Firecracker LXC

gVisor

(c) /fs/ext4

0 18
0

0

0 1703

0

Firecracker LXC

gVisor

(d) fs/overlayfs

Figure 18. File write workload coverage

4KB 16KB 64KB 256KB 1MB

Write size

0

250

500

750

1000

W
ri

te
 t

h
ro

u
g
h
p
u
t(

M
B

/s
e
c
)

host

Firecracker

Firecracker+reboot

LXC

gVisor

Figure 19.Write Throughput

4KB 16KB 64KB 256KB 1MB

Read size

0

2000

4000

6000

R
e
a
d
 t

h
ro

u
g
h
p
u
t(

M
B

/s
e
c
)

host

Firecracker(fc+host)

Firecracker+host

Firecracker

LXC

gVisor

Figure 20. Read Throughput

18k) are shared between gVisor and LXC; Firecracker uses
about half of these lines as well.
In our experiments, all three systems use the ext4 file

system. Figure 18c shows that gVisor and LXC exercise more
ext4 code than Firecracker. Storage in Firecracker is provided
by an emulated block device, which is backed by a file on
the host, so there are no directory operations.
gVisor and LXC containers do not directly access ext4

files; rather, they interact with overlayfs, which provides
copy-on-write and stitches together a single file-system view
from multiple ext4 directories. Figure 18d show that LXC
and gVisor have a similar overlayfs footprint, and that (as
expected) Firecracker makes no use of overlayfs.

7.2 Performance
We measure I/O throughput with a microbenchmark that
performs reads and writes of various sizes on a 1 GB file. For
writes, the test creates the file and then writes sequentially.
After each iteration, the file is flushed to disk; the cache is
cleared between each read test.

For the write throughput shown in Figure 19, we run two
variations for Firecracker. In the first case, we run the test
repeatedly on the same microVM. In the second case, we
reboot the microVM before each test. This causes Firecracker
to close and reopen the backing file for its block device,
which may account for the lower performance following a
reboot. Nonetheless, in both cases Firecracker is much faster
than the other platforms because it makes no effort to write
data back to persistent storage. As a result, it operates much
closer to the speed of memory. In contrast, gVisor and LXC
perform very similarly to native Linux; gVisor is a bit slower
for small files where the overhead of calling through the
Sentry is not masked by data movement costs.

Read throughout is shown in Figure 20. Host, LXC, gVisor
all perform similar across all read sizes, as they all must
read from storage. For Firecracker we run three variations:
plain Firecracker flushes the file cache in the microVM only;
Firecracker+host, flushes the cache only in host Linux and
not the microVM, and Firecracker(fc+host) flushes caches
in both locations. When all caches are flushed, Firecracker
behaves similarly to the other platforms, as it must fetch
data from storage. When only the cache in the microVM
is flushed, performance is closer to memory speed, but still
pays the cost of exiting the VM to copy data from the cache in
the host kernel. Finally, when just the host cache is flushed,
performance is near memory speed: the data can still be
accessed from the guest OS cache. Overall, a warm cache
within the microVM results in nearly double the throughput
as a warm cache in the host.

VEE ’20, March 17, 2020, Lausanne, Switzerland Anjali, Tyler Caraza-Harter, Michael M. Swift, Anjali, Tyler Caraza-Harter, and Michael M. Swift

7.3 Insights
Firecracker only uses ext4 as a backing for a virtual disk;
this results in only a moderate footprint since this use case
only involves file-system data, not metadata. In contrast,
gVisor and LXC use overlayfs over ext4; this results in increased
footprint for overlayfs, as well as more ext4 code being exercised
(overlay file systems heavily use metadata in the underlying
file system).

8 Summary
Outcomes The preceding sections analyzed how LXC, Fire-
cracker, and gVisor make different use of kernel functionality,
and how they exercise different kernel code. Our analysis
demonstrated several aspects of these isolation platforms.
First, using Linux containers, while highly performant,

greatly increases the amount of kernel code exercised. In
some cases, this was new functionality that greatly length-
ened code paths, such as networking where bridging ex-
panded the amount of code needed for transmitting data.
However, in many cases the new code was not an entire
module, but instead was conditional code interspersed with
code run by native Linux. In such cases, existing functions
execute more slowly due to the added code.

Second, Firecracker’s microVMs are effective at reducing
the frequency of kernel code invocations, but had a much
smaller impact on reducing the footprint of kernel code. In-
deed, running workloads under Firecracker often expanded
the amount of kernel code executed with support for vir-
tualization. In addition, Firecracker’s use of more limited
functionality, such as memory mapping only at startup, file
I/O for data but not directories, and networking at the IP
level, show that future kernel releases targeting microVMs
could aggressively optimize specific hot code paths at the ex-
pense of sacrificing performance of more general workloads
needed by a general purpose OS.
Finally, we found that the gVisor design leads to much

duplicated functionality: while gVisor handles the majority
of system calls in its user-space Sentry, it still depends on
the same kernel functionality as Linux containers. Thus, its
design is inherently more complicated, as it depends on mul-
tiple independent implementations of similar functionality.
In contrast, LXC relies on a single implementation of OS
functions in the Linux kernel, and Firecracker relies on a
much-reduced set of kernel functionality for performance.
We believe our findings serve as an architectural guide

for building future systems and also be a motivation for
future research concerning the coverage and security of new
isolation platforms.

Limitations Our methodology is a middle ground be-
tween full-system profiling and foreground-only profiling,
and may err by capturing a bit of background activity, even
though the goal is capturing all kernel activity induced from
the isolation platform. Furthermore, while we focus on code

coverage, studying coverage with microbenchmarks only
provides a hint as to the security of a system; more investiga-
tion of coverage under richer workloads, including exploring
the total coverage available from a platform, may be needed
to make stronger security claims.
The microbenchmarks we use for the study allow us to

stress particular subsystems and study their performance
and coverage. While running more complex workloads or
test suites would provide more information about total code
coverage, their complexity could obscure significant differ-
ences in usage of different subsystems. Moreover, running
existing containerized benchmarks is a challenge because
Firecracker is not yet integrated with Docker.

9 Related Work
In this work, we explore the host kernel footprint and perfor-
mance of Firecracker [4] and gVisor [7]. These are both KVM-
based sandboxes attempting to compete on performance
with traditional LXC containers [18], on which Docker is
built. New sandboxing systems with similar goals include
Kata Containers [29] (which attempt to provide “The speed
of containers, the security of VMs”), Nabla containers [24],
and LightVM, built by Manco et al. [31]. Manco et al. argue
that traditional containers are insecure because malicious
code has access to a large attack surface (all Linux system
calls); many of the new systems are structured much like
Drawbridge [33], in an attempt to narrow this interface. Nar-
rowed interfaces are then typically protected with stricter
seccomp [12] filters. Our methodology is not specific to gVi-
sor and Firecracker; it could be applied to these other isola-
tion platforms as well.

Both gVisor and Firecracker restrict the set of system calls
available to improve security and isolation. Narrowing the
interface of a platform will not necessarily improve security,
unless it reduces the footprint of host code likely to contain
vulnerabilities, so we have focused on understanding the
kernel footprint underneath each virtualization system. Bot-
tomley [24] takes a similar view and measures the footprint
of various sandboxes at function granularity; we explore
footprint at line and branch granularity, using lcov [11]. gVi-
sor implements the network stack in the Sentry; while the
work of Williams et al. [25] shows that moving subsystems
out of the host kernel can significantly reduce kernel foot-
print, our work shows gVisor and LXC have a surprisingly
large coverage overlap in /net.

In addition to measuring code footprint, we also evaluate
performance, building on prior virtualization performance
analysis studies [22, 27, 30, 36–38]. Our work differs from
past studies in that it focuses on the performance impact of
architectural choices and identifies the kernel code differ-
ences that play a role in performance.

Blending Containers and Virtual Machines:
A Study of Firecracker and gVisor VEE ’20, March 17, 2020, Lausanne, Switzerland

10 Conclusion
In this paper, we presented a system-wide Linux code-coverage
analysis for three isolation platforms. This enables us to
study the impact of different isolation architectures that
move more and more code out of the kernel. We also ran
performance benchmarks to understand the runtime cost
of each platform. Our results show that despite adding sub-
stantial code outside the kernel for OS functionality, both
gVisor and Firecracker sill exercise more kernel code for
most workloads.

11 Acknowledgments
We would like to thank our shepherd, Tim Harris, and the
reviewers for their feedback. This work was supported by
the National Science Foundation grant CNS-1763810.

References
[1] 2019. CHAPTER 1. INTRODUCTION TO LINUX CON-

TAINERS. https://access.redhat.com/documentation/en-
us/red_hat_enterprise_linux_atomic_host/7/html/overview_of_
containers_in_red_hat_systems/introduction_to_linux_containers.

[2] 2019. Cloudlab. https://www.cloudlab.us/.
[3] 2019. Docker seccomp. https://docs.docker.com/engine/security/

seccomp/.
[4] 2019. Firecracker documentation. https://github.com/firecracker-

microvm/firecracker/tree/master/docs.
[5] 2019. Firecracker Getting started. https://github.com/firecracker-

microvm/firecracker/blob/master/docs/getting-started.md.
[6] 2019. Firecracker seccomp. https://github.com/firecracker-microvm/

firecracker/tree/master/src/vmm/src/default_syscalls.
[7] 2019. gVisor Documentation. https://gvisor.dev/docs/.
[8] 2019. gVisor mm. https://github.com/google/gvisor/tree/master/pkg/

sentry/mm.
[9] 2019. iperf3. https://github.com/esnet/iperf.
[10] 2019. KVM. https://wiki.archlinux.org/index.php/KVM.
[11] 2019. lcov. http://ltp.sourceforge.net/coverage/lcov.php.
[12] 2019. Linux seccomp. http://man7.org/linux/man-pages/man2/

seccomp.2.html.
[13] 2019. QEMU. https://wiki.archlinux.org/index.php/QEMU.
[14] 2019. sysbench. https://github.com/akopytov/sysbench.
[15] 2020. Docker frequently asked questions (FAQ). https://docs.docker.

com/engine/faq/.
[16] 2020. firecracker-containerd. https://github.com/firecracker-microvm/

firecracker-containerd.
[17] 2020. gVisor Platforms. https://gvisor.dev/docs/user_guide/platforms/.
[18] 2020. Linux containers. https://linuxcontainers.org/lxc/introduction/.
[19] 2020. LXC. https://en.wikipedia.org/wiki/LXC.
[20] 2020. Open Container Initiative. https://www.opencontainers.org/.
[21] 2020. Performance Guide. https://gvisor.dev/docs/architecture_guide/

performance/.
[22] Marcelo Amaral, Jorda Polo, David Carrera, Iqbal Mohomed, Merve

Unuvar, and Malgorzata Steinder. 2015. Performance Evaluation of
Microservices Architectures Using Containers. In 2015 IEEE 14th Inter-
national Symposium on Network Computing and Applications. Boston,
MA, 27–34.

[23] Antoine Beaupré. 2018. Updates in container isolation. https://lwn.
net/Articles/754433/.

[24] James Bottomley. 2018. Measuring the Horizontal Attack Profile of
Nabla Containers. https://blog.hansenpartnership.com/measuring-
the-horizontal-attack-profile-of-nabla-containers/.

[25] DanWilliams and Ricardo Koller and Brandon Lum. 2018. Say Goodbye
to Virtualization for a Safer Cloud. In 10th USENIX Workshop on Hot
Topics in Cloud Computing (HotCloud 18). USENIX Association, Boston,
MA. https://www.usenix.org/conference/hotcloud18/presentation/
williams

[26] Azhar Desai. 2019. The Firecracker virtual machine monitor. https:
//lwn.net/Articles/775736/.

[27] Wes Felter, Alexandre Ferreira, Ram Rajamony, and Juan Rubio. 2015.
An Updated Performance Comparison of Virtual Machines and Linux
Containers. 2015 IEEE International Symposium on Performance Analy-
sis of Systems and Software (ISPASS) (2015).

[28] Brendan Gregg. 2019. Flame Graphs. http://www.brendangregg.com/
flamegraphs.html.

[29] kata 2018. Kata Design Document Github. https://github.com/kata-
containers/documentation.

[30] Zhanibek Kozhirbayev and Richard O. Sinnott. 2017. A Performance
Comparison of Container-based Technologies for the Cloud. http://
www.sciencedirect.com/science/article/pii/S0167739X16303041. Future
Generation Computer Systems 68 (2017).

[31] Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon
Kuenzer, Sumit Sati, Kenichi Yasukata, Costin Raiciu, and Felipe
Huici. 2017. My VM is Lighter (and Safer) than your Container.
http://dl.acm.org/citation.cfm?doid=3132747.3132763. Proceedings of
the 26th Symposium on Operating Systems Principles (2017).

[32] Janakiram MSV. 2018. How Firecracker Is Going to Set Modern Infras-
tructure on Fire. https://thenewstack.io/how-firecracker-is-going-to-
set-modern-infrastructure-on-fire/.

[33] Don E. Porter, Silas Boyd-Wickizer, Jon Howell, Reuben Olinsky, and
Galen C. Hunt. 2011. Rethinking the Library OS from the Top Down.
16th International Conference on Architectural Support for Programming
Languages and Operating Systems (2011).

[34] Jeremiah Spradlin and Zach Koopmans. 2019. gVisor Security Basics -
Part 1. https://gvisor.dev/blog/2019/11/18/gvisor-security-basics-part-
1/.

[35] Venkatanathan Varadarajan, Thawan Kooburat, Benjamin Farley,
Thomas Ristenpart, and Michael M. Swift. 2012. Resource-freeing At-
tacks: Improve Your Cloud Performance (at Your Neighbor’s Expense).
In Proceedings of the 2012 ACM Conference on Computer and Communi-
cations Security (Raleigh, North Carolina, USA) (CCS ’12). ACM, New
York, NY, USA, 281–292. https://doi.org/10.1145/2382196.2382228

[36] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and
Michael Swift. 2018. Peeking Behind the Curtains of Serverless Plat-
forms. In Proceedings of the 2018 USENIX Conference on Usenix Annual
Technical Conference (Boston, MA, USA) (USENIX ATC ’18). USENIX
Association, Berkeley, CA, USA, 133–145. http://dl.acm.org/citation.
cfm?id=3277355.3277369

[37] Xu Wang. 2018. Kata Containers and gVisor: a Quantitative Com-
parison. https://www.openstack.org/summit/berlin-2018/summit-
schedule/events/22097/kata-containers-and-gvisor-a-quantitative-
comparison.

[38] Ethan G. Young, Pengfei Zhu, Tyler Caraza-Harter, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. 2019. The True Cost of
Containing: A gVisor Case Study. In Proceedings of the 11th USENIX
Conference on Hot Topics in Cloud Computing (Renton, WA, USA) (Hot-
Cloud’19). USENIX Association, Berkeley, CA, USA, 16–16. http:
//dl.acm.org/citation.cfm?id=3357034.3357054

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/overview_of_containers_in_red_hat_systems/introduction_to_linux_containers
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/overview_of_containers_in_red_hat_systems/introduction_to_linux_containers
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/overview_of_containers_in_red_hat_systems/introduction_to_linux_containers
https://www.cloudlab.us/
https://docs.docker.com/engine/security/seccomp/
https://docs.docker.com/engine/security/seccomp/
https://github.com/firecracker-microvm/firecracker/tree/master/docs
https://github.com/firecracker-microvm/firecracker/tree/master/docs
https://github.com/firecracker-microvm/firecracker/blob/master/docs/getting-started.md
https://github.com/firecracker-microvm/firecracker/blob/master/docs/getting-started.md
https://github.com/firecracker-microvm/firecracker/tree/master/src/vmm/src/default_syscalls
https://github.com/firecracker-microvm/firecracker/tree/master/src/vmm/src/default_syscalls
https://gvisor.dev/docs/
https://github.com/google/gvisor/tree/master/pkg/sentry/mm
https://github.com/google/gvisor/tree/master/pkg/sentry/mm
https://github.com/esnet/iperf
https://wiki.archlinux.org/index.php/KVM
http://ltp.sourceforge.net/coverage/lcov.php
http://man7.org/linux/man-pages/man2/seccomp.2.html
http://man7.org/linux/man-pages/man2/seccomp.2.html
https://wiki.archlinux.org/index.php/QEMU
https://github.com/akopytov/sysbench
https://docs.docker.com/engine/faq/
https://docs.docker.com/engine/faq/
https://github.com/firecracker-microvm/firecracker-containerd
https://github.com/firecracker-microvm/firecracker-containerd
https://gvisor.dev/docs/user_guide/platforms/
https://linuxcontainers.org/lxc/introduction/
https://en.wikipedia.org/wiki/LXC
https://www.opencontainers.org/
https://gvisor.dev/docs/architecture_guide/performance/
https://gvisor.dev/docs/architecture_guide/performance/
https://lwn.net/Articles/754433/
https://lwn.net/Articles/754433/
https://blog.hansenpartnership.com/measuring-the-horizontal-attack-profile-of-nabla-containers/
https://blog.hansenpartnership.com/measuring-the-horizontal-attack-profile-of-nabla-containers/
https://www.usenix.org/conference/hotcloud18/presentation/williams
https://www.usenix.org/conference/hotcloud18/presentation/williams
https://lwn.net/Articles/775736/
https://lwn.net/Articles/775736/
http://www.brendangregg.com/flamegraphs.html
http://www.brendangregg.com/flamegraphs.html
https://github.com/kata-containers/documentation
https://github.com/kata-containers/documentation
http://www.sciencedirect.com/science/article/pii/S0167739X16303041
http://www.sciencedirect.com/science/article/pii/S0167739X16303041
http://dl.acm.org/citation.cfm?doid=3132747.3132763
https://thenewstack.io/how-firecracker-is-going-to-set-modern-infrastructure-on-fire/
https://thenewstack.io/how-firecracker-is-going-to-set-modern-infrastructure-on-fire/
https://gvisor.dev/blog/2019/11/18/gvisor-security-basics-part-1/
https://gvisor.dev/blog/2019/11/18/gvisor-security-basics-part-1/
https://doi.org/10.1145/2382196.2382228
http://dl.acm.org/citation.cfm?id=3277355.3277369
http://dl.acm.org/citation.cfm?id=3277355.3277369
https://www.openstack.org/summit/berlin-2018/summit-schedule/events/22097/kata-containers-and-gvisor-a-quantitative-comparison
https://www.openstack.org/summit/berlin-2018/summit-schedule/events/22097/kata-containers-and-gvisor-a-quantitative-comparison
https://www.openstack.org/summit/berlin-2018/summit-schedule/events/22097/kata-containers-and-gvisor-a-quantitative-comparison
http://dl.acm.org/citation.cfm?id=3357034.3357054
http://dl.acm.org/citation.cfm?id=3357034.3357054

	Abstract
	1 Introduction
	2 Isolation Platforms
	2.1 Linux Containers (LXC)
	2.2 KVM/QEMU
	2.3 gVisor
	2.4 Firecracker

	3 Isolation Platform Comparison
	3.1 Methodology
	3.2 Security Policies
	3.3 Total Code Footprint

	4 CPU Workload
	4.1 Coverage Analysis
	4.2 Performance
	4.3 Insights

	5 Networking
	5.1 Coverage Analysis
	5.2 Code Differences
	5.3 Performance
	5.4 Insights

	6 Memory management
	6.1 Coverage Analysis
	6.2 Code Differences
	6.3 Performance
	6.4 Insights

	7 File access
	7.1 Coverage Analysis
	7.2 Performance
	7.3 Insights

	8 Summary
	9 Related Work
	10 Conclusion
	11 Acknowledgments
	References

