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Abstract—Nowadays, scientific  simulations on  high-
performance computing (HPC) systems can generate large
amounts of data (in the scale of terabytes or petabytes) per run.
When this huge amount of HPC data is processed by machine
learning applications, the training overhead will be significant.
Typically, the training process for a neural network can take
several hours to complete, if not longer. When machine learning
is applied to HPC scientific data, the training time can take
several days or even weeks. Transfer learning, an optimization
usually used to save training time or achieve better performance,
has potential for reducing this large training overhead. In this
paper, we apply transfer learning to a machine learning HPC
application. We find that transfer learning can reduce training
time without, in most cases, significantly increasing the error.
This indicates transfer learning can be very useful for working
with HPC datasets in machine learning applications.

Index Terms—HPC data, machine learning, transfer learning

I. INTRODUCTION

The training process is an essential step in the machine
learning process. In order to make a system learn specific
features or patterns, a large training dataset is usually required
for training. In addition, in order to achieve high predic-
tion accuracies when testing, training datasets are generally
updated through multiple training epochs. Having a large
training dataset and many training iterations, however, can
put significant pressure on a system’s computational resource.
As a result, it is not uncommon for the training process of a
machine learning task to take hours or even days [1]-[3], if
not longer. To resolve this issue, there has been much research
into various methods of accelerating the training process [4],
[5]. While these approaches may reduce the training time by
certain amounts, they are not enough when machine learning
is applied to the HPC scientific applications because of the
huge amount of data generated through the simulation.

HPC scientific simulations are extremely important, as they
allow domain scientists to verify theories and investigate new
phenomena on an unprecedented scale [21]. Output from such
simulations, however, can frequently reach into the terabytes
or even petabytes per run, as HPC simulations record large
amounts of data in multiple dimensions (such as spatial and
temporal) [6], [7]. When the generated data is analyzed, the
huge amount of data processing is likely to be a challenge,
especially in machine learning applications. According to the
HPC data compression application used in this work, a training

process for a binary file of only several megabytes could take
hours.

Transfer learning, a machine learning technique, takes a
model developed for one task and reuses it as the starting point
of a model for a second task [20]. Such an approach aims to
reduce the training overhead by reducing the amount of data
required for effective training. Transfer learning is commonly
used in deep learning applications wherein pre-trained models
are used as the staring point of computer vision [8], [9] and
natural language processing [10], [11] tasks, as these problems
all require vast computational resources and lengthy times
to develop neural network models [20]. These are the same
challenges experienced in HPC scientific machine learning
applications, so transfer learning may also be useful for
reducing the lengthy training times for HPC systems. In this
paper, we apply transfer learning to a compression autoencoder
for lossy data compression as a case study and evaluate its
performance with real-world HPC scientific datasets. We find
that implementing transfer learning can dramatically reduce
the training time without, in most cases, netagively impacting
performance. For datasets in the same domain, it is very
common to see roughly equal, if not improved, performance
when using transfer learning, while for cross-domain datasets,
we see such results in at least some of the cases.

II. BACKGROUND
A. Transfer Learning

Traditionally, machine learning algorithms [12]-[14] make
predictions on future data by utilizing models trained on
previously collected data. In order to have an accurate predic-
tor, it is important for a model to be well-trained. However,
there exist several issues relating to the training step. These
problems include not having enough labelled data for training
or having very high training overhead. In order to alleviate
these problems, semi-supervised classification [15]-[18] has
been proposed. This technique that makes use of a large
amount of unlabelled data and a small amount of labelled data
for training. Nevertheless, most of these work will assume that
the distributions of the labelled and unlabelled data are the
same. In contrast, transfer learning, allows the domains, tasks,
and distributions used in training and testing to be different,
which makes some impossible training process practical.

In general, transfer learning aims to extract knowledge from
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Fig. 1: The seven-layer compression autoencoder prototype.

one or more source tasks and apply it to a target task, which
is usually in a different domain than the source tasks. As a
formal definition [19], assume that we have a source domain
Dy, a learning task 75, a target domain D, and learning task
T;. By implementing transfer learning, we aim to improve the
learning of the target predictive function f;(-) in D; using the
knowledge in D and T where D, # D, or Ty # Ty.

In the above definition, the condition Dy # D; implies that
either the training data domains or the data distributions of
the source and target should be different. Similarly, Ts # T;
implies that either the testing datasets or the prediction func-
tions of the source and target should differ. It should be noted
that when Dy = D; and Ty = T; (meaning the domains and
learning tasks of the source and target domains are the same),
the learning problem becomes a traditional machine learning
problem.

B. HPC lossy data compression with compression autoen-
coder

In this paper, we use an HPC lossy compressor application
as a case study for transfer learning with HPC data. This
application uses a compression autoencoder (CAE) to conduct
dimensional reduction and thus achieve data compression.

The autoencoder compression prototype is shown in
Figure 1. The autoencoder has seven layers with three layers
L1.,L2., L3, in the encoder part, three layers L1y, L2, L34
in the decoder part, and one code layer Z. Before the input
file I (which contains the scientific data) enters the neural
network, it is divided into several batches b; € I. After the
input is divided into batches, each batch b; will contain a part
of the original scientific data and then go into the input layer
L1, for training. When a batch enters the input layer, each
element of the original scientific data becomes one neuron
in the layer. In the encoder part, the number of neurons
decreases as the layer goes from the input layer L1, to the
code layer Z. Each layer in the encoder part has a weight
matrix and bias vector that are used to accomplish dimension
reduction. After three layers of compression, the information

stored in L1, is represented in layer Z with significantly
fewer neurons. The decoder is similar to the encoder in
that each layer has a weight matrix and bias vector. The
information in the Z layer goes through the three decoder
layers and is then written to the output file. If the whole
autoencoder is regarded as a compressor, then layer L1, is
the original file, layer Z is the compressed file, layer L3, is
the decompressed file, and the encoder and decoder represent
the compression and decompression, respectively.

ITI. OBSERVATION AND EXPERIMENT SETUP

A. Training time observation

In our preliminary experiments, we find that a file
with around 400,000 double-precision floating-point numbers
(around 3.2 MB) will need approximately two hours for
training with 25,000 epochs. In order to see how training
time can increase as the size of the training dataset in-
creases, we perform experiments on a series of datasets.'
The datasets we use for testing come form open-source HPC
scientific data benchmarks, such as NEK5000 [38], MCERI
[39], GROMACS [40], and FLASH [41]. These experiments
are conducted with 2,500 epochs on a system running Ubuntu
16.04.5 LTS with an Intel(R) Xeon(R) CPU E5-2620 v4 @
2.10GHz and 32 GB of memory (clock: 2133MHz). The
results are presented in Table 1.

TABLE I: Training time for various datasets with 2,500
epochs.

Number of Approximate
Dataset Elements Tll');;ning Time
bump_training.bin 25,000 94.185 seconds
yf17_pres_training.bin 48,552 170.118 seconds
eddy_training.bin 135,000 467.876 seconds
md_training.bin 300,000 1057.617 seconds
Randomly-Generated Dataset A 500,000 1703.223 seconds
Randomly-Generated Dataset B 1,000,000 3479.543 seconds
Randomly-Generated Dataset C 5,000,000 17175.178 seconds
Randomly-Generated Dataset D 10,000,000 34684.248 seconds

As seen from the results, the training time increases as
the size of the training dataset increases in a roughly linear
fashion. In addition, as noted above, these results are for
2,500 epochs. To achieve greater accuracy, a higher number of
training epochs may be needed. During the experiments, we
find that 25,000 is a suitable number of epochs, and having ten
times the number of epochs would increase the training time
by approximately ten times. The problem of extensive training
time is further intensified by the fact that HPC datasets can be
terabytes or even petabytes in size. Training times for those
datasets would be much higher than even the training time for
Randomly-Generated Dataset D, which has 10 million data
points and yet is only around 77 MB.

'With the exception of the randomly-generated datasets, all datasets used
in this paper are provided at the link in the Section VIL.
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(d) Mean testing errors upon compressing Sedov-Pres

Fig. 2: Prelimilary series of experiments utilizing the concept of transfer learning. The x-axis indicates which dataset, if
any, was used as the original training dataset. Note that each simulation (Maclaurin-Temp, Maclaurin-Pres, Sedov-Temp, and
Sedov-Pres) has two separate datasets, one that is used for training and another that is used for testing (ie. compression).

B. Experiment setup

In order to attempt to reduce training time, we develop a
basic implementation of transfer learning in a compression
autoencoder. The purpose of training is to generate weights
and biases that can be utilized later. In the compression
autoencoder, when training occurs without transfer learning,
the weights are initially set to random values from a normal
distribution and the biases are initialized to zero. These
weights and biases are then optimized while the autoencoder
runs through consecutive epochs. Assume that we train one
dataset, dataset A, and obtain weights and biases w4 and b4.
These weights and biases are optimized for dataset A; they
can be used on any datasets similar to A, such as A', but
simply using these on a different dataset, dataset B, will not
necessarily yield acceptable results.

Now assume we want to train dataset B. Without trans-
fer learning, we would again start with randomly-initialized
weights and zero-initialized biases. We would then go through
multiple epochs, and in each epoch, we would go through
every data point in dataset B. As previously noted, this could
be very time-consuming if many epochs are needed or if

dataset B is very large—and it is very common for both these
conditions to be met. Thus, in order to reduce the time to train
dataset B, we set the initial values of wp and bp to be based
on wy and by instead of setting them to random values and
zeros, respectively. However, it is possible that the features
of dataset B could be very different from those of dataset A,
meaning that w4 and b4 may not be very applicable for dataset
B. Thus, in order to reduce the impact of dataset A on wp
and bp, we multiply the values of w4 and by by 0.7.2 This
means that wpg is initialized to w4 * 0.7 and bp is initialized
to b4 x0.7. Since the possible features of the HPC dataset are
already represented by w4 and b4, we do not need to use the
entirety of dataset B for training; instead, we can save valuable
time by only training on a portion of dataset B. As a result,
we take p data points of dataset B for training, rather than
the entire dataset. In our simple implementation, we generally
set p as 30% of the size of dataset A. (If the size of dataset
B is smaller than p, then we use the entirety of dataset B

2In this case, 0.7 serves as a starting point for our basic implementation of
transfer learning. Future work could determine what the optimal number to
multiply the weights and biases by is or how to find such a number.



for training, but this situation is relatively uncommon.) In our
experiments, we then optimize wg and bp for the first p data
points of dataset B for 2,500 epochs. Table I indicates that
smaller datasets need less time for training, and since only a
portion of dataset B (rather than the full dataset) is used for
training, we can save a significant amount of time.

IV. EVALUATION

One major question that can arise from the implementation
discussed in Section III.B is whether the resulting weights
and biases, wp and bp, are still effective or whether they
perform poorly when they are used. In order to gain insight
into whether the weights and biases are still usable (without
a significant degradation of accuracy) after this implementa-
tion, we performed a series of tests. We take four datasets
(Maclaurin-Pres, Maclaurin-Temp, Sedov-Pres, and Sedov-
Temp) and run them in the compression autoencoder. The
baseline performance is the testing error when transfer learning
is not used (ie. dataset X is trained and weights and biases w,,
and b, are generated; those weights and biases are then tested
by being used to compress dataset X'; the compression error
(ie. the testing error) is recorded); these are the leftmost bars
in each graph (in light green). For each of the four datasets,
we choose two datasets to compare it with using transfer
learning. For example, one of the datasets with Sedov-Pres is
Sedov-Temp (Figure 2d). To apply transfer learning, we train
Sedov-Temp to obtain weights and biases w, and b;. We then
multiply these weights and biases by 0.7 and optimize them
using a portion of Sedov-Pres, as explained in Section III.B.
This test is performed three times in order to ensure that the
results are not simply due to randomness. The results are in
Figure 2. Note that lower bars (ie. lower errors) signify better
performance.

From these four tests, we see that this method is promising.
For each of the four datasets in this experiment, not only is it
possible to obtain weights and biases with similar performance
to those generated without transfer learning, but it is possible
to obtain weights and biases that have better performance (ie.
lower errors) than those generated previously. (It is important
to note, however, that the performance does not improve in
all cases.)

Finding 1: Using transfer learning to train a dataset based
on previously-generated weights and biases can decrease the
training time and frequently has acceptable performance,
thus indicating that transfer learning is a promising tech-
nique to reduce the training overhead for HPC machine
learning applications.

We observe that, in these experiments, whenever Sedov-
Temp is used as the original dataset, the training error is
reduced. As a result, we conduct another series of experiments
wherein we take Sedov-Temp as the original training dataset to
generate weights and biases w,; and b,. We use these weights
and biases as the starting point for training a variety of other
datasets. We then use those weights and biases to compress

similar datasets. (For example, we may generate weights and
biases from Sedov-Temp and then use them to generate new
weights and biases, w;, and b, on a portion of Sedov-Pres.
There are two Sedov-Pres datasets, one for training and one for
testing. A portion of the training dataset is used for obtaining
wy, and by, and the testing dataset is compressed using these
weights and biases.) We compare the compression error using
this method to the error without using transfer learning. The
results, indicating the performance improvement, are shown in
Table II.

TABLE II: Transfer learning results with Sedov-Temp as the
original training dataset.

Number of Approximate Performance
Dataset Elements Improvement When
Sedov-Temp is Used
Sedov-Pres 39,072 442 9%
Maclaurin-Temp 133,376 153.3%
YF17-Temp 48,552 140.9%
S3DP 97,020 132.5%
Astro 32,768 123.2%
YF17-Pres 48,552 107.4%
Blast2 289,440 98.4%
Fish 32,768 93.2%
Eddy 135,000 84.8%
Md-Seg 300,000 76.1%
2D-Annulus 181,890 50.4%
Swept 77,180 40.7%

From this table, we can see that Sedov-Pres experiences
vastly improved performance when Sedov-Temp is used as
the original training dataset. Several other datasets also see
performance improvements, and two of them, Blast2 and
Fish, only see slight reductions in performance. Four datasets,
however, experience more significant performance reductions.

From these results, we can conclude that using transfer
learning is promising. We are able to significantly reduce the
training time, which can be extremely important for large
datasets. In many cases, we obtain the added benefit of having
improved accuracy. While the accuracy does decrease in
some cases, this could be solved by using a different dataset
as the original training dataset or using different parameters
instead of the aforementioned 0.7 and 30%. Further research
into these cross-domain trends is potential future work.

While using cross-domain datasets for transfer learning may
have some ambiguity, we find that using transfer learning with
datasets within the same domain may have more consistent
performance. To explore transfer learning performance within
the same simulation, we choose three datasets from three
simulations, 2d_annulus, maclaurin, and sedov, and generate
different metrics within each simulation. For 2d_annulus, we
collect temperature data (temp), velocity data on the x-axis
(velx), and velocity data on the y-axis (vely), each for 121,260
timesteps. For maclaurin, we collect temperature (femp) and
pressure data (pres) for 266,752 timesteps. For sedov, we
collect temperature (femp) and pressure data (pres) for 78,144
timesteps. Each of these metrics are divided into two equal
parts, one for training and another for testing.
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0.09

0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01

0

mean testing error

templ full presi (Full) preslfull  templ
only +30% only  (Full) +30%
(baseline) templ (3 (baseline) presl (3
average average
run) run)

(b) Mean testing errors for two metrics from the maclaurin
simulation.

Fig. 4: Mean training and testing errors for two metrics, temp and pres, from the maclaurin HPC simulation.

Figures 3, 4, and 5 show the results for both training
and testing on these metrics.> For each simulation, we first
conduct traditional machine learning; this serves as the
baseline performance. We then use transfer learning from
the other metrics in the same simulation on that metric to
compare the performance of baseline and transfer learning.

3The testing results are the results used to determine performance. Having
better or worse training results does not necessarily indicate that transfer
learning performs better or worse than the baseline; this determination is
made using the testing results.

Transfer learning was impelemented in the same way as in
the previous experiments. From these results, we can see that
if we use transfer learning within one simulation, the,n in
most of the cases, the testing results with transfer learning
are similar to the baseline performance, if not better. In
certain cases, such as with velx, the transfer learning results
are slightly worse than the baseline, but they may still remain
roughly around the same level as the baseline with low
error (less than 0.02 in that case). Note that worse training
performance does not necessarily mean that transfer learning
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Fig. 5: Mean training and testing errors for two metrics, temp and pres, from the sedov HPC simulation.

performs worse, as the testing performance is the metric
that determins how transfer learning performs in comparison
to the baseline. In these experiments, the training time is
reduced by around 70% while still maintaining roughly the
same (if not better) level of prediction error. This matches
the intuition that metrics within the same simulation usually
share similar distributions, even though they may be different.
For example, when running astrometeorology simulations,
locations with higher temperatures will also have higher
pressures; this indicates that metrics inside one simulation
may frequently be correlated.

Finding 2: When implementing transfer learning, if the
original training dataset and the second training dataset
are in different simulations, then the resulting weights and
biases often perform well, but occassionally perform very
poorly. When both training datasets are from the same
simulation, however, using transfer learning is very likely
to produce results similar to, if not better than, the baseline
performance.

In addition, we see another interesting observation: in some
of the cases, using transfer learning leads to higher training
error but lower testing error. This could be because, in those
cases, the model experiences overfitting, a common problem
where training leads to the weights and biases being too well-
fit to the training data and not generalized enough to work as
well on similar datasets [22]. This could indicate that transfer
learning can, in some cases, serve as a foil against overfitting.

V. RELATED WORK

Much research has been performed to accelerate training
time by minimizing the training overhead. For example, Osuna
et al. [23] present a decomposition algorithm that is guaran-
teed to solve the quadratic programming problem to improve
training performance. Joachims et al. [24] analyze particular
properties of learning with text data and explore the use of
support vector machines to reduce training time. Work has also
been performed by Microsoft [25] that uses sequential minimal

optimization to avoid using a time-consuming numerical QP
optimization as an inner loop.

Transfer learning, as a hot topic that aims to extract knowl-
edge from one domain to another, has been applied to multiple
machine learning scenarios recently. Transfer learning research
can be generally divided into four categories based on the way
it is implemented [19]. 1) Instance transfer [26]—[28], in which
some labelled data in the source domain is re-weighted before
being used in the target domain. 2) Feature-representation-
transfer [29]-[31], which finds a feature representation that
reduces differences between the source and target domains. 3)
Parameter-transfer [32]-[34], which discovers shared parame-
ters between the source and target domain models that can ben-
efit from transfer learning. 4) Relational-knowledge-transfer
[35]-[37], which builds a mapping of relational knowledge
between the source and target domains. Our transfer learning
scheme in this paper is similar to the first category, as we
take advantage of external knowledge from the source domain
data’s weights and biases by applying a weighted version of
them to the target domain that we want to test.

VI. CONCLUSION

In this paper, we explore the possibility of using transfer
learning on HPC data by using a compression autoencoder
(CAE) as a case study. We implement transfer learning in
a CAE; this generally leads to a vast reduction in training
time. We find that when transfer learning is applied to datasets
within the same simulation, it is highly likely to achieve
similar or even better performance than traditional machine
learning. In addition, we run a series of experiments with a
fixed dataset for the original transfer learning and 12 datasets
that use the results of that transfer learning to generate their
own weights and biases. In the majority of these 12 cases,
the performance is either very similar to or much better than
the performance of traditional machine learning, indicating
that transer learning can even be possible for cross-domain
datasets. Our future work could include exploring ways of
determining which data features make datasets suitable for
cross-domain transfer learning and looking into ways of



further improving the performance of transfer learning. As
transfer learning can reduce training time without, in most
cases, significantly increasing the error, transfer learning can
be very useful for working with HPC datasets in machine
learning applications.

The source code for the compression autoencoder (both
the original version and the version with transfer learning)
and the HPC datasets used in this paper are available at
https://github.com/tobivcu/autoencoder.
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