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ABSTRACT
Modern GPUs often use near memory or high-bandwidth memory,
which may be managed as cache when the application data is too
large to fit in the near memory. Unlike CPU caches, the near memory
cache has a much larger size. A recent approach is statistical caching,
which shows near optimal results when managing large memory for
file caching.

The prior work is ideal and not practical. This paper outlines
two extensions. It first formulates a new caching algorithm called
least expected use (LEU) replacement and shows, through examples,
that the statistical solution automatically integrates two otherwise
disparate policies. Then the paper describes a system design to
implement LEU. To position the new design for discussion, the
paper draws parallels with two familiar ideas, branch prediction and
spectral analysis, and considers a set of opportunities and challenges
of achieving statistical caching in near memory.

CCS CONCEPTS
• Computer systems organization → Heterogeneous (hybrid) sys-
tems; • Software and its engineering → Memory management.
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1 INTRODUCTION
Memory technology is a field with rapid changes, including the new
organization through stacking, e.g. hybrid memory cube (HMC),
and new silicon interconnect, i.e. high bandwidth memory (HBM).
Recent studies in MEMSYS have extended DRAMSim to model its
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performance [15] and used the new types of memory to complement
traditional DRAM, for example, by adding memory bandwidth as
shown by BATMAN [4] and enabling fast data processing shown
by Lloyd and Gokhale [8].

Modern GPUs possess tens of gigabytes of high-bandwidth on-
board memory that is used to store data for GPU programs (i.e.
kernels). The limited size of this memory has prevented GPU pro-
grams from working on large datasets. Traditionally, all data needed
by the GPU kernel must be copied into GPU memory before the ker-
nel executes. After the kernel executes and produces results – which
are also stored in GPU memory – the CPU can copy the results to its
memory. Recently, however, GPU memory is now unified with CPU
memory [12], enabling on-demand migration of pages between CPU
and GPU during runtime. Since moving these pages to the GPU over
the PCIe bus is still slow, we ask: when a page miss occurs in the
GPU and must be handled by the GPU Memory Management Unit
(GMMU), is there a way to select the victim page to optimally re-
duce CPU–GPU communication? In this on-demand scenario, GPU
memory is actually acting as a page cache for memory backed by
the system memory. Thus, this is the traditional cache replacement
problem.

To manage GPU memory, we propose a new page replacement
policy called Least Expected Use (LEU). LEU is a new run-time
approach based on statistical caching. In this position paper, we
describe the policy and outline how it can possibly be implemented.

LEU extends the recent work by Li et al. [7] of a statistical caching
policy called OSL. Unlike existing policies such as LRU and its
variants, and even the ideal OPT which are based on predicting
the exact reuse, OSL is statistical caching based on a distribution
of possible reuses in the future, which we will describe more in
Section 2. Li et al. [7] evaluated its performance. We reproduce
one of their graphs in Figure 1, showing that OSL manages a large
amount of cache space, up to 60GB in this test, and significantly
outperforms LRU and achieves the same performance as OPT (or
better because OSL is a variable-size cache policy1).

Although promising in its potential, OSL is impractical for two
reasons. The first is the large space overhead needed to store the
statistics. Secondly, OSL is for variable-sized caches, so the cache
size changes dynamically. The new LEU policy solves these two
problems. Its relation with OSL is shown in Figure 2. Unlike OSL,
LEU is based on program code and can bound the space overhead

1The optimal variable size policy is VMIN, compared also in Figure 1.
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Figure 1: Performance of statistical caching: the cache miss ra-
tio curves collected from usr benchmark shows that OSL could
outperform existing policies LRU, 2G and ARC and achieve the
optimal performance of OPT, shown by Li et al. [7]

Optimal Steadystate Lease (OSL) Cache
(page based, variable size)

[Li et al. ASPLOS’19]

Least Expected Use (LEU) Cache
[This paper]

Reference based Fixed size

Figure 2: The two pronged improvement of statistical
caching [7]: using program information (left) and managing
fixed size cache (right).

of storing statistics, and it manages fixed-size cache rather than
variable-size cache by OSL.

Using statistics, LEU subsumes past policies and integrates them
automatically. We will show through an example that LEU automati-
cally achieves the equivalent effect of combining LRU and MRU.

There is significant time overhead in statistical optimization. For-
tunately, most LEU operations, especially those computing the prior-
ity for each page, are massively parallel, so there is potential synergy
in using statistical caching on GPUs.

The rest of the position paper is organized as follows: Section 2
will briefly introduce the lease cache technique. We will discuss our
new approach at Section 3. To help considering the new proposal, in
Section 4, we point out remarkable similarities with two successful
techniques: branch prediction and spectral analysis. Section 5 and
Section 6 will list several potential directions of our new techniques
and summarize.

2 BACKGROUND: STATISTICAL CACHING
Recently, Li et al. [7] developed statistical caching. The key idea
is that while obtaining oracular knowledge is in general unrealistic,
clairvoyance can still be approached through probabilistic prediction.

Given a data access trace, the forward reuse interval is defined for
each access as the number of accesses between this current access
and the next access to the same data block [2]. In this paper, we
shorten it to reuse interval (RI).

Let data item a be reused 4 times in “aabb aabb . . . " An ideal
solution requires knowing the next reuse each time a is accessed [1].
A probabilistic prediction states that the reuse interval is 1 for half
of the a reuses and 3 for the other half. Statistical caching uses
statistics, rather than exact knowledge of future accesses. Li et al. [7]
developed a technique to select the best lease per data block, called
Optimal Steadystate Lease (OSL).

Unlike traditional caches such as the LRU cache, the lease cache
has a simple control. Each access comes with a lease, and the cache
stores the data block for the length of the lease. Either the data block
is accessed again and the lease is renewed or it is evicted when the
original lease expires. In OSL, the lease is measured by “program”
time, i.e. the number of accesses.

It helps to draw an analogy with an automatic water faucet. When
a faucet detects a user’s hand, it discharges water for a period of
time. This time can be viewed as a lease. If a hand is detected again,
the lease is renewed; otherwise, the lease expires and the water valve
is closed. If a lease is too short, water stops while a user is still
washing, but if it is too long, it wastes water. Essentially, statistical
caching finds the lease that statistically maximizes the benefit over
the cost.

3 LEU CACHE REPLACEMENT
In this section, we talk about the page replacement policy we de-
signed for GMMU, which is called Least Expected Use (LEU). The
LEU algorithm is parameterized by data block granularity. In this
paper, we treat (virtual memory) pages as data blocks.

Unlike statistical caching, fixed size caches cannot use lease
anymore, as using leases to guide fixed size cache replacement is
incomplete – a discussion we defer to Section 4.2.

3.1 PPUC Based Priority
LEU is a new cache replacement policy, which uses a metric called
profit per unit of cost (PPUC). In PPUC, the profit is the expected hit
ratio, and the cost is the amount of cache occupied over time. Their
ratio, PPUC, is the hit rate per unit of cache space and per unit of
time. For simplicity of presentation, we first compute the PPUC for
each data block. By ranking a data block by its PPUC, keeping high-
PPUC blocks while evicting low-PPUC blocks, LEU maximizes
the overall hit ratio. The actual LEU is based on references – i.e.
memory access instructions – and we show this at the end of the
section.

Figure 3 gives the running example which we use to show the
PPUC calculation and ranking first for data blocks and then later
extend to references. The example is a trace with frequent reuses
of block a and repeated iterations of blocks x,y, z. Jiang and Zhang
[6] characterized individual and cyclic patterns as strong and weak
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Figure 3: An example trace, its RI distributions and the LEU priority values at time 6.

locality. Naturally, strong locality data a should be given a higher
priority over weak locality data x,y, z.

Let the RI distribution for block b be P (ri|b), i.e. the percentage
of accesses to b with the reuse interval ri. Given an access trace,
at the t th access, let tb be the last access time to b. We define time
elapsed since last access (TESLA) as t−tb . For the running example,
Figure 3 shows the RI distributions and the TESLAs at a particular
time in the trace.

We compute the profit for each block b, i.e. the hit ratio, given
how long it stays in cache. Following the OSL terminology, we call
this duration the lease. A lease l means to store b for l accesses
after its last access, i.e. staying in cache till time tb + l . The hit ratio
is computed from the RI distribution P (ri|b) as a function of l as
follows:

hr(b, tesla, l ) =
P (ri ≤ l |b) − P (ri ≤ tesla|b)

1 − P (ri ≤ tesla|b)
for l > tesla (1)

The equation computes hr(b, tesla, l ), which is the expected hit
ratio of b when keeping it in cache for time l after b’s last access. The
expectation is adjusted based on tesla. Consider the case tesla = 0,
that is, the time when b is accessed. The hit ratio is P (ri ≤ l |b), i.e.
the portion of reuses whose RI is no more than the lease. When
tesla > 0, Eq. 1 calculates the conditional expectation, since now
we know that during the elapsed time, there is no access to b. The
probability of P (ri ≤ tesla|b) is known to be 0.

While the hit ratio is the profit, the PPUC of b (after elapsed
time tesla) is the hit ratio divided by the cost, which is the cache
occupancy of b for lease l . The cost is the incremental, i.e. the
additional time needed to reach l .

PPUC(b, tesla, l ) =
hr(b, tesla, l )
l − tesla

l > tesla (2)

The priority of block b in the LEU cache is its largest PPUC. The
next equation computes the PPUC for all l > tesla and chooses the
largest.

priority(b, tesla) = max
l>tesla

PPUC(b, tesla, l )

When evaluating data blocks for cache replacement, we compare
their LEU priority values. For the running example, Figure 3 shows
the priority at time 6 of the trace, where the strong locality data a
has the highest priority, and the low locality data is also ordered. A
reader may notice that the latter ordering is the same as the one that
would have been used by the most recently used (MRU) replacement
policy, and MRU is the best policy for cyclic accesses.

To further demonstrate how LEU effectively integrates LRU and
MRU, consider the trace “aaxyz aaxyz . . . ” At time t = 5, LRU
would fail to cache a unless the cache size is 4 or more. If we
compute the priority values, we would obtain 1 for a and 1/2, 1/3,
1/4 respectively for x,y, z. Hence in LEU, a is always cached first,
and the rest are ordered by MRU, same as the case in Figure 3.

3.2 Reference-based LEU
LEU has two key ideas. First, it manages data blocks based on
which instruction accessed it last, referred to as the reference (in-
struction) r . Second, it ranks these references by PPUC. So far, we
have computed the PPUC for each data block rather than for each
reference. Note that in the special case where each reference only
accesses a single data block, LEU would be identical to our previous
description.

While LEU takes the input of an RI distribution, it actually does
not matter whether the distribution comes from accesses to one data
block or many. Therefore, it requires no change to the equations
when computing the priority for a reference. In the running example,
we may consider the trace as one generated by a program with two
references r1, r2, where all a accesses are from r1 and x,y, z accesses
from r2. Consider r2. If LEU was based on data blocks, it would
need a RI distribution for each of x,y, z, as shown in Section 3 in
Figure 3. Instead, LEU is based on references. It has just one RI
distribution for all accesses of x,y, z. The following table shows the
RI distribution for r2:

r2 RI distribution r2 priorities at t = 6
P (ri = 6|r2) = 100% priority(r2, x, 4) = 1/2

priority(r2,y, 2) = 1/4
priority(r2, z, 0) = 1/6
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Although r2 has just one RI distribution, it computes different priori-
ties for x,y, z, because they have different tesla.

Reference based LEU handles general data references. First, a
reference may access many data blocks, which are individually
ranked by LEU. Second, multiple references may access the same
data block, and the LEU ranking is based on the reference that makes
the last access. Third, at every point in a program execution, LEU
assigns a priority value to all its data blocks, however, the priority
does not depend on the cache size. We will state without proof
that LEU is a stack algorithm and has all its theoretical properties.2

There exists an LEU stack distance, similar to the LRU stack distance
(often called the reuse distance). However, we do not explore the
LEU stack distance in this paper.

3.3 Near Memory Management
In this section, we show how GPU coordinates with CPU to imple-
ment LEU. We design a new module called Reuse Interval Memory
Manager (RIMM) and integrate it on both host and device side, we
name these two parts RIMM host and RIMM device respectively.
RIMM host contains a fixed size Reference Reuse Interval Table
(Ref RIT) which maps each reference to its reuse interval distri-
bution. Then the algorithm we mentioned in previous 2 sections
computes PPUC for each page and its priority.

Figure 4 demonstrates how a CPU and a GPU coordinate to
implement LEU. An RIMM device will communicate with an RIMM
host under two conditions: 1) the Trace Sampler in RIMM finds a
reuse or 2) the Computing Unit (CU) requests data that is not present
in the Translate Lookaside Buffer (TLB) or in the GMMU. When
there forms a reuse, the RIMM device will send a reference id and
its reuse interval to the RIMM host and the latter one updates its Ref
RIT. Note that this communication is batched, each communication
is not just for one page request.

Now let’s consider the second condition, when the CU incurs a
page fault in the GPU. The RIMM device will send the reference id,
its TESLA value and the demand page id to the host. The RIMM host,
when receiving this message, will pass the missing reference’s reuse
interval distribution to the PPUC computing algorithm and derive
the PPUC of the requested page. The missing page id pid together
with its PPUC will then be sent to the priority list, which orders each
demand page by its PPUC and sends back the replacement decision
to device.

LEU can be either a software or a hardware solution. Next, we’d
like to envision one pure software implementation of LEU. To in-
tegrate LEU in GPU, two extra components should be added: 1) a
trace sampler, which should trigger a signal to update RIMM when
there is a reuse, and 2) a GMMU page fault handler, which guides
the page replacement based on the priority values. All these two
parts could be implemented without extra hardware support. The
trace sampler could be implemented by GPU hardware performance
counters (e.g., the CUDA Profiling Tools Interface (CUPTI) [10]
for NVIDIA GPU), which allows developers to do event samplings
and customize its call back. To handle page fault, Power et al. [11]
gave one hardware solution, which modified CPU interrupt return

2As shown in the seminal paper by Mattson et al., a stack algorithm observes the
inclusion property, has monotone miss ratios (no Belady anomaly), and can be evaluated
for all cache sizes by one-pass simulation [9].

microcode and added one extra CPU register to handle GPU page
fault. But extra hardware support is not necessary, Tanasic et al. [14]
gave 3 possible design of GPU page handler (Wrap Disabling, Re-
play Queue or Operand log), which could remove CPU involvement
in GPU page fault.

4 ANALOGY WITH FAMILIAR IDEAS
This section illustrates the new idea by drawing an analogy with two
familiar ideas, branch prediction and spectral analysis. As pointed
out by Grossman [5], an analogy “sparks discussion and is easy to
remember [and] can inspire new research ideas and let one adapt
terminology from one side of the analogy for use in the other.” Still,
it is important “to understand that an analogy ... is not a complete
argument; it is an introductory remark.”

4.1 Analogy with Branch Prediction
We show first how caching and branch prediction are both prediction
problems and then how LEU is based on program code, as is the
case for modern branch predictors.

Branch prediction reduces the latency of branching by predicting
the most likely outcome of a branch and speculatively executing
along the predicted path. A success is a prediction hit, and a failure
is a prediction miss. Caching reduces the latency of memory access
by predicting the data blocks with the most likely access and spec-
ulatively storing them in the cache. A success is a cache hit, and a
failure is a cache miss.

Caching and branch prediction are both statistical optimization. A
program still runs correctly at a miss. Its speed is maximized if the
miss ratio is minimized. Both must maximize profit over cost. Profit
comes from speculation based on correct prediction, i.e. speculative
execution at a branch target or caching data blocks before next use.
Cost comes from waste of the speculative work and lost opportunity
at mis-prediction.

The difference, however, is how they collect and use statistics. Pre-
vious caching solutions collect information from memory access but
not from program code. Branch prediction is based on program code,
in particular, branch instructions. It gathers dynamic information on
a static branch.

Like branch prediction but unlike traditional caching, LEU col-
lects information on memory instructions. Branch prediction ana-
lyzes the history of a branch, while LEU gathers the access infor-
mation of a memory load or store. Both require and target program
code. LEU finds most likely data usage by a memory instruction,
just as branch prediction finds the most likely direction of a branch.

In implementation, branch prediction uses a predictor table. The
table is a fixed size and indexed by the addresses of branch instruc-
tions. The space cost is bounded, and space utilization is maximized
by evicting infrequently executed branch instructions from the table.
The table used by LEU, Ref RIT, is fixed size and indexed by the
addresses of memory instructions. The space cost is controlled and
utilization maximized by evicting infrequently executed memory
instructions.

Prediction is based on program behavior. Branch predictors use
taken or not taken branches. LEU uses data reuse behavior, which
has no direct parallel with the branching behavior. Next we explain
it using a different analogy.



Statistical Caching for Near Memory Management MEMSYS ’19, September 30-October 3, 2019, Washington, DC, USA

DDR4

CPU

IO
MMU

GPU

HBM

… CUCU

replacement decision

FFC0D1

CU

demand page
<ref id, page id>

reuse pair
<ref id, RI, TESLA>

GMMU

Priority List

RIMM

Ref RITLEU 
Algorithm

…
<page id, 
PPUC>

Figure 4: Overview of LEU-based GPU page migration management.
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4.2 Analogy with Spectral Analysis
There is a long history in understanding a program execution as
a signal [13]. Cache behavior is periodical, and the periodicity is
measured by miss frequency. The miss frequency depends on two
factors: data reuse in a program and the management of the cache
(including its size). LEU is designed to minimize the miss frequency
for a given program and cache size. Each reuse in a program is
quantified by an RI, while different reuses have different RIs. The
spectrum of reuse frequencies is shown by the RI distribution. Based
on the RI distribution, LEU analyzes the spectrum of reuses to
manage the cache.

The techniques of RI sampling and the table of RI distributions
are analogous to those used by a spectrum analyzer, in particular, fre-
quency sampling and the limits on the frequency range and precision
which affect the cost and the effectiveness of the instrument.

OSL manages variable size caches. For fixed size caching, a naive
approach is to use the distribution to compute the average RI as the
expected reuse and rank data blocks by it. It is easy to see that this
solution, although simple, is incomplete in that it does not optimize
for all cache sizes. The expected RI is shorter than the longest RI.
Once the cache is sufficiently large to hold all data blocks for their
expected RI, we can no longer rank data blocks to utilize additional
cache space. This is a problem regardless of whether TESLA is used
with the expected RI. Similar incompleteness happens if we invoke
OSL to compute the best lease at each access and use it as priority. In
comparison, LEU computes the most profitable RI as the yardstick
for ranking. As the cache size increases, shorter reuses are all hits,
and the LEU ranking is made on long RIs. The ranking stops only
when all RIs are cached, and there is no capacity misses. LEU is
therefore a complete solution.

5 OPPORTUNITIES AND CHALLENGES
Caching requires joint optimization, i.e. orchestration among all
memory accesses. It differs from problems where individual opti-
mization suffices. For example, in branch prediction the program
performance is maximized if each branch is predicted with its best
possible accuracy.3 In caching, increasing the hit frequency for a
load instruction would mostly likely cause more misses elsewhere.

We may call this phenomenon optimization interference. In branch
prediction, optimizing one branch does not negatively affect the op-
timization at other branches. The optimization of different branches
does not interfere. For caching, if without interference, we would
be able to trivially optimize for any single memory instruction by
allocating the whole cache to store its data. Because all memory in-
structions share the same cache, the optimization problem in caching
is optimization interference.

To achieve joint optimization, LEU considers the full spectrum
of reuses by using the RI distribution, and it considers the RI distri-
bution of all memory instructions. It computes the PPUC for each
instruction, ranks them, and stores in the cache the data with the
highest PPUC.

Spectral analysis enable joint optimization not attempted by pre-
vious policies such as LRU and its variants. A problem, however, is
the overhead. In OSL, the space overhead is proportional to the size
of data. LEU is reference based, so its overhead is proportional to
the number of memory instructions. Using an RRI table, this cost
can be bounded by a constant, in a way analogous to the predictor
table used in branch prediction, as discussed in Section 4.1.

3Sometimes two branches correlate, and considering multi-branch correlation adds
accuracy. Even in this case of correlated prediction, the benefits are still independent
when being counted into the total.
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LEU may be extended to differentiate data blocks by the predomi-
nant access type, whether a block is mostly read only and whether it
has frequent writes. In MEMSYS 2016, Brock et al. [3] extended the
working set model and the ideal VMIN model to consider different
read/write time-costs. Both models require variable size caches. The
working set policy is based on the last access time (similar to LRU).
LEU may improve the prior policy by managing the fixed cache and
by using spectral analysis.

An alternative design is to move PPUC calculation to RIMM de-
vice. As PPUC calculation for different pages and different teslas are
independent, moving to device side can take advantage of massive
parallel processing. PPUC calculation can also be implemented by
adding specialized hardware components as Lloyd and Gokhale did
for near memory key/value lookup acceleration. Their results show
2.9-12.8X speedups compared to CPU lookup [8].

6 SUMMARY
In this paper, we have presented the LEU replacement algorithm
which uses the RI distribution of each reference to assign priority to
manage a fixed size cache of all sizes. Based on statistics, it alone
is able to achieve the effect of LRU and MRU, which would have
required special selection in past solutions. Looking forward, the
LEU system design can follow a practical framework similar to
that of branch prediction, and its performance can be studied and
improved through spectral analysis.
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