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ABSTRACT: Described is a general method for the
installation of a minimal 6-methyltetrazin-3-yl group via
the first example of a Ag-mediated Liebeskind−Srogl
cross-coupling. The attachment of bioorthogonal tetra-
zines on complex molecules typically relies on linkers that
can negatively impact the physiochemical properties of
conjugates. Cross-coupling with arylboronic acids and a
new reagent, 3-((p-biphenyl-4-ylmethyl)thio)-6-methylte-
trazine (b-Tz), proceeds under mild, PdCl2(dppf)-
catalyzed conditions to introduce minimal, linker-free
tetrazine functionality. Safety considerations guided our
design of b-Tz which can be prepared on decagram scale
without handling hydrazine and without forming volatile,
high-nitrogen tetrazine byproducts. Replacing conven-
tional Cu(I) salts used in Liebeskind−Srogl cross-
coupling with a Ag2O mediator resulted in higher yields
across a broad library of aryl and heteroaryl boronic acids
and provides improved access to a fluorogenic tetrazine-
BODIPY conjugate. A covalent probe for MAGL
incorporating 6-methyltetrazinyl functionality was synthe-
sized in high yield and labeled endogenous MAGL in live
cells. This new Ag-mediated cross-coupling method using
b-Tz is anticipated to find additional applications for
directly introducing the tetrazine subunit to complex
substrates.

The bioorthogonal reactions of tetrazines have emerged as
important tools for chemical biology over the past

decade.1−6 Cycloadditions involving a range of dienophiles
including trans-cyclooctenes,1,7−10 cyclopropenes11,12 and
norbornenes13 have been developed as tools for a variety of
applications including cellular labeling,14−17 in vivo imag-
ing,18−20 unnatural amino acid mutagenesis,3,21,22 targeted
drug delivery,23−25 proteomics,26 as well as in the fabrication
and patterning of biomaterials.27 Tetrazines themselves have
also found applications in explosives technology,28 in metal−
organic frameworks,29 and in natural product synthesis.30

Conjugates of tetrazines are frequently prepared by amide
bond forming reactions as represented in Figure 1A. A major
limitation of this approach is that large and hydrophobic
linkers can negatively impact the physiochemical properties of
an attached ligand.6,17 Complementary new methods for the

introduction of minimal tetrazines to small molecules may
further advance their potential as bioorthogonal probes and
chemical reporters. The replacement of bulky derivatives with
smaller tetrazines has resulted in fluorophores with improved
fluorogenic and cellular wash-out properties,31−33 better
substrates for enzyme-catalyzed protein modification,17,34 and
probes for 18F-PET imaging.35 However, there are currently
few methods for the direct attachment of “minimal” tetrazine
groups to target molecules.36 Additionally, many approaches to
tetrazine synthesis produce high-nitrogen byproducts and
involve harsh reaction conditions that can limit scalability
and scope. Herein, we describe the decagram synthesis and
thermal stability of 3-((p-biphenyl-4-ylmethyl)thio)-6-methyl-
tetrazine, (b-Tz, 1a) and a method to directly introduce the 6-
methyltetrazin-3-yl group to arylboronic acids through the first
example of a Ag-mediated Liebeskind−Srogl reaction (Figure
1B).
Classical tetrazine synthesis involves the condensation of

Pinner salts or nitriles with excess hydrazine followed by
oxidation.37,38 Catalytic nitrile condensation with neat
anhydrous hydrazine, most notably with Zn(OTf)2 and
Ni(OTf)2, has expanded access to unsymmetrical tetrazines.39

Further, thiol catalysis has been shown to promote tetrazine
synthesis from nitriles using hydrazine-hydrate.40 The most
practiced procedures utilize excess acetonitrile or formamidine
acetate and produce volatile tetrazine byproducts with high-
nitrogen content (Figure 2A). Recently, a sulfur-catalyzed
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Figure 1. (A) The most common approach to tetrazine conjugation
uses linkers to attach molecules of interest. (B) Cross-coupling
approach described here.
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reaction of nitriles with hydrazine hydrate and dichloro-
methane has been described for 3-aryltetrazine synthesis.41 A
safety consideration for all of these procedures is the direct
addition of an oxidant to a reaction mixture containing
hydrazine. While these methods for preparing tetrazines have
been transformative to the field of bioorthogonal chemistry,
there is a continuing need for safer alternatives with
complementary functional group compatibility.
Tetrazines have been used in a limited number of metal-

catalyzed CH activations42,43 and cross-couplings32,33,44−51 and
in Heck reactions with in situ-generated 3-vinyl-6-methylte-
trazine.32 Recently, 3-amino-6-chlorotetrazines have been
cross-coupled under Suzuki conditions (Figure 2B).45

Liebeskind−Srogl cross-couplings have also been reported
with 3-amino-6-thiomethyltetrazines at 200 °C (Figure 2B).46

The 3-aminotetrazine products of these methods are valuable
in medicinal chemistry, but their utility in bioorthogonal
chemistry is attenuated by the deactivating amino substitu-
ent.21,32 The tetrazines most useful to bioorthogonal chemistry
are also sensitive to basic conditions, making them
incompatible with many conditions commonly associated
with cross-coupling chemistry. Currently, there is a single
method of cross-coupling to introduce a 3-methyltetrazine
group via Stille coupling with 3-bromo-6-methyltetrazine,

which is prepared from 3-hydrazino-6-methyltetrazine (Figure
2B).33

We considered that 3-thioalkyl-6-methyltetrazines might
serve as useful reagents for the preparation of 3-aryl-6-
methyltetrazines, which are attractive bioorthogonal reagents
due to their balance of rapid kinetics toward dienophiles and

Figure 2. (A) Tetrazine synthesis based on condensation of nitriles or
Pinner reagents with hydrazine. (B) Cross-couplings of tetrazine
electrophiles with arylboronic acids have been limited to N-
substituted tetrazines, which are deactivated for bioorthogonal
chemistry applications. Stille coupling has been used to couple 3-
bromo-6-methyltetrazine to fluorophores.

Figure 3. Decagram synthesis and thermal stability of b-Tz (1a).

Figure 4. (A) Rapid decomposition of b-Tz in CuTC. (B) Proposed
Liebeskind−Srogl transmetalation mechanism. (C) Optimized Pd-
catalyzed cross-coupling of tetrazines b-Tz and 1b with various
nucleophiles (yields determined by GC w/dodecane as a standard).
Conditions: (a) Pd2dba3 (12.5 mol %), Cs2CO3 (3.0 equiv), dioxane,
70 °C, 90 min. (b) [Pd(allyl)Cl]2 (10 mol %), THF, 70 °C, 2 h. (c)
Pd(OAc)2 (10 mol %), TBAF (1.0 equiv), dioxane, 70 °C, 2.5 h. (d)
Pd2dba3 (15 mol %), DMF, 60 °C, 20 h. (e) DMF, 60 °C, 20 h. (D)
Screening of silver(I) and copper(I) additives for condition e. (E)
Screening of tetrazines 1a-g under conditions e.
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high stability in the cellular environment.17,21,52 By modifying a
method for the synthesis of 3-thiomethyl-6-methyltetrazine,53

we prepared compounds 1a−g with the rationale that a
sacrificial S-benzylic substituent could serve to tune cross-
coupling efficiency and improve the safety profile of the
tetrazine. As shown in Figure 3, the 4-phenylbenzyl derivative
b-Tz (1a) was prepared on large scale via alkylation of
commercially available thiocarbohydrazide54 with 4-bromome-
thylbiphenyl followed by one-pot condensation with triethy-
lorthoacetate and a novel Cu(OAc)2-catalyzed air-oxidation of
the dihydrotetrazine intermediate. b-Tz was isolated on 27 g
scale with a 47% overall yield after simple silica plug filtration
and is a bench-stable crystalline solid (mp 141 °C). The
differential scanning calorimetry (DSC) profile of b-Tz has an

onset temperature of 170 °C and a transition enthalpy of 900
J/g and is not flagged as potentially shock sensitive or explosive
by a modified Yoshida correlation (Figure S-11).55

After extensive screening (Figures S-3−S-8), we found
copper(I)-mediated Liebeskind−Srogl conditions56,57 could
promote cross-coupling of benzylic thioether tetrazines with
PhB(OH)2, PhSnBu3, and PhSi(OMe)3 (Figure 4C, entries 1−
3). Under Cu-mediated conditions tetrazine 1b was the best
substrate; however, the generality under these conditions was
modest. The rapid consumption of tetrazine starting materials
during the reaction led us to test if Cu(I) was causing
decomposition of the reagent. Indeed, heating b-Tz with
Cu(I)-thiophene carboxylate (CuTC) at 70 °C resulted in
rapid decomposition and produced 4-phenylbenzaldehyde as
the only identifiable side product (Figure 4A).
Copper has been proposed to promote the Liebeskind−

Srogl reaction by facilitating transmetalation as shown in
Figure 4B.57,58 We hypothesized that silver(I) salts might be
similarly capable as promotors, whereby transmetalation would
be promoted in a dual role by the thiophilic capture of benzylic
thiolate by silver and the borophilic capture by oxygen. Ag(I)
additives have been shown to promote Rh-catalyzed coupling
of arylboronic acids with arylmethylsulfides bearing ortho-
directing groups,59,60 and the Cu-catalyzed coupling of
arylboronic acids with aromatic thioesters.61 To our knowl-

Figure 5. Reaction scope of b-Tz (A) and 3 (B). Typical conditions: thioalkyl tetrazine b-Tz or 3 (1.0 equiv), RB(OH)2 (1.9 equiv), PdCl2(dppf)
(15 mol%), Ag2O (2.5 equiv), DMF (0.1M), 60 °C, 19−21 h, average isolated yields of duplicate synthesis (±5%). a3.0 equiv of RB(OH)2.

b3.0
equiv of RB(OH)2 did not significantly improve yield (<5%), thus 1.9 equiv of RB(OH)2 was used.

Figure 6. Synthesis of 3-BODIPY-6-methyltetrazine 6.
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edge, a Ag-mediated variation of the Liebeskind−Srogl
reaction has not been reported. After extensive optimization
(Figure 4C, entries 4−7, and Figures S-1 and S-2),
PdCl2(dppf) (15 mol%) was found to be especially effective
for cross-coupling of 3-thioalkyl-6-methyltetrazines with
arylboronic acids in polar, aprotic solvents (DMF, DMSO)
at 60 °C. A screening of silver(I) additives revealed Ag2O as
the most general promotor, although Ag2CO3 was also
effective (Figure 4D). Substitution of Ag2O by Cu2O gave
only trace product formation. Arylboronic acids are particularly
effective nucleophiles, whereas PhBF3K and PhBPin were both
less effective under identical reaction conditions (Figure 4C,
entries 8 and 9). Further, a series of 3-arylmethyl-6-
methyltetrazines 1a−g were evaluated as coupling partners
(Figure 4E). Of these, the 4-phenylbenzyl derivative b-Tz (1a)

was identified as the substrate with both the best cross-
coupling yield as well as most favorable thermal stability. We
also note that the cost of Ag2O (currently < $3/g) is similar to
the common promotor CuTC, and is minor in the context of
bioorthogonal chemistry reagents which are typically required
only in small amounts.
The scope of the Ag-mediated, Pd-catalyzed coupling of b-

Tz with arylboronic acids is summarized in Figure 5A.
Successful reactions were observed for arylboronic acids
containing chloro, fluoro, secondary and tertiary amino,
alcohol, ether, nitro, sulfonyl, thioether, nitrile, aldehyde,
ester, ketone, carbamate, and styryl groups. Heterocyclic
functionality tolerated on the boronic acid component
included quinoline, indole, pyridine, triazole, N-methylimida-
zole, furan and thiophene groups. The protected amino acid
2ae coupled with b-Tz in 96% yield. Estrone-tetrazine 2ag was
also synthesized in 61% yield. In general, couplings were
carried out using 1.9 equiv of boronic acid, but 3.0 equiv was
utilized in reactions where homocoupling of the boronic acid
was pronounced. Ortho-substituted heteroatoms had a
deleterious impact with a relatively low yield observed for
ortho-methoxy tetrazine 2k and only trace product with N-Boc-
2-aminophenylboronic acid and 2-hydroxyphenylboronic acid.
While protected thiol and amine functionality was well
tolerated (Figure 5), additives with free thiol or primary
alkyl amine groups were not (Figure S-19). Also unsuccessful
were 2-pyridyl- and 4-pyridylboronic acids which are regarded
as problematic across other cross-coupling reactions.62

This cross-coupling method is not limited to S-benzylic
thioethers or methyl-substituted tetrazines. 3-(Methylthio)-6-
phenyl-tetrazine (3) was prepared from triethyl orthobenzoate
and evaluated as a reagent in the synthesis of diaryltetrazines
(Figure 5B). Successful reactions were observed for arylbor-
onic acids bearing chloro-, alcohol, carbamate, ester, indole and
ether groups with yields comparable to b-Tz. Included is an
improved synthesis of 3-(4-hydroxymethylphenyl)-6-phenyl-
tetrazine (4c), which is used to create cell-contact guiding
microfibrous materials for tissue-culture applications.27

We sought to demonstrate the application of b-Tz for the
construction of fluorophore-tetrazine conjugatescompounds
that have utility in live cell imaging.15 BODIPY-dye 6 with a
directly attached tetrazine has been developed as “superbright”
bioorthogonal probe for fluorogenic labeling in live cells.31 The
condensation of nitriles with hydrazine produces 6 in 8%
yield.31 As shown in Figure 6, compound 6 can be accessed in
78% yield through the Ag-mediated cross-coupling of boronic
acid 5 with b-Tz.
To demonstrate the utility of b-Tz in synthesizing chemical

probes for studying endogenous levels of proteins in a native
biological system, we constructed a tetrazine probe for
monoacylglycerol lipase (MAGL). MAGL is a serine hydrolase
in the endocannabinoid signaling pathway, and has attracted
increasing interest as a target for neurological and metabolic
disorders.63 We designed a MAGL probe (9) by appending a
6-methyltetrazine moiety to a pyrazolylpiperidine scaffold with
an electrophilic hexafluoroisopropyl (HFIP) carbamate war-
head for covalently labeling the active site serine (Figure 7A).64

Synthesis was accomplished by cross-coupling of b-Tz with
boronic acid 7 resulting in a 77% yield of 8. The reactive HFIP
carbamate was installed by Boc deprotection followed by in situ
addition to a triphosgene and hexafluoroisopropanol mixture,
giving the MAGL reactive probe 9 in 78% yield. The reaction
rate of 9 toward trans-cyclooctene is similar to that of 3-

Figure 7. (A) Synthesis of MAGL reactive probe 9. (B) Live cells
were treated with probe 9 for 1 h, followed by 2 μM TCO-TAMRA
for 30 min, cell lysis, and analysis by in-gel fluorescence. (C) In-gel
fluorescence signals for a dose response of probe 9. The labeling of
probe 9 (32 nM, 1 h) was competed by pretreatment with MAGL
inhibitor KML29 (300 nM, 1 h). (D) KML29 also incorporates a
HFIP carbamate warhead. (E) Dose response fitting of the
fluorescence signals of MAGL normalized by the total protein
amount indicated by Coomassie staining. Data are reported as mean
± SEM (n = 2). See Figure S-21 for Coomassie staining.

Journal of the American Chemical Society Communication

DOI: 10.1021/jacs.9b08677
J. Am. Chem. Soc. 2019, 141, 17068−17074

17071

http://pubs.acs.org/doi/suppl/10.1021/jacs.9b08677/suppl_file/ja9b08677_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/jacs.9b08677/suppl_file/ja9b08677_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/jacs.9b08677/suppl_file/ja9b08677_si_001.pdf
http://dx.doi.org/10.1021/jacs.9b08677


methyl-6-(4-aminomethyl)tetrazine (krel = 1.1, Figure S-20).65

Probe 9 inhibited MAGL activity with 31 nM IC50 in an in
vitro assay.66

To test the labeling of endogenous MAGL in live cells,
human brain vascular pericytes were treated with probe 9 for 1
h, followed by labeling with 2 μM of TCO-TAMRA for 30 min
in live cells (Figure 7B). After cell lysis, MAGL labeling was
assessed with a gel-based activity-based protein profiling
(ABPP) analysis (Figure 7C−E).67 Strong fluorescence signals
were observed for MAGL with minimal nonspecific labeling
from TCO-TAMRA. The labeling by probe 9 was dose
responsive with a cellular IC50 of 8 nM, and was competed by a
MAGL inhibitor, KML29.64 The HFIP warhead also labeled an
additional protein at ∼35 kDa, which is consistent with
reactivity with a known off-target α/β-hydrolase domain 6
(ABHD6).64,67

In summary, a method has been described for installing a
minimal 6-methyltetrazinyl-3-yl group through the first Ag-
mediated Liebeskind−Srogl cross-coupling. A combination of
PdCl2(dppf) catalyst and Ag2O mediator was found to be
uniquely effective for coupling 3-thioalkyl-6-methyltetrazines
with arylboronic acids. Safety testing guided our design of the
reactive substrate b-Tz (1a), which can be synthesized from
commercially available materials on decagram scale in 47%
overall yield. Cross-coupling of b-Tz with boronic acids
proceeds under mild conditions with broad functional group
tolerance. Alternatively, 3-(methylthio)-6-phenyl-tetrazine (3)
undergoes cross-coupling with arylboronic acids to give 3,6-
diaryltetrazines. Application to the synthesis of chemical
biology tools was demonstrated. A BODIPY-tetrazine con-
jugate was synthesized in 78% yieldsubstantially higher than
what is possible using traditional hydrazine-based synthesis.
Finally, a tetrazine-functionalized probe for MAGL was
synthesized in high yield and was shown to covalently label
endogenous MAGL with good selectivity in live cells. We
anticipate that this method for introducing minimal tetrazines
to chemical probes will serve as an important tool for studying
protein targets at endogenous levels in their native environ-
ment.
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