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Abstract
We introduce Sieve-SDP, a simple facial reduction algorithm to preprocess semidef-
inite programs (SDPs). Sieve-SDP inspects the constraints of the problem to detect
lack of strict feasibility, deletes redundant rows and columns, and reduces the size
of the variable matrix. It often detects infeasibility. It does not rely on any optimiza-
tion solver: the only subroutine it needs is Cholesky factorization, hence it can be
implemented in a few lines of code in machine precision. We present extensive com-
putational results on several problem collections from the literature, with many SDPs
coming from polynomial optimization.

Keywords Semidefinite programming · Preprocessing · Strict feasibility · Strong
duality · Facial reduction · Polynomial optimization
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1 Introduction and the preprocessing algorithm

Consider a semidefinite programming problem (SDP) in the form

inf
X

C • X

s.t. Ai • X = bi (i = 1, . . . ,m),

X � 0,

(P)
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where the Ai and C are n × n symmetric matrices, the bi are scalars, X � 0 means
that X is in Sn+, the set of symmetric, positive semidefinite (psd) matrices, and the •
inner product of symmetric matrices is the trace of their regular product.

SDPs are some of the most versatile, useful, and widespread optimization problems
of the last threedecades. Theyfind applications in control theory, integer programming,
and combinatorial optimization, to name just a few areas. Several good solvers are
available to solve SDPs (see for example [1,6,7,16,17,21,39,44,50]); among these,
Mosek [1] is commercially available.

SDPs—as all optimization problems—often have redundant variables and/or con-
straints. The redundancy we address is lack of strict feasibility, i.e., when there is no
feasible positive definite X in (P). When (P) is not strictly feasible, the optimal value
of (P) and of its dual may differ, and the latter may not be attained.1 Hence, when
attempting to solve such an SDP, solvers often struggle, or fail.

It is, of course, useful to detect lack of strict feasibility in a preprocessing stage. This
paper describes a very simple preprocessing algorithm for SDPs, called Sieve-SDP,
which belongs to the class of facial reduction algorithms [4,12,13,22,30,31,34,43,47].
Sieve-SDP can detect lack of strict feasibility, reduce the size of the problem, and can
be implemented in a few lines of code in machine precision.

To motivate our algorithm, let us consider an example:

Example 1 The SDP instance (with an arbitrary objective function)

⎛
⎝
1 0 0
0 0 0
0 0 0

⎞
⎠ • X = 0

⎛
⎝
0 0 1
0 1 0
1 0 0

⎞
⎠ • X = −1

X � 0,

(1)

is infeasible. Indeed, suppose X = (xi j )3i, j=1 is feasible in (1). Then x11 = 0, hence
the first row and column of X are zero by positive semidefiniteness, so the second
constraint implies x22 = −1, which is a contradiction.

Note that if we replace −1 in the second constraint of (1) by a positive number, then
(1) can be restated over the set of psd matrices with first row and column equal to zero.
Thus, even if we do not detect infeasibility, such preprocessing is still useful.

Our algorithm Sieve-SDP repeats the Basic Step shown in Fig. 1. Hereafter D � 0
means that a symmetric matrix D is positive definite.

Example 2 (Example 1 continued) When we first execute the Basic Step on (1), we
find the first constraint, delete it, and also delete the first row and column from the
second constraint matrix. Next, we find the constraint

1 More precisely, when (P) is strictly feasible, strong duality holds between (P) and its dual, i.e., their
values agree and the latter is attained.
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Basic Step

1. Find i ∈ {1, . . . ,m} (if any) such that the ith constraint of (P ), after permuting
rows and columns, and possibly multiplying both sides by −1, is of the form

(
Di 0
0 0

)
• X = bi, (2)

where Di � 0 and bi ≤ 0. If there is no such i, STOP; (P ) cannot be preprocessed
further.

2. If bi < 0, then STOP; (P ) is infeasible.
3. If bi = 0, then delete this constraint. Also delete all rows and columns in the other

constraints that correspond to rows and columns of Di.

Fig. 1 The Basic Step of Sieve-SDP

Fig. 2 The sieve structure (
1 0
0 0

)
• X = −1,

and declare that (1) is infeasible.

We call our algorithm Sieve-SDP, since by shading the deleted rows and columns
in the variable matrix X (and the Ai ) we obtain a sieve-like structure: see Fig. 2.

Sieve-SDP is easy to implement and fast: it only needs an incomplete Cholesky
factorization subroutine to check positive definiteness, and we can delete rows and
columns using fast matrix operations. Even the worst case complexity of Sieve-
SDP is reasonable: an easy calculation shows that it can fully preprocess (P) using
O(min{m, n}n3m) arithmetic operations.

Sieve-SDP is a heuristic: it does not always detect infeasibility, or lack of strict
feasibility. For example, it will not work on problem (1), if we apply a similarity
transformation T�(·)T to all Ai , where T is a random invertible matrix.

Given its simplicity, and how easily it is “fooled”, it is natural to ask whether our
algorithm works in practice. So the main research question we address, and answer in
the affirmative, is:
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– CanSieve-SDPhelp us computemore accurate solutions and reduce the computing
time on a broad range of SDPs?

Relatedwork Sieve-SDP belongs to the family of facial reduction algorithms, which
we now describe. When (P) is not strictly feasible, one can replace the constraint
X ∈ Sn+ by

X ∈ F,

where F is a proper face of Sn+.2 Since any such face can be written as (see e.g. [29])

F = VSr+V�, (3)

where r < n and V is an n × r matrix, the reduced problem can be restated over
a smaller semidefinite cone. Facial reduction algorithms—for more general conic
programs—originated in the papers [3,4]. Later simplified, more easily implementable
variants were given in [30,31,47], and in [43] for the SDP case. A recent, very concise
version with a short proof of convergence is in [24].

Facial reduction algorithms, when applied to (P), find the face F by solving a
sequence of SDP subproblems, which may be as hard to solve as (P) itself. Thus one
is led to seek simpler alternatives.

Simplified and implementable versions of facial reduction are described in [34].
The algorithms in [34] reduce the feasible set of (P) (or of an SDP in a different shape)
by solving linear programs instead of SDPs. Thus they do not find all reductions, but
still simplify the SDPs in many cases. They are available as public domain codes,
and we will compare them with Sieve-SDP in Sect. 2. A facial reduction algorithm
embedded in an interior point method was implemented in [35].

We next review facial reduction algorithms that work by simply inspecting con-
straints. For example, [15] notes that if

A • X = 0

is a constraint in (P) with A � 0, then we can restrict X to belong to a face of
the form (3), where V spans the nullspace of A. A similar idea was used in [22] to
reduce Euclidean Distance Matrix completion problems. For a rigorous derivation
of the algorithm in [22] see [13], which used an intermediate step of analyzing the
semidefinite completion problem. For followup work, see [12] on the noisy version of
the same problem, and [41] for a more theoretical study.

We finally mention two very accurate SDP solvers, which do not rely on facial
reduction. The first is SDPA-GMP [16], which uses the GMP library and computes
solutions of (P) and of its dual using several hundred digits of accuracy. We will
use SDPA-GMP in later sections to check the accuracy of the solutions computed
by Sieve-SDP and Mosek. The SPECTRA solver [20] computes a feasible solution

2 That is, F �= Sn+, F is convex, and X , Y ∈ Sn+, 1
2 (X + Y ) ∈ F implies that X and Y are in F .
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of (P) (if one exists) in exact arithmetic. Although these solvers cannot handle large
SDPs, they can solve small ones very accurately.

Sieve-SDP differs in several aspects from previously proposed facial reduction
algorithms:

– It needs only Cholesky factorization as a subroutine and, unlike the algorithms in
[34], it does not rely on any optimization solver.

– It detects very simple redundancies, which are easy to explain even to a user not
trained in optimization, and can help him/her to better formulate other problems.

– As soon as Sieve-SDP finds a reducing constraint, it deletes this constraint, and it
also deletes redundant rows and columns from the other constraint matrices. Hence
errors do not accumulate. Thus Sieve-SDP is as accurate as Cholesky factorization,
which works in machine precision [42, Theorem 23.2].

– Sieve-SDP can also detect infeasibility.
– It is easy to run in a safe mode (explained in the next section) to even better
safeguard against numerical errors.

– Finally, we present extensive computational results on general SDPs, which, as far
as we know, are not yet available for such a simple algorithm.

The rest of the paper is organized as follows. In Sect. 2 we describe how we
implemented Sieve-SDP, the computational setup, and the criteria for comparison
with competing codes. In this section we also give a small SDP with a positive duality
gap (in Example 3), and show how to construct a pair of primal–dual solutions with
arbitrarily small constraint violation and arbitrarily small duality gap. This example
shows that a solution with a smaller DIMACS error (see [27]) may be actually less
accurate. We also show that such a less accurate solution is actually computed by
Mosek, one of the leading SDP solvers.

In Sect. 3 we comment in detail on the results on some of the problems, and on
the strengths and weaknesses of the preprocessors. For example, we examine whether
they help to find the correct solution of numerically difficult SDPs; and how fast they
are on large scale problems.

In Sect. 4 we summarize the preprocessing results, and conclude the paper.
We have four appendices. In Appendix A we present very detailed computational

results on all the problems. In Appendix B we give the core Matlab code of Sieve-
SDP, containing only about 65 lines. In Appendix C we provide the definition of the
DIMACS errors for completeness. In Appendix D we discuss the issue of recovering
an optimal solution of the dual of (P) from the optimal solution of the dual of the
reduced problem.

2 Implementation, setup for computational testing, codes used for
comparison, and the issue of positive duality gaps

2.1 Implementation and computing environment

We implemented our algorithm in Matlab R2015a, using the standard Cholesky fac-
torization (subroutine chol) to check positive definiteness.
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We ran both Sieve-SDP and the competing preprocessors (which we describe in
Sect. 2.3) on a MacBook Pro with processor Intel Core i5 running at 2.7GHz, and
8GB of RAM.

2.2 Safe mode

To safeguard against numerical errors we use a safe mode. We set

ε := 2−52 ≈ 2.2204 · 10−16 = themachine precision inMatlab.

In the Basic Step in Fig. 1, if we find a constraint of type (2), then, instead of checking
bi < 0 we check whether

bi < −√
ε max{ ‖b‖∞, 1} holds.

If this test fails, then instead of checking bi = 0 we check whether

bi > −ε max{ ‖b‖∞, 1} holds.

Note that this step is correct, because in the Basic Step we already ensured bi ≤ 0.

2.3 Preprocessors used for comparison

We compare Sieve-SDP with the algorithms proposed by Permenter and Parrilo in
[34]. Their algorithms solve linear programming subproblems to reduce the size of an
SDP. They can work either on the problem (P), which we call the primal; or on its
dual:

sup
y

m∑
i=1

yi bi

s.t.
m∑
i=1

yi Ai � C .

(D)

They can use either diagonal, or diagonally dominant reductions (for details, see [34]).
Thus, there are four algorithms from [34] that we tested: pd1, pd2, dd1, and dd2.

Here pd1 stands for primal diagonal; pd2 for primal diagonally dominant; dd1 for dual
diagonal; and dd2 for dual diagonally dominant.

Remark 1 In the theoretical description of the algorithms in [34] the SDP which is
called the primal is actually our dual (D). However, in their implementation and their
code posted on the github website, their primal is the same as our primal (P).
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2.4 The datasets

We tested Sieve-SDP and competing methods on five datasets, which contain 771
problems overall.

– The first is the dataset from [34], which we call the Permenter–Parrilo or PP
dataset. This dataset contains 68 problems, whose original sources are [2,5,8–
10,14,33,36,37,45,46,48]. Although a few problems in this dataset are randomly
generated, most come from applications.

The PP dataset contains SDPs that are notoriously difficult for solvers, and some
are known to be not strictly feasible. Hence we added the following four datasets to
make our testing more comprehensive:

– A dataset we obtained from Hans Mittelmann’s website, which we call the Mit-
telmann dataset. This dataset contains 31 problems.

– A collection of SDP relaxations of polynomial optimization problems based on the
paper of Dressler, Illiman, and de Wolff [11], which we call the Dressler–Illiman–
de Wolff dataset, or DIW dataset for short. This dataset has 155 problems.

– A problem set kindly provided to us by Didier Henrion and Kim–Chuan Toh,
which we call the Henrion–Toh dataset. This dataset contains 98 problems.

– A problem set kindly provided to us by Kim–Chuan Toh, whose description is
in [40] and [49]. We call this dataset the Toh–Sun–Yang dataset, and it has 419
problems.

From the PP dataset we excluded only two problems: copos_5 and cprank_3, since
they were too large to be solved by Mosek on our computer.

Our datasets contain many different types of SDPs and, not surprisingly, the perfor-
mance of the preprocessors on them varies widely. Many of our SDPs may be strictly
feasible, and such SDPs could not be reduced by even more sophisticated preproces-
sors. For example, in the Toh–Sun–Yang dataset no problems were reduced by the
preprocessors. Although this is a bit disappointing, Sieve-SDP and pd1 delivered the
“no reduction found” result very quickly, so it did not hurt to preprocess.

Yet, even in the datasets other than the PP dataset many SDPs were reduced by
some preprocessor. In the Henrion–Toh dataset, pd1, pd2, and Sieve-SDP all reduced
18 problems, whereas dd1 and dd2 reduced none. In theMittelmann dataset, pd1, pd2,
and Sieve-SDP reduced 8 problems; dd1 and dd2 reduced none.

Strikingly, in the DIW dataset Sieve-SDP proved infeasibility of 59 problems out
of 155, and reduced total solving time by a factor of more than a hundred! Pd1 did
only slightly worse.

We illustrate this point with Fig. 3, which shows the size and sparsity structure of the
problem “ex4.2_order20”3 before (on the left) and after (on the right) applying Sieve-
SDP. Each row in the displayed matrices corresponds to an Ai matrix stretched out
as a vector. Red dots correspond to positive entries, blue dots correspond to negative
entries, and white areas correspond to zero entries.

3 This SDP is from the DIW dataset.
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Fig. 3 Problem “ex4.2_order20”: size and sparsity before and after Sieve-SDP

2.5 Internal format and input/output format

Internally we store the Ai matrices as an n × (nm) sparse matrix of the form

(
A1, A2, . . . , Am

)

(i.e., the Ai are stored side-by-side), and C as an n × n sparse matrix. The input- and
the output format of the preprocessors is the widely used Mosekopt format.

2.6 The choice of the SDP solver and LP solver

For all preprocessors we use Mosek 8.1.0.27 (from now on, simply “Mosek”) as SDP
solver: we solve the SDPs with Mosek before and after preprocessing. We also solve
the linear programming (LP) subproblems in the algorithms of [34] by Mosek. We
believe that Mosek is the best choice, since it is a reliable commercial SDP and LP
solver, and it is being actively developed and improved.

Our settings are different from the ones used in [34], where Sedumi [39] format
is used as input format, Mosek as LP solver, and Sedumi as SDP solver. With our
settings the algorithms of [34] work faster, becauseMosek is much faster than Sedumi.
Although we must convert the data from Mosekopt format to Sedumi format (to do
the preprocessing), and then back (to solve the preprocessed problem with Mosek),
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the total conversion time is negligible: for each of pd1, pd2, dd1 and dd2 it is less
than 100 seconds on all 771 SDPs. To be fair, in the detailed comparison tables of
Appendix A we list conversion time, and preprocessing time separately.

2.7 Criteria for comparison

Let us recall the main question that we address in this paper:

– CanSieve-SDPhelp us computemore accurate solutions and reduce the computing
time on a broad range of SDPs?

Thus, our three criteria for comparing the preprocessors are as follows, in order of
priority:

1. Do they help detect infeasibility? If not, do they help to find a correct optimal
solution?
Precisely, suppose that Mosek reports an incorrect optimal value of an SDP before
preprocessing. Does Mosek find a correct optimal value after preprocessing? (We
assume that the optimal value of the SDP is known mathematically.)

2. Does preprocessing reduce computing time?
This criterion is secondary, since preprocessing is often essential to compute any
accurate solution: see Sects. 3.1 through 3.3. Thus, we believe that we should
always preprocess SDPs, as long as we can do this with very high precision, even
if preprocessing increases the solution time.

3. Does preprocessing improve numerical accuracy measured by the six DIMACS
errors [27]?4 Let

DIMACSbefore and DIMACSafter

be the largest absolute value of the DIMACS errors before and after preprocessing,
respectively.We say that a method improves the DIMACS error if it does not detect
infeasibility and

DIMACSbefore > 10−6 and
DIMACSafter
DIMACSbefore

<
1

10
.

This last criterion must be taken with a grain of salt. While the DIMACS errors
are very natural (they measure constraint violation and duality gap), Example 3
below shows that they do not always measure accurately how good a solution is.
In fact, a larger DIMACS error may correspond to a better solution!

4 The description of the DIMACS errors is given in Appendix C.
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Example 3 Consider the SDP

inf
X

⎛
⎝
1 0 0
0 1 0
0 0 0

⎞
⎠ • X

s.t.

⎛
⎝
1 0 0
0 0 0
0 0 0

⎞
⎠ • X = 0

⎛
⎝
0 0 1
0 1 0
1 0 0

⎞
⎠ • X = 1

X = (xi j ) � 0,

(4)

and its dual

sup
y

y2

s.t. y1

⎛
⎝
1 0 0
0 0 0
0 0 0

⎞
⎠ + y2

⎛
⎝
0 0 1
0 1 0
1 0 0

⎞
⎠ �

⎛
⎝
1 0 0
0 1 0
0 0 0

⎞
⎠ .

(5)

We claim that the duality gap between them is 1. Indeed, let X be a feasible solution
of (4). Since x11 = 0, the first row and column of X must be zero, hence

X =
⎛
⎝
0 0 0
0 1 0
0 0 0

⎞
⎠

is an optimal solution with objective value 1. In turn, in (5) we have y2 = 0 for all
feasible y, so its optimal value is 0.

Next, let ε > 0 and define Mε > 0 so that

Xε :=
⎛
⎝

ε 0 (1 − ε)/2
0 ε 0

(1 − ε)/2 0 Mε

⎞
⎠

is positive semidefinite. Then Xε is an approximate solution of (4), which violates
only the first constraint (by ε) and has objective value 2ε.

Do such “fake” solutions arise in practice? At first look it seems that they do not.
If we feed the pair (4)–(5) to Mosek, it returns a solution with DIMACS errors

(0.5000, 0, 0.7071, 0,−5.5673 · 10−9, 5.9077 · 10−17).

Since the first and third errors are large, we cannot conclude that the problem has been
“solved”.
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However, let us apply a similarity transformation T�(·)T to all matrices in (4) with

T =
⎛
⎝

3 5 −2
4 1 1

−4 −4 5

⎞
⎠ .

Then the resulting primal–dual pair still has a duality gap of 1. Yet,Mosek now returns
a solution with DIMACS errors

(1.6093 · 10−6, 0, 5.2111 · 10−9, 3.287 · 10−12, −8.1484 · 10−5, 3.0511 · 10−5),

which may seem “essentially all zero” to a user.

We argue that in any SDP pair with positive duality gap such “fake” solutions can
arise. Indeed, suppose

val (D) < val (P),

where val(·) denotes the optimal value of an optimization problem. Then by the theory
of asymptotic duality (see e.g., Section 3 in [38]) there is a sequence {Xε � 0 | ε > 0}
such that Xε violates each primal constraint by at most ε, and

C • Xε → val (D), as ε ↘ 0.

As Example 3 shows, such “fake” or approximate solutions are sometimes indeed
found by SDP solvers.

We note that [9] also presented computational results on SDPs with positive dual-
ity gaps, and noted that Sedumi often gave an incorrect solution on such problems.
However, [9] did not report the DIMACS errors.

3 Detailed comments on some of the preprocessing results

We now report in detail how the preprocessors perform on some of the problems. We
thus examine them from several angles: for example, can they help to find known
optimal solutions of difficult SDPs? How do they perform on large-scale SDPs? How
fast are they when they do not reduce an SDP by much, or at all?

We first look at how the preprocessors perform on the “Compact”, “unbound” and
“Example” problems, for which the exact optimal values are known, but are hard
to compute. (These problems are from the PP dataset). The question we address is
whether preprocessing helps to find these optimal values.

First we note that Sieve-SDP does not change the optimal value of (P), since it
deletes rows and columns from the variable matrix X that are always zero anyway.
However, it deletes rows and columns in the constraint matrices, so after applying it,
in the dual (D) we require only a principal minor of C − ∑m

i=1 yi Ai to be psd. Thus
applying Sieve-SDP may increase the optimal value of (D).
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To quantify this argument, let (Ppre) and (Dpre) be the primal and dual problems
after preprocessing by Sieve-SDP, respectively. Then

val (D) ≤ val(Dpre) ≤ val(Ppre) = val (P). (6)

First assume val (D) < val (P). Then we can show by examples that any inequality
in (6) may be strict. For example, in Example 3 Sieve-SDP deletes the first row and
first column in all constraint matrices, and it is easy to check that the corresponding
optimal values are 0 < 1 = 1 = 1, respectively. In detail, for this example (Dpre) is

sup
y2

y2

s.t. y2

(
1 0
0 0

)
�

(
1 0
0 0

)
,

(7)

whose optimal value is 1.
On the other hand, suppose val (P) = val (D). Then (6) implies that Sieve-SDP

changes neither the primal, nor the dual optimal values.
Which optimal values are changed or kept the same by the other preprocessors? Pd1

and pd2 also reduce the primal (P), so when we apply them, the primal optimal value
(but maybe not that of the dual) will remain the same. On the other hand, dd1 and dd2
reduce the dual problem (D), so they keep its optimal value the same. However, they
may change the optimal value of the primal (P).

In all tables in this section we use the following convention: the first reported
objective value is the primal and the second is the dual.

3.1 “Compact” problems: 10 problems from [46]

These instances are weakly infeasible, i.e., the affine subspace

H = { X | Ai • X = bi (i = 1, · · · ,m)}

does not intersect Sn+, but the distance of H to Sn+ is zero. Weakly infeasible SDPs are
particularly challenging to SDP solvers. However, a recent algorithm in [20] can detect
(in)feasibility of small SDPs in exact arithmetic, and [25] presented an algorithm that
is tailored to detect weak infeasibility.

On these problems pd1 and pd2 produced the same results, while dd1 and dd2
reduced none of them. Pd1 and pd2 combined with Mosek correctly detected primal
infeasibility of all problems, while Sieve-SDP correctly proved primal infeasibility
without Mosek. (Since it found the primal infeasible, we did not compute a dual
solution).

The results are in Table 1.
We mention here another set of infeasible, and weakly infeasible SDPs. They were

presented in [24], and are available from the webpage of Gábor Pataki. Some of
these SDPs are classified as “clean” and some as “messy”. In the “clean” instances
the structure that proves infeasibility is apparent, while in the “messy” instances that
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structure was obscured by two kinds of operations: random elementary row operations
on the constraints and a random similarity transformation.

Indeed, in our testing all clean instances were found infeasible by Sieve-SDP, pd1,
and pd2. In contrast, no messy instances were reduced by any of the preprocessors.
Since the clean instances are evidently easy for Sieve-SDP, and the messy ones are
hard for all preprocessors, we did not include the SDPs from [24] in our test set, since
we felt that this would not be fair.

3.2 “Unbound” problems: 10 problems from [48]

The mathematically correct optimal values of both the primal and the dual are 0 in this
problem collection. However, before preprocessing Mosek returned wrong optimal
values for 6 out of 10 problems. Although Mosek found solutions with almost correct
optimal value in problems 2, 3 and 4, these solutions are inaccurate, as the DIMACS
errors are of the order 10−1 (this is marked by “*” symbols in Table 2).

In summary, 9 out of 10 problems in this dataset need preprocessing to obtain a
reasonable solution.

Sieve-SDP, pd1 and pd2 corrected all objective values, as Table 2 shows.
It is interesting that the authors in [48] computed the correct optimal solution of

these instances usingSDPA-GMP [16], a high-precisionSDP solver that carries several
hundred significant digits. Doing so is, of course, more time consuming, than running
Sieve-SDP and Mosek.

3.3 “Example” problems: 8 problems from [9]

The mathematically correct objective values are reported in [9] in table 12.1. (Note
that in [9] our primal is considered the dual, and vice versa, so that table must be read
accordingly.)

Table 3 shows the objective values before and after preprocessing. We consider an
objective value correct if it is less than 10−6 away from the true optimal value.

We excluded “Example5” of [9] from this table, since in Table 12.1 in [9] its
optimal value is not reported. For all other problems, except for “Example9size20”
and “Example9size100”, we manually verified the correctness of the optimal values
in exact arithmetic.

Note that the comparison in Table 3 is somewhat unfair to Sieve-SDP: if it found a
problem infeasible, it did not compute a dual solution.

3.4 “Finance” problems: 4 problems from [5]

The PP dataset contains four “finance” problems: “leverage_limit”, “long_only”, “sec-
tor_neutral” and “unconstrained”. We report on these problems in detail, since these
are the largest in the PP dataset. For example, “long_only” has 100 semidefinite vari-
able blocks of order 91 and another 100 of order 30.
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Table 4 Results on the “finance” problems

Method nsdp nnonneg nfree m nnz

None 60,400 51,100 0 251,777 2,895,756

After pd1 60,400 51,100 0 251,777 2,895,756

After pd2 60,280 51,100 0 249,797 2,880,876

After dd1 27,429 51,100 2,286,000 251,777 2,844,756

After dd2 36,400 51,100 2,521,005 251,777 2,605,807

After Sieve-SDP 56,766 50,873 0 215,210 2,466,573

Table 4 shows howmuch the preprocessors reduced these SDPs: here nsdp is the total
size of the semidefinite blocks; nnonneg is the total number of nonnegative variables;
nfree is the total number of free variables; m is the total number of constraints; and
nnz is the total number of nonzeros.

While dd1 and dd2 significantly reduced the size of the SDP blocks, they added
many free variables. Sieve-SDP reduced the size of theSDPblocks,without adding free
variables, and it eliminated the most constraints. We mention that after preprocessing
with dd2Mosek detected that problem “leverage_limit” is “dual infeasible”. This may
be because of numerical instability, and does not contradict the result we get after
preprocessing with Sieve-SDP.

We remark that preprocessing actually increased the solution time on these prob-
lems, though not by much. For example, the total time spent on preprocessing with
Sieve-SDP plus solving with Mosek is about 21% higher than the solving time with
Mosek without preprocessing. Still, since the primary goal of preprocessing is to
improve solution accuracy, we believe that we should do it whenever we can.

Furthermore, on these instances Sieve-SDP performed a large number of iterations,
and deleted only a small submatrix in each one. Thus, we could easily reduce the
time spent by Sieve-SDP by limiting the maximum number of iterations it is allowed
to perform. We do not report results with such a setting, since we do not want to
“overtune” our code.

3.5 Dressler–Illiman–deWolff (DIW) dataset (155 problems)

Consider the optimization problem

min
x

f (x)

s.t. gi (x) ≥ 0 (i = 1, . . . ,m),
(8)

where f and the gi are multivariate polynomials.
As shown in the seminal work of Lasserre [23], the optimal value of (8) can be lower

bounded by solving SDPs. Under suitable conditions the lower bounds converge to
the optimal value of (8), as the so-called Lasserre relaxation order increases. However,
no useful lower bound is obtained when the SDPs are infeasible. See Parrilo [28] for
a related scheme to construct SDP relaxations of (8).
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Table 5 Relaxation orders for examples in [11]

ex 3.3 4.1 4.2 4.3 4.4 5.4 5.5 5.6 5.7

Relaxation
orders

6 · · · 20 3 · · · 20 6 · · · 20 2 · · · 20 3 · · · 20 5 · · · 20 4 · · · 20 4 · · · 20 5 · · · 20

Table 6 Results for the DIW dataset

Method # Reduced n m Preprocessing (s) Solving (s) # Infeas

None – 53,523 186,225 – 139,493.56 –

pd1 155 1,450 3,278 1,632.43 128.46 56

pd2 155 1,450 3,278 10,831.32 124.44 56

dd1 0 53,523 186,225 65.18 139,493.56 0

dd2 0 53,523 186,225 22,152.57 139,493.56 0

Sieve-SDP 155 1,385 3,204 1,232.27 87.53 59

Since solving the Lasserre SDPs can be challenging, Dressler, Illiman and deWolff
[11] proposed an alternative relaxation, based on so-called nonnegative circuit poly-
nomials, and they compared their approach with the SDP-based one.

We constructed the SDPs in the “DIW” dataset by taking the polynomial optimiza-
tion problems from [11] and using Gloptipoly 3 [19] to generate their SDP relaxations.

We describe our SDPs in Table 5 with their Lasserre relaxation order, which ranges
from the lowest possible (half the degree of the highest degree monomial in the poly-
nomials) to 20. For example, the SDP named “ex3.3_order4” is obtained by applying
the Lasserre relaxation of order 4 to Example 3.3 in [11].

Table 6 shows the results: “n” is the sum of the orders of all psd and nonnegative
blocks, and “m” is the sum of the number of constraints in all problems.

The results are quite striking. Sieve-SDP, pd1, and pd2 ran fast, reduced all prob-
lems, detected infeasibility of more than a third, and reduced overall computing time
by a factor of more than a hundred! Sieve-SDP was the best in all aspects, with pd1 a
close second.

Note that without preprocessing Mosek failed to detect infeasibility of any of these
SDPs.

These results are somewhat surprising since [11] solved some of these SDPs to
near optimality, and managed to extract approximate optimal solutions of the original
polynomial optimization problems. See [18] for similar results on similar SDPs. In
fact, [18] took the view that numerical inaccuracy of the SDP solvers actually helps
find near-optimal solutions of the polynomial optimization problems. See [26] for a
more recent and thorough study of the same issue.

We remark that these SDPs are likely to be weakly infeasible.
Wewere thusmotivated to double check that Sieve-SDP indeed reduced these SDPs

correctly. Precisely, we verified that in the Basic Step (in Fig. 1) it only eliminated
constraints in one of the following forms: either of the form
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(
D 0
0 0

)
• X = 0,

where D is positive definite diagonal, of order 1 or 2, and the smallest diagonal
element is 1 or 0.5 or 1/3 = 0.3333 . . . ; or of the form

O • X = 0,

where O is the zero matrix. Furthermore, Sieve-SDP always detected infeasibility by
finding a constraint (

D 0
0 0

)
• X = β,

where D is as above, and β = −3 or −8.
The zeroes in all these constraints are zeroes in absolute machine precision, i.e.,

in the sparse SDPs returned by Gloptipoly 3 these entries do not appear at all. Thus
Sieve-SDP performed all reductions correctly.

3.6 Henrion–Toh dataset (98 problems)

This dataset was kindly provided to us by Didier Henrion and Kim–Chuan Toh. The
problems come mostly from polynomial optimization.

Among these problems 18 were reduced by pd1, pd2, or Sieve-SDP and none by
dd1 or dd2. Table 7 shows the time details in seconds. The last column “Pre versus
solve” shows the time spent on preprocessing as a percentage of time spent on solving.
It is

preprocessing time

solving time without preprocessing
× 100%. (9)

This is a dataset onwhich the preprocessors are less successful: pd1, pd2, and Sieve-
SDP detected infeasibility of only one problem (of “sedumi-l4”) and they reduced
solving time only a little. However, the preprocessing times are small, or even negligi-
ble: for example, Sieve-SDP spent only about 0.3% of the time that it took for Mosek
to solve the problems.

In Fig. 4 we illustrate how Sieve-SDP works on the instance “sedumi-fp32”: we
show the sparsity structure of the constraints of the original problem (on the left), and

Table 7 Time results on the Henrion–Toh dataset

Method Preprocessing (s) Solving (s) Pre. versus solve

None – 1420.02 –

pd1 10.27 1373.70 0.72%

pd2 49.84 1374.31 3.51%

dd1 3.93 1420.02 0.28%

dd2 29.24 1420.02 2.06%

Sieve-SDP 4.58 1376.27 0.32%
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Fig. 4 Instance “sedumi-fp32”: size and sparsity before (left) and after (right) preprocessing

after Sieve-SDP (on the right). Just like in Fig. 3, each row corresponds to an Ai matrix
stretched out as a vector. Red dots correspond to positive entries, blue dots correspond
to negative entries, and white areas to zero entries.

Here we also discuss problem “sedumi-fp33” on which preprocessing by Sieve-
SDP makes the DIMACS error worse. Since this is the only such instance, we looked
at it in more detail. The worst DIMACS error (of a solution computed by Mosek)
before Sieve-SDP is 3.36 × 10−7, which is acceptable. After Sieve-SDP the worst
error is about 0.0928, which is unacceptable.

We also solved this instance using the high accuracy SDP solver SDPA-GMP [16].
The DIMACS errors were

2.3497 · 102, 0.0000, 1.8552 · 101, 0.0000,−9.9999 · 10−1, 8.5173 · 10−2

before Sieve-SDP, and

3.4075 · 102, 0.0000, 1.9636 · 101, 0.0000,−9.9999 · 10−1, 6.1901 · 10−1

after Sieve-SDP. In both cases the largest error ismore than 200, which is unacceptably
large.

Given the high accuracy of SDPA-GMP, it seems that this SDP cannot be accurately
solved by current fast solvers, and the worse DIMACS error returned by Mosek after
Sieve-SDP alerts the user to this fact: this problemmay actually have a positive duality
gap (cf. Example 3).
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Table 8 Timing on the Toh–Sun–Yang dataset

Method Preprocessing (s) Solving (s) Pre. versus solve

pd1 220.18 27,635.46 0.80%

pd2 4, 029.61 27,635.46 14.58%

dd1 134.64 27,635.46 0.49%

dd2 2, 428.82 27,635.46 8.79%

Sieve-SDP 152.14 27,635.46 0.55%

3.7 Toh–Sun–Yang dataset (419 problems) from [40,49]

Although none of the five methods reduced the SDPs in this collection, we still com-
ment on them in detail, since it is interesting that pd1, dd1 and Sieve-SDP spent only
a negligible amount of time on preprocessing. Thus using these three methods it does
not hurt to preprocess: see Table 8. The last column “Pre versus Solve” shows the time
spent on preprocessing as a percentage of time spent on solving; see Eq. (9). Pd2 and
dd2, on the other hand, spent considerably more time on preprocessing.

4 Summary

We now compare all preprocessors on all instances in Tables 9, 10 and 11.
In Table 9 the second column shows how many problems were reduced. The third

column shows how many problems were found to be infeasible. The fourth column
shows on how many instances the preprocessing improved the DIMACS errors, as we
discussed in Sect. 2.7.

The last column “Memory” shows how many times a method ran out of memory,
or crashed: this happened with pd2 six times and with dd2 four times. To ensure fair
reporting we reran these methods on the same instances on a machine with 24 GB
RAM, and the results were the same.

Table 10 shows the preprocessing and solving times in seconds. The first col-
umn shows the preprocessing time and the second shows the solving time by Mosek
after preprocessing. Column “Pre versus solve” shows the relative speed of the pre-
processors: see Eq. (9). The last column, “Time reduction”, shows by how much
preprocessing decreased the solving time. It is

Table 9 Infeasibility detection and error reduction on all 771 problems

Method # Reduced # Infeas detected # DIMACS error improved Memory

pd1 209 67 74 0

pd2 230 67 78 6

dd1 14 0 2 0

dd2 21 0 4 4

Sieve-SDP 216 73 74 0
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Table 10 Preprocessing and solving times on all 771 problems

Method Preprocessing (s) Solving (s) Pre versus solve Time reduction

None – 272,427.23 – –

pd1 2,486.51 132,356.63 0.91% 50.50%

pd2 23,323.07 131,636.47 8.56% 43.12%

dd1 587.93 272,244.62 0.22% −0.15%

dd2 35,984.45 272,031.04 13.21% −13.16%

Sieve-SDP 2,170.13 131,837.25 0.80% 51.81%

solving time w.o. preprocessing − (preprocessing time + solving time after preprocessing)

solving time w.o. preprocessing
× 100%.

Of course, the higher this percentage, the more a preprocessor reduces solution time.
A negative percentage means that preprocessing actually increased the total time.

Finally, Table 11 shows by “how much” the problems were reduced. As in Table 9,
the second column shows the number of problems reduced by each method.

To explain the other columns, let us fix an SDP in the primal form (P) with poten-
tially several semidefinite block variables (some of which may be of order 1, i.e., they
may be just nonnegative variables).

Let nbefore and nafter be the total size of the semidefinite blocks before and after
reduction. We define the reduction rate on n as

∑
nbefore − ∑

nafter∑
nbefore

,

where the sum is over all 771 problems.
Similarly, let mbefore andmafter be the number of constraints in a problem before

and after reduction. We define the reduction rate on m as

∑
mbefore − ∑

mafter∑
mbefore

,

where the sum is again taken over all 771 problems.
Methods dd1 and dd2 added free variables, and the fifth column in Table 11 shows

how many.
The sixth column “nnz” shows the total number of nonzeros in the constraint matri-

ces.
Given these tables we now summarize our findings. In all aspects Sieve-SDP is

competitive with the other preprocessing methods. In detail:

– It is competitive considering the number of problems reduced.
– It is competitive in computing known optimal solutions; see Tables 1, 2 and 3.
– The time spent on preprocessing with Sieve-SDP versus solving is negligible. It
is also negligible for pd1 and dd1, but less so for pd2 and dd2. See Table 10.
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Table 11 Size reduction on all 771 problems

Method # Reduced Red. on n Red. on m Extra free vars nnz

None – – – – 300,989,332

pd1 209 15.47% 17.79% 0 211,299,702

pd2 230 15.59% 18.23% 0 211,257,726

dd1 14 6.74% 0.00% 2,293,495 300,936,120

dd2 21 9.28% 0.00% 2,315,849 299,272,012

Sieve-SDP 216 16.55% 20.66% 0 206,061,059

In several aspects Sieve-SDP is the best.

– It is best in detecting infeasibility: see Table 9. It is important that Sieve-SDP
detects infeasibilitywithout using any optimization solver, whereas the othermeth-
ods rely on Mosek.

– It reduced solution time the most, with pd1 a close second. See Table 10.
– It reduced the size of the instances the most: see Table 11.
– It needs very little additionalmemory, preciselyO(nm). For details, and theMatlab
code, see Appendix B.

– It is very accurate and stable: it is as accurate as Cholesky factorization, which
works in machine precision. Sieve-SDP is also easily implemented in a safe mode:
see Sect. 2.2.

– It is the simplest: the core Matlab code consists of only 65 lines.

The code is available from

https://github.com/unc-optimization/SieveSDP
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A Very detailed results

We now give very detailed computational results on all problems, separately for the
five datasets. We only report on problems that were reduced by at least one of the five
preprocessors.

In all tables the first column gives the number of the SDP, the second gives the
name, and the third gives the names of the preprocessing methods.

The next two columns describe the size of the problem. The entry “f; l; s” describes
the size of the variables of the problem, where

– the number “f” is the number of free variables;
– the number “l” is the number of linear nonnegative variables;
– the number, or numbers “s” describe the size of the semidefinite variable blocks,
possibly with multiplicity.

For example, 3; 5; 6 means that a problem has 3 free variables; 5 linear nonnegative
variables; and a semidefinite matrix variable block of order 6. The tuple 3; 5; 6, 53
means that a problem has 3 free variables; 5 linear nonnegative variables; and four
semidefinite matrix variable blocks, which are of order 6, 5, 5, 5, respectively. The
number m is the number of constraints.

In the next three columnswe put information about the preprocessors. In the column
“red.” we put 1, if a preprocessor reduced a problem, and 0 if it did not. In this column
under Sieve-SDP we put the same entries, except when Sieve-SDP actually proved
infeasibility. In that case we entered “inf” there. The number tprep is the time spent on
preprocessing; the number tconv is the time spent on converting fromMosek format to
Sedumi format and back (for the methods pd1, pd2, dd1, dd2).

In the next four columns we show how Mosek performed. In the column “inf” we
have a 1 ifMosek detected infeasibility, and 0 if it did not. The column obj (P, D) shows
the objective values (primal and dual, respectively). The column DIMACS contains
the largest absolute value of the DIMACS errors.

In the last column we show help codes, which show whether a preprocessor helped
or hurt to solve an SDP. Although the help codes can be deduced from the previous
columns, they still help to quickly evaluate the preprocessors. A positive help code
means that a preprocessor helped, and a negative one means that it hurt.

In detail, let us recall from Sect. 2.7 that DIMACSbefore [DIMACSafter] is the
absolute value of the DIMACS error that is largest in absolute value before [after]
preprocessing. We let objbefore and objafter be the primal objective values before and
after preprocessing, respectively.
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Given this notation,

– the help code is 1, if

– Sieve-SDP detects infeasibility, or
– Mosek does not detect infeasibility before preprocessing but it does detect
infeasibility after preprocessing;

– the help code is −1, if

– Mosek detects infeasibility before preprocessing but does not detect infeasi-
bility after preprocessing;

– the help code is 2, if

– it is not ±1 and preprocessing improved the DIMACS error, i.e.,

DIMACSbefore > 10−6 and
DIMACSafter
DIMACSbefore

<
1

10
;

– the help code is −2, if

– it is not ±1 and preprocessing made the DIMACS error worse, i.e.,

DIMACSafter > 10−6 and
DIMACSafter
DIMACSbefore

> 10;

– the help code is 3, if preprocessing shifted the objective value, i.e.,

– if help codes ±1 and −2 do not apply, and

|objbefore − objafter|
1 + |objbefore|

> 10−6;

– the help code is MM if a code ran out of memory or crashed.
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B CoreMatlab code

In this section we provide our core Matlab code of Sieve-SDP (not including input,
output, and dual solution recovery) with comments. In our code we physically delete
rows and columns of the Ai and of C only at the very end. During the execution of
the algorithm we only mark such rows, columns and constraints as deleted.

We use two arrays to keep track of what has been marked deleted:

1. Them-vector undeleted, whose i th entry is 1 if constraint i has not been deleted,
and 0 if it has been deleted.

2. The sparse array I ∈ {0, 1}n×(m+1) with entries defined as follows.

(a) For all i and for 1 ≤ j ≤ m

I (i, j) =
⎧⎨
⎩
0, if in A j the i th row and column are all zero or have been

deleted;
1, otherwise.

(b) For all i

I (i,m+1) =
{
0, if in all A j the i th row and column have been deleted;
1, otherwise.

function[Ar , br, Cr , info] = SieveSDP(A, b, C, EPS)

% Inputs:
% A: n-by-n*m sparse matrix ,
% which is m symmetric n-by -n matrices side by side
% b: the vector of rhs in R m, and b <= 0;
% C: the objective coefficient n-by -n matrix;
% EPS: accuracy for safe mode , with default value eps
% Outputs:
% Ar , br, cr: Reduced data after preprocessing
% info: A structure containing preprocessing info

if nargin < 4, EPS = eps; end
sqrtEPS = sqrt(EPS);

Ar = []; br = []; Cr = [];
n = size(C, 1); m = length(b);
I = true(n, m + 1); % initial nonzero indices
for i = 1:m,

I(:, i) = any(A(:, (n*(i - 1) + 1):(n*i)), 2);
end

not_done = 1; % 1 means preprocessing not done
undeleted = ones(m, 1); % keep track of deleted constraints
constr_ind = (1:m); % indices or undeleted constraints
mr = m; % reduced number of constraints
info.infeas = 0; % infeasibility detected?
info.red = 0; % any reduction?

bn = -sqrtEPS*max(1, norm(b, inf));
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% b < 0 if b < -sqrt(epsilon)*max{1, ||b||}
bz = bn*sqrtEPS; % b = 0 if -epsilon*max{1, ||b||} < b <= 0

% Preprocessing
while not_done

not_done = 0;
for ii = 1:mr

i = constr_ind(ii);
Ii = I(:, i); % indicates undeleted vars in matrix i
Ai = A(Ii , n*(i - 1) + find(Ii)); % nonzero submatrix
Iaux = any(Ai, 2);
if find(Iaux == false , 1),

I(Ii , i) = Iaux; Ii = I(:, i); Ai = Ai(Iaux , Iaux);
end
if isempty(Ai)

if b(i) < bn , info.infeas = 1; return; end
% Ai=0 and bi <0 => infeasible

if b(i) > bz , undeleted(i) = 0; continue; end
% Ai=0 and bi=0 => reduce

end
if b(i) < bn

[~, pd_check] = chol(Ai);
if pd_check == 0, info.infeas = 1; return; end

% Ai pd and bi <0 => infeasible
else

if b(i) > bz
[~, pd_check] = chol(Ai);
if pd_check == 0

% Ai pd and bi=0 => reduce
I(Ii , :) = false; undeleted(i) = 0;
not_done = 1;

else
[~, nd_check] = chol(-Ai);
if nd_check == 0

% Ai nd and bi=0 => reduce
I(Ii , :) = false; undeleted(i) = 0;
not_done = 1;

end
end

end
end

end
constr_ind = find(undeleted); mr = length(constr_ind);

end

% Undeleted rows/columns are marked in I(:, m + 1)
% Now do physical deletion
if mr == m

Ar = A; br = b; Cr = C; info.red = 0; return;
end
info.red = 1;
I_nonzero = I(:, m + 1); nr = nnz(I_nonzero);
Ar = sparse(nr, nr*mr);
for ii = 1:mr

i = constr_ind(ii);
Ar(:, (nr*(ii - 1) + 1):(nr*ii)) ...

= A(I_nonzero , n*(i - 1) + find(I_nonzero));
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end
br = b(constr_ind);
Cr = C(I_nonzero , I_nonzero);

end

C The DIMACS errors

For the sake of completeness in this section we describe the DIMACS errors, which
are commonly used to measure the accuracy of approximate solutions X of (P) and
y of (D).

Define the operator A : Rm → Sn and its adjoint as

A(X) = (A1 • X , . . . , Am • X),

A∗(y) =
m∑
i=1

yi Ai .

Suppose we are given an approximate solution X of (P) and an approximate solution
y of (D). For brevity, define Z = C − A∗(y).

Then the DIMACS error measures are defined as follows:

err1 = ‖A(X) − b‖2
1+ ‖b‖∞

,

err2 = max

{
0,

−λmin(X)

1+ ‖b‖∞

}
,

err3 = ‖A∗(y) − C − Z‖F
1+ ‖C‖∞

,

err4 = max

{
0,

−λmin(Z)

1+ ‖C‖∞

}
,

err5 = b�y − C • X

1 + |C • X | + |b�y| ,

err6 = Z • X

1 + |C • X | + |b�y| .

In the above equations we use the following notation. If M = (mi j ) ∈ Sn, then we
write ‖M‖F for the Frobenius norm of M and ‖M‖∞ for the infinity norm of M, i.e.,

‖M‖F =
√∑

i, j

m2
i j

‖M‖∞ = max
i, j

|mi j |.

We also write λmin(M) for the smallest eigenvalue of M .
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DDual solution recovery

In this section we address the following question: suppose we preprocessed the prob-
lem (P) by Sieve-SDP, then computed an optimal solution of the preprocessed SDP,
(Ppre), and of its dual, (Dpre). Can we compute an optimal solution of the original pri-
mal (P) and of its dual (D)? The answer to the first question (primal solution recovery)
is easy, while the issue of dual solution recovery is much more subtle.

First let us look at primal solution recovery. Since Sieve-SDP deletes rows and
columns from the variable matrix X that are always zero anyway, if Xpre is an optimal
solution of (Ppre), then by simply padding Xpre with zeroes we obtain an optimal
solution of (P).

Next we discuss dual solution recovery. For simplicity we first assume that Sieve-
SDP performed just one iteration. Further, we also assume that in the Basic Step (in
Fig. 1) it eliminated the constraint A1 • X = 0, where

A1 =
(
D 0
0 0

)
,

with D � 0 and we let r be the order of D.
Next, let us write out (Dpre) :

sup
y

m∑
i=2

bi yi

s.t. C −
m∑
i=2

yi Ai ∈
(× ×

× ⊕
)

,

(Dpre)

where the notation means that the lower right (n − r) × (n − r) principal block of
C − ∑m

i=2 yi Ai is positive semidefinite, and the rest is arbitrary. Thus clearly

val (D) ≤ val(Dpre), (10)

since (Dpre) has a feasible region which is at least as large as that of (D) (and usually
it is larger). Assume that ypre = (ypre2 , . . . , yprem ) is an optimal solution of (Dpre). Our
recovery procedure, which we call Basic-Recovery, fixes ypre and seeks y1 such that
(y1, ypre) is feasible in (D), i.e.,

y1A1 +
m∑
i=2

yprei Ai � C . (11)

We do this by a very basic linesearch: we first try the values y1 = 0,−1, and −2. If
these all fail, then we try y1 = −100. If we fail with y1 = −100, we stop; otherwise
we test y1 = −3,−4, . . . and find the largest y1 such that (11) holds.
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To test whether (11) holds, again Cholesky factorization comes into play: using it,
we test whether

C −
(
y1A1 +

m∑
i=2

yprei Ai

)
+ 10−6 I � 0 holds.

Basic-Recovery is inspired by the dual solution recovery procedure in [34], which
builds on the ideas in [32], and it assumes that the dual problem (D) is reduced.5

The procedure Basic-Recovery may fail. To see why, first assume it succeeds, i.e., it
computes a feasible solution of (D). Since y1 has zero objective coefficient in (D), this
solution has objective value val(Dpre), hence by inequality (10) it is optimal in (D),
thus val (D) = val(Dpre). Conversely, if val (D) < val(Dpre), then Basic-Recovery
must fail.

Example 4 (Example 3 continued)Whenwe apply Sieve-SDP to the SDP (4), it deletes
the first row and first column in all matrices and it also deletes the first constraint.

Let us write out (Dpre) again for this problem (i.e., repeat the SDP (7)):

sup
y2

y2

s.t. y2

(
1 0
0 0

)
�

(
1 0
0 0

)
,

(12)

whose optimal solution is ypre2 = 1.
Thus, Basic-Recovery seeks y1 such that

y1

⎛
⎝
1 0 0
0 0 0
0 0 0

⎞
⎠ +

⎛
⎝
0 0 1
0 1 0
1 0 0

⎞
⎠ �

⎛
⎝
1 0 0
0 1 0
0 0 0

⎞
⎠ ,

and clearly there is no such y1.

One can construct more sophisticated examples in which val(Dpre) = val (D), but
Basic-Recovery still fails.

We next look at dual solution recovery when Sieve-SDP deleted several constraints:
then we run Basic-Recovery to find the corresponding yi sequentially. For simplicity
assume that Sieve-SDP deleted constraints 1, 2, . . . , k andwe found an optimal primal
and dual solution of the resulting SDP (byMosek). We then attempt to find an optimal
dual solution of the SDP obtained by deleting only constraints 1, . . . , k − 1; then of
the SDP obtained by deleting only constraints 1, . . . , k − 2; and so on.

To conclude this section we make the point that dual solution recovery is much
more difficult in SDP than in linear programming. We thus implemented an “ideal”
recovery procedure, which we call Ideal-Recovery. It works as follows. Suppose
ypre = (yprek+1, . . . , y

pre
m ) is an optimal dual solution of the SDP obtained by delet-

ing constraints 1, . . . , k. Ideal-Recovery fixes ypre, then calls Mosek to find a feasible
solution (y1, . . . , yk) of

5 See Remark 1 about how the primal and dual are defined in [34].
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Table 12 Dual solution recovery by four methods

Method # Reduced feasible # Success # Failure Success rate Time (s)

pd1 137 23 114 16.8% 154.75

pd2 158 39 119 24.7% 172.13

Sieve-SDP + Basic-Recovery 143 25 118 17.5% 12.62

Sieve-SDP + Ideal-Recovery 143 103 40 72.0% 1313.57

Table 13 Dual solution recovery assuming the tightest standard for “success”

Method # Reduced feasible # Success # Failure Success rate Time (s)

pd1 137 19 118 13.9% 154.75

pd2 158 34 124 21.5% 172.13

Sieve-SDP + Basic-Recovery 143 25 118 17.5% 12.62

Sieve-SDP + Ideal-Recovery 143 17 126 11.9% 1313.57

k∑
i=1

yi Ai +
m∑

i=k+1

yprei Ai � C . (13)

Table 12 shows on how many instances pd1, pd2, Sieve-SDP+Basic-Recovery and
Sieve-SDP+Ideal-Recovery succeeded. (Note that they succeeded on overlapping, but
different problem sets, as a preprocessor may reduce an SDP, while another prepro-
cessor may not reduce the same SDP. We do not report results with dd1 and dd2, since
they only reduced a very small percentage of the instances.)

What do we mean by “success”? For pd1 and pd2 it means that their dual solu-
tion recovery code reported success. For Sieve-SDP+Basic-Recovery it means that
it succeeded in every iteration: it computed the yi for every deleted constraint. For
Sieve-SDP+Ideal-Recovery it means that Mosek did not report that (13) is infeasible.

Next we made the criterion of “success” more rigorous: we redefined “success”
as returning a pair of primal-dual optimal solutions whose largest DIMACS error in
absolute value is at most 10−6. Table 13 shows the results: now Sieve-SDP+Basic-
Recovery is the winner, as it beats the supposedly perfect Sieve-SDP+Ideal-Recovery
procedure.

Nevertheless, none of the methods do very well, and Table 13 shows that dual
solution recovery in facial reduction remains a challenge, and an interesting area for
further research.
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