Mathematical Programming Computation (2019) 11:503-586
https://doi.org/10.1007/s12532-019-00164-4

FULL LENGTH PAPER

®

Check for
updates

Sieve-SDP: a simple facial reduction algorithm to
preprocess semidefinite programs

Yuzixuan Zhu' . Gabor Pataki' - Quoc Tran-Dinh’

Received: 20 September 2017 / Accepted: 7 February 2019 / Published online: 1 July 2019
© Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2019

Abstract

We introduce Sieve-SDP, a simple facial reduction algorithm to preprocess semidef-
inite programs (SDPs). Sieve-SDP inspects the constraints of the problem to detect
lack of strict feasibility, deletes redundant rows and columns, and reduces the size
of the variable matrix. It often detects infeasibility. It does not rely on any optimiza-
tion solver: the only subroutine it needs is Cholesky factorization, hence it can be
implemented in a few lines of code in machine precision. We present extensive com-
putational results on several problem collections from the literature, with many SDPs
coming from polynomial optimization.

Keywords Semidefinite programming - Preprocessing - Strict feasibility - Strong
duality - Facial reduction - Polynomial optimization

Mathematics Subject Classification 90-08 - 90C22 - 90C25 - 90C06

1 Introduction and the preprocessing algorithm

Consider a semidefinite programming problem (SDP) in the form

iI)l(f CeX
st. AjeX=0b; (i=1,...,m), (P)
X >0,

B Gabor Pataki
gabor @unc.edu

Yuzixuan Zhu
zyzx @live.unc.edu

Quoc Tran-Dinh
quoctd @email.unc.edu

Department of Statistics and Operations Research, The University of North Carolina at Chapel Hill,
Chapel Hill, NC 27599-3260, USA

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s12532-019-00164-4&domain=pdf

504 Y.Zhu et al.

where the A; and C are n x n symmetric matrices, the b; are scalars, X > 0 means
that X is in 8", the set of symmetric, positive semidefinite (psd) matrices, and the o
inner product of symmetric matrices is the trace of their regular product.

SDPs are some of the most versatile, useful, and widespread optimization problems
of the last three decades. They find applications in control theory, integer programming,
and combinatorial optimization, to name just a few areas. Several good solvers are
available to solve SDPs (see for example [1,6,7,16,17,21,39,44,50]); among these,
Mosek [1] is commercially available.

SDPs—as all optimization problems—often have redundant variables and/or con-
straints. The redundancy we address is lack of strict feasibility, i.e., when there is no
feasible positive definite X in (P). When (P) is not strictly feasible, the optimal value
of (P) and of its dual may differ, and the latter may not be attained.! Hence, when
attempting to solve such an SDP, solvers often struggle, or fail.

Itis, of course, useful to detect lack of strict feasibility in a preprocessing stage. This
paper describes a very simple preprocessing algorithm for SDPs, called Sieve-SDP,
which belongs to the class of facial reduction algorithms [4,12,13,22,30,31,34,43,47].
Sieve-SDP can detect lack of strict feasibility, reduce the size of the problem, and can
be implemented in a few lines of code in machine precision.

To motivate our algorithm, let us consider an example:

Example 1 The SDP instance (with an arbitrary objective function)

1 ey

— OO oo ~
S—= O ocooco
o

is infeasible. Indeed, suppose X = (x; J')i3 j=1 is feasible in (1). Then x1; = 0, hence
the first row and column of X are zero by positive semidefiniteness, so the second
constraint implies xop = —1, which is a contradiction.

Note that if we replace —1 in the second constraint of (1) by a positive number, then
(1) can be restated over the set of psd matrices with first row and column equal to zero.
Thus, even if we do not detect infeasibility, such preprocessing is still useful.

Our algorithm Sieve-SDP repeats the Basic Step shown in Fig. 1. Hereafter D > 0
means that a symmetric matrix D is positive definite.

Example 2 (Example 1 continued) When we first execute the Basic Step on (1), we
find the first constraint, delete it, and also delete the first row and column from the
second constraint matrix. Next, we find the constraint

I More precisely, when (P) is strictly feasible, strong duality holds between (P) and its dual, i.e., their
values agree and the latter is attained.

@ Springer

Sieve-SDP: a simple facial reduction algorithm to... 505

BAsic STEP

1. Find ¢ € {1,...,m} (if any) such that the ith constraint of (P), after permuting
rows and columns, and possibly multiplying both sides by —1, is of the form

(%‘ 8) X —b;, (2)

where D; = 0 and b; < 0. If there is no such ¢, STOP; (P) cannot be preprocessed

further.

If b; < 0, then STOP; (P) is infeasible.

3. If b; = 0, then delete this constraint. Also delete all rows and columns in the other
constraints that correspond to rows and columns of D;.

N

Fig. 1 The Basic Step of Sieve-SDP

Fig.2 The sieve structure

1 0
(0 O).X——l,

and declare that (1) is infeasible.

We call our algorithm Sieve-SDP, since by shading the deleted rows and columns
in the variable matrix X (and the A;) we obtain a sieve-like structure: see Fig. 2.

Sieve-SDP is easy to implement and fast: it only needs an incomplete Cholesky
factorization subroutine to check positive definiteness, and we can delete rows and
columns using fast matrix operations. Even the worst case complexity of Sieve-
SDP is reasonable: an easy calculation shows that it can fully preprocess (P) using
O (min{m, n}n>m) arithmetic operations.

Sieve-SDP is a heuristic: it does not always detect infeasibility, or lack of strict
feasibility. For example, it will not work on problem (1), if we apply a similarity
transformation 7' (-)T to all A;, where T is a random invertible matrix.

Given its simplicity, and how easily it is “fooled”, it is natural to ask whether our
algorithm works in practice. So the main research question we address, and answer in
the affirmative, is:

@ Springer

506 Y.Zhuetal.

— Can Sieve-SDP help us compute more accurate solutions and reduce the computing
time on a broad range of SDPs?

Related work Sieve-SDP belongs to the family of facial reduction algorithms, which
we now describe. When (P) is not strictly feasible, one can replace the constraint
X € 8 by

X eF,
where F is a proper face of Si.z Since any such face can be written as (see e.g. [29])
F=VS.V', (©)

where r < n and V is an n X r matrix, the reduced problem can be restated over
a smaller semidefinite cone. Facial reduction algorithms—for more general conic
programs—originated in the papers [3,4]. Later simplified, more easily implementable
variants were given in [30,31,47], and in [43] for the SDP case. A recent, very concise
version with a short proof of convergence is in [24].

Facial reduction algorithms, when applied to (P), find the face F' by solving a
sequence of SDP subproblems, which may be as hard to solve as (P) itself. Thus one
is led to seek simpler alternatives.

Simplified and implementable versions of facial reduction are described in [34].
The algorithms in [34] reduce the feasible set of (P) (or of an SDP in a different shape)
by solving linear programs instead of SDPs. Thus they do not find all reductions, but
still simplify the SDPs in many cases. They are available as public domain codes,
and we will compare them with Sieve-SDP in Sect. 2. A facial reduction algorithm
embedded in an interior point method was implemented in [35].

We next review facial reduction algorithms that work by simply inspecting con-
straints. For example, [15] notes that if

AeX =0

is a constraint in (P) with A > 0, then we can restrict X to belong to a face of
the form (3), where V spans the nullspace of A. A similar idea was used in [22] to
reduce Euclidean Distance Matrix completion problems. For a rigorous derivation
of the algorithm in [22] see [13], which used an intermediate step of analyzing the
semidefinite completion problem. For followup work, see [12] on the noisy version of
the same problem, and [41] for a more theoretical study.

We finally mention two very accurate SDP solvers, which do not rely on facial
reduction. The first is SDPA-GMP [16], which uses the GMP library and computes
solutions of (P) and of its dual using several hundred digits of accuracy. We will
use SDPA-GMP in later sections to check the accuracy of the solutions computed
by Sieve-SDP and Mosek. The SPECTRA solver [20] computes a feasible solution

2 Thatis, F #* 81, F is convex, and X, Y € Sﬂr, %(X + Y) € F implies that X and Y are in F.

@ Springer

Sieve-SDP: a simple facial reduction algorithm to... 507

of (P) (if one exists) in exact arithmetic. Although these solvers cannot handle large
SDPs, they can solve small ones very accurately.

Sieve-SDP differs in several aspects from previously proposed facial reduction
algorithms:

— It needs only Cholesky factorization as a subroutine and, unlike the algorithms in
[34], it does not rely on any optimization solver.

— It detects very simple redundancies, which are easy to explain even to a user not
trained in optimization, and can help him/her to better formulate other problems.

— As soon as Sieve-SDP finds a reducing constraint, it deletes this constraint, and it
also deletes redundant rows and columns from the other constraint matrices. Hence
errors do not accumulate. Thus Sieve-SDP is as accurate as Cholesky factorization,
which works in machine precision [42, Theorem 23.2].

— Sieve-SDP can also detect infeasibility.

— It is easy to run in a safe mode (explained in the next section) to even better
safeguard against numerical errors.

— Finally, we present extensive computational results on general SDPs, which, as far
as we know, are not yet available for such a simple algorithm.

The rest of the paper is organized as follows. In Sect. 2 we describe how we
implemented Sieve-SDP, the computational setup, and the criteria for comparison
with competing codes. In this section we also give a small SDP with a positive duality
gap (in Example 3), and show how to construct a pair of primal-dual solutions with
arbitrarily small constraint violation and arbitrarily small duality gap. This example
shows that a solution with a smaller DIMACS error (see [27]) may be actually less
accurate. We also show that such a less accurate solution is actually computed by
Mosek, one of the leading SDP solvers.

In Sect. 3 we comment in detail on the results on some of the problems, and on
the strengths and weaknesses of the preprocessors. For example, we examine whether
they help to find the correct solution of numerically difficult SDPs; and how fast they
are on large scale problems.

In Sect. 4 we summarize the preprocessing results, and conclude the paper.

We have four appendices. In Appendix A we present very detailed computational
results on all the problems. In Appendix B we give the core Matlab code of Sieve-
SDP, containing only about 65 lines. In Appendix C we provide the definition of the
DIMACS errors for completeness. In Appendix D we discuss the issue of recovering
an optimal solution of the dual of (P) from the optimal solution of the dual of the
reduced problem.

2 Implementation, setup for computational testing, codes used for
comparison, and the issue of positive duality gaps

2.1 Implementation and computing environment

We implemented our algorithm in Matlab R2015a, using the standard Cholesky fac-
torization (subroutine chol) to check positive definiteness.

@ Springer

508 Y.Zhuetal.

We ran both Sieve-SDP and the competing preprocessors (which we describe in
Sect. 2.3) on a MacBook Pro with processor Intel Core i5 running at 2.7 GHz, and
8 GB of RAM.

2.2 Safe mode

To safeguard against numerical errors we use a safe mode. We set
€ =272 ~ 2.2204-107'® = the machine precision in Matlab.

In the Basic Step in Fig. 1, if we find a constraint of type (2), then, instead of checking
b; < 0 we check whether

b; < —+/e max{ ||p||oo, 1} holds.
If this test fails, then instead of checking b; = 0 we check whether
b; > —e max{ ||b||o0, 1} holds.
Note that this step is correct, because in the Basic Step we already ensured b; < 0.

2.3 Preprocessors used for comparison

We compare Sieve-SDP with the algorithms proposed by Permenter and Parrilo in
[34]. Their algorithms solve linear programming subproblems to reduce the size of an
SDP. They can work either on the problem (P), which we call the primal; or on its
dual:

m
wup 3 iy
Y=l

m (D)
s.t. ZyiAi <C.
i=1

They can use either diagonal, or diagonally dominant reductions (for details, see [34]).

Thus, there are four algorithms from [34] that we tested: pdl, pd2, dd1, and dd2.
Here pd1 stands for primal diagonal; pd2 for primal diagonally dominant; dd1 for dual
diagonal; and dd2 for dual diagonally dominant.

Remark 1 In the theoretical description of the algorithms in [34] the SDP which is
called the primal is actually our dual (D). However, in their implementation and their
code posted on the github website, their primal is the same as our primal (P).

@ Springer

Sieve-SDP: a simple facial reduction algorithm to... 509

2.4 The datasets

We tested Sieve-SDP and competing methods on five datasets, which contain 771
problems overall.

— The first is the dataset from [34], which we call the Permenter—Parrilo or PP
dataset. This dataset contains 68 problems, whose original sources are [2,5,8—
10,14,33,36,37,45,46,48]. Although a few problems in this dataset are randomly
generated, most come from applications.

The PP dataset contains SDPs that are notoriously difficult for solvers, and some
are known to be not strictly feasible. Hence we added the following four datasets to
make our testing more comprehensive:

A dataset we obtained from Hans Mittelmann’s website, which we call the Mit-

telmann dataset. This dataset contains 31 problems.

— A collection of SDP relaxations of polynomial optimization problems based on the
paper of Dressler, Illiman, and de Wolff [11], which we call the Dressler—Illiman—
de Wolff dataset, or DIW dataset for short. This dataset has 155 problems.

— A problem set kindly provided to us by Didier Henrion and Kim—Chuan Toh,
which we call the Henrion—Toh dataset. This dataset contains 98 problems.

— A problem set kindly provided to us by Kim—Chuan Toh, whose description is

in [40] and [49]. We call this dataset the Toh—Sun—Yang dataset, and it has 419

problems.

From the PP dataset we excluded only two problems: copos_5 and cprank_3, since
they were too large to be solved by Mosek on our computer.

Our datasets contain many different types of SDPs and, not surprisingly, the perfor-
mance of the preprocessors on them varies widely. Many of our SDPs may be strictly
feasible, and such SDPs could not be reduced by even more sophisticated preproces-
sors. For example, in the Toh—Sun—Yang dataset no problems were reduced by the
preprocessors. Although this is a bit disappointing, Sieve-SDP and pd1 delivered the
“no reduction found” result very quickly, so it did not hurt to preprocess.

Yet, even in the datasets other than the PP dataset many SDPs were reduced by
some preprocessor. In the Henrion—Toh dataset, pd1, pd2, and Sieve-SDP all reduced
18 problems, whereas dd1 and dd2 reduced none. In the Mittelmann dataset, pd1, pd2,
and Sieve-SDP reduced 8 problems; dd1 and dd2 reduced none.

Strikingly, in the DIW dataset Sieve-SDP proved infeasibility of 59 problems out
of 155, and reduced total solving time by a factor of more than a hundred! Pd1 did
only slightly worse.

We illustrate this point with Fig. 3, which shows the size and sparsity structure of the
problem “ex4.2_order20”3 before (on the left) and after (on the right) applying Sieve-
SDP. Each row in the displayed matrices corresponds to an A; matrix stretched out
as a vector. Red dots correspond to positive entries, blue dots correspond to negative
entries, and white areas correspond to zero entries.

3 This SDP is from the DIW dataset.

@ Springer

510 Y.Zhuetal.

400 -

L. e L e
1 20000 40000 60000 76770

Fig.3 Problem “ex4.2_order20”: size and sparsity before and after Sieve-SDP

2.5 Internal format and input/output format
Internally we store the A; matrices as an n X (nm) sparse matrix of the form
(A17 A27) Am)

(i.e., the A; are stored side-by-side), and C as an n x n sparse matrix. The input- and
the output format of the preprocessors is the widely used Mosekopt format.

2.6 The choice of the SDP solver and LP solver

For all preprocessors we use Mosek 8.1.0.27 (from now on, simply “Mosek™) as SDP
solver: we solve the SDPs with Mosek before and after preprocessing. We also solve
the linear programming (LP) subproblems in the algorithms of [34] by Mosek. We
believe that Mosek is the best choice, since it is a reliable commercial SDP and LP
solver, and it is being actively developed and improved.

Our settings are different from the ones used in [34], where Sedumi [39] format
is used as input format, Mosek as LP solver, and Sedumi as SDP solver. With our
settings the algorithms of [34] work faster, because Mosek is much faster than Sedumi.
Although we must convert the data from Mosekopt format to Sedumi format (to do
the preprocessing), and then back (to solve the preprocessed problem with Mosek),

@ Springer

Sieve-SDP: a simple facial reduction algorithm to... 511

the total conversion time is negligible: for each of pdl, pd2, dd1 and dd2 it is less
than 100 seconds on all 771 SDPs. To be fair, in the detailed comparison tables of
Appendix A we list conversion time, and preprocessing time separately.

2.7 Criteria for comparison

Let us recall the main question that we address in this paper:

— Can Sieve-SDP help us compute more accurate solutions and reduce the computing
time on a broad range of SDPs?

Thus, our three criteria for comparing the preprocessors are as follows, in order of
priority:

1. Do they help detect infeasibility? If not, do they help to find a correct optimal
solution?
Precisely, suppose that Mosek reports an incorrect optimal value of an SDP before
preprocessing. Does Mosek find a correct optimal value after preprocessing? (We
assume that the optimal value of the SDP is known mathematically.)

2. Does preprocessing reduce computing time?
This criterion is secondary, since preprocessing is often essential to compute any
accurate solution: see Sects. 3.1 through 3.3. Thus, we believe that we should
always preprocess SDPs, as long as we can do this with very high precision, even
if preprocessing increases the solution time.

3. Does preprocessing improve numerical accuracy measured by the six DIMACS
errors [27]2* Let

DIMACSpefore and DIMACS yfier

be the largest absolute value of the DIMACS errors before and after preprocessing,
respectively. We say that a method improves the DIMACS error if it does not detect
infeasibility and

B DIMACS afer 1
DIMACS 1070 and e < o
before = an DIMACSpefore = 10

This last criterion must be taken with a grain of salt. While the DIMACS errors
are very natural (they measure constraint violation and duality gap), Example 3
below shows that they do not always measure accurately how good a solution is.
In fact, a larger DIMACS error may correspond to a better solution!

4 The description of the DIMACS errors is given in Appendix C.

@ Springer

512 Y.Zhuetal.

Example 3 Consider the SDP

1 0 0
inf [O 1 0)eX
*\o 0 o
1 0 0
st.]0 0 O0)]eX =0
0 0 O @)
0 0 1
01 0]Jex=1
1 0 0
X = (x5) = 0,
and its dual
sup y»
y
1 0 0 0 0 1 1 0 O (5)
st.yir]O 0 OJ+»|0O 1 0O)J=<|0 1 O
0 0 O 1 00 0 0 O

We claim that the duality gap between them is 1. Indeed, let X be a feasible solution
of (4). Since x1; = 0, the first row and column of X must be zero, hence

S

I
o O O
S = O
S OO

is an optimal solution with objective value 1. In turn, in (5) we have y; = 0 for all
feasible y, so its optimal value is 0.
Next, let € > 0 and define M, > 0 so that

€ 0 (1-¢))2
X = 0 € 0
1—-€)/2 0 M.

is positive semidefinite. Then X, is an approximate solution of (4), which violates
only the first constraint (by €) and has objective value 2e¢.
Do such “fake” solutions arise in practice? At first look it seems that they do not.
If we feed the pair (4)—(5) to Mosek, it returns a solution with DIMACS errors
(0.5000, 0, 0.7071, 0, —5.5673 - 1072, 5.9077 - 10~'7).

Since the first and third errors are large, we cannot conclude that the problem has been
“solved”.

@ Springer

Sieve-SDP: a simple facial reduction algorithm to... 513

However, let us apply a similarity transformation 7' T ()T to all matrices in (4) with

305 =2
T=[4 1 1
—4 —4 5

Then the resulting primal—dual pair still has a duality gap of 1. Yet, Mosek now returns
a solution with DIMACS errors

(1.6093-107%, 0, 5.2111-107?, 3.287- 1072, —8.1484 - 107>, 3.0511-107°),

which may seem “essentially all zero” to a user.

We argue that in any SDP pair with positive duality gap such “fake” solutions can
arise. Indeed, suppose

val (D) < val (P),

where val(-) denotes the optimal value of an optimization problem. Then by the theory
of asymptotic duality (see e.g., Section 3 in [38]) there is a sequence { X, > 0 | € > 0}
such that X, violates each primal constraint by at most €, and

CeX.— val(D), as € \ 0.

As Example 3 shows, such “fake” or approximate solutions are sometimes indeed
found by SDP solvers.

We note that [9] also presented computational results on SDPs with positive dual-
ity gaps, and noted that Sedumi often gave an incorrect solution on such problems.
However, [9] did not report the DIMACS errors.

3 Detailed comments on some of the preprocessing results

We now report in detail how the preprocessors perform on some of the problems. We
thus examine them from several angles: for example, can they help to find known
optimal solutions of difficult SDPs? How do they perform on large-scale SDPs? How
fast are they when they do not reduce an SDP by much, or at all?

We first look at how the preprocessors perform on the “Compact”, “unbound” and
“Example” problems, for which the exact optimal values are known, but are hard
to compute. (These problems are from the PP dataset). The question we address is
whether preprocessing helps to find these optimal values.

First we note that Sieve-SDP does not change the optimal value of (P), since it
deletes rows and columns from the variable matrix X that are always zero anyway.
However, it deletes rows and columns in the constraint matrices, so after applying it,
in the dual (D) we require only a principal minor of C —)", y; A; to be psd. Thus
applying Sieve-SDP may increase the optimal value of (D).

@ Springer

514 Y.Zhuetal.

To quantify this argument, let (Ppre) and (Dpre) be the primal and dual problems
after preprocessing by Sieve-SDP, respectively. Then

val (D) < val(Dpre) < val(Ppre) = val (P). (©6)

First assume val (D) < val (P). Then we can show by examples that any inequality
in (6) may be strict. For example, in Example 3 Sieve-SDP deletes the first row and
first column in all constraint matrices, and it is easy to check that the corresponding
optimal values are 0 < 1 =1 = 1, respectively. In detail, for this example (Dpye) is

sup y2
2

10 10 O
S.t. y2 O j O 0 s
whose optimal value is 1.

On the other hand, suppose val (P) = val (D). Then (6) implies that Sieve-SDP
changes neither the primal, nor the dual optimal values.

Which optimal values are changed or kept the same by the other preprocessors? Pd1
and pd2 also reduce the primal (P), so when we apply them, the primal optimal value
(but maybe not that of the dual) will remain the same. On the other hand, dd1 and dd2
reduce the dual problem (D), so they keep its optimal value the same. However, they
may change the optimal value of the primal (P).

In all tables in this section we use the following convention: the first reported
objective value is the primal and the second is the dual.

3.1 “Compact” problems: 10 problems from [46]
These instances are weakly infeasible, i.e., the affine subspace
H={X]AeX=b=1--,m)}

does not intersect S, but the distance of H to S’} is zero. Weakly infeasible SDPs are
particularly challenging to SDP solvers. However, a recent algorithm in [20] can detect
(in)feasibility of small SDPs in exact arithmetic, and [25] presented an algorithm that
is tailored to detect weak infeasibility.

On these problems pdl and pd2 produced the same results, while dd1 and dd2
reduced none of them. Pd1 and pd2 combined with Mosek correctly detected primal
infeasibility of all problems, while Sieve-SDP correctly proved primal infeasibility
without Mosek. (Since it found the primal infeasible, we did not compute a dual
solution).

The results are in Table 1.

We mention here another set of infeasible, and weakly infeasible SDPs. They were
presented in [24], and are available from the webpage of Gédbor Pataki. Some of
these SDPs are classified as “clean” and some as “messy”. In the “clean” instances
the structure that proves infeasibility is apparent, while in the “messy” instances that

@ Springer

515

Sieve-SDP: a simple facial reduction algorithm to...

— %001 %0 ‘%0 %0 ‘%001 %0 ‘%0 %001 ‘%001 $59U302110)
— ‘seaju[SIS T seapu SISl 00+ ‘seaguy oTdcwI@edwo)
— 'sedpu] SISl T ‘seopu SISl 00+ ‘seaguy ecwIqIoedwo)
— 'seapu] SIS T ‘seapu SIS 00+ ‘seapuy gaguIIoedwo)
— 'seapu] SISl T ‘seaju SIS 00+ *seaJuy L¥zwi@edwo)
— ‘seaju[SISl T ‘seau SIS 00+ *seajuy gygwi@edwo)
— ‘seaju[SISl T seaju] SIS 00+ *seajuy syzuoedwo)
— ‘seaju[SISl T seaju] SIS 00+ 'seajuy pdcwi@oedwo)
— ‘seaju[SISl T seaju SIS 00+ 'seajuy gyzuoedwo)
— ‘seaju[01—2189 ‘01 =19 T seaju 01—918'9 ‘0T—31+'9 00+ 'seaguy Z¥cwioedwo)
— ‘seaju[90+20T% ‘90+96L'€ I ‘seaguy 90+20T'% ‘90-+96L'€ 00+ ‘seaguy Tcun@ovdwo)
ddsS-9A91S 1Y TPP/IPP 1RV zpd/ipd 1oy a1052q Q0 (@ @ fqo 109110) wolqoId

swopqoxd Joedwo)),, ay3 uo synsoy | d|qel

pringer

As

516 Y.Zhuetal.

structure was obscured by two kinds of operations: random elementary row operations
on the constraints and a random similarity transformation.

Indeed, in our testing all clean instances were found infeasible by Sieve-SDP, pd1,
and pd2. In contrast, no messy instances were reduced by any of the preprocessors.
Since the clean instances are evidently easy for Sieve-SDP, and the messy ones are
hard for all preprocessors, we did not include the SDPs from [24] in our test set, since
we felt that this would not be fair.

3.2 “Unbound” problems: 10 problems from [48]

The mathematically correct optimal values of both the primal and the dual are 0 in this
problem collection. However, before preprocessing Mosek returned wrong optimal
values for 6 out of 10 problems. Although Mosek found solutions with almost correct
optimal value in problems 2, 3 and 4, these solutions are inaccurate, as the DIMACS
errors are of the order 10~! (this is marked by “*” symbols in Table 2).

In summary, 9 out of 10 problems in this dataset need preprocessing to obtain a
reasonable solution.

Sieve-SDP, pd1 and pd?2 corrected all objective values, as Table 2 shows.

It is interesting that the authors in [48] computed the correct optimal solution of
these instances using SDPA-GMP [16], a high-precision SDP solver that carries several
hundred significant digits. Doing so is, of course, more time consuming, than running
Sieve-SDP and Mosek.

3.3 “Example” problems: 8 problems from [9]

The mathematically correct objective values are reported in [9] in table 12.1. (Note
that in [9] our primal is considered the dual, and vice versa, so that table must be read
accordingly.)

Table 3 shows the objective values before and after preprocessing. We consider an
objective value correct if it is less than 10~¢ away from the true optimal value.

We excluded “Example5” of [9] from this table, since in Table 12.1 in [9] its
optimal value is not reported. For all other problems, except for “Example9size20”
and “Example9size100”, we manually verified the correctness of the optimal values
in exact arithmetic.

Note that the comparison in Table 3 is somewhat unfair to Sieve-SDP: if it found a
problem infeasible, it did not compute a dual solution.

3.4 “Finance” problems: 4 problems from [5]

The PP dataset contains four “finance” problems: “leverage_limit”, “long_only”, “sec-
tor_neutral” and “unconstrained”. We report on these problems in detail, since these
are the largest in the PP dataset. For example, “long_only” has 100 semidefinite vari-
able blocks of order 91 and another 100 of order 30.

@ Springer

517

Sieve-SDP: a simple facial reduction algorithm to...

%001 ‘%001 %01 ‘%01 %001 ‘%001 %01 ‘%01 %001 ‘%001 $SOUIOALI0D)
0°0 I—1— 0°0 I—1— 0°0 0T [wigpunoqun
0°0 I—1- 0°0 I—1— 0°0 6 TwIgpunoqun
0°0 | Rl 0°0 | Rl 0°0 ¥ WIgpunoqun
0°0 T—1— 0°0 -1 0°0 Lgrurgpunoqun
0°0 I—1— 0°0 I—1- 0°0 9¥ [wigpunoqun
0°0 [—‘1— 0°0 [—‘1— 0°0 Sy [wipunoqun
0°0 #01—9CET— %01—3YET— 0°0 #01—9CET— %01—2ET— 0°0 I [wIgpunoqun
0°0 #1920~ %1 1—2b0CT— 0°0 #1920~ “«11—v0CT— 0°0 gy [wigpunoqun
0°0 xST—10'8 — “xS1—9361'8 — 0°0 #ST—210'8 — “xST—o61'8 — 0°0 gy rwigpunoqun
0°0 01—9G0°L — ‘60—9€¢'1 01—9S0°L — ‘60—9¢¢€'T 01—9G0°L — ‘60—9¢¢' 0°0 I wigpunoqun

ddS-2491S 101y TPP/TPP 1YY cpd/1pd 1oy a1052q [q0 (@ ‘d) fqo 1a110) wo[qoId

swojqoid punoqun,, 9y} uo SHNSAY g d|qeL

pringer

As

Y.Zhuetal.

518

%0S ‘%001 %001 “%0S %08 “%001 %0S “%SL %001 %001 SSAUIOALIOT

— ‘seaqu] 0°0 1 ‘seajuy 10—9¢H ¢ ‘seajuy 0 ‘seajuy 001°z1sgodwexyg

— ‘seaqu] 00 1 ‘seajuy 10—96¢ ¢ ‘seajuy 0 ‘seajuy 0zezisgeduexy

0°0 0°0 0°0 0°0 0°0 Lerdurexy

11 11 11 11 11 9ordurexy

— ‘seaqu] 00 I ‘seajuy LO—3pL € ‘seajul 0 ‘seajuy pordwexg

LO—269'T ‘LO—SLI'] P1—=9T8'1 ‘SI—o¢LY LO—969'1 ‘LO—SLIL'I 10—9€¢°¢ ‘T0—3¢€'E 0°0 gordurexg
B! P1—=9T8'1 ‘CI—o¢LY [10—9¢€°€ “10—9¢Ee 0°1 zordurexy

0°0 0°0 0°0 0°0 0°0 rorduwexy

ddS-oA91S PPV CPP/1PP 1YV cpd/ipd 1oy 210539 f[q0 (@' fqo10a110H wapqoid

sworqoid oidwexd,, ay) uo s)Nsay € d|qel

pringer

As

Sieve-SDP: a simple facial reduction algorithm to... 519

Table 4 Results on the “finance” problems

Method nsdp Nnonneg Nfree m nnz

None 60,400 51,100 0 251,777 2,895,756
After pdl 60,400 51,100 0 251,777 2,895,756
After pd2 60,280 51,100 0 249,797 2,880,876
After dd1 27,429 51,100 2,286,000 251,777 2,844,756
After dd2 36,400 51,100 2,521,005 251,777 2,605,807
After Sieve-SDP 56,766 50,873 0 215,210 2,466,573

Table 4 shows how much the preprocessors reduced these SDPs: here ngqp, is the total
size of the semidefinite blocks; 7nonneg is the total number of nonnegative variables;
nfree 1S the total number of free variables; m is the total number of constraints; and
nnz is the total number of nonzeros.

While dd1 and dd2 significantly reduced the size of the SDP blocks, they added
many free variables. Sieve-SDP reduced the size of the SDP blocks, without adding free
variables, and it eliminated the most constraints. We mention that after preprocessing
with dd2 Mosek detected that problem “leverage_limit” is “dual infeasible”. This may
be because of numerical instability, and does not contradict the result we get after
preprocessing with Sieve-SDP.

We remark that preprocessing actually increased the solution time on these prob-
lems, though not by much. For example, the total time spent on preprocessing with
Sieve-SDP plus solving with Mosek is about 21% higher than the solving time with
Mosek without preprocessing. Still, since the primary goal of preprocessing is to
improve solution accuracy, we believe that we should do it whenever we can.

Furthermore, on these instances Sieve-SDP performed a large number of iterations,
and deleted only a small submatrix in each one. Thus, we could easily reduce the
time spent by Sieve-SDP by limiting the maximum number of iterations it is allowed
to perform. We do not report results with such a setting, since we do not want to
“overtune” our code.

3.5 Dressler-llliman-de Wolff (DIW) dataset (155 problems)
Consider the optimization problem

me s ®)
st. g(x)=>=0 (G =1,...,m),
where f and the g; are multivariate polynomials.

As shown in the seminal work of Lasserre [23], the optimal value of (8) can be lower
bounded by solving SDPs. Under suitable conditions the lower bounds converge to
the optimal value of (8), as the so-called Lasserre relaxation order increases. However,
no useful lower bound is obtained when the SDPs are infeasible. See Parrilo [28] for
a related scheme to construct SDP relaxations of (8).

@ Springer

520 Y.Zhuetal.

Table 5 Relaxation orders for examples in [11]

ex 33 4.1 4.2 4.3 4.4 5.4 5.5 5.6 5.7

Relaxation 6---20 3...20 6---20 2.--20 3...20 5---20 4..-20 4.--20 5---20
orders

Table 6 Results for the DIW dataset

Method # Reduced n m Preprocessing (s) Solving (s) # Infeas
None - 53,523 186,225 - 139,493.56 -

pdl 155 1,450 3,278 1,632.43 128.46 56

pd2 155 1,450 3,278 10,831.32 124.44 56

dd1 0 53,523 186,225 65.18 139,493.56

dd2 0 53,523 186,225 22,152.57 139,493.56

Sieve-SDP 155 1,385 3,204 1,232.27 87.53 59

Since solving the Lasserre SDPs can be challenging, Dressler, Illiman and de Wolff
[11] proposed an alternative relaxation, based on so-called nonnegative circuit poly-
nomials, and they compared their approach with the SDP-based one.

We constructed the SDPs in the “DIW” dataset by taking the polynomial optimiza-
tion problems from [11] and using Gloptipoly 3 [19] to generate their SDP relaxations.

We describe our SDPs in Table 5 with their Lasserre relaxation order, which ranges
from the lowest possible (half the degree of the highest degree monomial in the poly-
nomials) to 20. For example, the SDP named “ex3.3_order4” is obtained by applying
the Lasserre relaxation of order 4 to Example 3.3 in [11].

Table 6 shows the results: “n” is the sum of the orders of all psd and nonnegative
blocks, and “m” is the sum of the number of constraints in all problems.

The results are quite striking. Sieve-SDP, pd1, and pd?2 ran fast, reduced all prob-
lems, detected infeasibility of more than a third, and reduced overall computing time
by a factor of more than a hundred! Sieve-SDP was the best in all aspects, with pd1 a
close second.

Note that without preprocessing Mosek failed to detect infeasibility of any of these
SDPs.

These results are somewhat surprising since [11] solved some of these SDPs to
near optimality, and managed to extract approximate optimal solutions of the original
polynomial optimization problems. See [18] for similar results on similar SDPs. In
fact, [18] took the view that numerical inaccuracy of the SDP solvers actually helps
find near-optimal solutions of the polynomial optimization problems. See [26] for a
more recent and thorough study of the same issue.

We remark that these SDPs are likely to be weakly infeasible.

We were thus motivated to double check that Sieve-SDP indeed reduced these SDPs
correctly. Precisely, we verified that in the Basic Step (in Fig. 1) it only eliminated
constraints in one of the following forms: either of the form

@ Springer

Sieve-SDP: a simple facial reduction algorithm to... 521

D 0
(0 0>0X=0,

where D is positive definite diagonal, of order 1 or 2, and the smallest diagonal
element is 1 or 0.5 or 1/3 = 0.3333...; or of the form

OeX =0,
where O is the zero matrix. Furthermore, Sieve-SDP always detected infeasibility by

finding a constraint
D 0
(0 o) *X=5

where D is as above, and 8 = —3 or —8.

The zeroes in all these constraints are zeroes in absolute machine precision, i.e.,
in the sparse SDPs returned by Gloptipoly 3 these entries do not appear at all. Thus
Sieve-SDP performed all reductions correctly.

3.6 Henrion-Toh dataset (98 problems)

This dataset was kindly provided to us by Didier Henrion and Kim—Chuan Toh. The
problems come mostly from polynomial optimization.

Among these problems 18 were reduced by pdl, pd2, or Sieve-SDP and none by
ddl or dd2. Table 7 shows the time details in seconds. The last column “Pre versus
solve” shows the time spent on preprocessing as a percentage of time spent on solving.

Itis o
preprocessing time

— . — x 100 %. 9)
solving time without preprocessing

This is a dataset on which the preprocessors are less successful: pd1, pd2, and Sieve-
SDP detected infeasibility of only one problem (of “sedumi-14") and they reduced
solving time only a little. However, the preprocessing times are small, or even negligi-
ble: for example, Sieve-SDP spent only about 0.3% of the time that it took for Mosek
to solve the problems.

In Fig. 4 we illustrate how Sieve-SDP works on the instance “sedumi-fp32”: we
show the sparsity structure of the constraints of the original problem (on the left), and

Table 7 Time results on the Henrion—Toh dataset

Method Preprocessing (s) Solving (s) Pre. versus solve
None - 1420.02 -

pdl 10.27 1373.70 0.72%

pd2 49.84 1374.31 3.51%

ddl 3.93 1420.02 0.28%

dd2 29.24 1420.02 2.06%
Sieve-SDP 4.58 1376.27 0.32%

@ Springer

522

Y.Zhuetal.

20000

60000

71775

1000

2000

3002

st [

1 1

1000

-12000

3002

1

20000

40000

60000

71775

1

10000 20000 30000 40743

i
I

500

1000

1286

1

L 1

1500

T nng -1000

1286

1

10000 20000 30000 40743

Fig.4 Instance “sedumi-fp32”: size and sparsity before (left) and after (right) preprocessing

after Sieve-SDP (on the right). Just like in Fig. 3, each row corresponds to an A; matrix
stretched out as a vector. Red dots correspond to positive entries, blue dots correspond
to negative entries, and white areas to zero entries.

Here we also discuss problem “sedumi-fp33” on which preprocessing by Sieve-
SDP makes the DIMACS error worse. Since this is the only such instance, we looked
at it in more detail. The worst DIMACS error (of a solution computed by Mosek)
before Sieve-SDP is 3.36 x 1077, which is acceptable. After Sieve-SDP the worst
error is about 0.0928, which is unacceptable.

We also solved this instance using the high accuracy SDP solver SDPA-GMP [16].
The DIMACS errors were

2.3497 - 102, 0.0000, 1.8552 - 10", 0.0000, —9.9999 . 10~!, 8.5173 - 102
before Sieve-SDP, and
3.4075 - 102, 0.0000, 1.9636 - 10", 0.0000, —9.9999 - 10~",6.1901 - 10~}

after Sieve-SDP. In both cases the largest error is more than 200, which is unacceptably
large.

Given the high accuracy of SDPA-GMP, it seems that this SDP cannot be accurately
solved by current fast solvers, and the worse DIMACS error returned by Mosek after
Sieve-SDP alerts the user to this fact: this problem may actually have a positive duality
gap (cf. Example 3).

@ Springer

Sieve-SDP: a simple facial reduction algorithm to... 523

Table 8 Timing on the Toh—Sun—Yang dataset

Method Preprocessing (s) Solving (s) Pre. versus solve
pdl 220.18 27,635.46 0.80%
pd2 4,029.61 27,635.46 14.58%
ddl1 134.64 27,635.46 0.49%
dd2 2,428.82 27,635.46 8.79%
Sieve-SDP 152.14 27,635.46 0.55%

3.7 Toh-Sun-Yang dataset (419 problems) from [40,49]

Although none of the five methods reduced the SDPs in this collection, we still com-
ment on them in detail, since it is interesting that pd1, dd1 and Sieve-SDP spent only
a negligible amount of time on preprocessing. Thus using these three methods it does
not hurt to preprocess: see Table 8. The last column “Pre versus Solve” shows the time
spent on preprocessing as a percentage of time spent on solving; see Eq. (9). Pd2 and
dd2, on the other hand, spent considerably more time on preprocessing.

4 Summary

We now compare all preprocessors on all instances in Tables 9, 10 and 11.

In Table 9 the second column shows how many problems were reduced. The third
column shows how many problems were found to be infeasible. The fourth column
shows on how many instances the preprocessing improved the DIMACS errors, as we
discussed in Sect. 2.7.

The last column “Memory” shows how many times a method ran out of memory,
or crashed: this happened with pd2 six times and with dd2 four times. To ensure fair
reporting we reran these methods on the same instances on a machine with 24 GB
RAM, and the results were the same.

Table 10 shows the preprocessing and solving times in seconds. The first col-
umn shows the preprocessing time and the second shows the solving time by Mosek
after preprocessing. Column “Pre versus solve” shows the relative speed of the pre-
processors: see Eq. (9). The last column, “Time reduction”, shows by how much
preprocessing decreased the solving time. It is

Table 9 Infeasibility detection and error reduction on all 771 problems

Method # Reduced # Infeas detected # DIMACS error improved Memory
pdl 209 67 74 0
pd2 230 67 78 6
dd1 14 0 2 0
dd2 21 4
Sieve-SDP 216 73 74 0

@ Springer

524 Y.Zhuetal.

Table 10 Preprocessing and solving times on all 771 problems

Method Preprocessing (s) Solving (s) Pre versus solve Time reduction
None - 272,427.23 - -

pdl 2,486.51 132,356.63 0.91% 50.50%

pd2 23,323.07 131,636.47 8.56% 43.12%

dd1 587.93 272,244.62 0.22% —0.15%

dd2 35,984.45 272,031.04 13.21% —13.16%
Sieve-SDP 2,170.13 131,837.25 0.80% 51.81%

solving time w.o. preprocessing — (preprocessing time + solving time after preprocessing)

x 100 %.

solving time w.o0. preprocessing

Of course, the higher this percentage, the more a preprocessor reduces solution time.
A negative percentage means that preprocessing actually increased the total time.

Finally, Table 11 shows by “how much” the problems were reduced. As in Table 9,
the second column shows the number of problems reduced by each method.

To explain the other columns, let us fix an SDP in the primal form (P) with poten-
tially several semidefinite block variables (some of which may be of order 1, i.e., they
may be just nonnegative variables).

Let npefore and nafier be the total size of the semidefinite blocks before and after
reduction. We define the reduction rate on n as

Z Nbefore — Z Nafter
b

Z Npefore

where the sum is over all 771 problems.
Similarly, let mpefore and mafer be the number of constraints in a problem before
and after reduction. We define the reduction rate on m as

Z Mpefore — Z M after
Z Mpefore ’

where the sum is again taken over all 771 problems.

Methods dd1 and dd2 added free variables, and the fifth column in Table 11 shows
how many.

The sixth column “nnz”” shows the total number of nonzeros in the constraint matri-
ces.

Given these tables we now summarize our findings. In all aspects Sieve-SDP is
competitive with the other preprocessing methods. In detail:

— It is competitive considering the number of problems reduced.

— It is competitive in computing known optimal solutions; see Tables 1, 2 and 3.

— The time spent on preprocessing with Sieve-SDP versus solving is negligible. It
is also negligible for pd1 and dd1, but less so for pd2 and dd2. See Table 10.

@ Springer

Sieve-SDP: a simple facial reduction algorithm to... 525

Table 11 Size reduction on all 771 problems

Method # Reduced Red. onn Red. on m Extra free vars nnz

None - - - - 300,989,332
pdl 209 15.47% 17.79% 0 211,299,702
pd2 230 15.59% 18.23% 0 211,257,726
dd1 14 6.74% 0.00% 2,293,495 300,936,120
dd2 21 9.28% 0.00% 2,315,849 299,272,012
Sieve-SDP 216 16.55% 20.66% 0 206,061,059

In several aspects Sieve-SDP is the best.

It is best in detecting infeasibility: see Table 9. It is important that Sieve-SDP
detects infeasibility without using any optimization solver, whereas the other meth-
ods rely on Mosek.

It reduced solution time the most, with pd1 a close second. See Table 10.

It reduced the size of the instances the most: see Table 11.

Itneeds very little additional memory, precisely O (nm). For details, and the Matlab
code, see Appendix B.

It is very accurate and stable: it is as accurate as Cholesky factorization, which
works in machine precision. Sieve-SDP is also easily implemented in a safe mode:
see Sect. 2.2.

It is the simplest: the core Matlab code consists of only 65 lines.

The code is available from

https://github.com/unc-optimization/SieveSDP

Acknowledgements We thank the Technical Editor and the referees for their helpful comments. The second
author, Gabor Pataki, is supported by the National Science Foundation, Award DMS-1817272. The third
author, Quoc Tran-Dinh, is supported in part by the National Science Foundation, Award DMS-1619884.
We are very grateful to Erling Andersen at Mosek for running several SDPs, and explaining the results; to
Joachim Dahl at Mosek for helpful discussions on converting SDPs, and for providing his conversion code;
to Didier Henrion and Kim-Chuan Toh for providing us with some of the datasets; to Frank Permenter and
Johan Lofberg for helpful comments; to Oktay Giinliik for helping us to invent the name “Sieve-SDP”; and
to Hans Mittelmann for helping us with some of the large-scale SDPs.

@ Springer

https://github.com/unc-optimization/SieveSDP

526 Y.Zhuetal.

A Very detailed results

We now give very detailed computational results on all problems, separately for the
five datasets. We only report on problems that were reduced by at least one of the five
preprocessors.

In all tables the first column gives the number of the SDP, the second gives the
name, and the third gives the names of the preprocessing methods.

The next two columns describe the size of the problem. The entry “f; 1; s describes
the size of the variables of the problem, where

— the number “f” is the number of free variables;

— the number “I” is the number of linear nonnegative variables;

— the number, or numbers “‘s” describe the size of the semidefinite variable blocks,
possibly with multiplicity.

For example, 3; 5; 6 means that a problem has 3 free variables; 5 linear nonnegative
variables; and a semidefinite matrix variable block of order 6. The tuple 3; 5; 6, 53
means that a problem has 3 free variables; 5 linear nonnegative variables; and four
semidefinite matrix variable blocks, which are of order 6, 5, 5, 5, respectively. The
number m is the number of constraints.

In the next three columns we put information about the preprocessors. In the column
“red.” we put 1, if a preprocessor reduced a problem, and 0 if it did not. In this column
under Sieve-SDP we put the same entries, except when Sieve-SDP actually proved
infeasibility. In that case we entered “inf” there. The number tyrep is the time spent on
preprocessing; the number tcony is the time spent on converting from Mosek format to
Sedumi format and back (for the methods pd1, pd2, dd1, dd2).

In the next four columns we show how Mosek performed. In the column “inf” we
have a 1 if Mosek detected infeasibility, and 0 if it did not. The column obj (P, D) shows
the objective values (primal and dual, respectively). The column DIMACS contains
the largest absolute value of the DIMACS errors.

In the last column we show help codes, which show whether a preprocessor helped
or hurt to solve an SDP. Although the help codes can be deduced from the previous
columns, they still help to quickly evaluate the preprocessors. A positive help code
means that a preprocessor helped, and a negative one means that it hurt.

In detail, let us recall from Sect. 2.7 that DIMACSpefore [DIMACSafier] 1S the
absolute value of the DIMACS error that is largest in absolute value before [after]
preprocessing. We let objy.¢ore and obj, g, be the primal objective values before and
after preprocessing, respectively.

@ Springer

Sieve-SDP: a simple facial reduction algorithm to... 527

Given this notation,
— the help code is 1, if

— Sieve-SDP detects infeasibility, or
— Mosek does not detect infeasibility before preprocessing but it does detect
infeasibility after preprocessing;

— the help code is —1, if

— Mosek detects infeasibility before preprocessing but does not detect infeasi-
bility after preprocessing;

the help code is 2, if

— itis not 1 and preprocessing improved the DIMACS error, i.e.,

DIMACS gfter I

DIMACS 1070 and ——— = ’
before > an DIMACShefore = 10

the help code is —2, if

— itis not £1 and preprocessing made the DIMACS error worse, i.e.,

DIMACS
DIMACSfer > 1076 and —————23T 1,
DIMACSpetore

— the help code is 3, if preprocessing shifted the objective value, i.e.,

— if help codes =1 and —2 do not apply, and

|0bjbefore - Objafter'
1+ |0bjbefore|

> 10_6;

the help code is MM if a code ran out of memory or crashed.

@ Springer

Y.Zhuetal.

528

I 000 200 Jur dds-omdts

000 Y00 0 wp

000 €0'0 0 PP

I 601 10—2L0L 004900 0042001 I 000 L10 I z €100 opd

I 60T T0—9L0L 00300 ‘003001 I 000 020 I z €100 1pd
LOT LO—OEI'T 0042081 ‘0042081 0 v €01°ST00 QUON pugwI@iordwo) ¥

I 000 100 Jur dds-asa1s

000 €0'0 0 P

000 00 0 PP

I 60T T0—9L0L 004900 00+°00'T I 000 €10 I z €100 pd

I L0T 10—2L0L 004900 0042001 I 000 v1°0 I z €100 Tpd
€0T LO—3ST'T 00490S'T ‘004908 T 0 Ik €9°01 100 suoN gygwiorduio) €

I 000 100 Jur dds-aaa1s

000 Y00 0 P

000 £0°0 0 PP

I v0T 10—2L0L 004900 0042001 I 000 600 I z €100 pd

I €T T0-9L0L 004900 ‘00+°00'T I 000 110 I z 1100 1pd
91 10—2L0L 01—2I8'9°0I—2I+'9 0 vl £€6°9:010 suoN gyzwiivedwo) z

I 000 100 Jur dds-as91s

000 €00 0 wp

000 €00 0 1Pp

I 690 10—3L0L 00+300°T ‘0049000 I 000 00 I € 1:t0 zpd

I v90 10—2L0L 0049001 ‘00+°00°0 I 000 500 I € 1:€t0 Tpd
W0 T0+9TTT 90+30TY ‘90+36L'E 0 S €60 ouoN ryrwiqedwo) I
dog 1% SOVINIQ (@dfqo yur Awoydady T porw EE! PO sweN ON

"SPOYJOUI AT} 9} JO AUO IS8 I8 AQ Paonpal axam swa[qoid ¢ asey) woi] ‘swejqoid g9 sey jaselep Sy,

3asejep (dd) ojiied-13)uawiiadd 3y} uo synsai pajielaq L'y

pringer

As

529

Sieve-SDP: a simple facial reduction algorithm to...

I 000 80°0 Jur dds-eadlg

000 60°0 0 pp

000 €00 0 pp

I SO'T 10—3L0°L 00+200°C ‘00+°00'1 I 000 98°0 I T €100 zpd

I 20T 10—2L0°L 00-+200°C “00+200'T I 000 960 I T €100 1pd
L0T LO—319°S 00-+205°T ‘00+20S°1 0 49! €9¢ ‘S0 0 SuoN gycwiordwo) 8

I 000 90°0 Jur das-eadrg

000 LO0 0 PP

000 €00 0 PP

I 901 10—2L0°L 00-+200'C ‘00+200'T I 000 650 I T €100 cpd

I 80T 10—2L0°L 00-+200C ‘00+200'T I 000 10 I T €100 1pd
€re L0—299°¢ 00-+20S°T “00+20S'T 0 611 €87°9¢:010 SUON Ldzwiaordwo) L

I 000 700 Jur das-eadrg

000 S0°0 0 pp

000 S0°0 0 PP

I €01 10—2L0’L 00+200°C “00+200'T I 000 8¢°0 T T €100 pd

I 01’1 10—2L0°L 00-+200C ‘00+200'T I 000 €0 I T €100 1pd
90T LO—30LT 00-+20S°T ‘002081 0 06 £17°82:0:0 SuoN oycwiiordwo) 9

I 000 €00 Jur das-eadrg

000 S0°0 0 PP

000 200 0 pp

I LOT 10—2L0°L 00-+200C ‘00+200'T I 000 LTO I T €100 cpd

I 90'T 10—3L0°L 00+200°C ‘0012001 I 000 ST0 T T €100 pd
S0 LO—2€8'T 00-+20S°T ‘00+20S"T 0 S9 ES1°12:0%0 SuoN SYcwioedwo) S
dipH 10%) SOVINIA (@d fqo Jur A0 doxdy ‘par w Sy POYRIN sureN "ON

pringer

As

Y.Zhuetal.

530

€T 65T 80—9I'S L0—969'1 ‘LO—OLI'T 0 100 I I 700 das-eadrs
€T 660 PI—SLT p1—9r81 ‘SI—o¢LY 0 000 €00 I ¥ 0 PP
€T 00T $I-9SLT $1—9r81‘SI—9¢L¥ 0 100 200 I ¥ Ti0€ PP
€T 8FT 80—°I'S L0—969'1 ‘LO—OLI'l 0 000 €00 I I 700 opd
€T PFT 80—9FI'S LO—969'T ‘LO—OLI'T 0 000 €00 1 1 7:0°0 1pd
6LT T0—206'9 T0—9EE€ ‘T0—9LE'E 0 ¥ €00 auoN gordurexy €1
€7 19T 00+2000 00+200°T ‘002001 0 100 I 1 700 JdAS-oAdrs
€T 10T $1-9SLT $1—9r81SI—9¢L'Y 0 000 200 I z 0% PP
€T 10T PI-9SLT p1—9r81 ‘SI—o¢LY 0 000 SO0 I z 0 1pp
€T L60 0042000 00+300'T ‘00-+°00'T 0 000 SO0 I I 700 zpd
€T 60 00+2000 00+200'T “00-H°00'T 0 100 S00 I I 2000 1pd
€LT TO—9S0'S T0—9EE€ ‘TO—9LE'E 0 z €0°0 auoN zordurexy 1l
€9T 0042000 00+200°0 ‘00+200°0 0 €00 I I 200 das-oadrs
960 0042000 002000 ‘002000 0 000 900 I z 1:0°S P
960 00+2000 002000 ‘002000 0 000 LOO I z 1:0°S PP
960 0042000 002000 ‘002000 0 000 S00 I I 7100 zpd
SOT 0042000 00+200°0 ‘00+200°0 0 100 900 I I 200 1pd
LT 0042000 0042000 002000 0 z €00 auoN rordwexg I
I 000 S10 Jur dAS-oA91S
100 810 0 PP
100 00 0 PP
I 60T 10—9L0L 00+°00°C ‘00+200'T I 100 061 I z €100 opd
LI 10—2L0L 00+200°T ‘00+200'1 I 100 980 I z €100 1pd
8T L0—ALI'S 00+30S'T ‘009081 0 0§T £€55°99:0:0 ouoN Qrycuweduo))i
I 000 110 Jur das-orsrs
000 +10 0 PP
000 €00 0 Ipp
I SOT 10—9L0L 00+900°C ‘0042001 I 000 8TIT I T €100 zpd
I 80T 10—9L0L 00+°00°C ‘00+200'T I 000 1.0 I z £1:0:0 1pd
11T L0—9LT9 00-20ST ‘00+20S'T 0 681 6156100 QuoN geuIqoeduwo) 6
dpH 105y SOVINIA (@dfgo gur awoxy dody poy w s PoweN oweN 'ON

pringer

As

531

Sieve-SDP: a simple facial reduction algorithm to...

I 000 000 Jur das-oaars
I— 001 00+2000 00+200°0 ‘0042000 0 000 0S¢ I 001 1:0:6¥0S PP
- 10T 00+2000 00+°00°0 ‘0042000 0 000 el I 001 10 ‘6+0S PP
€90 10—200°SC 00+300°T 002000 I 000 61°0 I I 1:0°0 zpd
P90 10—°00S 00+°00'T ‘0042000 1 000 +00 1 1 1:0°:0 1pd

€80 10—200°S T0—9EH’€ ‘002000 I 001 001 %0 ‘0 suoN 00r19zIsea[dwexy 81
I 000 000 Jur dAs-oAts
I— L60 009000 0042000 ‘00+200°0 0 000 +20 I 0z 1:0:60C P
- S60 0042000 0042000 ‘00+200°0 0 000 610 I 0z 1:0 60T PP
790 10—200°S 00+900°T ‘002000 I 000 +00 I I 1:0°0 zpd
€90 10—300°S 00+300°T 002000 I 000 900 I I 1:0°0 1pd

85T 10-°00S [0—96£°€ ‘0042000 I 0z 02:0:0 ouoN 0zezisgardurexy LT
¥S°0 0042000 00+900°0 ‘002000 0 000 I z 7100 JddS-oAds
00’1 00+2000 002000 ‘0042000 0 000 €00 1 3 14091 PP
860 0042000 00+200°0 ‘00+200°0 0 000 €00 I € 1:0 91 PP
L60 00+2000 00+200°0 ‘00+200°0 0 000 €00 I z 700 zpd
960 00+2000 0093000 ‘002000 0 000 200 I z 71010 1pd

090 00+2000 009000 ‘002000 0 ¢ $0%0 QuoN (edwexg 91
96’0 00+3000 00+300°T 00+200'T 0 100 I ¥ S0:0 das-oadrs
61°1 60—9SL'6 003001 ‘002001 0 000 200 I 8 71097 PP
201 60—9SL'6 003001 ‘002001 0 000 200 1 8 09T PP
860 00+2000 00+200°T ‘00+°00'T 0 000 +00 I ¥ $:0°0 zpd
660 00+2000 00+200°T ‘00+°00'T 0 000 +00 I b S0 1pd

990 80—9S6T 00+°00'T ‘00+200'T 0 8 8:0:0 auoN gadurexy ST
I 000 000 Jur das-easrs
I— 660 0049000 00-4200°0 ‘00+200°0 0 000 +00 I € 1:0°S PP
I— 960 00+2000 00+°00°0 ‘002000 0 000 €00 I ¢ 1:0°S Ipp
€90 10—°00S 00+300'T ‘002000 I 000 €00 I I 1:0°0 zpd
$9'0 10—200S 00+°00'T ‘0042000 I 000 €00 I I 1:0°:0 1pd

Sal 10—°00°S LO—bL'E ‘0012000 I ¢ €0%0 QuoN padurexy il

dpH 105y SOVINIA (@dfgo jur Au0d) doxdy par w s pomey oureN "ON

pringer

as

Y.Zhuetal.

532

600 0 ddS-oadts
000 €10 0 pp
000 200 0 PP
Ll 11—98¢9 €1—21€°T— ‘00420070 0 110 LSO I ¥Ts1 9600 zpd
000 €00 0 1pd

€81 80—269'T T1—99L°S ‘0042000 0 9ILI 0T1 ‘0 ‘0 SuoN 7 sodod €
200 0 dds-andrs
000 200 0 pp
000 200 0 PP
101 80—9CI'C 01—998°¢ — ‘009000 0 200 90°0 I 091 ST zpd
000 200 0 1pd

990 LO—0t 80—211°T ‘0020070 0 01c SE0°0 SuoN [~ sodoo w
69°0 60—%0°6 01—9€€°9 “60—3TS'T 0 €00 I 0T 0€:0:0 dds-andrs
S0'1 1—206'9 61—98LT ‘ST—3G1'T 0 200 €€0 I ov €€ 10 69T1 PP
100 200 0 PP
100 w70 0 cpd
100 ¥0°0 0 Tpd

€80 80—21¢'6 60—3%H'C ‘60—21t'S 0 ov 0900 QuoN guappuey IC
(IX0] 90—°LT'E LO—9¢SH *L0—958°6 0 200 I ! 8700 daS-oadts
4 801 11—2IT°L 91969t ‘11—959°C 0 100 110 I LT 81 ‘0 ‘619 pp
10°0 200 0 PP
YOl 90—oLT’E LO—9€SH ‘L0—958'6 0 200 01°0 I ! 8200 cpd
100 €00 0 1pd

L9°0 90—969't LO—9TTY ‘LO—TH'6 0 LT 0r 00 SuoN Lusppuey 0T
€T 90—2L1°6 90—%0°€ ‘90—3€L’E 0 01c I 0L 0T1:0°:0 dds-andrs
€T 88°G L0008 11—99T°1 ‘L0—989'1 0 Y1 €rLE I orl 05T 0 '$8661 PP
00’1 SLO 0 PP
00'T 6£°91 0 cpd
00'T ¥9°¢ 0 Tpd

LOYT S0—367°T 90—3%T°€ ‘90—356'E 0 ovl 0T€:0:0 QuoN guanpuey 61

dpH 105y SOVINIA @dfgo jyur A0 doxdy -por w S PO oweN ‘ON

pringer

As

533

Sieve-SDP: a simple facial reduction algorithm to...

100 0 ddsS-oadts
000 200 0 pp
000 200 0 PP
69T 00+96L1T SI—OLLT— ‘SI—49T— 0 000 Y00 I < 97900 zpd
000 €00 0 1pd

8¢'T 0049081 €I1—9LI'T— ‘C1—96H| — 0 (9% 19900 QuoN CIyury 8T
90°0 0 dds-andrs
SL6 60—9IST 0049006 — ‘002006 — 0 T€0 050 I TTEE 18°0S ‘OVT 10 '96t¢ PP
0S0I 60—3¥9'9 00+200'6— ‘00-+3006 — 0 1€°0 v1I°0 I TTEE 18705 ‘OF1 {0 ‘96¥E PP
000 81°0 0 zpd
000 80°0 0 1pd

0F'ST 80—979°9 00006 — ‘00+200'6 — 0 Teee 1878 ‘181109671 SuoN g yuexdo LT
100 0 dds-andrs
LT 80—988°€ 00+200°€ — ‘00+200°€ — 0 100 90°0 I 9 6°8 ‘L1 :0:0¢ PP
9I'T 80—979F 00+200°€ — ‘00+°00°€ — 0 100 LO0 I 9 6°8 L1 :00¢ Pp
000 €00 0 cpd
000 80°0 0 Tpd

€T 80—20S€ 00+200°€ — ‘00+200°€ — 0 9 6010106 QuoN | yueidd 9T
081 0 ddS-oad1s
900 60°S 0 pp
900 9¢€°0 0 PP
8I'6EIT 80—995°9 01—20L'T — ‘00+200°0 0 81 91'9C T T819C 06% ‘0 ‘0 zpd
900 90 0 1pd

0S'9TST 80—ITL 119006 — ‘002000 0 TeILT 096 0 0 SuoN ¥ sodoo 54
910 0 dds-andts
100 680 0 PP
100 90°0 0 PP
8T0¢ 80—99C1 11—31S¥ — “00+200°0 0 LSO I¥LE I YTsL T 0 zpd
100 01°0 0 Tpd

89'FF L0651 01—9€6v — ‘0042000 0 3008 98700 QuoN ¢ sodoo vT

dpH 1% SOVINIA (@dfgo yur Auody doxdy -por w s POYIOI oweN ‘ON

pringer

as

Y.Zhuetal.

534

000 0 dds-oad1s
001 SI—98L'l 0042000 ‘91—988'1 — 0 000 S0°0 I € T05L PP
000 €00 0 PP
000 €00 0 pd
000 200 0 1pd
Y0T 80—96T'S 0049000 ‘80—95T'S — 0 € 700 SuON zquioy €€
€00 0 das-ondrg
000 ¥0°0 0 PP
000 €00 0 PP
660 LO—96€T 60—982°C — ‘0012000 0 100 80°0 I 091 ST zpd
000 200 0 1pd
S0T L0—969°C 80—9L0'T ‘002000 0 01c SE0°0 SuoN guoy (43
100 0 dds-oad1g
000 €00 0 PP
000 €0°0 0 PP
4 LOT 80—3bt'L 60—311°L ‘00+200°0 0 10°0 LOO I 09 cpd
000 200 0 Ipd
v 90—906'1 LO—3€1°T ‘00+200°0 0 8 0T:0°0 QuoN puIoy I¢
000 0 dds-oadtg
000 €00 0 PP
000 200 0 PP
660 80—959°C 60—9€5°€ “00+200°0 0 000 S0°0 I 91 9:0°%0 zpd
000 200 0 1pd
00T L0—9T9'8 LO—99%"T ‘002000 0 8T 0100 SuoN guioy 0¢
10°0 0 dds-oad1g
000 €0°0 0 PP
000 200 0 IPP
660 91—3LS'T 00+300°0 ‘002000 0 000 90°0 I ¢ 700 zpd
000 200 0 1pd
€0C €1—990'6 €1—969'9 ‘0042000 0 L 700 SuoN Tuioy 6C
dpH 105) SOVINIA (@ fgo Jur Au02) doxdy ‘par w S PO ureN "ON

pringer

As

535

Sieve-SDP: a simple facial reduction algorithm to...

S0°0 0 das-enarg
000 v1I°0 0 PP
000 S0°0 0 pp
L6°C1'8°C1 ‘8
4 €T L0—998'} 60—2%C¥ ‘00+200°0 0 S0'0 20T I CLIT ‘P€ ‘9 0 1098 pd
(AR A Y|
6b'1 S0—219'9 LO—938°€ ‘00+200°0 0 600 91°0 I L091 “I1°9S ‘9 °0 1098 1pd
OITT 801 ‘9
S8L Y0—o11°C L0—967'L ‘00+200°0 0 £60¢ ‘0098 QUON dedpqhy LE
Y00 0 das-enarg
9Tl 60—200'C 002000 ‘01 —985°S 0 €00 600 I oz $T 10 :S0€ PP
000 €00 0 pp
000 Y00 0 pd
000 €00 0 Tpd
90T LO—2¢8'T 002000 ‘80—9T€C 0 0y SE00 SuoN squioy 9¢
200 0 das-endrg
[N LO—98€T 002000 ‘80—261"L 0 100 90°0 I 9TI ¥1:0 50T pp
000 200 0 PP
000 Y00 0 pd
000 200 0 pd
Y0T 90—9701 002000 ‘LO—LLT 0 9CI 0T 00 QUON yquioy S¢
100 0 das-anarg
€'l 80—988'T 002000 ‘01 —989'8 — 0 000 S0°0 I LT 9:0 ‘g PP
000 €00 0 pp
000 200 0 zpd
000 €00 0 1pd
10T L0—379'8 002000 ‘80—985°S — 0 LT 0100 SuoN cquioy e
dipH 10%) SOVINIA @dfgo jur A0, doxdy ‘par w sy POYRIN sweN "ON

pringer

as

Y.Zhuetal.

536

001p¢ ‘111
€ TSIST $0—99L'T TO+RITT— ‘TOHRIT T — 0 STTS T LbT9 ‘66TZT 1000CT 0 dAS-OARIS
oo_omroo:o
€ €80 YO—ObTT TOHRITT— ‘TOHRITT — 0 €I'L T9LIT T T6£29 ‘000ZT 0006¥S PP
oo_om,oo:o
€ 8LYST S0—°€T'8 TOHRITT— ‘TOHRITT — 0 SoL 6LT I T6£T9 {00021 :0006+S Pp
0010¢ ‘16 “001C1
€ 6I0SI +v0—26LT TOHRITT— ‘TO+RITT — 0 LI'L 96€81 I L6819 {00021 ‘0 zpd
920 ¥8T 0 Tpd
ooﬁom»oo:wﬁ
LTTST S0—9S¢'8 TOHRITT— ‘TOHRITT — 0 T6£79 ‘00021 ‘0 QUON [ENNOUTI0NSS Of
TGz ‘8697 ‘€18
€ TIP6 90—°v9'T T0+H9ET'H— ‘TO+HOET v — 0 T6°061 T 0L99% ‘L6¢81¢/G8 0 dS-OARIS
oc_Om,oo:o
€ 8ISIE 90—2°08T 10+3€I'y— ‘TO+oET Y — 0 v69 0971¢€S I S606S {0006 ‘00S62T PP
cc_om”,oc:o
€ €09FT 90—RLF'9 T0HEI'Y— ‘TO+RET Y — 0 969 LL'T I S606S {0006 ‘00S62T PP
00Tpg ‘19 ‘6616
€T 0SS0T LO—=v9Y T0HEI'y— ‘TO+HET v — 0 169 €€£C I 0098S {0006 ‘0 cpd
LT0 8I°T 0 1pd
8C'ELE 90—9€T'S [0+OCIH— ‘TO+9CT ¥ — 0 S6065 001pg “00I16 {0006 ‘0 QUON Auo~3uop 6¢
TGT ‘8697 ‘€11
€ 9T6LI SO—OEL'T 10+°YL8— ‘T0+ovL'8— 0 €Y'€ST I 9619 ‘LOgHT (00T8T 0 dAS-OARIS
[¢ 607
= L6T 10+H9€0T 002000 ‘00+9s¢’€— T— 6£T 8ST6C T S6189 ‘00T8T S0SE6TT pp
oo_omrooﬁ 19
LTOST SO—9SH'T T0+9SL'8— ‘TO+9SL'8— 0 0TL L8€E T S6189 ‘00181 005856 Pp
00Igg “1g1 60161
€ 8L0ST 90—9€9'S T0+9GL'8 — ‘TO+9SL'8 — 0 L8L 860CT T 00LL9 00181 ‘0 zpd
LT°0 (1] 54 0 Tpd
00Tpg “00T1g
09'8LT S0—9¢S'T T0+9GL'8— ‘TO+ISL'S — 0 S6189 ‘00181 ‘0 QUON LIt EERLACTIE) S
deH 1% SOVINIA (@dfgo gur vy dady poy w Sy POYRIA oweN ON

pringer

As

537

Sieve-SDP: a simple facial reduction algorithm to...

4 1€T 002000 002000 ‘0012000 0 100 I I 100 ddS-oadIs
000 €00 0 pp
000 200 0 PP
4 L¥'0 00+200°0 0042000 ‘00+200°0 0 000 110 I I 100 zpd
4 0S0 00+200°0 00+200°0 ‘00+200°0 0 000 [4%0) I I 100 1pd
LTy T0—°LOL TI—920CT— ‘TI—%0C— 0 9 TEv0°0 SUON gy [wIgpunoqun 44
4 6£C 00120070 00+200°0 ‘00+200°0 0 000 I I 100 dasS-eadIg
000 €00 0 PP
000 €00 0 PP
4 L0 00+2000 00+200°0 ‘002000 0 000 01°0 I I 100 pd
4 €70 00490070 00+200°0 ‘00+200°0 0 100 110 I I 100 pd
WY 10—°L0L SI—R10'8— ‘SI—°16'8— 0 ¥ TTe00 QuoN ZyJwIgpunoqun 9%
STT 00+2000 002000 ‘002000 0 100 I I 170 dds-eadlg
100 200 0 PP
100 €00 0 PP
100 €00 0 pd
10°0 500 0 1pd a1
68°C 60—98ECY 01—950'L — “60—2€¢'T 0 T 70 SuUON wipunoqun w
€67 ‘8697 “ETTT
€ 86'S8T SO—9T TO+H98TT— ‘TO+98TT — 0 Y0'€1T I L600S ‘LOETT 1000TT 0 dAS-IARIS
oo_om»oo:o
€ I1°09C SO—p9°¢ TOHOEET — “TO+OeET — 0 0L9 1960 I $6029 0002T “0006¥S PP
oo_omroo:c
€ 638ST SO—PEE TOHIEET — ‘TOHIEET — 0 ¥L9 €9 I $6029 0002T “0006¥S PP
00Tp¢ ‘16 *061ZT
€ L8T8T SO—TH T TOHIEET — ‘TOHREET — 0 $69 0L'8€ I 00919 000TT ‘0 cpd
SI'0 w1 0 1pd
Ooﬁom <001 121
T86LT S0—968°L TOHOEET — “TO+HIEET — 0 $6079 ‘00021 ‘0 QuoN paurensuooun It
dieH % sovinia (@dfgo gur Auoy desdy -pas w S POYION sweN ON

pringer

as

Y.Zhuetal.

538

€ vLT 0049000 00-+200°0 00-+-200"0 0 €10 I I T100 dAS-oadrs

000 00 0 PP

000 L0 0 PP

€ S0 00+°000 00-+200°0 00--200"0 0 000 €S0 I I 21400 zpd

€ #F0 0042000 00--200°0 00--200°0 0 00 S0 1 1 100 pd
67T 80—9¢H'S 0042001 — 00900 — 0 91 T86:0°0 ouoN g¥Jwigpunoqun 6

€ €T 0042000 00--200°0 00--200°0 0 200 I I 100 dAS-oars

000 €00 0 PP

000 €00 0 1pp

€ vr0 0042000 00-+200°0 00--200"0 0 000 €20 I I 2100 zpd

€ S0 0042000 00-+200°0 00--200"0 0 000 120 I I 21400 1pd
78T 80—9II'S 0049001 — ‘009001 — 0 v TL°8:0°0 ouON LY[wigpunoqun 8t

€ ¥TT 0049000 00--200°0 00--200"0 0 100 I I T100 dAS-oadls

000 €00 0 PP

000 200 0 PP

€ 60 0042000 00--200°0 00--200"0 0 000 2T I I 21400 zpd

€ 050 0042000 00-+200°0 00-+-200"0 0 000 070 I I 2100 1pd
8T L0—9SI'T 009001 — ‘00+°00°T — 0 2 L0 oUON 9y Jwigpunoqun Ly

€ TET 0042000 00-+900°0 00+200"0 0 100 I I T100 dAS-oAdrs

000 €00 0 PP

000 200 0 PP

€ w0 0042000 00--200°0 00--200"0 0 000 070 I I [ARR) zpd

€ €0 0042000 00--200°0 00--200°0 0 000 910 I I 21400 1pd
vL'T 80—988'G 0042001 — ‘00-+°00'T — 0 0l %6'9:0°0 ouON g¥Twigpunoqun 9%

T 1T 0042000 00-+200°0 00--200"0 0 10°0 I I T10%0 dAsS-oads

000 €00 0 PP

000 €00 0 Ipp

T €0 0049000 00+200°0 ‘0042000 0 000 #1°0 I I 2100 zpd

T €0 0042000 00--200°0 00--200"0 0 000 +1°0 I I [RR) 1pd
6L'C 10—OLOL 01—9CET— 0l—opET— 0 8 500 oUON HYTwIpUnOqun St
dpH 105y SOVINIA @dfgo jur auody dady - poy w sy PO oweN ‘ON

pringer

As

539

Sieve-SDP: a simple facial reduction algorithm to...

100 0 dds-oadts
000 +0°0 0 PP
000 €00 0 PP
Y01 60—2I€E] 01—920°€ — ‘00+200°0 0 000 SO0 I ol ¥:0°0 pd
000 200 0 Tpd
66T 80—960°6 80—99%"1 — ‘0042000 0 (43 8100 SuoN Ld 1oudemT1om S
100 0 das-andrg
000 €00 0 PP
000 200 0 PP
660 01—9CI'T 11—908°S — ‘002000 0 100 800 I ! S0 pd
000 200 0 1pd
L8T TI-II'T €1—909°6 — ‘002000 0 1€ 800 SUON { SnuIW /J JouSem lom €S
90°0 0 das-oadts
000 L00 0 PP
000 SO0 0 PP
NN WIN cpd
000 L00 0 pd
01’z 80—9ITS 60—2381 % — ‘0042000 0 12L 7500 SuoN €~ G sowea 43
€ €T 001+°000 002000 ‘00+200°0 0 $0°0 I I 100 das-eadrs
000 €00 0 PP
000 €00 0 PP
€SP0 0049000 002000 ‘00+200°0 0 000 T€0 I I 1400 pd
€ ¥r0 0049000 002000 ‘002000 0 000 820 I I 1400 1pd
9LT LO—RI¥'T 004900'T — ‘00+00'1 — 0 0T CI°I1:0°0 SuoN 0¥ Jwigpunoqun IS
€ 09T 0049000 002000 ‘002000 0 S0°0 I I [RV (¢ (NCIEHN
000 €00 0 PP
000 +0°0 0 1PP
€ 90 0012000 00+300°0 ‘002000 0 000 0£0 I I [ARIE] pd
€ €0 0049000 002000 ‘00+200°0 0 100 I£0 I I 1400 Tpd
60T 80—90S9 0042001 — ‘00+200°1 — 0 81 %6 ‘01 0 :0 SuoN 6¥ wIgpunoqun 0S
dpeg 1% SOVINIA @dfgo gur Awody dady poy w s PoweON oweN ON

pringer

as

Y.Zhuetal.

540

100 0 dds-oadts
000 200 0 PP
000 200 0 PP
€01 609791 01—YST— ‘00+9000 0 100 900 I YL €1°0°%0 zpd
000 00 0 1pd
0I'C L0—98E'T 80—96S I — ‘002000 0 €01 9I0°0 QuoN 717 soweA”IouSeM oM 65
100 0 dds-anars
000 200 0 PP
000 200 0 PP
0T PI=OPET SI=RITT— ‘0090070 0 000 SO0 I SI S0 zpd
000 200 0 1pd
86’1 80—2L8Y 60—93T6'EC— 00+300°0 0 Y9 TI0%0 SUON 7] 6 snuiwJu souSem oM 8¢
100 0 ddsS-oadts
000 €00 0 PP
000 200 0 PP
20T 11-909°S 11—980° — ‘00+200°0 0 000 LOO I 1T 9:0°0 zpd
000 200 0 Tpd
€0C 80—908'8 60—90S°S— ‘00+300°0 0 CIEA RO R QUON | SnuIw qu soudem oM LS
000 0 ddS-oadts
000 €00 0 PP
000 200 0 PP
0T 80—RITE 60—9ITL— ‘002000 0 000 900 I S1 S0 zpd
000 200 0 1pd
86’1 80—9€S’S 60—981'6— 00+°00°0 0 8¢ 600 SuoN gsnd” ¢ M IouSem oM 9¢
000 0 das-oadls
000 200 0 PP
000 200 0 PP
10T 80—°II'T 60—3LLt— ‘00+200°0 0 000 SO0 I 9 €00 zpd
000 200 0 Tpd
S6'1 80—3LK'S 60—990°9 — ‘0049000 0 1€ 8:0:0 QuoN SndEA JouSem Tom 99
dpH 9% SOVINIA (@dfgo yur awody dady poy w S POYIOI oweN ON

pringer

As

541

Sieve-SDP: a simple facial reduction algorithm to...

ww 0 das-ondrs
NN WIN PP
L801 9LT7L 0 Pp
NN WIN zpd
L80T 99°L0T 0 1pd
6L'8E16C SO—2¥9'9 €0+9€6'T ‘€096’ T 0 T00L 000L ‘0 0 QuoON qQu (90 ¥
080 0 dds-onars
WIN WIN pp
100 €0v9 0 PP
NN WIN zpd
100 859 0 1pd
T8089L1 LO—98S¥ €0+918°9 ‘€0+2189 0 €I18 €I18:0°0 QUON 07z ¢
€9'T 90—°bF'8 10—986'1— ‘10—986'T— 0 S0 T 611 8IQT :The (0 dAS-IARIS
100 €O 0 PP
100 800 0 Pp
99'T 90—3¢b'8 10—9°86'1— T0—°86T— 0 €10 98°0 I 611 8181 ‘The ‘0 zpd
9T 90—°pH'8 T10—986'T— ‘T0—986'T— 0 910 L0 T 61T 81QT ‘T ‘0 Tpd
€8¢ SO—3¢I'T 10—9°86'1— ‘10—°86'1— 0 ¥86S LIS ‘ILI ‘The 0 QUON 77T S0 LI dIquisjuswowr s
Tl 0 das-ondrs
900 98'800¢ 0 pp
900 v6LT 0 PP
WIN WIN zpd
900 S0'TE 0 1pd
L6'¥SS0T $0—99G°¢ 10+9€9°T ‘T0+9€9'T 0 8LYS LLYS 0“0 QUON yoyed ™ puourerp T
doH %) SOVINIA (@'dfqo jur A0 dordy par w S POy owreN ‘ON

"PayseId 10 AI0UISW Jo Jno uer gpp 1o gpd

YoIym U0 swo[qold ¢ a1om AU, "SPOYIOUW AT AU} JO QU0 IS8 I8 £q paonpar a1om swojqoid g asoy) wor] ‘swafqoid [¢ sey joselep Syl

39se)ep uuew U\ Y3 U0 sy nsal pajieIaq 'y

pringer

as

Y.Zhuetal.

542

8TS L0—998t 10+90T°1 ‘10+90T°1 0 6£°0 I 1161 T6:0:0 ddS-osdls
10°0 Tro 0 PP
100 S0°0 0 PP
6T L0—986'1 1042021 ‘10+90T'1 0 110 1$°0 I €261 0800 zpd
9TS L0—998F 103021 ‘10+90T°1 0 ¥1°0 110 1 1161 76400 1pd
€9°L 90969 1090271 ‘1049021 0 6LET 50100 SuoN I EN 6
9.0 0 dasS-oaats
NN NN PP
200 11°L6 0 PP
NN NN cpd
200 16°€6 0 1pd
61°1S9ST LO—99¢T €0+979'8 ‘€0+979°'8 0 SI6 SI16:0°0 SuoN (¢ gssne d 3
€0€ L0—916T 80—959°G ‘80—216'8 0 9T I IST1 L8000 dAS-oAdIS
€00 99T 0 PP
€0°0 61°0 0 PP
60°€ L0—916T 80—959°G ‘80—216'8 0 10 8901 I IS11 L8400 zpd
00¢ L0—216T 80—9G9°G ‘80—216'8 0 11°0 el I 1ST1 £8:0°0 1pd
TTISI LO—3L9'8 60—968C— ‘80—98S} 0 LO0S 97040 SuoN 3¢nou L
4 66T LO—b6'1 80—90S°¢ ‘80—69F 0 €T I TSIl L8°T0 dAS-oadIS
200 6T 0 PP
200 91°0 0 PP
4 L6T LO—3b6'1 80—905°€ ‘80—69°F 0 01°0 'S I TSI L8:T 10 zpd
4 10€ LO—3b6'1 80—90S°€ ‘80—69° 0 110 60 I 498 L8740 1pd
€0°€ST 90—°10C 80—9CI'T ‘80—201"L 0 Y9EL 81+ T 0 SuoN gnou 9
LY0 0 das-oaats
WIN NN PP
100 S9°SP 0 1PP
NN NN zpd
100 LY'Ly 0 Tpd
88°LITS LO—9EL9 YO+ITST— “b0+9CST — 0 000L 000L ‘0 ‘0 SuoN 09DXeW S
dpH 9% SOVINIA (@dfgo gur Auod doxdy -por w S PO oweN ‘ON

pringer

As

543

9881 LO—RLE Y S8°01 I L9gy OlZGT€9TI ‘T6T 00 dAS-oaeIs

STO TL9SI 0 PP

ST0 SLO 0 PP

08°LLT LO—RLE Y 0 10T 66°L8I I L9¢y Olzgz“€9z1 ‘26T 0 :0 cpd

TTSLT LO—OLEY 0 11T 9¢8hl T L9¢y 01Z6T*€9zI 76T 010 Tpd
19%1€ LO—9CI'E 0 L819 OlgGz €971 ‘79t 0 ‘0 SuoN dreyel ¢l

L6TE LO—9TET 0 L6'T I 200€ 1299:¢ 10 dAs-oadrs

¥0°0 8l 0 pp

¥0°0 91'0 0 Pp

€0°€E LO—9TET 0 680 LE8T I 200€ 1299 ‘¢ 0 zpd

6TvE LO—TE'T 0 L8°0 L6°ET I 200¢ 1299 :¢ 10 1pd
66’871 LO—96ST 0 L008 0299 ‘087 ¢ ‘0 QUON qTeyE) !

0L1C L0—20T'1 0 SL'T I 100 0T9z1 ‘€96 971 {00 ddS-9ARIS

900 LY'1T 0 PP

90°0 120 0 PP

0STC L0—20T'T 0 SLO 86'81 I 100 01971 “£96 ‘9ZT 0 :0 zpd

SSIT L0—0T'T 0 Lo LS01 I 1002 01971 “€96 ‘97T 0 ‘0 1pd
vS'LE LO—96E6 0 200€ 019z1 €96 “26T 0 0 QUON ETRUE) 1

ILTT S0—3L0S 0 S0 I 181¢€ IT1T0 ddS-oadrs

000 81°0 0 PP

000 LO0 0 Pp

LS 80—0I'T 60—3LS'T— ‘60—96S1 — 0 61°0 990 I €65C LOT1:T:0 cpd

ELTT SO0—SLOS LO—9TS'T— ‘LO—9TSE— 0 ¥T0 80°0 I 181€ 12120 Tpd
LV'61 SO—°€8'T 90—3%6C— ‘90—o11'¢ — 0 098¢ SE1:T0 QUON GJasor 01
9% SOVINIA ATI0D) dad, w S Y POyl oweN ON

Sieve-SDP: a simple facial reduction algorithm to...

pringer

A's

Y.Zhuetal.

544

€T 850 80—9€TS T0—91'9°T0—91'9 0 L0°0 I 8¢ 9°TI0:0 dAS-oAdS

000 #00 0 PP

000 200 0 PP

€T 190 80—9€TS T0—991'9°T0—91'9 0 100 L£O I 8¢ 9°C1:0:0 zpd

€T $90 80—9€TS T0—991'9°T0—91'9 0 100 §T0 I 8¢ 9°C1:00 ipd
9Vl 90—9SHT T0—391°9 ‘T0—391°9 0 1 SI'SP00 QUON §I9PIOTEEXD S

€T 650 80—9€09 TO—991'9 ‘T0—919 0 500 I 1€ v'0110:0 ddS-oAdls

000 €00 0 pp

000 200 0 PP

€7 $90 80—9€09 T0—991'9°T0—91'9 0 000 20 I 1€ 701100 zpd

€T 650 80—°€09 T0—391'9°T0—91'9 0 000 €10 I 13 ¥'01:0:0 1pd
§90 90—9L0E T0—991'9 TO—91'9 0 611 01°9£0°0 JUON LIOPIOTEEXD v

T 690 80—9€TH 70919 ‘T0—91'9 0 £0'0 I w 7'81010 dAS-oadIs

000 €00 0 PP

000 200 0 PP

T 690 80—9€TH T0—91'9 ‘T0—91'9 0 000 910 I w 7'8:0°0 zpd

T 80T 80—°€TF T0—991'9 ‘TO—391'9 0 000 010 I w 7'8:0°0 Tpd
000 90—909'l TO—991'9 ‘TO—91'9 0 06 982100 JUON QIOPIOTEEXD €

I 000 £0'0 Jur das-om1s

000 #0°0 0 PP

000 #0°0 0 PP

I SLO 10-3LTS 10—2300°S ‘00+200'0 I 000 SI'0 I € 129010 zpd

I $90 10-9LTS 10—900°S ‘00+200°0 I 000 SI0 I € 1°2:0:0 1pd
STT 90—98I'T T0—991'9°T0—91'9 0 59 €200 JUON GIOPIOTEEXD 4

I 000 £0°0 Jur dds-oaa1s

000 #0°0 0 PP

000 ¥0°0 0 1PP

I €L0 10-°LTS 10—200°S ‘00+300°0 I 000 S€0 I € 70 zpd

I €90 10-9LTS 10—900°S “00+200°0 I 000 010 I € zito 1pd
69'T 10-9L8'9 01—395°€ 01 —3tS'E 0 b SIIT0 JUON HIOPIOTEEXD I
deH 105 SOVINIA @Dl Auogydaidy pax w Sy POURIN oweN ON

‘[11] 1oded ayy uo paseq ¢ Ajodndojn £q paojersua3 uoneziundo rerwoukjod woiy suonexe21 J(S SST JO UONIJ[0I ® SI SIY],

33se3ep (MIQ) H1OM SP-Uew|||-13]s531q 3Y3 UO S)Nsai pajie3sd €'Y

pringer

as

545

Sieve-SDP: a simple facial reduction algorithm to...

€T LSO LO—RITT 20—991°9 “T0—991°9 0 820 I €9 €1°61:0°0 dAS-oAd1s

10°0 S1Io 0 PP

100 €00 0 PP

€T 650 LO—RITT 20—991°9 “T0—291°9 0 100 051 I €9 €1°61:0:0 pd

€T 190 LO0—°ITT 70—991°9 ‘T0—991°9 0 100 SH0 1 €9 €1°61:0:0 1pd
8¢’ S0—aLt’E TO—9SI'9 ‘TO—9GT'9 0 LLE SSSOT00 QUON E[IOPIOTEEXD)i

€T 890 L0—CI'l 20—991°9 ‘T0—291°9 0 00 I 09 TI'8TH00 dAS-oAts

000 110 0 PP

000 $0°0 0 1pp

€T €90 LO0—TI'l 20—991°9 ‘T0—991°9 0 100 LT I 09 TI81:0°0 opd

€T 8¢l L0—3C1'1 20—91°9 “T0—291°9 0 100 8€°0 I 09 T1°81:00 1pd
0S'1 S0—9YET TO—991'9 ‘TO—991'9 0 vee SP°16:0°0 QUON Z[HOPIOTEEXD 6

€T Tl 80—950°6 T0—991'9 ‘T0—291'9 0 81°0 I € 01°91:0°0 ddS-oAdrS

000 01°0 0 P

000 00 0 PP

€T 901 80—950°6 20—991'9 ‘T0—291'9 0 10°0 0L0 I €g 01914040 zpd

€T 901 80—950°6 T0—991'9 ‘TO—991'9 0 100 1€0 I € 0191400 pd
8¢’ S0—oCI'1 20—91°9 “T0—291°9 0 SiT 9€°8L:040 auoN [110PIOTE"EXD 8

€T Tl 80—9€L9 TO—991'9 ‘T0—991'9 0 10 I b 8P1:0'0 ddS-oadrs

000 800 0 PP

000 90°0 0 PP

€T 001 80—9€L'9 TO—991'9 ‘TO—991'9 0 100 950 I el 87100 opd

€T 901 80—9€L'9 T0—991'9 ‘TO—291'9 0 €00 €0 I vp 8411010 1pd
6Tl 90—9€Ey T0—991'9 ‘T0—991'9 0 0£T 8299100 QUON (QTIOPIOTEEXD L

€7 690 80—9SS T0—°91'9°C0—91°9 0 60°0 I It LE1:0%0 dds-oaers

000 S00 0 PP

000 200 0 Ipp

€T 190 80—9%SS TO—991'9 ‘T0—991°9 0 100 9€0 I 182 L€ET:0°0 zpd

€T 090 80—9SS T0—991'9°T0—919 0 100 81°0 I 82 LET:00 1pd
Y60 90—9€9t TO—991'9 ‘TO—91'9 0 681 12°65:0°0 QuoN 610PI0TE'EXD 9
dpH 105y SOVINIA @dfgo jur Au02) doxdy ‘par w S POy oureN "ON

pringer

as

Y.Zhuetal.

546

€T 190 L0—986'T T0—91'9 ‘TO—991'9 0 760 I 88 079700 dAs-oadrs

100 050 0 PP

100 00 0 PP

€T 850 L0—986'1 20—991°9 “T0—991°9 0 200 8LL I 88 029200 zpd

€T €60 L0—986T TO—991'9 ‘T0—991°9 0 200 ST I 88 079200 1pd
69 S0—2I1S9 TO—3ST'9 ‘TO—SI'9 0 0L 0TI 061 ‘00 QUON §[IOPIOTEEXD S

€T T60 L0—968T TO—991'9 ‘T0—991°9 0 €L0 I 8 61°6T0°0 dAS-oAdls

100 %0 0 PP

100 900 0 1pp

€7 $60 L0—968T T0—991'9 ‘T0—919 0 200 LE'S I S8 61°ST:010 zpd

€T ¥60 L0—2968'1 20—991°9 “T0—991°9 0 00 9I'l I S8 616700 1pd
9r S0—9¥8T TO—9ST'9 ‘TO—ST'9 0 629 SOT‘ILT0:0 QUON L[IOPIOTEEXD 1

€T €60 LO—O6L'T TO—991'9 ‘T0—919 0 850 I 28 8IbT0°0 ddS-oAdIS

000 620 0 PP

000 500 0 PP

€C T60 LO—O6L'T T0—991'9 ‘T0—2919 0 10°0 88°¢ I 8 7100 zpd

€T S60 LO—96LT TO—991'9 ‘T0—919 0 100 260 I 8 71010 1pd
v9'c S0—281'] 20—991°9 “T0—991°9 0 09$ 1665100 QUON Q[IOPIOTE'EXD €1

€T oIl LO—3LY'T TO—991'9 ‘T0—919 0 L0 I SL 917200 dAS-oadrs

000 $T0 0 PP

000 500 0 PP

€T 90T L0—3Ly'T TO—291'9 ‘T0—91°9 0 200 68°C I SL 917200 zpd

€T 90T LO—2LF'T TO—991°9 ‘T0—991°9 0 10°0 €L0 I SL 912200 1pd
LT S0—990'T TO—291'9 ‘T0—91'9 0 S6 8L°9€1 00 QUON G[IOPIOTEEXD 1l

€T LTl LO—2IET TO—2919 ‘T0—391°9 0 80 I 99 PI0T00 dAs-oaels

000 TTO 0 PP

000 00 0 Ipp

€T 6€1 LO—OIET TO—991'9 ‘T0—91'9 0 100 10T I 99 zpd

€T LSO LO—OIET T0—991'9 ‘T0—919 0 100 850 I 99 1pd
0S'T S0—TFT T0—991°9 ‘T0—991°9 0 vey QUON HIOPIO E'EXD 11
dpH 105) SOVINIA (@dfgo jur A0 doxdy ‘par w S poweIN aureN "ON

pringer

As

547

Sieve-SDP: a simple facial reduction algorithm to...

I 000 200 Jur das-oners

000 €00 0 PP

000 200 0 PP

I PEO 10—°0SL 004200 ‘0042000 I 000 110 I I 1:0°0 zpd

I 60 T0—°0SL 00+°00°€ ‘00+200°0 I 000 01'0 1 I 1:0%0 pd
¥60 109678 60—9CI'€ ‘60—980°€ 0 9 91200 QuoN GIOpIOT ['pXa 0z

1 000 200 Jur das-onts

000 €00 0 PP

000 200 0 1pp

I 990 T0—°0SL 00200 ‘0042000 1 000 80°0 I I 1:0°0 zpd

I SE0 10—0S°L 00+900°€ ‘002000 I 000 01’0 I I 1:0°0 1pd
¥80 109678 60—909°C ‘60—9SST 0 v €61:0%0 auoN $IOPIOT [XD 61

I 000 100 Jur dds-oaars

000 200 0 PP

000 200 0 PP

I 290 10—98CT'8 004208t TI—81'] I 000 90°0 I z 14140 zpd

I 6L0 10—98T8 004908+ ‘TI—8T'T I 000 L00 I z 15190 1pd
0Tl 10—967'8 60—2°0€'T ‘60—2tT'1 0 LT 01140 QuON €10pI0T"pXa 81

€T I€T L0—991T T0—991'9 ‘T0—991'9 0 el I o1 $T0£:0°0 dAS-9AIS

200 98°0 0 PP

200 60°0 0 PP

€T 60T LO—991'T TO—991'9‘T0—91°9 0 €00 I¥El I o1 ¥2°0€:0:0 opd

€T OI'l L0—991C T0—291°9°C0—91°9 0 €00 89°C I $0I $2°0€0°0 1pd
9¢'IT $0—9S6T TO—3ST'9 ‘TO—IST'9 0 098 €ST°1€T°0:0 QUON (TIOPIOTEEXD LT

€T L90 L0—01'T T0—°91'9‘C0—91°9 0 1€ I L6 TT8TI00 dAS-oARlS

100 09°0 0 PP

10°0 90°0 0 Ipp

€T 690 L0—901'T TO—991'9‘T0—991'9 0 €00 €01 I L6 7087010 zpd

€T T L0—0IT T0—991°9°‘T0—91°9 0 200 81'C I L6 TT°8T10°0 1pd
100 $0—926'C T0—9ST9 ‘TO—9ST9 0 6LL 9ET0TT 00 QUON GIIOPIOTEEXD 91
dpH 105) SOVINIA @dfgo jur Au02) doxdy -por w s POy oweN ‘ON

pringer

as

Y.Zhuetal.

548

I 000 600 Jur das-ordrs
000 900 0 PP
000 200 0 PP
I €60 10—0S'L 00+200°€ ‘00+300°0 I 000 050 I I 1:0°0 opd
I 6£°0 10-20SL 00+200°€ ‘002000 I 000 €0 I I 1:0°:0 1pd
690 L0266 00+°00'T ‘0042001 0 0£T 9€°99:0:0 QUON QTIOPIOT[HXD ST
1 000 L00 Jur JAS-om91S
000 500 0 PP
000 200 0 1pp
I 6£°0 10-°0SL 00+200°€ ‘0042000 I 000 S0 I I 1:0°0 opd
I 650 10—90S'L 00+200°€ ‘00+300°0 I 000 920 I I 1:0°0 1pd
L80 90—90I'T 00+200'T “00+200'T 0 681 8265100 auoN 610PI0T [XD T
I 000 500 Jur dAs-ordrs
000 $0°0 0 PP
000 200 0 PP
I %) 10—30S'L 00+200°€ ‘00+300°0 I 000 LT0 I I 1:0°0 zpd
I 60 10-20SL 00+200°€ ‘0042000 I 000 610 I I 1:0°0 pd
890 90—9THI 00-+200'T 002001 0 1 1267100 QuoN §IOPIOT ['PXd €z
I 000 00 Jur das-oa9rs
000 €00 0 PP
000 200 0 PP
I 190 10-°0SL 00+200°€ ‘0042000 I 000 170 I I 1:0°:0 opd
I $€°0 10—20S'L 00+300°€ 00+200°0 I 000 L10 I I 1:0°0 1pd
190 90—200'T 00+200'T “00+200'T 0 611 ST°9£:0:0 auoN LIOPIOT XD @
I 000 200 Jur das-ordrs
000 €00 0 PP
000 200 0 Ipp
I 9¢°0 10-90SL 00+300°€ ‘0042000 I 000 ST0 I I 1:0°0 zpd
I 60 10-°0SL 00+200°€ ‘0042000 I 000 #1°0 I I 1:0°:0 1pd
680 LO—OIE9 00+200'T 00+°00'1 0 06 01°8T:0°0 QuoN QIOPIOT ['PXd 1T
dpH 105) SOVINIA @dfgo jur AUOD) doxdy ‘par w s PO oureN "ON

pringer

As

549

Sieve-SDP: a simple facial reduction algorithm to...

I 000 620 Jur das-orars
000 v20 0 PP
000 Y00 0 PP
I S0 10—90S'L 00+200°€ ‘0042000 I 000 6LT I I 1:0°0 opd
1 9¢°0 10—20S°L 00200°€ ‘00+300°0 I 000 180 1 I 1:0:0 1pd
991 90—zt 00+200°T “00+200°1 0 S6 16 °9€1 ‘0 {0 QUON GTIOPIOT['PXd o€
1 000 ST0 Jur JAs-oma1s
000 020 0 PP
000 €00 0 1pp
I 8€°0 10—°0S'L 00200°€ ‘00+200°0 1 000 07T I I 1:0°0 pd
I €70 10—90S'L 00+200°€ ‘0042000 I 000 180 I I 1:0°0 1pd
651 90—961'C 00+200'T ‘00+200'T 0 vEF 8L'0TI'0:0 QUON H[IOPIOT[PX0 67
I 000 610 Jur das-orsrs
000 ¥1°0 0 P
000 €00 0 PP
I LE0 10—90S'L 00+200°€ ‘0042000 I 000 S I I 1:0°0 zpd
I LLO 10-20SL 00+200°€ 00+200°0 I 000 50 I I 1:0°0 pd
00’1 90—9€8'9 002001 ‘00+200'1 0 LLE 99°C01 00 QUON E[IOPIOT[HXd 8z
I 000 910 Jur dAs-oA91S
000 110 0 PP
000 200 0 PP
I 170 10-90SL 00+200°€ 00+200°0 I 000 01 I I 1:0°:0 opd
I €0 10—90S'L 00+200°€ ‘0042000 I 000 050 I I 1:0°0 1pd
90’1 90—96TC 004900 ‘0042001 0 e SS°16:00 QUON ZTHOPIOT X0 LT
I 000 €ro Jur das-orsrs
000 600 0 PP
000 200 0 Ipp
I €0 10—90S'L 00-900°€ ‘00+200°0 I 000 1L0 I I 1:0°0 zpd
I €0 [0—20S°L 00+200°€ ‘00+300°0 I 000 €0 I I 1:0°:0 1pd
€60 90—209T 00-+°00'T ‘002001 0 SLT St 8L 100 QuoN [119pI0T X2 9z
dpH 105y SOVINIA @dfgo jur AUODy doxdy par w S POy ouwreN "ON

pringer

as

Y.Zhuetal.

550

I 000 880 Jur das-oaars

200 80 0 PP

200 L00 0 PP

I €0 10—230S'L 00-200°€ ‘00+200°0 I 00 ILTl I I 1:0°0 opd

I S€0 T0—20SL 00-200°€ ‘00+200°0 1) 89'C 1 1 1:0°%0 1pd
98'8 90—2°59'S 00+°00'T ‘00+200'T 0 098 TLI‘T€2:0°0 QUON (TIOPIOT['PXD 3

I 000 L80 Jur dAS-oATS

100 690 0 PP

10°0 900 0 1pp

I LE€0 10—90SL 00+300°€ ‘002000 I 100 66 I I 1:0%0 opd

I LE0 10—90SL 00+900°€ 002000 I 10°0 10T I I 1:0°0 1pd
$09 90—99LT 00-H900'T ‘0043001 0 6LL €ST'0T1T:0°0 QUON 6TIOPIOT[PXO €

I 000 90 Jur das-orars

100 750 0 P

100 80°0 0 PP

I 90 10—°0S'L 00+°00°€ 002000 I 100 66'9 I I 1:0°0 zpd

I L€0 10—90SL 00+300°€ ‘002000 I 100 wi I I 1:0°0 pd
Sr 90—°EkT 00+°00°T ‘0042001 0 0L 9E1°061:0°0 QUON §TIOPIOT['pXd €€

I 000 Lv0 Jur das-oa9rs

100 70 0 PP

100 500 0 PP

I L0 10—°0SL 00+300°€ ‘002000 I 100 6T°S I I 1:0%0 opd

I $€0 10—°0S'L 00+°00°€ 002000 I 100 LTl I I 1:0°:0 1pd
€€ 90—9SHT 00+300'T ‘002001 0 679 OTI‘TLT:0%0 QUON L[IOPIOT[XD €

I 000 L0 Jut dds-orsrs

000 1€0 0 PP

000 $0°0 0 Ipp

I €50 10—90SL 00+300°€ ‘002000 I 000 90y I I 1:0°0 zpd

I 9¢0 10—90SL 00-°00°€ ‘00+200°0 I 000 or't I I 1:0%0 1pd
IP'C L0—266'L 0042001 00+200°T 0 09§ SOT‘€ST 00 QUON 9TIOPIOT XD 1€
dpH 105) SOVINIA (@dfgo jur Au0d) doxdy par w s poweN oweN ON

pringer

As

551

Sieve-SDP: a simple facial reduction algorithm to...

z 0L0 80—206'€ 10—9€5°S “T0—9€S’S 0 90°0 I 8T 70100 dAS-oAdrs
000 $0°0 0 PP
000 200 0 PP
z LS0 80—206'€ 10—9€S°S ‘T0—9€S'S 0 000 €70 I 8T 70100 7pd
z 850 80—206°€ 10—9€S°S ‘T0—€S°S 0 000 LT'0 I 8z 7'01:0:0 1pd
#9°0 90—980'1 10—9€5°S “T0—9€S°S 0 99 ST*S7:0°0 auoN 10PI0 T PXd or
89°0 60—968't 10—9€S°S ‘T0—9€S°S 0) I ST €600 JdAS-oAdrS
000 €00 0 PP
000 200 0 1pp
S50 60—268't 10—9€5°S “T0—9€S°S 0 000 91°0 I ST €6:0°0 zpd
LS0 60—268't 10—9€S°S ‘T0—9ES'S 0 000 €1ro I T £6:0°0 1pd
$90 L0—3L8T 10—9€5°S “T0—9€S°S 0 611 0T ‘9€ %0 ‘0 auoN LIOPIOTT X0 6¢
vL0 60—349°L 10—9€5°S “T0—9€S°S 0 €00 I @ T'8:0°0 dAS-omdIs
000 €00 0 P
000 200 0 PP
290 60—219°L 10—9€S°S ‘T0—9ES'S 0 000 y1°0 I "4 7800 zpd
€90 60—349'L 10—9€5°S “T0—9€S°S 0 000 600 I w 78100 pd
$90 L0—34T'€ 10—9€S°S ‘T0—9€S'S 0 06 98700 auoN 9IOPIO T X0 8¢
I 000 €00 Jur das-or9rs
000 $0°0 0 PP
000 200 0 PP
I 70 10—°00'S 00--200'T “00--200"0 I 000 ¥1°0 I I 1:0°%0 opd
I 90 10—200°S 00-200'T 00-+-200"0 I 000 1o I I 1:0°0 1pd
8T 80—61°6 10—9€5°S “T0—9€S’S 0 59 €°72:0%0 auoN GIOpIOT T Xo LE
I 000 €00 Jur das-orsrs
000 00 0 PP
000 $0°0 0 Ipp
€ 190 10—900'S 00+200'T “00+200'T 0 000 600 I z 15190 opd
¢ LS0 10—°00'S 00--200'T 00+200"T 0 000 80°0 I z 14140 1pd
18°0 10—0LO'L 60—210°T ‘60—°00' 1 0 b SEEN auoN $IOPIOTC X0 9¢
dpH 10%) SOVINIA (@d fqo Jur A0y doxdy ‘par w S PowON sweN "ON

pringer

as

Y.Zhuetal.

552

€T €L0 80—906€ 10—9€5°S “T0—9€S°S 0 ST0 I 8T 70100 dAS-oA9rS

000 S1Io 0 PP

000 €00 0 PP

€T 90 80—°06€ 10—2€S°S ‘T0—9€S'S 0 100 ¥ I 8T #0100 pd

€T 890 80—206€ 10—9€5°S “T0—2€S°S 0 100 150 1 8z 701400 1pd
€' 90—28S"¥ 10—9€6°S “T0—9€S°S 0 LLE SSSOT00 QUON E[IOPIOT XD St

€7 0L0 80—206€ 10—9€S°S ‘T0—9€S’S 0 61°0 I 8z FOT0%0 JAS-oAdtS

000 z1o 0 PP

000 €00 0 1pp

€T LSO 80—906€ 10—9€5°S “T0—9€S°S 0 100 90'1 I 8T #0100 opd

€T 890 80—906€ 10—2€5°G ‘T0—9€S'S 0 100 150 I 8T #0100 1pd
€T 90—3LLT 10—9€5°S “T0—9€S°S 0 vee SP°16:010 QUON Z[HOPIO X0 b

€T 0L0 80—906€ 10—9€6°S “T0—2€S°S 0 910 I 8T 70100 ddS-ordrs

000 01°0 0 P

000 €00 0 PP

€7 €L0 80—°06€ 10—9€S°S “10—9€S°S 0 10°0 780 I 8T £°01:00 zpd

€T 080 80—906€ 10—9€5°S “T0—9€S°S 0 100 670 I 8T #0100 pd
991 90—219'] 10—2€S°S ‘T0—9€S'S 0 SiT 9€°8L:0 40 auoN [[10PI0C X ¢

€T 9L0 80—906€ 10—9€5°S “T0—9€S'S 0 €10 I 8T 70100 dAS-oA9rS

000 900 0 PP

000 200 0 PP

€T 090 80—906€ 10—9€6°S “T0—9€S°S 0 100 950 I 8T #0100 zpd

€T 10 80—2°06C 10—9€S°S “10—9€S°S 0 10°0 6£0 I 8T £°01:00 1pd
vLO 90—9TH1 10—9€5°S “T0—9€S°S 0 0£T 8299100 QUON QTIOPIOTTHXO o

z 10 80—206€ 10—2€5°S ‘T0—3€S'S 0 800 I 8T PO1:00 ddS-oAdls

000 Y00 0 PP

000 200 0 Ipp

T LSO 80—906€ 10—9€§°S “T0—9€S°S 0 000 €€0 I 8T #0100 zpd

T 860 80—906°€¢ 10—9€§°S “T0—9€S°S 0 000 700 I 8T #0100 1pd
L90 90—201'I 10—9€5°S ‘T0—2€S°S 0 681 12°65:0°0 QuoN 610PIOT T XD 182
dpH 105y SOVINIA @dfgo jur Au02) doxdy ‘par w S POy oureN "ON

pringer

As

553

Sieve-SDP: a simple facial reduction algorithm to...

€7 790 80—906°€¢ 10—9€5°S “T0—9€S'S 0 8L0 I 8T 70100 dAS-oadrs

10°0 90 0 PP

100 900 0 PP

€7 90 80—°06°€¢ 10—9€5°S “T0—9¢S’S 0 00 908 I 8T 70100 zpd

€7 790 80—06'¢ 10—9€5°S “T0—2€S°S 0 200 10T I 8z 7014040 1pd
96 $0—°0L'T 10—9T$°S “10—9CS'S 0 0L 0TI 061 ‘00 QUON §[IOPIOTTHXD 0S

€7 7190 80—°06°¢ 10—9€5°S “T0—2€S°S 0 650 I 8z FOT00 dAS-oadls

100 0S0 0 PP

10°0 00 0 1pp

€7 €90 80—906€ 10—9€§°S “T0—9€S'S 0 100 s I 8T 70100 zpd

€T LSO 80—2°06°€¢ 10—9€5°S “T0—9€S"S 0 100 TSl I 8T 70100 1pd
967 H0—990'T 10—9T§°S “T10—9CS'S 0 629 SOT‘ILTI0:0 QUON L[IOPIOTTHXD 6

€7 790 80—906°€¢ 10—9€5°S “T0—9€S'S 0 050 I 8T 70100 dAS-oadls

100 LE0 0 PP

100 +00 0 PP

€7 090 80—2°06°€¢ 10—9€S°S “10—9€S°S 0 10°0 LS I 8T $°01:0°0 zpd

€T 190 80—906€ 10—9€5°S “T0—9€S°S 0 100 0ST I 8T 70100 1pd
St 90—°KST 10—2€S°S ‘T0—3€S'S 0 09$ 1665100 QUON Q[IOPIOTTHXD 8t

€T LSO 80—906€ 10—9€5°S “T0—9€S'S 0 650 I 8T 70100 dAS-oadrs

100 +£0 0 PP

100 400 0 PP

€7 980 80—906°€¢ 10—9€5°S “T0—9€S'S 0 100 18°¢ I 8T #0100 zpd

€T 0S1 80—206°€ 10—9€S°S “10—9€G°S 0 10°0 80°1 I 8T $01:0°0 1pd
06T 90—9TS°€ 10—9€5°S “T0—9€S'S 0 S6 8L°9€1 00 QUON G[IOPIOTTHXD Ly

€T 190 80—206°€ 10—9€S°S “10—9€G°S 0 €0 I 8T P01:0°0 dAs-oaels

000 920 0 PP

000 €00 0 Ipp

€7 900 80—906€ 10—9€§°S “T0—9€S'S 0 100 9€¢ I 8T 701 ¢ zpd

€T €00 80—906€¢ 10—9€5°S “T0—9€S'S 0 100 280 I 8T 701 ¢ 1pd
YTT 90—219'1 10—9€5°S “T0—2€S°S 0 vey 99 ‘0CT ¢ QUON {[JOPIOTLHXO 9%
dpH 105) SOVINIA (@dfgo jur A0 doxdy ‘par w S poweIN aureN "ON

pringer

as

Y.Zhuetal.

554

I 000 ¥0°0 Jur das-oners

000 500 0 PP

000 €00 0 PP

I 6T 10—968'8 00--200'8 ‘00+300°0 I 000 €1ro I I 1:0°0 zpd

I €T 109688 00+200'8 ‘00+2000 I 000 10 1 I 1:0%0 1pd
88'¢ 10—960'6 60—9EST ‘60—20ST 0 91 01 °S£0°0 QuoN $IOPIOTE XD Ss

I 000 500 Jur dAs-onats

000 ¥0'0 0 PP

000 500 0 1pp

I 8TT 10—968'8 00--°00'8 ‘00+200°0 I 000 €10 I I 1:0°0 zpd

I 671 10—968'8 00--200'8 ‘00+300°0 I 100 610 I I 1:0°0 1pd
8LE 10—9606 60—98F9 ‘60—9CT9 0 €8 0700 auoN €10pI0TEPX0 S

I 000 750 Jur dds-oaars

000) 0 PP

000 80°0 0 PP

I 0€'1 109606 00--200'8 ‘00+300°0 I 000 $€°0 I o1 7100 zpd

I vTT 109606 00-200'8 ‘00+200°0 1 €00 ¥1°0 I ot 710 1pd
657 109606 LO—9E8'T ‘LO—EL'] 0 e 01140 QuON TIOPIOTE XD €S

€T 890 80—906'€ 10—9ES’S ‘T0—9ES’S 0 It I 8T PO1:0°0 dAS-oAdrs

200 ¥6°0 0 PP

200 LO°0 0 PP

€T LSO 80—906'€ 10—9€S’S ‘T0—9ES’S 0 €00 LLTI I 8T 0100 zpd

€T 860 80—906'€ 10—9€S’S ‘10—9ES’S 0 €00 €6C I 8T ¥ 0100 1pd
SOLT €0—99€F 10—96FS ‘T0—6'S 0 098 €ST°1€T°0:0 QUON (OTIOPIOTHXO s

€T SLO 80—906'€ 10—9€S’S ‘T0—2ES’S 0 €60 I 8T PO1:0°0 dds-eAdrs

200 08°0 0 PP

200 90°0 0 Ipp

€T 090 80—906€ 10—9€SS ‘T0—9€S’S 0 200 66'6 I 8T ¥°01:00 zpd

€T 650 80—906'€ 10—9€S'S ‘T0—9ES’S 0 200 or'e I 8T 0100 1pd
00T $0—°976 10—9TS'S ‘T0—3TS'S 0 6LL 9ET0TT 00 QUON GIIOPIOTHXd I$
dpH 105) SOVINIA @dfgo jur Au02) doxdy -por w s POy oweN ‘ON

pringer

As

555

Sieve-SDP: a simple facial reduction algorithm to...

I 000 €50 Jur dAs-or9rs

00 880 0 PP

00 LO0 0 PP

I 650 10—968'8 00--200°8 ‘00+300°0 I 00 9 I I 1:0°0 opd

1 960 10—°68'8 00+°00'8 ‘0042000 I 00 80 I I 1:0:0 1pd
oL 90—988'S 109091 ‘10+909'T 0 62€1 0TI*0TT 00 QUON IOPIOTEHXD 09

I 000 LT0 Jur JAs-oma1S

100 SO 0 PP

100 SO0 0 1pp

I L0 10—968'8 00--°00'8 ‘00+200°0 I 100 S0T I I 1:0°0 7pd

I €90 10—968'8 00+200'8 ‘00+°00°0 I 100 870 I I 1:0°0 1pd
0F6 90—°LI'S 10+909'T ‘T0+209'T 0 896 #8°691 10 ‘0 QUON §IOPIOTEHXD 6S

I 000 LT0 Jur das-ordrs

100 €20 0 P

100 900 0 PP

I 61'1 10—968'8 00+200°8 ‘00+300°0 I 100 €80 I I 1:0°0 zpd

I €T 10—968'8 0042008 002000 I 100 0€0 I I 1:0°0 pd
Sy 90—99T'S 10+209'T ‘10+°09'1 0 6L9 95021 ‘0 ‘0 QUON [IOPIOTEHXd 8¢S

I 000 01°0 Jur dAs-or91s

000 €10 0 PP

000 S00 0 PP

I 0Tl 10—968'8 00+300°8 002000 I 000 %0 I I 1:0°:0 opd

I 91’1 10—968'8 00+200°8 ‘00+300°0 I 000 120 I I 1:0°0 1pd
0T€ 90—°E€ 10+909'T ‘T0+209'T 0 st SE48:010 QUON QIOPIOTEHXD LS

I 000 900 Jur das-ordrs

000 800 0 PP

000 $00 0 Ipp

I Tl 10—968'8 00+200°8 ‘002000 I 000 0T0 I I 1:0°0 zpd

I vT1 10—968'8 003008 002000 I 000 SI'0 I I 1:0°:0 1pd
0£€ 10—9606 60—9TTS ‘60—98T'S 0 S8z 0T ‘950 ‘0 QUON GIOPIOTCHXd 9¢
dpH 105) SOVINIA @dfgo jur auody doxdy por w S POyIOIN oweN ON

pringer

as

Y.Zhuetal.

556

I 000 €L6 das-onars

[T0 Stopl 0 PP

LT0 €90 0 PP

I [P0 10—968'8 00+200'8 ‘00+200°0 I LT0 1€601 I I 100 zpd

1 PEO 10—968'8 002008 ‘002000 I 120 8L1 1 I 1:0°%0 1pd
SY8LIT TO—20%'6 10+910°T ‘10+910°1 0 vevy SS¥°089:0 0 QUON [IOPIOTEHXD <)

1 000 6T Ju dAs-aats

81°0 L8YL 0 PP

81°0 oro 0 1pp

I SE0 109688 004200°8 ©00+200°0 I 810 90'19 I I 1:0°0 zpd

I PEO 10—968'8 00+°00°8 002000 I 810 $S01 I I 100 1pd
09718 10—9606 LO—93S8¥ ‘LO—9E8F 0 €59€ +9€°09S {0 ‘0 QUON £[IOPIOTEHXD 9

I 000 067 das-oaars

10 18°6€ 0 P

1o ST0 0 PP

I 90 10—968'8 00+200'8 ‘00+200°0 I 110 LIPS I I 100 zpd

I TS0 10—968'8 002008 ‘00--°00°0 I 110 s I I 1:0°0 1pd
P6'0EE 10—9606 90—9T9°T ‘90—C9°C 0 $T6C 98T ‘SSH 100 QUON [JOPIOTEHXD €9

I 000 IS Jur das-onars

100 8¢8I 0 PP

L0°0 91°0 0 PP

I PEO T0—968'8 00+°00'8 009000 I 100 19°L1 I I 1:0°0 opd

I PEO 10—968'8 00+°00°8 002000 I L00 e I I 1:0°0 1pd
LTOTT 10—960'6 90—9S8'L ‘90—98'L 0 66TC 0TT '$9€:0:0 QUON [[JOPIOTEHXD 79

I 000 (80 ju das-eaars

$0°0 6L'1 0 PP

$0°0 600 0 Ipp

I YE€0 10—968'8 002008 ‘00--°00°0 I #00 106 I I 1:0°0 zpd

I S0 10—968'8 00--°00°8 ‘002000 I $00 991 I I 1:0°%0 1pd
LSTY S0—9C6'S 1042091 ‘10+209' 0 OLLT ~ S9T°98C:0:0 QUON ([IOPIO ¢'HXd 19
dpH 1% SOVINIA (@dfgo Jgur Aoy doxdy -por w S POy oweN ON

pringer

As

557

Sieve-SDP: a simple facial reduction algorithm to...

I 000 €rper Jur das-onars

091 LTTSST 0 PP

09'1 €S 0 PP

I €T 10—968'8 00+900°8 ‘002000 I 09T ILLLIT I I 1:0°0 zpd

1 91 10—968'8 004200°8 ‘00+200°0 I 91 6T TLI 1 1 1:0:0 1pd
1S°0€82C 10—9€9°C 00+928'9 “00+978'9 0 65901 OFIT “0FST 00 QUON GIIPIOTEPXe (L

1 000 0918 Jur das-onts

€T PEIL 0 PP

€l o€ 0 1pp

I FT 10—968'8 00+°00'8 ‘0042000 T €T 1T°€SL I I 1:0°0 zpd

I OFL 10—968'8 00--°00°8 ‘002000 €l oIl I I 1:0°0 1pd
[€69LIT T0—2FT'T 00+391°L ‘00-+991°L 0 8€16 696 ‘0EET 0 ‘0 QUON S[IPIOEPXD 69

I 000 o6y Jur das-oaars

180 6V6v6 0 PP

180 €re 0 PP

I €CT 10—968'8 00+900°8 ‘002000 I 180 SI'tl I I 1:0°0 zpd

I Y€1 10—968'8 004200'8 ‘00+200°0 I 180 6L I I 1:0°0 1pd
§9'819S 10—200C 00-3SH'L ‘00+3St"L 0 69LL 9I8°OFIT‘0:0 QUON LTIOPIO EHXO 89

I 000 KA TR 1 das-oaars

S50 0£S8Yy 0 PP

€0 671 0 PP

I €CT 10—968'8 00+900°8 ‘002000 I S60 0LS6C I I 1:0°0 zpd

I T 10—968'8 00+900°8 ‘002000 I $S0 6€°9% I I 1:0°0 1pd
88'8S1€ 10—9€TT 00+9S6'L “00+9S6'L 0 759 089 ‘696 ‘0 0 QUON QIIPIOEHXe /9

I 000 0791 Jur das-easrs

%0 0T€0€E 0 PP

170 66'0 0 Ipp

I 0L0 10—968'8 004300'8 ‘00+200°0 I 10 TTeel I I 1:0°0 zpd

I 050 10—968'8 00--°00°8 ‘002000 I 150 Teee I I 1:0°:0 1pd
9¢'010Z T0—29L'T 00+376'8 ‘00+3%6'8 0 992 096 ‘91810 ‘0 QUON GTIOPIOEHXD 99
dpH 9% SOVINIA (@dfgo gur Auody doxdy -por w S PO oweN 'ON

pringer

as

Y.Zhuetal.

558

I 000 800 Jur das-onars
000 €70 0 PP
000 €00 0 PP
I SS0 10—200°S 00+900°T ‘002000 I 000 L0 I I 1:0°0 zpd
I €60 T0—200'S 00+°00°T ‘002000 I 000 070 1 1 1:0:0 pd
1€ 10—999'8 80—20S'T ‘80—6%'1 0 St 95 ‘#8010 QUON QRPIOTHEXe G/
I 000 vO'0 Jur das-oadrs
000 ¥1°0 0 PP
000 €00 0 1pp
I 650 10—°00°S 004200°T ‘00+200°0 I 000 ST0 I I 1:0°0 zpd
I 090 10—°00°S 002001 ‘002000 I 000 v1°0 I I 1:0°0 1pd
11T 10-999°8 80—9S8'S ‘80—999'S 0 8T SE°95:010 QUON GRPIO XS L
I 000 €00 Jur das-oasrs
000 L0°0 0 PP
000 200 0 PP
090 10—°00°S 00+200°T ‘00+200°0 I 000 P10 I I 1:0°0 zpd
$S°0 10—°00°S 004200°T ‘00+200°0 I 000 z1o I I 1:0°0 1pd
LT 10—999'8 SO—op8'[‘S0—o€L'] I 91 0T°S£:0°0 QUON pIOPIOTHPXS €L
I 000 100 Jur das-onars
000 €00 0 PP
000 200 0 PP
€60 10—200°S 00+°00'T ‘0042000 I 000 01°0 I I 1:0°:0 zpd
090 10—°00°S 00+200°T ‘00+200°0 I 000 60°0 I I 1:0°0 1pd
LT 10—999'8 10—981'T ‘T0—988'6 I €8 01°02:00 QUON ERPIOpEXe 7L
I 000 89°097 Jur dds-easrs
6LT L8079 0 PP
6LC 899 0 Ipp
I $90 10—968'8 004200'8 ‘00+200°0 I 6LT €I6LIT I I 1:0°0 zpd
I 60T 10—968'8 00--°00°8 ‘002000 I 18T €5°SLE I I 1:0°0 1pd
88'98/8¢ 10—999'C 00+9ZS'9 ‘00+37S'9 0 OPETI OSET “1LLT 00 QUON (TIOPIO CHXD L
dpH 9% SOVINIA (@dfgo gur Auod doxdy -por w S POy oweN 'ON

pringer

As

559

Sieve-SDP: a simple facial reduction algorithm to...

I 000 LLT Jur das-onars
800 09°0€ 0 PP
800 070 0 PP
I €90 10—°00°S 00200 ‘0042000 I 800 €I'CC I I 1:0°0 zpd
1 290 10—200°S 0042001 00+°00°0 1 01°0 1T 1 1 1:0°:0 1pd
SI'¥9 SO—9pFy SO—°19'T “S0—209'1 0 662 98T '79€:0 0 QUON [[JOPIO HpXd 08
1 000 68°0 Jur das-oadrs
900 L€l 0 PP
90°0 10 0 1pp
I 960 10—200°S 002001 ‘002000 I 900 0101 I I 1:0°0 zpd
I 690 10—°00C 0042001 ‘00+200°0 I L0°0 vTT I I 1:0°0 1pd
9TIL 10—999'8 0T—93S9°T ‘01—959°C 0 OLLT ~ 0TT 98T 00 QUON ([IOPIO HHXD 6L
I 000 €50 Jur das-oaars
€00 81'8 0 PP
€00 10 0 PP
I 9,0 10—°00°S 00+200°T 00-+200°0 I €00 8's I I 1:0°0 zpd
I 080 10—200S 00+200'T ‘002000 I €00 8T'T I I 1:0°0 1pd
80'IE 10—299'8 OI—2pI't O1—9€I} 0 62€1 S91°0TT00 auoN 619pI0 pX2 8L
I 000 €0 Jur das-oaars
100 98¢ 0 PP
100 500 0 PP
I S0 10—°00°S 00°00°T ‘0042000 I 100 60'C I I 1:0°:0 zpd
I 190 10—200°S 00+200°T 00--200°0 I 10°0 19°0 I I 1:0°0 1pd
00T 10—999'8 60—208'T ‘60—208' 0 896 0TI ‘S9T1:0:0 ouoN 10PI0 X0 LL
I 000 L10 Jur dds-easrs
100 a8 0 PP
10°0 $0°0 0 Ipp
I LSO T0—200°S 00+200°T ‘0042000 I 100 960 I I 1:0°0 zpd
I 860 10—200°C 0042001 “00+°00°0 I 100 00 I I 1:0°:0 1pd
Py T0—999'8 60—9899 ‘60—+99 0 6L9 8 ‘0TT {040 auoN L10pI0{ pXo 9L
dpH 105) SOVINIA (@dfgo gur Auody doxdy por w s POy sweN 'ON

pringer

as

Y.Zhuetal.

560

I 000 [8°0€ dds-oaers

€90 9p'9LY 0 PP

€90 oL'1 0 PP

I 9’0 10—200°S 00+200'T “00--200°0 I €90 9LT0€ I I 1:0°0 opd

I €60 10—2°00°S 00+2°00'T “00--200°0 I €90 9LSh 1 I 1:0°%0 1pd
L0°9061 90—9SL'T 80—9S9t — ‘80—3ITT— 0 #7S9 918696 ‘0 0 QUON 9IOPIO HHXD S8

I 000 6LLT Jur JAS-oAaTS

SF0 €678C 0 PP

S0 € 0 1pp

I 0 10—900°S 00+900'T “00--200"0 I SF0 7978l I I 1:0°0 zpd

I 050 10—200°S 00+200'T “00--200°0 ISP $6'8C I I 1:0°0 1pd
YO'ET6 90—96LT 80—9ET't— ‘80—959'T — 0 SSPS 089°918:0°0 QUON GIIPIOFHXO 48

I 000 896 Jut dds-oaars

0£0 £1'691 0 P

0€°0 89°0 0 PP

I S0 10—°00°S 00+200'T “00--200°0 I 0€0 19°L01 I I 1:0°0 zpd

I 9’0 10—°00°S 00+900'T “00--200"0 I 060 9891 I I 1:0°0 pd
TTSSH 90—2L8T 80—2L9'E— ‘80—290°T — 0 vevy 095 ‘089 0 ‘0 QUON $[IOPIOH XD €8

I 000 ses g das-oaars

610 167001 0 PP

610 670 0 PP

I 0T 10—200°S 00+900°T “00--200"0 I 6I'0 9019 I I 1:0°%0 opd

I 8I'1 10—°00°S 00+200'T “00--200°0 I 610 18°6 I I 1:0°0 1pd
W8ET 90—20T'1 60—21€°T ‘80—9SH T 0 €59€ SSF 095 :0°0 QUON EIIPIOFHXO T8

I 000 66T Ju dds-eaars

z1o €1°€S 0 PP

K0 €0 0 Ipp

I LOT 10—900°S 00+200°T ‘002000 I €10 88'C€ I I 1:0°0 zpd

I SOT 10—°00°S 00+900°T “00--200"0 I €10 86 I I 1:0°%0 1pd
I$GTT 90—9TS'T LO—38L'T ‘LO—3€6'T 0 YT6T $9E°SSH 00 QUON ZTIOPIO XD 18
dpH 9% SOVINIA (@dfgo jur Auod doxdy -por w S POy oweN ON

pringer

As

561

Sieve-SDP: a simple facial reduction algorithm to...

LLO 80—3L6 00+987°C ‘00+98CC 0 200 I I€ 01:0°0 dAs-oadrs

000 200 0 PP

000 200 0 PP

8L0 80—°L69 00+987°C00+98TCT 0 000 60°0 I 13 0100 zpd

980 80—3L6'9 00+98T°T00+98CT 0 0070 L0°0 1 1€ 074040 1pd
060 L0—968'S 00+987°C ‘00+982C 0 9 12900 QUON GIOPIOTHGXe (6

I 000 ge9gy Jur das-oadts

69T LTI6LE 0 PP

69T SrL 0 1pp

I €90 10—200°S 00+300'T ‘002000 T 69T 686881 I I 1:0°:0 opd

I 190 10—200°S 00+200'T “00-+200°0 I 0Lt SO6he I I 1:0°0 1pd
LTTYST 90—340T 80—9TH'S— ‘80—LOE— 0 OVETT OPST‘TLLT 0:0 QUON OTWPIOFPX 68

I 000 syopl Jur das-oaars

69T €9TI1T 0 PP

69'1 €r'g 0 PP

I P91 10—900°S 00+200'T “00--200°0 I oLT L88TIl I I 1:0°0 zpd

I T 10—200°S 00+200'T ‘0042000 T OLT +#0SI I I 1:0°0 1pd
60°00STT 90—TT T 80—989€— ‘80—CI'T— 0 65901 OEEI “0FST 0 20 QUON GIIOPIOPpXe 88

I 000 $9'98 Jur das-oaars

€T SL'STEl 0 PP

€Tl e 0 PP

I 69T 10—900°S 00+200'T ‘0042000 T €T I€€TL I I 1:0°0 zpd

I ¢Sl 10—200°S 00+200°T “00-+200°0 I $T1 €5€0l I I 1:0°0 1pd
9G'€90L LO—9F8F 80—909'T — ‘60—3LT6— 0 8€16 OFTT 0EET 00 QUON §[IOPIOFPXO /8

I 000 6L'1S Jur das-easrs

880 T6'€C8 0 PP

880 ST 0 Ipp

I T 10—00°S 00+300'T ‘0042000 1T 680 oYLy I I 1:0°0 zpd

I 8I'T 10—°00°S 00+300'T ‘002000 1 880 €769 I I 1:0°:0 1pd
6TPS9E LO—38F'S 80—30ST— ‘60—69L— 0 69LL 696 ‘0FTT 00 QUON L[IOPIO F'HXd 98
dpH 195 SOVINIA (@dfgo jur Auody doxdy -por w S powaIN oweN ON

pringer

as

Y.Zhuetal.

562

€T 91 80—9L6'9 00+982°C 00+982°C 0 01°0 I 1€ 01:0:0 das-oaars

000 L00 0 PP

000 S00 0 PP

€T 91 80—2L6'9 00+98Z°C ‘00+982'C 0 000 €0 I 1€ 01:0:0 opd

€C 65T 80—2L6'9 00982 ‘00+982°C 0 100 170 1 T¢ 01:0:0 1pd
86'1 90—280°C 00982 ‘00+982°C 0 0£T 99:0:0 QuoN 0T10pI0 ' GXd $6

€T LLO 80—2L69 00982 ‘00+982°C 0 500 1 1€ 01:0:0 dAsS-oAats

000 00 0 PP

000 200 0 1pp

€T 80 80—9L6'9 00+982°C ‘0049822 0 000 €20 I 1€ 0100 opd

€C 8L°0 80—2L6'9 00982 ‘00+982°C 0 000 €10 I 1€ 0 1pd
$6°0 90—3Ly'Y 00+987°C ‘00-+98C°C 0 681 0 auoN 619PI0 X0 6

€T 80 80—2L6'9 00+98Z°C ‘00+982'C 0 00 I 1€ 0100 das-omd1s

000 €00 0 P

000 200 0 PP

€T 8L°0 80—2L69 00+98Z°C ‘00+98C'C 0 000 L10 I 1€ 0 zpd

€T LLO 80—9L6'9 00+98Z°C ‘00+982°C 0 000 110 I 1€ 00 1pd
96'0 90—998°C 00+982°C “00+98C°C 0 1 SP:0°0 QuoN 10PI0 ' GXD 6

€T 280 80—9L6'9 00+987°C “00+982°C 0 Y00 I 1€ 01:0:0 das-oaars

000 €00 0 PP

000 200 0 PP

€T 180 80—2L6'9 00982 ‘00+982°C 0 000 €10 I 1€ 0 opd

€C 8L°0 80—2L69 00982 ‘00+982°C 0 000 010 I 1€ 0 1pd
86°0 90—9¢5'C 00+987°C “00+982°C 0 611 0 auoN LIOPIOTH GXd 6

€T ¥8°0 80—2L69 00+982°C ‘00+98C'C 0 €00 I 1€ 01:0:0 dAs-oAts

000 €00 0 PP

000 200 0 Ipp

€T LLO 80—9L6'9 00+987°C ‘00-+98C°C 0 000 110 I 1€ 0 zpd

€T 8L°0 80—2L6'9 00+98Z°C ‘00+98C'C 0 000 600 I 1€ ‘0 1pd
60 90—268'1 00+98Z°C 00+98C°C 0 06 82:00 QuoN QIOPIOHGXd 16
dpH 105) SOVINIA (@ fao Jur Au0d) doxdy ‘pal w sy poweN aureN "ON

pringer

As

563

Sieve-SDP: a simple facial reduction algorithm to...

€T vL'0 80—2L6'9 00-98Z°C 00+98Z°C 0 81°0 I 1€ 01:0:0 das-oaars

000 91'0 0 PP

000 €00 0 PP

€T SL0 80—2L6'9 00-+98Z°C 00-+-98C°C 0 10°0 Pl I 13 01:0:0 opd

€T 6L°0 80—2L6'9 00982 00+98C°C 0 100 €0 1 i3 0T1:0:0 1pd
e 90—921°9 00--98Z°C 00-+-982°C 0 6t 9€1:0:0 auoN GT19pI0 H'GXd 001

€T LLO 80—2L6'9 00982 00+98C°C 0 1o I i3 01:0:0 JAS-aAts

000 450} 0 PP

000 €00 0 1pp

€T ¥8°0 80—9L6'9 00-+98T'C 00+982°C 0 100 86°0 I I€ 01:0:0 zpd

€C 180 80—2L6'9 00-98T°C 00--98T°C 0 10°0 €0 I 1€ 01:0:0 1pd
LT SO—opT'T 00+987°C “00+98C°C 0 vy 02100 auoN $1I0PIO XD 66

€T €Tl 80—2L6'9 00-+98Z°C 00-+-982°C 0 €10 I 1€ 0100 das-omd1s

000 01°0 0 P

000 200 0 PP

€T wl 80—2L6'9 00982 00+98C°C 0 000 9.0 I 1€ 01:0:0 zpd

€T €T 80—9L6'9 00-+98T°C 00+98Z°C 0 000 wo I I€ 01:0:0 pd
e 90—28S"¥ 00-+982°C 00-+-98T°C 0 LLE 0140 %0 auoN €110PIOHGX0 86

€T 0Tl 80—9L6'9 00-98C'C 00+98Z°C 0 070 I I€ 01:0:0 das-oAars

000 91'0 0 PP

000 €00 0 PP

€T 780 80—2L6'9 00982 00+98C°C 0 100 50 I 1€ 0100 opd

€T w 80—2L6'9 00982 00+98C°C 0 10°0 670 I 1€ 01:0:0 1pd
T S0—360'1 00+987°C “00+98T°C 0 € 1600 auoN T119PIOH'GXd L6

€T 161 80—2L6'9 00-982°C 00+98C'C 0 710 I 1€ 01:0:0 dAS-oAts

000 600 0 PP

000 $0'0 0 Ipp

€T sTT 80—9L6'9 00+987°C “00+98C°C 0 000 €70 I 1€ 01:0:0 zpd

€T 91°¢ 80—2L6'9 00982 00-+-982°C 0 000 €20 I 1€ 01:0°:0 1pd
re 90—21¢6 00982 00-98C°C 0 SLT 8L:00 QuoN [119pI0 4 GXd 96
dpH 105y SOVINIA (@d fgo Jur Au02) doxdy ‘par w s POy oureN "ON

pringer

as

Y.Zhuetal.

564

€T L0 80—2L6'9 00+982°C 00+982C 0 810 I 1€ 01:0:0 das-oners

10°0 90 0 PP

100 80°0 0 PP

€T 66'0 80—2L6'9 00+98Z°C ‘00+982'C 0 100 8L9 I 13 0100 zpd

€T SL0 80—9L69 00+98Z°C 00+982°C 0 100 611 I T¢ 0T1:0:0 1pd
$9°01 20—980°S 00+951°C 00+211°C 0 098 1€2:0°0 QuoN 0ZIOPIO GXd so1

€T 99'T 80—9L69 00+98Z°C ‘00+982°C 0 190 I 1€ 01:0:0 das-oadts

000 190 0 PP

000 $0°0 0 1pp

€T LLO 80—2L6'9 00+98Z°C ‘00+982°C 0 100 8y I 1€ 01:0:0 zpd

€T LLO 80—2L6'9 00+987°C 00+982'C 0 100 86°0 I 13 0100 1pd
608 20—960°C 00+93€7°T “00-+9€T°T 0 6LL 012:0:0 ouoN 6110pI0T X0 Y01

€T 6L°0 80—2L6'9 00+98Z°C ‘00+982'C 0 €60 I 1€ 0100 das-oadts

100 €€0 0 PP

100 80°0 0 PP

€T 18°0 80—2L6'9 00+98Z°C 00+982'C 0 10°0 0 I 13 01:0:0 zpd

€T Y11 80—2L6'9 00+982°C ‘00+982°C 0 100 €60 I 1€ 01:0:0 1pd
00'L €0—95T'€ 00+9LTC ‘00+3LT'T 0 0L 06100 auoN 8119PI0 1 GX0 €01

€T 8T 80—2L6'9 00+987°C ‘00-+98C°C 0 LT0 I 1€ 01:0:0 das-onars

000 97°0 0 PP

000 €00 0 PP

€T 60 80—2L6'9 00+98Z°C 00+982'C 0 100 08T I 1€ 0100 zpd

€C LLO 80—2L69 00+98Z°C 00+982°C 0 10°0 290 I 1€ 01:0:0 1pd
€Y 90—3LS'¥ 00+987°C “00-+98C°C 0 629 1L1:0°0 ouoN LT19PIO ' GXd 201

€T 08°0 80—2L6'9 00+98Z°C ‘00+982'C 0 €70 I 1€ 01:0:0 das-oadts

000 070 0 PP

000 €00 0 Ipp

€T 80 80—2L6'9 00+987°C ‘00-+98C°C 0 100 81 I 1€ 01:0:0 zpd

€T €80 80—2L6'9 00+982°C ‘00+982'C 0 100 €50 I 1€ 0100 1pd
8¢'¢ 90—91L9 00+982°C 00+982°C 0 09 €61:00 auoN 9IOPIO §'GXd 101
dpH 105) SOVINIA (@ fao Jur A0 doxdy ‘par w S PO aureN "ON

pringer

As

565

Sieve-SDP: a simple facial reduction algorithm to...

€T SL0 L0—380°T 10—9L0°€ ‘T0—2L0'E 0 00 I 0z L0%0 das-orars

000 €00 0 PP

000 200 0 PP

€T LLO L0—280°1 10—3L0°€ ‘T0—3L0E 0 000 81°0 I 0z L0%0 7pd

€T 9L°0 L0—980'T 10—9L0°E ‘T0—2L0’E 0 000 10 1 0z L:0°0 1pd
96'0 90—3L6'T 10—929'T ‘10—9C9'T 0 49 St 100 auoN 810PI0T G GXd o011

€T 9.0 L0—280'1 10—2L0°E ‘T0—2L0’E 0 €00 I 0z L:0°0 dAS-oAatS

000 €00 0 PP

000 200 0 1pp

€T SL0 L0—380'T 10—9L0°€ ‘TO—2L0'E 0 000 €10 I 0z L0%0 zpd

€C SL0 L0—280'1 10—3L0°€ “T0—oLO'E 0 000 60°0 I 0z L0%0 1pd
060 90—3LT'¥ 10—929'T ‘T10—9C9'T 0 611 9€:0:0 auoN LIOPIOTGGXd 601

€T SL0 L0—380'T 10—9L0°€ ‘T0—3L0'E 0 200 I 0z L0%0 das-orars

000 €00 0 P

000 200 0 PP

€T 9.0 L0—280°1 10—2L0°€ “T0—LO'E 0 000 010 I 0z L0%0 zpd

€T SLO L0—380'T 10—9L0°€ ‘T0—3L0'E 0 000 800 I 0z L0%0 pd
88°0 90—965C 10—929'T “10—9¢9'[0 06 82100 QuoN 9I0PIOTG"GXD 801

€T 260 L0—380'T 10—9L0°€ ‘TO—3L0'E 0 200 I 0z L0:0 das-oA9rs

000 200 0 PP

000 20°0 0 PP

€T SL0 L0—380'T 10—9L0°€ ‘T0—3L0'E 0 000 800 I 0z L0%0 zpd

€T SL0 L0—280°1 10—2L0°€ “T0—oLO'E 0 000 L00 I 0z L0%0 1pd
€80 90—9¢L'T 10—929'T ‘T10—9C9'T 0 9 12:0°0 auoN GIOPIOTGTGXD L0T

€T SL0 L0—280'1 10—2L0°€ “T0—LO'E 0 200 I 0z L0%0 das-orsrs

000 200 0 PP

000 200 0 Ipp

€T 9.0 L0—980'T 10—9L0°€ ‘TO—3L0'E 0 000 L0°0 I 0z L0:0 zpd

€T 18°0 L0—380'T 10—9L0°€ ‘T0—3L0'E 0 000 500 I 0z L0%0 1pd
880 90—299°C 10—929°'T ‘10—929'T 0 e ST:0°0 QuoN FIOPIOTG'GXD 901
dpH 105y SOVINIA (@ fao Jur Au02)y doxd par w S POy sweN "ON

pringer

as

Y.Zhuetal.

566

€T LLO L0—380'T 10—9L0°€ ‘T0—2L0°E 0 ST0 I 0z L0%0 das-oaars

000 L10 0 PP

000 ¥0'0 0 PP

€T 971 L0—280°1 10—2L0°€ ‘T0—2L0°€ 0 000 9.0 I 0z L0:0 zpd

€C 880 L0—380°1 10—2L0€ ‘T0—2L0°E 0 000 620 1 0z L:0°0 1pd
vT1 S0—210'T 10—929'T ‘T10—9C9'T 0 LLE 01400 auoN €119pI0T G GXd SI1

€T ¢80 L0—280°1 10—9L0°E ‘T0—2L0’E 0 60°0 1 0z L:0°0 dAS-oAaTS

000 800 0 PP

000 200 0 1pp

€T 780 L0—380'T 10—9L0°€ ‘T0—2L0°E 0 000 S50 I 0z L0%0 opd

€C €01 L0—280°1 10—2L0°€ ‘T0—2L0°€ 0 000) I 0z L0%0 1pd
671 90—98S°S 10—929°T ‘T10—9C9'T 0 e 1600 auoN Z110PI0T G GXd PIT

€T €T L0—280'T 10—9L0°€ ‘T0—2L0°E 0 80°0 I 0z L0%0 das-oaars

000 900 0 P

000 200 0 PP

€T 18°0 L0—280°1 10—2L0°€ ‘T0—LO'E 0 000 60 I 0z L0%0 zpd

€T 60 L0—380'T 10—9L0°€ ‘T0—2L0°E 0 000 610 I 0z L0%0 1pd
901 90—298°G 10—929°'1 ‘10—9¢9' 0 siT 8L:0:0 auoN [110PIOTG"GXD ert

€T vL'0 L0—980°T 10—9L0°€ ‘T0—2L0°E 0 90°0 I 0z L0%0 das-oaars

000 00 0 PP

000 200 0 PP

€T SL0 L0—280'T 10—9L0°€ ‘T0—2L0°E 0 000 620 I 0z L0%0 zpd

€T 98°0 L0—280°1 10—2L0°€ “10—2L0°E 0 000 L10 I 0z L0%0 1pd
76'0 S0—2IT'T 10—929'T ‘T10—9C9'T 0 0£T 99:0:0 auoN 019PI0TG"GXd a8

€T vL0 L0—280'1 10—2L0°€ ‘T0—2L0°€ 0 00 I 0z L0%0 das-eaars

000 ¥0'0 0 PP

000 200 0 Ipp

€T 9.0 £0—980°T 10—9L0°€ ‘T0—2L0’E 0 000 0 I 0z L0%0 zpd

€T LLO L0—380'T 10—9L0°€ ‘T0—2L0°E 0 000 ¥1°0 I 0z L0%0 1pd
760 90—o¢¢'T 10—929'T ‘10—929'T 0 681 §5:00 QuoN 619PI0T G GXd 11
dpH 105y SOVINIA (@d fqo Jur Au02) doxdy ‘par w s pomeN oureN "ON

pringer

As

567

Sieve-SDP: a simple facial reduction algorithm to...

€T 08°0 L0—380'T 10—9L0°€ ‘T0—2L0°E 0 €0 I 0z L0%0 das-oaars

000 €0 0 PP

000 ¥0'0 0 PP

€T 68°0 L0—280°1 10—2L0°€ ‘T0—2L0°€ 0 10°0 St'e I 0z L0%0 zpd

€T 68°0 L0—980°1 10—9L0°€ ‘TO—2L0°€ 0 100 760 1 0T L:0°0 1pd
1S 90—250°f 10—929'T “10—9C9'T 0 0L 061 00 auoN 110pI0 G GXd ozl

€T 6L°0 L0—280°1 10—9L0°E ‘T0—2L0’E 0 820 I 0T L:0°0 JAS-aAts

000 97'0 0 PP

000 €00 0 1pp

€T SL0 L0—380'T 10—9L0°€ ‘T0—2L0°E 0 100 ST I 0z L0%0 zpd

€C vL'0 L0—280°1 10—2L0°€ ‘T0—2L0°€ 0 10°0 €90 I 0z L0%0 1pd
vTE 90—9€89 10—929°T ‘T10—9C9'T 0 629 ILT40%0 QuoN LT10PIOT G GXd 611

€T LLO L0—280'T 10—9L0°€ ‘T0—2L0°E 0 70 I 0z L0%0 das-orars

100 70 0 P

100 €00 0 PP

€T 9,0 L0—280°1 10—2L0°€ ‘T0—2L0°€ 0 100 61 I 0z L0%0 zpd

€T 9.0 L0—380'T 10—9L0°€ ‘T0—2L0°E 0 100 50 I 0z L0%0 pd
& S0—98¢°Y 10—929'1 ‘10—9¢9' 0 09$ €100 auoN 9[10PIOTG"GXD 811

€T 880 L0—380°T 10—9L0°€ ‘T0—2L0°E 0 61°0 I 0z L0%0 das-oAars

000 L10 0 PP

000 €00 0 PP

€T 6L°0 L0—280'T 10—9L0°€ ‘T0—2L0°E 0 000 6€'1 I 0z L0%0 zpd

€T LLO L0—280°1 10—2L0°€ “10—°L0'E 0 10°0 P70 I 0z L0%0 1pd
68T S0—9CTY 10—929'T ‘T10—9C9'T 0 S6tr 9€1:0:0 auoN GT19PIOT G GXd LTT

€T 96'0 L0—280'1 10—2L0°€ ‘T0—2L0°€ 0 1o I 0z L0%0 dds-oaars

000 o 0 PP

000 €00 0 Ipp

€T SLO L0—380°T 10—9L0°€ ‘T0—2L0°E 0 000 ST'T I 0z L0%0 zpd

€T €80 L0—280'T 10—9L0°€ ‘T0—2L0°E 0 000 €0 I 0z L0%0 1pd
Pl S0—TI'T 10—929'T ‘10—929'T 0 ey 021400 QuoN F1IOPIOG'GXD 911
dpH 105y SOVINIA (@d fgo Jur Au02) doxdy ‘par w s POy oureN "ON

pringer

as

Y.Zhuetal.

568

07T 80—210'T 10—9%0°€ ‘T0—240°€ 0 500 I Iz 8010 das-oaars
000 L0°0 0 PP
000 €00 0 PP
98'0 80—210°1 10—240°€ ‘T0—340°€ 0 000 600 I I 8010 zpd
8L°0 80—210'T 10—210°€ ‘T0—240'€ 0 000 LO°0 1 K4 8100 1pd
68°0 L0—3St'E 10—9%0°€ ‘T0—240°€ 0 06 82:0:0 auoN 910PI0T9"GXd szl
260 80—210'1 10—2%0°€ ‘T0—240'E 0 200 I 1T 8100 JAS-aAts
000 200 0 PP
000 200 0 1pp
06'0 80—210'T 10—9%0°€ ‘T0—240°€ 0 000 L00 I Iz 8:0:0 zpd
¥8°0 80—210°1 10—240°€ ‘T0—340°€ 0 000 L0°0 I Iz 8010 1pd
or't L0—3%LT 10—9%0°€ ‘T0—240°€ 0 9 12900 auoN GIOPIOTY GXD vzl
01 80—210'T 10—9%0°€ ‘T0—240°€ 0 200 I I 8010 das-orars
000 200 0 P
000 200 0 PP
$8°0 80—210'1 10—240°€ ‘10—2b0°€ 0 000 80°0 I Iz 8010 zpd
76'0 80—210'T 10—9%0°€ ‘T0—2+0°€ 0 000 L00 I Iz 8010 pd
101 L0—3GT'] 10—240°€ ‘T0—3b0°€ 0 v S1:0:0 QuoN $10PI0T9"GXD ¢el
€T 9.0 L0—380°T 10—9L0°€ ‘T0—2L0°E 0 970 I 0z L0%0 das-oAars
100 750 0 PP
100 00 0 PP
€T 9.0 L0—280'T 10—9L0°€ ‘T0—2L0°E 0 100 88'G I 0z L0%0 zpd
€T 9,0 L0—280°1 10—2L0°€ “10—°L0'E 0 10°0 wl I 0z L0%0 1pd
068 S0—9t€9 10—929'T ‘T10—9C9'T 0 098 1€2:0°0 auoN 0TIOPIOTG GXd el
€T 08°0 L0—280'1 10—2L0°€ ‘T0—2L0°€ 0 6€°0 I 0z L0%0 dds-oaars
100 €70 0 PP
10°0 $0'0 0 Ipp
€T 30} L0—380°T 10—9L0°€ ‘T0—2L0°E 0 100 €5'g I 0z L0%0 zpd
€T €Tl L0—280'T 10—9L0°€ ‘T0—2L0°E 0 100 71 I 0z L0%0 1pd
L S0—3%9' 10—929'T ‘10—929'T 0 6LL 012:0:0 QuoN 6119PI0T G GXd 1et
dpH 105y SOVINIA (@d fgo Jur Au02) doxdy ‘par w s POy oureN "ON

pringer

As

569

Sieve-SDP: a simple facial reduction algorithm to...

9,0 80—210'T 10—940°€ “T0—40°€ 0 80°0 I Iz 8:0:0 das-ordrs

000 900 0 PP

000 200 0 PP

9.0 80—210'1 10—3%0°€ “T0—°40'¢ 0 000 0r'0 I I 8:0:0 7pd

vLO 80—210'T 10—240°€ ‘T0—240°¢ 0 000 81°0 I I 8:0:0 1pd
060 L0—31T°9 10—940°€ “T0—240°€ 0 SiT 8L:0°0 auoN [119pI079"GXd 0€1

L0 80—210°1 10—240°€ ‘T0—2H0'E 0 90°0 I ¥4 800 JAs-oma1S

000 $0°0 0 PP

000 200 0 1pp

vL0 80—210'T 10—9%0°€ ‘T0—240°€ 0 000 820 I 1z opd

LLO 80—210'1 10—340°€ ‘T0—op0'¢ 0 000 91°0 I I 1pd
180 L0—3LS'L 10—9%0°€ “T0—240'€ 0 0£T ouoN 0179PI0T9'GXd 6Cl

280 80—210'1 10—240°€ “T0—240°€ 0 900 I I das-ordrs

000 500 0 PP

000 €00 0 PP

280 80—210°1 10—340°€ ‘T0—°p0'¢ 0 000 ¥T°0 I I 8010 7pd

6L°0 80—210'T 10—940°€ “T0—240°€ 0 000 ¥1°0 I Iz 8:0:0 pd
€60 L0—3Ct'L 10—340°€ ‘T0—°p0'¢ 0 681 $5:0%0 auoN 610PI0T9"GXD 8zl

¥L0 80—210'T 10—9%0°€ “T0—240°€ 0 $0°0 I 1z 8:0°0 das-or91S

000 €00 0 PP

000 200 0 PP

760 80—210'T 10—240°€ “T0—240°€ 0 000 910 I I ‘0 7pd

6L°0 80—210°1 10—340°€ ‘10—°p0'E 0 000 20 I I ‘0 1pd
160 L0—21SY 10—9%0°€ “T0—40°€ 0 TSI ‘0 auoN §10PI0TY"GXD Lzl

651 80—210°1 10—340°€ ‘T0—°p0'¢ 0 €00 I I 8010 das-ordrs

000 €00 0 PP

000 200 0 Ipp

80 80—210'T 10—9%0°€ “T0—40°€ 0 000 LT0 I Iz zpd

96°0 80—210'1 10—940°€ “T0—240°€ 0 000 zro I I pd
LI] L0—R1T€ 10—240°€ ‘T0—210'E 0 611 QuoN [TOPIOTY GXD 921
dpH 105) SOVINIA (@d fqo Jur Au02)y doxdy ‘par w s PoyIOIN oureN "ON

pringer

as

Y.Zhuetal.

570

z 9.0 80—210'T 10—9%0°€ ‘T0—240°€ 0 0 I Iz 8010 das-oaars
000 120 0 PP
000 €00 0 PP
z vL'0 80—210°1 10—240°€ ‘T0—340°€ 0 10°0 161 I I 8010 zpd
z L0 80—210'T 10—210°€ ‘T0—240'€ 0 100 750 1 K4 8100 1pd
18'1 90—26L'1 10—9%0°€ ‘T0—240°€ 0 095 €510 40 auoN 919PIOTG"GXD gl
9,0 80—210'1 10—2%0°€ ‘T0—240'E 0 61°0 I 1T 8100 JAS-aAts
000 91'0 0 PP
000 $0°0 0 1pp
1Tl 80—210'T 10—9%0°€ ‘T0—240°€ 0 100 St I Iz 8:0:0 zpd
[Tl 80—210°1 10—240°€ ‘T0—340°€ 0 000 €70 I Iz 8010 1pd
91 L0—99L'8 10—9%0°€ ‘T0—240°€ 0 S6t 9€1:0:0 auoN GTIOPIOT9'GX0 el
z 6L°0 80—210'T 10—9%0°€ ‘T0—240°€ 0 S10 I I 8010 das-orars
000 €10 0 P
000 200 0 PP
z vL0 80—210'1 10—240°€ ‘10—2b0°€ 0 000 10'1 I Iz 8010 zpd
z 780 80—210'T 10—9%0°€ ‘T0—2+0°€ 0 000 €0 I Iz 8010 pd
1€ 90—261°1 10—240°€ ‘T0—240°€ 0 vy 02100 auoN $110PI0TG"GXD gl
6L°0 80—210'T 10—9%0°€ ‘T0—240°€ 0 €10 I Iz 8:0:0 das-oAars
000 110 0 PP
000 €00 0 PP
¥8°0 80—210'T 10—9%0°€ ‘T0—240°€ 0 000 L0 I Iz 8:0:0 zpd
LLO 80—210'1 10—340°€ “10—240°¢ 0 000 820 I Iz 8010 1pd
0Tl L0—3t6'L 10—9%0°€ ‘T0—240°€ 0 LLE S0T 00 auoN €119PI0T9"GXd €l
vL0 80—210'1 10—240°€ ‘T0—2b0°€ 0 01’0 I Iz 8010 dds-oaars
000 800 0 PP
000 200 0 Ipp
SLO 80—210'T 10—9%0°€ ‘T0—240°€ 0 000 ¥$°0 I Iz 8:0:0 zpd
SL0 80—210'T 10—9%0°€ ‘T0—240°€ 0 000 €20 I I 8:0:0 1pd
01 L0—210°6 10—2%0°€ ‘T0—240'E 0 vz 1600 QuoN Z119PI0T9"GXd I€1
dpH 105y SOVINIA (@d fgo Jur Au02) doxdy ‘par w s POy oureN "ON

pringer

As

571

Sieve-SDP: a simple facial reduction algorithm to...

LTT 80—997°S 60—9L8'T— ‘80—2I8'[0 €00 I 1’ 8:1:0 ddS-ordrS

000 200 0 PP

000 200 0 PP

a8 80—997°S 60—9°L8'T— ‘80—2I8'[0 000 ¥1°0 I @ 810 7pd

0T'T 80—39TS 60—L8'T— ‘80—2I8'T 0 000 80°0 1 " 8110 1pd
€60 80—20T'L 60—966'S— ‘60—oCS'8 0 9 125190 auoN GIPIOTLGXe Opl

z 01 80—210'1 10—240°€ ‘T0—210'E 0 €50 I K4 8:0°0 ddS-oAdls

100 850 0 PP

10°0 L0°0 0 1pp

z 160 80—210'T 10—9%0°€ ‘T0—2+0'€ 0 100 LS9 I Iz 8:0°0 zpd

z 01 80—210°1 10—240°€ ‘10—3%0°€ 0 10°0 811 I I 8:0°0 1pd
SSS 90—9gE'E 10—9%0°€ ‘T0—2+0°€ 0 098 1€2:0:0 QUON (ZIPIOTYGXD 6ET

z 260 80—210'T 10—9%0°€ ‘T10—240'€ 0 050 I I 8:0:0 ddS-ordrs

000 SH0 0 P

000 500 0 PP

z 680 80—210'1 10—240°€ “10—o%0°€ 0 10°0 18 I Iz 8:0°0 zpd

T 80—210'T 10—9%0°€ ‘T0—240'€ 0 100 901 I Iz 8:0°0 pd
pee 90—24$°C 10—210°€ ‘10—30°€ 0 6LL 01T:0:0 QUON 6110PIOTYGXD 8¢l

z vL0 80—210'T 10—9%0°€ ‘T0—2+0°€ 0 €60 I Iz 8:0:0 dAS-oA9rS

000 1€0 0 PP

000) 0 PP

z €80 80—210'T 10—9%0°€ ‘T0—240'€ 0 100 yTE I I 8:0°0 zpd

z 9.0 80—210'1 10—240°€ “10—9%0°¢ 0 10°0 L0 I I 8:0°0 1pd
80T 90—9€ST 10—9%0°€ ‘T0—240'€ 0 0L 061:0%0 auoN 8IIPIOYGXD L€

z vL0 80—210'1 10—240°€ “T0—o40°€ 0 820 I I 8:0°0 dds-ordrs

000 97°0 0 PP

000 €00 0 Ipp

T #80 80—210'T 10—9%0°€ ‘T0—2+0°€ 0 100 Lv'e I Iz 8:0°0 zpd

z €80 80—210'T 10—9%0°€ ‘T0—240'€ 0 100 09'0 I I 8:0°0 pd
60T 90—98L1 10—240°€ ‘T0—210'E 0 629 1LT90%0 QuoN LITPIOT9GXd 9€T
dpH 105) SOVINIA (@dfgo jur A0y doxdy par w sy poweN ureN "ON

pringer

as

Y.Zhuetal.

572

¥6'0 80—9€S'8 60—969°€— ‘80—9SI'T 0 ST'0 I ¥ SET:0:0 dAS-oAdrs

000 L0°0 0 PP

000 €00 0 PP

8S'1 80—9€5'8 60—969°€ — ‘80—oG1'C 0 100 €50 I It S€1:0%0 zpd

S6'0 80—9ES'8 60—969°€ — ‘80—9ST'T 0 100 €0 1 182 S€T00 1pd
160 L0—969'T 80—€t T — ‘80—20€'1 0 0€T 1279900 QUON QIIOPIOTLGXe Gyl

88°0 80—9EC8 60—269°€ — ‘80—9GI'T 0 01°0 I 102 GETi00 das-orers

000 500 0 PP

000 200 0 1pp

680 80—9€S'8 60—969°€— ‘80—9ST'T 0 100 6£°0 I ¥ ‘0 zpd

61'1 80—265'8 60—969°€ — ‘80—3G1'C 0 100 v20 I It ‘0 1pd
YTl 80—219°S 60—9€8'¥— ‘60—2009 0 681 ‘0 auoN 6PIOTLCXD Pl

00’1 80—2L6'L 60—9TLT— ‘80—°HTT 0 100 I 9¢ 0 das-osers

000 $0°0 0 P

000 200 0 PP

01 80—2L6L 60—9TLT— ‘80—2HTT 0 000 920 I 9¢ ARIE zpd

160 80—9L6L 60—9TLT— ‘80—4TT 0 000 910 I 9¢ ¥T1:00 pd
€60 L0—oLI'l 80—211'T — ‘80—o¢H'| 0 ST 01°SHi00 auoN QIOPIOTL'GXe gpl

S60 80—9€6T 60—9S6'v— ‘60—90L'L 0 Y00 I 3 €71:0°0 dAS-oArs

000 €00 0 PP

000 200 0 PP

160 80—9€6T 60—9S6F— ‘60—0L'L 0 000 81°0 I €€ €11:0%0 zpd

680 80—9€6T 60—S6'F— ‘60—20L'L 0 000 P10 I €¢ €140 1pd
680 LO—6T'T 60—92€°6 — ‘80—°10°C 0 611 9°9€:0‘0 ouoN LIPIOTLGXD Tl

01 80—2€H'T 60—8YF— ‘60—2CT'L 0 €00 I 8z 0100 das-esels

000 €00 0 PP

000 200 0 1pp

€60 80—9EKT 6098t — ‘60—9ET'L 0 000 810 I 8T ‘0 zpd

L0°T 80—€EHT 60—8yF— ‘60—2€T'L 0 000 600 I 8T ‘0 pd
160 80—208'L 60—3TET— ‘80—98TT 0 06 ‘0 SuON QIOPIOT/'GXd 71
dpH 105) SOVINIA (@dfgo jur Au02) doxdy ‘par w s PO SN "ON

pringer

As

573

Sieve-SDP: a simple facial reduction algorithm to...

8T 80—9608 60—979°€ — ‘80—€L'T 0 S0 I St 9P1:0°0 dAS-9AdIS

100 920 0 PP

100 €00 0 PP

980 80—960'8 60—9C9C — ‘80—€L'[0 100 08¢ I St 9¢1:00 7pd

¥80 80—260'8 60—9T9'E— ‘80—9EL'T 0 100 780 1 St 9914040 1pd
9T L0—9L8'E 80—9CTT— ‘80—960'T 0 S6% 99°9€1 ‘0 :0 QUON GIIPIOTLGX® (ST

88°0 80—°60°8 60—9T9€ — ‘80—9€L[0 LE0 I St 9T 00 JdAS-oAdrS

100 2T0 0 PP

10°0 €00 0 1pp

760 80—960'8 60—979€ — ‘80—€L'T 0 100 6£¢ I St 9°%1:00 7pd

0T 80—2°60'8 60—9T9€ — ‘80—9€L'[0 100 LLO I St 97100 1pd
69T LO—9TL'E 80—98TT— ‘80—HTT 0 vEY SS'0T1:0°0 QUON pIIPIOTLEX® Gl

SOT 80—9608 60—379°€— ‘80—9€L'T 0 1€0 I St 9P1:0°0 dAS-AdIS

000 $10 0 PP

000 €00 0 PP

S60 80—9608 60—979°€— ‘80—o€L'] 0 100 961 I St 99100 zpd

060 80—960'8 60—979€ — ‘80—€L'T 0 100 6+0 I St 9°%1:00 pd
SI'T LO—9€TE 80—961'CT— ‘80—2€I'C 0 LLE SPSO1°0:0 QUON EIOPIOTLGXe 8Pl

0ST 80—9608 60—979°€ — ‘80—9€L'T 0 ¥T°0 I St 9P1:0°0 dAS-9AdrS

000 TI'0 0 PP

000 €00 0 PP

€0T 80—960'8 60—979°€— ‘80—9€L T 0 100 +01 I St 9%1:00 7pd

160 80—260'8 60—°T9'€— ‘80—9€L'T 0 100 50 I St 991400 1pd
YOI 80—9L8L 60—°IT9— ‘60—968'S 0 e 9€ 1600 QUON IPIOTLGX® Lp]

S60 80—9608 60—979°€— ‘80—o€L'I 0 L10 I St 9P1:0°0 dAS-oAdlS

000 L0O 0 PP

000 200 0 1pp

€60 80—960'8 60—979°€— ‘B0—9€LT 0 100 L0 I St 9°%1:00 zpd

160 80—960'8 60—°T9'€ — ‘80—9OEL' 0 100 9€0 I St 9%1:00 pd
1T L0—2I1'C 80—2°0S'I — ‘80—oIL' 0 it 87 8L 00 QUON TTIPIOTLGXd OpT
dpH 105) SOVINIA (@dfgo jur Au02) doxdy -por w s PO oureN "ON

pringer

as

Y.Zhuetal.

574

980 80—960'8 60—979E — ‘80—€L'T 0 1 I St 94100 JdAS-oadls

200 Y01 0 pp

200 80°0 0 PP

LI'T 80—960'8 60—9C9'€ — ‘80—9€L'l 0 €00 L9€I I St 94100 7pd

0T 80—960'8 60—9379€ — ‘80—EL'T 0 €00 8T'€ 1 St 9%1:0:0 1pd
¥8'S L0—0FT 80—969'T — ‘80—3tS'T 0 098 9€I1°1€T:0:0 QUON (OTIOPIOTLGXe GG[

10T 80—960°8 60—9T9'€— ‘80—3€L'T 0 I I St 9P1:0:0 ddS-oAdlS

200 80 0 PP

200 500 0 1pp

680 80—960'8 60—979€— ‘B0—9€LT 0 00 LyOl I St 9°¥1:00 7pd

60T 80—960'8 60—3T9'€— ‘Q0—2€L'] 0 200 6v'C I St 94100 1pd
9y L0—9STY 80—LYT— ‘80—989'T 0 6LL 0TI‘01T:0°0 QUON GIIOPIOTLGX HS]

9T 80—960'8 60—379'E— ‘Y0—€L'T 0 760 I St 9P1:0:0 JdAS-oAdls

100 850 0 PP

100 100 0 PP

SI'T 80—960'8 60—9C9°E — ‘80—9EL'] 0 200 9L I St 9P1:00 zpd

¥8'0 80—960'8 60—979€— ‘Y0—€LT 0 700 9.1 I St 9°¥1:00 pd
106 L0—9Cl't 80—9SL'T— ‘80—99L'] 0 0L SOT°061:0:0 QUON QIIOPIOTLGXe €G]

VT 80—960'8 60—9T9E— ‘S0—9EL'T 0 $6°0 I St 9PT:0:0 JdAS-oadts

100 90 0 PP

100 500 0 PP

€T 80—960'8 60—9C9'E— ‘B0—9EL'T 0 200 8S°G I St 9°¥1:0°0 7pd

60 80—960'8 60—379€ — ‘Y0—€L] 0 200 Al I St 9P1:00 1pd
95T L0—968'€ 80—93€8T— ‘80—8'T 0 629 16°TLT 00 QUON LTIOPIOTLGX ST

1 80—960'8 60—9C9°E— ‘80—9EL'] 0 09°0 I St 9P1:0‘0 dAS-osdls

100 v€0 0 PP

10°0 ¥0°0 0 Ipp

IF'T 80—9608 60—9C9°€ — ‘80—IEL' 0 100 16 I St 9°¢1:0:0 zpd

L60 80—960'8 60—9C9'E— ‘80—9EL' 0 100 €T I St 94100 pd
€I'T L0—R0L'E 80—2I6'1 — ‘80—2L8'] 0 09 8L'€ST 00 QUON 9IIOPIOTLGXd [GT
dpH 105) SOVINIA (@dfgo yur a0y doxdy -por w Sy PO oweN ‘ON

pringer

As

575

Sieve-SDP: a simple facial reduction algorithm to...

€ €e'T L0—996'6 TOHET'T “T0+9ET'T 0 $0°0 T €8 vIL0%0 das-eadrg
000 90°0 0 pp
000 S00 0 pp
€ 2! L0—996'6 T0HET'T “T0+ET'T 0 200 €ro I €8 vIL0%0 pd
€ 09°1 LO—996°6 T0+H9ET1°T ‘TOHETT 0 200 600 I €8 Y00 Tpd
0S'T 90—9L6'¢ T0HET'T “T0+ET'T 0 602 €12°82:010 QUON ¢gdy-rumnpas 4
LLO 90—3%L'1 002000 ‘60—3Ly'9 — 0 200 I (444 180 ‘0681 das-aadrg
000 80°0 0 pp
000 200 0 PP
880 90—3bL'1 00+200°0 ‘60—°L¥'9 — 0 ¥0°0 920 T (444 18 0 ‘0681 pd
18°0 90—%L'] 002000 ‘60—23Ly'9 — 0 ¥0°0 LO0 I (444 180 ‘0681 1pd
¥8°0 90—9LS’S 002000 ‘80—215'T— 0 129% 810 ‘0681 QUON HULIOJUOD-TUINPAS ¢
89°0 LO—206'F 002000 ‘80—21$C 0 200 I €LT €50 :0€9 das-enarg
000 90°0 0 PP
000 €00 0 pp
€L0 LO—206'F 002000 ‘80—215C 0 €00 110 I €LT €610 :0€9 pd
L0 LO—206'F 00+200°0 ‘80—21$C 0 200 ¥0°0 T €LT €60 :0€9 pd
99°0 LO—3S ¥ 002000 ‘80—2350°C 0 8z 96 ‘0 ‘0€9 SuoN €WIOJUOD-TWNPAS 4
6L°0 60—95C°9 002000 ‘TT—9€€'6 — 0 $0°0 I 15T 120526 das-eadrg
000 90°0 0 wpp
000 €00 0 PP
8L°0 60—957°9 002000 ‘TT—9€¢'6 — 0 200 €0 I 1T 120526 pd
080 60—95T°9 002000 ‘TT—9€€°6 — 0 S0'0 S1°0 I 15T 1T 0 :ST6 1pd
€60 LO—9SL'E 002000 ‘60—2°t¢'L — 0 19% 96 ‘0 '$T6 QUON UMOIq-TINpas T
dPH 105 SOVINIA (@dfqo jur Aoy dadypor w S POmON oweN ON

"SPOYIOW 9ATJ 9} JO U0 ISLI[I8 AQ Paonpal arom swa[qoid g1 9say) woi “swa[qoid g¢ sey jaserep sy,

3aselep Yo]-UoLUIH Y} Uo synsal pajie1aq 'y

pringer

as

Y.Zhuetal.

576

€ PITT 90—20ST 00+3S0°L— ‘00+9S0°L— 0 11 T 98CI 96y €6 7Sy 00 dAS-OAAIS
00 8L6 0 pp
200 110 0 pp
€ 976 90—20ST 00+9S0°'L— ‘00+°S0°L — 0 LSO Sy I 98¢I 9IGH €6 “YSt 10 10 pd
€ 868 90—20ST 00+3S0°L— ‘00+3S0°L— 0 950 LT I 9821 9I6H ‘€6 TSt 10 10 Tpd
€Ly L0—26LT 00+9S0°L— ‘00+950° L — 0 200€ TG °691 <0 10 ouoN ggdy-rwmpes 6
9’1 60—986'¢ 10+206°€ ‘10+206°¢ 0 110 I S\4 I1:0:0 dAS-eadIs
100 0€0 0 wpp
100 S0°0 0 PP
SFT 60—986'€ 10+206°€ ‘10+206°¢ 0 110 6£0 I 8z 91100 pd
0ST 60—986°¢ 10+206°€ ‘10+°06°¢ 0 0o 910 I 8z 91100 1pd
0ST 01—996T 10+206°€ ‘10+206°¢ 0 0001 STIT°99:0 10 ouoN Lgdj-rumpos 3
€S LO—98T'] 70+989°C ‘T0+989'C 0 110 I 8z CEI1:00 ddS-oadlg
000 9%0 0 pp
000 800 0 pp
811 LO—98T'T 70+989°C “C0+989°C 0 S1°0 €50 I 68T CEIT 0 zpd
9T LO—98T'T 70+989°C ‘20+289'C 0 91’0 LT0 I 8z 0 pd
11 80—pL'E T0+989°C ‘T0+989'C 0 0001 0¢ SuoN 9gdy-twmpas L
€T 0T LO—96€T T0+901°T “T0+201°1 0 €00 I €8 9l %0 das-endrg
000 LOO 0 pp
000 S0°0 0 PP
€T 8TT LO—96¢'T 10+201°T ‘10+201°1 0 S00 LT0 I €8 00 pd
€T 9T LO—96ET 10+201°T ‘T0+301°T 0 €00 710 I €8 00 1pd
6T 90—9€9'9 T0+20T°T “T0+201°T 0 60T 00 QuoN Ggdy-rumpos 9
8LT OI—°bL1 T0+966'T “T0+9356°1 0 €20 I 65S 9y 00 ddS-endIg
000 ST0 0 P
000 900 0 PP
06T OT—°pLT T0+3S6°'T “T0+9S6'T 0 00 280 I 65S pd
LLT OT—9%L1 T0+966°'T “T0+956°1 0 120 T€0 I 65S 1pd
9¢€'9 80—989°6 0+956°'T “T0+3S6'T 0 6LET QuON prdj-rwnpas S
dpH 9% SOVINIA (@dfgo gur w0y dady poy w s PowOIN oweN 'ON

pringer

As

577

Sieve-SDP: a simple facial reduction algorithm to...

9L°0 L0—97TT 80—90T'T— ‘LO—oHS'T 0 100 I 1 7€ das-odrs
000 €00 0 PP
000 €00 0 Pp
690 LO—3TTT 80—20T'C— ‘LO—HS'] 0 000 ¥1°0 I I T°€60¢0 zpd
9L°0 L0—9TTT 80—20TT— ‘LO—bS'T 0 000 €10 I 1 TS0 1pd
68°0 LO—98LY LO—3¥S'T— ‘80—20L'9 0 LT 290100 QuoN 9pdj-Tunpas !
LLO 80—9SS'T T0+3h Y 0+t 0 100 I S €600 dds-easig
000 €00 0 pp
000 €00 0 PP
780 80—9GG'T T0+oty Y ‘C0torty 0 000 ¥0°0 I S €600 zpd
L80 80—9GS'[T0+3Y Y ‘TO+HrY Y 0 000 ¥0°0 I S ‘0 1pd
20T 80—9L9'Y 20+ ‘T0+Hory Y 0 9 CEpi00 QUON pdj-runpas €l
€T 68°0 L0—999°G 00+200% ‘00+200't 0 S0'0 I 611 01 ‘30T 00 dds-andrs
000 870 0 PP
000 €00 0 pp
€T $8°0 L0—999°G 0042007 ‘00+200"t 0 S0°0 9¢€°0 I 611 01 ‘30T 00 cpd
€T 080 L0—999°G 00+200'% ‘001200t 0 Y00 91°0 I 611 01 ‘80T ‘0 ‘0 Tpd
98°0 90—99L°S 00+200% ‘00+200"t 0 91 80T °5£:0:0 QuoN Sgdy-rwnpas !
8L°0 LO—1T¢ T0+9TLT “TO+HITL'T 0 200 I €8 YILTIL0 0 das-ondrs
000 LO0 0 PP
000 €00 0 PP
€L0 LO—RIT'¢ T0+9TL'T ‘T0+TL’T 0 €00 110 I €8 YILCr 100 cpd
88°0 LO—RIT'¢ 20+9TLT ‘T0+9TL'T 0 ¥0°0 $1°0 I €8 YL CrL0%0 1pd
$6°0 L0—20T'8 TO+HITL'T “T0+HITLT 0 60¢ 9118700 QUON pedj-runpas 1
- SO'T 20—98C°6 PO+981'T — “bO+381'[— 0 €00 I 111 919 ‘41 10 ‘0 dds-andrs
000 1o 0 PP
000 ¥0°0 0 PP
el L0—210°¢ $O+210°T — “b0+210'T — 0 €00 0Z0 T SoT zpd
¥6°0 LO—210°€ $0+910'T — “bO+10'T — 0 Y00 01°0 I So1 Tpd
SLO L0—99¢°¢ Y0+210'T — “YO+210'T — 0 STl QUON ¢gdj-runpos 01
dpH 105) SOVINIA (@dfgo gur Awoy dady poy w s POYIOI oweN ON

pringer

as

Y.Zhuetal.

578

I 000 ¥0°0 Jur das-andrs
000 S0°0 0 PP
000 200 0 PP
I o 10—200°S 00+200°T “00+200"0 I 000 61°0 I I 1:0°0 zpd
I 0 10—200°S 00+200'T “00+200°0 I 000 ST'0 I I 1:0°0 Tpd
€8°0 80—2301'L T0—20L°€ ‘TO—0L'E 0 49! S¥ 010 SuoN pl-Twnpas 81
18°0 80—20t'T 10+2L9°T “T0+H3L9°T 0 200 I 01 Yepi0T das-ondrs
000 €00 0 pp
000 €00 0 pp
06°0 80—20t'1 10+9L9°T “T0+9L9'T 0 000 80°0 I 01 pd
18°0 80—201'1 10+3L9°T “T0+2L9'T 0 100 80°0 I 01 Tpd
L8°0 80—986°S 10+9L9°T “T0+2LY'T 0 ! QUON 01#dy-rwmpos LT
€1 80—96C 10—9SL°E ‘TO—SL'E 0 S0'0 I 8C dds-anars
000 600 0 pp
000 S0'0 0 PP
8T'T 80—96GT T0—9GL€ ‘“T0—9SL'E 0 €00 LTO I 8¢ 111099 zpd
Se'l 80—9GC 10—9GL€ “T0—9SL'¢ 0 S0°0 4] I 8z 1171099 1pd
651 LO—9GTC 10—9GL°€ ‘“T0—9SL'E 0 0001 017199 0 199 QUON 01¢dj-runpas 91
09°0 80—20t'T 10+9L9°T “T0+2LY'T 0 10°0 I 01 Yepi0tl das-andrs
000 200 0 PP
000 200 0 pp
850 80—20t"I 10+3L9°T ‘T0+3L9'T 0 000 900 I]| Yyl zpd
90 80—20t'T 10+2L9°T “T0+H3L9°T 0 000 S00 I o1 Yepi0tT 1pd
Y0l 80—986°'S 10+9L9°T ‘T0+3L9'T 0 ! Ye9:0 11 SuoN 6pdy-runpas Sl
dipH 10%) SOVINIA (@ fgo Jur AUy doxdy "par w Sy POy suwreN "ON

pringer

As

Sieve-SDP: a simple facial reduction algorithm to...

579

B Core Matlab code

In this section we provide our core Matlab code of Sieve-SDP (not including input,
output, and dual solution recovery) with comments. In our code we physically delete
rows and columns of the A; and of C only at the very end. During the execution of

the algorithm we only mark such rows, columns and constraints as deleted.
We use two arrays to keep track of what has been marked deleted:

1. The m-vector undeleted, whose ith entry is 1 if constraint i has not been deleted,

and 0 if it has been deleted.
2. The sparse array I € {0, 1)"*+D with entries defined as follows.

(a) Foralli andfor 1 < j <m

0, ifinAj thei th row and column are all zero or have been

1(i,j) = deleted;
1, otherwise.

(b) For all i

[G,m+1) = {1, otherwise.

function[Ar, br, Cr, info] = SieveSDP(A, b, C, EPS)

% Inputs:
% A: n-by-n*m sparse matrix,
% which is m symmetric n-by-n matrices side by side

% b: the vector of rhs in R m, and b <= 0;

% C: the objective coefficient n-by-n matrix;

% EPS: accuracy for safe mode, with default value eps
% Outputs:

% Ar, br, cr: Reduced data after preprocessing

% info: A structure containing preprocessing info

if nargin < 4, EPS = eps; end
sqrtEPS = sqrt (EPS);

Ar = [1; br = [1; Cr = [];
n = size(C, 1); m = length(b);

I = true(n, m + 1); % initial nonzero indices
for i = 1:m,

I(:, i) = any(A(:, (nx(i - 1) + 1):(n*i)), 2);
end
not_done = 1; % 1 means preprocessing not done
undeleted = ones(m, 1); % keep track of deleted constraints
constr_ind = (1:m); % indices or undeleted constraints
mr = m; % reduced number of constraints
info.infeas = 0; % infeasibility detected?
info.red = 0; % any reduction?
bn = -sqrtEPS*max (1, norm(b, inf));

0, ifinall A; thei th row and column have been deleted;

@ Springer

580 Y.Zhuetal.

% b < 0 if b < -sqrt(epsilon)*max{1l, [Ibll}
bz = bn*sqrtEPS;) b = 0 if -epsilon*max{l, [[Ib|[} < b <= 0

% Preprocessing
while not_done

not_done = 0;
for ii = 1:mr
i = constr_ind(ii);
Ii = I(:, i); % indicates undeleted vars in matrix i
Ai = A(Ii, n*(i - 1) + find(Ii)); % nonzero submatrix
Taux = any(Ai, 2);
if find(Iaux == false, 1),
I(Ii, i) = Taux; Ii = I(:, i); Ai = Ai(Iaux, JTaux);
end
if isempty (Ai)
if b(i) < bn, info.infeas = 1; return; end
% Ai=0 and bi<0 => infeasible
if b(i) > bz, undeleted(i) = 0; continue; end
% Ai=0 and bi=0 => reduce
end

if b(i) < bn
[7, pd_check] = chol(Ai);
if pd_check == 0, info.infeas = 1; return; end
% Ai pd and bi<0 => infeasible
else
if b(i) > bz
[7, pd_check] = chol(Ai);
if pd_check == 0
% Ai pd and bi=0 => reduce
I(Ii, :) = false; undeleted(i) = 0;
not_done = 1;
else
[, nd_check] = chol(-Ai);
if nd_check == 0
% Ai nd and bi=0 => reduce
I(Ii, :) = false; undeleted (i) = 0;
not_done = 1;
end
end
end
end
end
constr_ind = find(undeleted); mr = length(constr_ind);
end

% Undeleted rows/columns are marked in I(:, m + 1)
% Now do physical deletion

if mr == m

Ar = A; br = b; Cr = C; info.red = 0; return;
end
info.red = 1;
I_nonzero = I(:, m + 1); nr = nnz(I_nonzero);
Ar = sparse(nr, nr*mr);
for ii = 1:mr

i = comstr_ind (ii);

Ar(:, (nr*x(ii - 1) + 1):(nr*ii))

= A(I_nonzero, n*x(i - 1) + find(I_nonzero));

@ Springer

Sieve-SDP: a simple facial reduction algorithm to... 581

end

br = b(constr_ind);

Cr = C(I_nonzero, I_nonzero);
end
C The DIMACS errors

For the sake of completeness in this section we describe the DIMACS errors, which
are commonly used to measure the accuracy of approximate solutions X of (P) and
y of (D).

Define the operator A : R — S" and its adjoint as

AX)=(A1eX,..., Ay, 0 X),
m
A*(y) = ZyiAi~
i=1
Suppose we are given an approximate solution X of (P) and an approximate solution

y of (D). For brevity, define Z = C — A*(y).
Then the DIMACS error measures are defined as follows:

_ IAGO — bl
I+ blloc
{ _)\min(X)}
err; = maxy0, ——— ¢,
1+ 16l oo
AT) - C = Z||F
erry = ,
I+ IClloo
{ _)Lmin(z)}
erry = maxy 0, ——— ¢,
1+ [ICllo
b'y—CeX
CIrs = T
[+ICeX[+[bTy]
ZeX
CITg =

1+ |CeX|+|bTy|

In the above equations we use the following notation. If M = (m;;) € &", then we
write ||M || r for the Frobenius norm of M and ||M |« for the infinity norm of M, i.e.,

_ 2
Mg = [> m}
i,j
M]loo = Hl,w}x |mijl.
We also write Apyin (M) for the smallest eigenvalue of M.

@ Springer

582 Y.Zhuetal.

D Dual solution recovery

In this section we address the following question: suppose we preprocessed the prob-
lem (P) by Sieve-SDP, then computed an optimal solution of the preprocessed SDP,
(Ppre), and of its dual, (Dpe). Can we compute an optimal solution of the original pri-
mal (P) and of its dual (D)? The answer to the first question (primal solution recovery)
is easy, while the issue of dual solution recovery is much more subtle.

First let us look at primal solution recovery. Since Sieve-SDP deletes rows and
columns from the variable matrix X that are always zero anyway, if XP™ is an optimal
solution of (Ppr), then by simply padding XP™ with zeroes we obtain an optimal
solution of (P).

Next we discuss dual solution recovery. For simplicity we first assume that Sieve-
SDP performed just one iteration. Further, we also assume that in the Basic Step (in
Fig. 1) it eliminated the constraint A; ¢ X = 0, where

D 0

with D > 0 and we let r be the order of D.
Next, let us write out (Dpre) :

m
sup D biyi
Y=

m
X X
S.t. C—ZyiAiE (X @>,
i=2

(Dpre)

where the notation means that the lower right (n — r) x (n — r) principal block of
C — Y7, yi A is positive semidefinite, and the rest is arbitrary. Thus clearly

val (D) < val(Dpre), (10)

since (Dpre) has a feasible region which is at least as large as that of (D) (and usually
it is larger). Assume that yP™ = (ygre, R y,I:,re) is an optimal solution of (Dpre). Our
recovery procedure, which we call Basic-Recovery, fixes yP™ and seeks y; such that

(y1, yP™®) is feasible in (D), i.e.,
m
yiAL+ Y yA < C. (1)
i=2
We do this by a very basic linesearch: we first try the values y; = 0, —1, and —2. If
these all fail, then we try y; = —100. If we fail with y; = —100, we stop; otherwise

we test y; = —3, —4, ... and find the largest y; such that (11) holds.

@ Springer

Sieve-SDP: a simple facial reduction algorithm to... 583

To test whether (11) holds, again Cholesky factorization comes into play: using it,
we test whether

m
C— <y1A1 + Zy}”eAl) +107%7 = Oholds.
i=2

Basic-Recovery is inspired by the dual solution recovery procedure in [34], which
builds on the ideas in [32], and it assumes that the dual problem (D) is reduced.’

The procedure Basic-Recovery may fail. To see why, first assume it succeeds, i.e., it
computes a feasible solution of (D). Since y; has zero objective coefficient in (D), this
solution has objective value val(Dyyre), hence by inequality (10) it is optimal in (D),
thus val (D) = val(Dpe). Conversely, if val (D) < val(Dpre), then Basic-Recovery
must fail.

Example 4 (Example 3 continued) When we apply Sieve-SDP to the SDP (4), it deletes
the first row and first column in all matrices and it also deletes the first constraint.
Let us write out (Dpe) again for this problem (i.e., repeat the SDP (7)):

sup y2
2

t 10y _(1 0 (12)
$t2 g o)=\o o)

whose optimal solution is ygre =1.
Thus, Basic-Recovery seeks y; such that

1 0 0 0 0 1 1 0 0
yy{0 0 O0}J+f0 1 O0]=<|0 1 0]},
0 0 0 1 0 0 0 0 0

and clearly there is no such yj.

One can construct more sophisticated examples in which val(Dpre) = val (D), but
Basic-Recovery still fails.

We next look at dual solution recovery when Sieve-SDP deleted several constraints:
then we run Basic-Recovery to find the corresponding y; sequentially. For simplicity
assume that Sieve-SDP deleted constraints 1, 2, .. ., k and we found an optimal primal
and dual solution of the resulting SDP (by Mosek). We then attempt to find an optimal
dual solution of the SDP obtained by deleting only constraints 1, ..., k — 1; then of
the SDP obtained by deleting only constraints 1, ..., k — 2; and so on.

To conclude this section we make the point that dual solution recovery is much
more difficult in SDP than in linear programming. We thus implemented an “ideal”
recovery procedure, which we call Ideal-Recovery. It works as follows. Suppose

yPre — (y,ffl, ..., Y€ is an optimal dual solution of the SDP obtained by delet-
ing constraints 1, ..., k. Ideal-Recovery fixes yP™®, then calls Mosek to find a feasible
solution (y1, ..., yx) of

5 See Remark 1 about how the primal and dual are defined in [34].

@ Springer

584 Y.Zhu et al.

Table 12 Dual solution recovery by four methods

Method # Reduced feasible # Success # Failure Successrate Time (s)
pdl 137 23 114 16.8% 154.75
pd2 158 39 119 24.7% 172.13
Sieve-SDP + Basic-Recovery 143 25 118 17.5% 12.62
Sieve-SDP + Ideal-Recovery 143 103 40 72.0% 1313.57

Table 13 Dual solution recovery assuming the tightest standard for “success”

Method # Reduced feasible # Success # Failure Successrate Time (s)
pdl 137 19 118 13.9% 154.75
pd2 158 34 124 21.5% 172.13
Sieve-SDP + Basic-Recovery 143 25 118 17.5% 12.62
Sieve-SDP + Ideal-Recovery 143 17 126 11.9% 1313.57
k m
pre
Y oyidi+ Y A= C. (13)
i=1 i=k+1

Table 12 shows on how many instances pdl, pd2, Sieve-SDP+Basic-Recovery and
Sieve-SDP+Ideal-Recovery succeeded. (Note that they succeeded on overlapping, but
different problem sets, as a preprocessor may reduce an SDP, while another prepro-
cessor may not reduce the same SDP. We do not report results with dd1 and dd2, since
they only reduced a very small percentage of the instances.)

What do we mean by “success”? For pdl and pd2 it means that their dual solu-
tion recovery code reported success. For Sieve-SDP+Basic-Recovery it means that
it succeeded in every iteration: it computed the y; for every deleted constraint. For
Sieve-SDP+Ideal-Recovery it means that Mosek did not report that (13) is infeasible.

Next we made the criterion of “success” more rigorous: we redefined “success”
as returning a pair of primal-dual optimal solutions whose largest DIMACS error in
absolute value is at most 107°. Table 13 shows the results: now Sieve-SDP+Basic-
Recovery is the winner, as it beats the supposedly perfect Sieve-SDP+Ideal-Recovery
procedure.

Nevertheless, none of the methods do very well, and Table 13 shows that dual
solution recovery in facial reduction remains a challenge, and an interesting area for
further research.

References

1. MOSEK ApS. Mosek optimization toolbox for MATLAB 8.0.0.94 (2017)

2. Baston, V.: Extreme copositive quadratic forms. Acta Arith. 15(3), 319-327 (1969)

3. Borwein, J.M., Wolkowicz, H.: Facial reduction for a cone—convex programming problem. J. Aust.
Math. Soc. 30, 369-380 (1981)

@ Springer

Sieve-SDP: a simple facial reduction algorithm to... 585

10.

11.

13.

14.

15.

16.

17.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

. Borwein, J.M., Wolkowicz, H.: Regularizing the abstract convex program. J. Math. Anal. Appl. 83,

495-530 (1981)

. Boyd, S., Mueller, M.T., O’Donoghue, B., Wang, Y.: Performance bounds and suboptimal policies for

multi-period investment. Found. Trends® Optim. 1(1), 1-72 (2014)

. Burer, S., Monteiro, R.D.C.: A nonlinear programming algorithm for solving semidefinite programs

via low-rank factorization. Math. Program. 95(2), 329-357 (2003)

. Burer, S., Monteiro, R.D.C., Zhang, Y.: Solving a class of semidefinite programs via nonlinear pro-

gramming. Math. Program. 93(1), 97-122 (2002)

. Burton, S., Vinzant, C., Youm, Y.: A real stable extension of the Vamos matroid polynomial. arXiv

preprint arXiv:1411.2038 (2014)

. Cheung, V., Wolkowicz, H., Schurr, S.: Preprocessing and regularization for degenerate semidefinite

programs. In: Bailey, D., Bauschke, H.H., Garvan, F., Théra, M., Vanderwerff, J.D., Wolkowicz, H.
(eds.) Proceedings of Jonfest: A Conference in Honour of the 60th Birthday of J. Borwein. Springer,
Berlin (2013)

Diananda, P.H.: On non-negative forms in real variables some or all of which are non-negative. Proc.
Camb. Philos. Soc. 58, 17-25 (1962)

Dressler, M., Iliman, S., de Wolff, T.: An approach to constrained polynomial optimization via non-
negative circuit polynomials and geometric programming. J. Symb. Comput. 91, 149-172 (2019)

. Drusviyatskiy, D., Krislock, N., Voronin, Y.L., Wolkowicz, H.: Noisy Euclidean distance realization:

robust facial reduction and the Pareto frontier. SIAM J. Optim. 27(4), 2301-2331 (2017)
Drusviyatsky, D., Pataki, G., Wolkowicz, H.: Coordinate shadows of semi-definite and Euclidean
distance matrices. STAM J. Optim. 25(2), 1160-1178 (2015)

Fawzi, H., Parrilo, P.A.: Self-scaled bounds for atomic cone ranks: applications to nonnegative rank
and CP-rank. Math. Program. 158(1-2), 417-465 (2016)

Friberg, H.: Facial reduction heuristics and the motivational example of mixed integer conic optimiza-
tion. Technical report, Optimization Online (2016)

Fujisawa, K., Fukuda, M., Kobayashi, K., Kojima, M., Nakata, K., Nakata, M., Yamashita, M.: SDPA
(semidefinite programming algorithm) and SDPA-GMP User’s Manual—Version 7.1.0. Department
of Mathematical and Computing Sciences, Institute of Technology, Tokyo. Research Reports on Math-
ematical and Computing Sciences Series B-448 (2008)

Fujisawa, K., Kojima, M., Nakata, K., Yamashita, M.: SDPA (semidefinite programming algorithm)
User’s Manual Version 6.2. 0. Department of Mathematical and Computing Sciences, Institute of
Technology, Tokyo. Research Reports on Mathematical and Computing Sciences Series B: Operations
Research (2002)

. Henrion, D., Lasserre, J.-B.: Detecting global optimality and extracting solutions in GloptiPoly. In:

Positive Polynomials in Control, pp. 293-310. Springer, Berlin (2005)

Henrion, D., Lasserre, J.-B., Lofberg, J.: GloptiPoly 3: moments, optimization and semidefinite pro-
gramming. Optim. Methods Softw. 24(4-5), 761-779 (2009)

Henrion, D., Naldi, S., ed Din, M.S.: Exact algorithms for linear matrix inequalities. SITAM J. Optim.
26(4), 2512-2539 (2016)

Kocvara, M., Stingl, M.: Pennon: a code for convex nonlinear and semidefinite programming. Optim.
Methods Softw. 18(3), 317-333 (2003)

Krislock, N., Wolkowicz, H.: Explicit sensor network localization using semidefinite representations
and facial reductions. SIAM J. Optim. 20, 2679-2708 (2010)

Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim.
11(3), 796-817 (2001)

Liu, M., Pataki, G.: Exact duals and short certificates of infeasibility and weak infeasibility in conic
linear programming. Math. Program. 167(2), 435480 (2018)

Liu, Y., Ryu, E.K., Yin, W.: A new use of Douglas—Rachford splitting for identifying infeasible,
unbounded, and pathological conic programs. Math. Program. 1-29 (2018)

Lasserre, J.B., Magron, V.: In SDP relaxations, inaccurate solvers do robust optimization. arXiv preprint
arXiv:1811.02879 (2018)

Mittelmann, H.D.: An independent benchmarking of SDP and SOCP solvers. Math. Program. 95(2),
407-430 (2003)

Parrilo, P.: Semidefinite programming relaxations for semialgebraic problems. Math. Program. 96(2),
293-320 (2003)

@ Springer

http://arxiv.org/abs/1411.2038
http://arxiv.org/abs/1811.02879

586

Y.Zhuetal.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.
43.

44.

45.

46.

47.

48.

49.

50.

Pataki, G.: The geometry of semidefinite programming. In: Saigal, R., Vandenberghe, L., Wolkowicz,
H. (eds.) Handbook of Semidefinite Programming. Kluwer Academic Publishers, Canterbury (2000)
Pataki, G.: A simple derivation of a facial reduction algorithm and extended dual systems. Technical
Report, Columbia University (2000)

Pataki, G.: Strong duality in conic linear programming: facial reduction and extended duals. In: Bailey,
D., Bauschke, H.H., Garvan, F., Théra, M., Vanderwerff, J.D., Wolkowicz, H. (eds.) Proceedings of
Jonfest: A Conference in Honor of the 60th Birthday of Jon Borwein. Springer, Berlin (2013)

Pataki, G.: Bad semidefinite programs: they all look the same. SIAM J. Optim. 27(1), 146-172 (2017)
Pataki, G., Schmieta, S.: The DIMACS library of mixed semidefinite-quadratic-linear programs. http://
dimacs.rutgers.edu/Challenges/Seventh/Instances/

Permenter, F., Parrilo, P.: Partial facial reduction: simplified, equivalent SDPs via approximations of
the PSD cone. Math. Program. 171(1-2), 1-54 (2018)

Permenter, F., Friberg, H.A., Andersen, E.D.: Solving conic optimization problems via self-dual embed-
ding and facial reduction: a unified approach. SIAM J. Optim. 27(3), 1257-1282 (2017)

Posa, M., Tobenkin, M., Tedrake, R.: Lyapunov analysis of rigid body systems with impacts and
friction via sums-of-squares. In: Proceedings of the 16th International Conference on Hybrid Systems:
Computation and Control, pp. 63-72. ACM, New York (2013)

Quist, A.J.,de Klerk, E., Roos, C., Terlaky, T.: Copositive relaxation for general quadratic programming.
Optim. Methods Softw. 9(1-3), 185-208 (1998)

Renegar, J.: A Mathematical View of Interior-Point Methods in Convex Optimization, vol. 3. SIAM,
Philadelphia (2001)

Sturm, J.: Using SeDuMi 1.02, a Matlab toolbox for optimization over symmetric cones. Optim.
Methods Softw. 11(1-4), 625-653 (1999)

Sun, D., Toh, K.-C., Yang, L.: A convergent 3-block semi-proximal alternating direction method of
multipliers for conic programming with 4-type constraints. SIAM J. Optim. 25(2), 882-915 (2015)
Tanigawa, S.: Singularity degree of the positive semidefinite matrix completion problem. SIAM J.
Optim. 27(2), 986-1009 (2017)

Trefethen, L.N., Bau III, D.: Numerical Linear Algebra, vol. 50. SIAM, Philadelphia (1997)

Tungel, L.: Polyhedral and Semidefinite Programming Methods in Combinatorial Optimization. Fields
Institute Monographs. American Mathematical Society, Providence (2011)

Tutuncu, R.H., Toh, K.-C., Todd, M.J.: Solving semidefinite-quadratic-linear programming using
SDPT3. Math. Program. 95, 189-217 (2003)

Wagner, D.G., Wei, Y.: A criterion for the half-plane property. Discrete Math. 309(6), 1385-1390
(2009)

Waki, H.: How to generate weakly infeasible semidefinite programs via Lasserre’s relaxations for
polynomial optimization. Optim. Lett. 6(8), 1883—-1896 (2012)

Waki, H., Muramatsu, M.: Facial reduction algorithms for conic optimization problems. J. Optim.
Theory Appl. 158(1), 188-215 (2013)

‘Waki, H., Nakata, M., Muramatsu, M.: Strange behaviors of interior-point methods for solving semidef-
inite programming problems in polynomial optimization. Comput. Optim. Appl. 53(3), 823-844 (2012)
Yang, L., Sun, D., Toh, K.-C.: SDPNAL+: a majorized semi-smooth Newton-CG augmented
Lagrangian method for semidefinite programming with nonnegative constraints. Math. Program. Com-
put. 7(3), 331-366 (2015)

Zhao, X.Y., Sun, D., Toh, K.-C.: A Newton-CG augmented Lagrangian method for semidefinite pro-
gramming. SIAM J. Optim. 20(4), 1737-1765 (2010)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer

http://dimacs.rutgers.edu/Challenges/Seventh/Instances/
http://dimacs.rutgers.edu/Challenges/Seventh/Instances/

	Sieve-SDP: a simple facial reduction algorithm to preprocess semidefinite programs
	Abstract
	1 Introduction and the preprocessing algorithm
	2 Implementation, setup for computational testing, codes used for comparison, and the issue of positive duality gaps
	2.1 Implementation and computing environment
	2.2 Safe mode
	2.3 Preprocessors used for comparison
	2.4 The datasets
	2.5 Internal format and input/output format
	2.6 The choice of the SDP solver and LP solver
	2.7 Criteria for comparison

	3 Detailed comments on some of the preprocessing results
	3.1 ``Compact'' problems: 10 problems from Waki:12
	3.2 ``Unbound'' problems: 10 problems from waki2012strange
	3.3 ``Example'' problems: 8 problems from CheWolkSchurr:12
	3.4 ``Finance'' problems: 4 problems from boyd2014performance
	3.5 Dressler–Illiman–de Wolff (DIW) dataset (155 problems)
	3.6 Henrion–Toh dataset (98 problems)
	3.7 Toh–Sun–Yang dataset (419 problems) from sun2015convergent,yang2015sdpnal

	4 Summary
	Acknowledgements
	A Very detailed results
	A.1 Detailed results on the Permenter–Parrilo (PP) dataset
	A.2 Detailed results on the Mittelmann dataset
	A.3 Detailed results on the Dressler-Illiman-de Wolff (DIW) dataset
	A.4 Detailed results on the Henrion-Toh dataset

	B Core Matlab code
	C The DIMACS errors
	D Dual solution recovery
	References

