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Abstract—Scientific simulations on high-performance computing (HPC) systems generate vast amounts of floating-point data that

need to be reduced in order to lower the storage and I/O cost. Lossy compressors trade data accuracy for reduction performance and

have been demonstrated to be effective in reducing data volume. However, a key hurdle to wide adoption of lossy compressors is that

the trade-off between data accuracy and compression performance, particularly the compression ratio, is not well understood.

Consequently, domain scientists often need to exhaust many possible error bounds before they can figure out an appropriate setup.

The current practice of using lossy compressors to reduce data volume is, therefore, through trial and error, which is not efficient for

large datasets which take a tremendous amount of computational resources to compress. This paper aims to analyze and estimate the

compression performance of lossy compressors on HPC datasets. In particular, we predict the compression ratios of two modern lossy

compressors that achieve superior performance, SZ and ZFP, on HPC scientific datasets at various error bounds, based upon the

compressors’ intrinsic metrics collected under a given base error bound. We evaluate the estimation scheme using twenty real HPC

datasets and the results confirm the effectiveness of our approach.

Index Terms—High-performance computing, lossy compression, data reduction, performance modeling
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1 INTRODUCTION

DATA reduction has become increasingly important for
simulation-based scientific discovery. For large data-

sets generated from high-performance computing (HPC)
simulations, data reduction techniques aim to lower data
volume and velocity so that the overhead of I/O and data
analysis is more tractable. In general, data reduction takes
advantage of the inherent redundancy in data, and state-of-
the-art floating-point compressors can be either lossless [1],
[2], [3], [4] or lossy [5], [6], [7], [8], [9], [10], [11], depending
on whether there is information loss during compression.
While lossless compression incurs no information loss, the
resulting reduction performance is often mild and far from
being sufficient when dealing with extreme-scale datasets,
e.g., those of petabytes produced by simulations running at
scale. Lossy compression, by trading accuracy for perfor-
mance, offers a much higher reduction performance, e.g., a
400X of compression ratio as reported in prior work [7], to
mitigate the bottleneck of I/O.

In reality, information loss is commonly accepted and
leveraged by domain scientists to lower the application
complexity. A classic example is the particle-in-cell (PIC)
numerical solver, in which the amount of macro-particles
injected to the system is orders of magnitude less than that

of physical particles, thus greatly reducing the computa-
tional complexity [12]. Therefore, for large-scale data man-
agement, lossy compression is often the preferred path
forward due to its high reduction performance. When using
lossy compressors, such as SZ [7] and ZFP [6], domain sci-
entists are required to specify an error bound (or precision)
in order to control the loss of accuracy of their data. A key
challenge is that without fully understanding the complex
interplay between error bound of their choice and the
reduction performance, choosing an appropriate error
bound is often difficult and can only be done through trial
and error.

Intuitively speaking, there exists a positive correlation
between error bound and compression ratio. That is, the
looser the error bound is, the higher compression ratio can
be achieved. Prior work [13] has shown that a looser error
bound in SZ can result in a higher hit ratio of curve-fitting,
which in turn improves the compression ratio. However,
this may not be true across all error bounds. Fig. 1 shows
such relationships in SZ and ZFP, respectively, on twenty
scientific datasets. For ZFP, while it is clear that the com-
pression ratio increases monotonically as the error bound
loosens, the trend cannot be characterized by a simple lin-
ear or exponential relationship. Meanwhile, for SZ, the
monotonically increasing trend is only applicable to some
datasets, e.g., Bump, Sedov, NWChem, QMPACK, HACC,
XGC and S3D. For others, the compression ratio decreases
slightly initially, and then quickly ramps up. With such
counter-intuitive trends of compression ratios, it is hard
for domain scientists to select an appropriate error bound
that satisfies their reduction goals while minimizing the
loss of information. They may have to exhaust many error
bounds before identifying a satisfactory one, and this
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process can be both time- and resource-consuming for
large datasets, since compression is highly computation-
intensive in nature.

To that end, this paper aims to gain a deep understand-
ing of the inner mechanisms of lossy compressors, as well
as develop modeling techniques to guide the selection of
appropriate error bounds. Our goal is to predict the order of
magnitude of compression ratios so that the estimation can
be useful in science production in order to satisfy the stor-
age constraints. Our approach is built upon a key observa-
tion that the internal metrics of a lossy compressor are
highly correlated with error bound and thus predictable
across error bounds (Section 3). Therefore, by collecting
these compression metrics at a particular error bound,
termed as base error bound (denoted as EBbase), one can
quantitatively understand the compression behavior for a
given dataset, and extrapolate the compression ratio to
another error bound (denoted as EBnew). This idea is imple-
mented and verified against two leading floating-point
lossy compressors, ZFP and SZ, which have shown to be
superior among all state-of-the-art solutions. The results
demonstrate that our models can estimate compression
ratios at EBnew with decent accuracies. Ultimately, we envi-
sion that for large-scale simulations, we can downsample
their data while in memory, predict the compression ratios
at EBbase, as demonstrated in prior work [13], and further
extrapolate compression ratios from EBbase to all other error
bounds. This allows domain scientists to estimate compres-
sion ratios with greatly reduced overhead relative to trial
and error and thereby choose the error bound that best fits
their needs prior to compression.

The contributions of our work are summarized as
follows:

� We experimentally demonstrate that the internal
compressionmetrics are correlatedwith error bounds
and thus predictable across error bounds.

� We propose a modeling methodology to predict the
compression ratios at EBnew based upon compres-
sion metrics collected at EBbase. We further imple-
ment our techniques for ZFP and SZ, respectively,
which adopt very different design strategies for
compression, thus, resulting in different compres-
sion models.

� We evaluate our modeling techniques using twenty
real scientific datasets and demonstrate the accuracy
of our techniques.

We note that for SZ, our work focuses on 1D data com-
pression using the latest stable version (SZ 2.0) in experi-
ments, since all our datasets are linearized to 1D first
across the board for consistency. As a result, the linear
regression prediction primarily developed for multi-
dimensional compression is not activated during compres-
sion. More discussions on the this can be found in the sec-
tion of related work. The rest of the paper is organized as
follows. Section 2 discusses related work, Section 3 intro-
duces the motivation, and Section 4 investigates the
modeling and prediction of compression ratios between
two error bounds. Specifically, we first discuss the estima-
tion methodology and then implement the cross error
bound modeling on SZ and ZFP. In Section 5, we evaluate
our models by comparing the prediction results with
the real compression ratios, along with conclusions in
Section 6.

2 RELATED WORK

Modern floating-point compressors fall into two categories,
lossless compressors [1], [2], [3], [4] and lossy compressors
[5], [6], [7], [8], [9], [10], [11]. Lossless compressors, such as
FPC [1], FPZIP [3], and GZIP [4], are typically used in sce-
narios where information loss is not tolerable, e.g., com-
pressing checkpoints. They often provide limited data
reduction due to the high entropy of floating-point data.

Fig. 1. Compression ratio versus error bound (SZ and ZFP).
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Compared to lossless compressors, error-bounded lossy
compressors can provide orders of magnitude higher com-
pression ratios. Motivated by the reduction potential of
spline functions [14], [15], ISABELA [5] is designed to com-
press spatial-temporal scientific data with huge randomness
and noise; it sorts multi-dimensional floating-point data to
make them smoother and more compressible. However, the
sorting operation loses locality information, and therefore
ISABELA needs to maintain an extra index which hurts the
performance of reduction. Deering [9] introduces a mesh
compression algorithm to compress 3D triangle data. It uti-
lizes triangular meshes, delta compression, and a modified
Huffman compression to compress vertex locations, colors,
and normals of 3D triangle data. It reduces the storage of
numeric information about each point in a mesh. Cohen-Or
et al. [10] presents a progressive mesh compression method.
Based on multi-resolution decomposition, it offers different
resolutions given current network conditions with regard to
the bandwidth and transmission latency. This is particularly
useful if the network condition is poor. ZFP [6], is a block
transformation based compression algorithm. It takes a
block of 4d points at a time, where d is the number of dimen-
sions. It offers supreme compression performance for multi-
dimensional data and enables random access to any block
of data, since each block is individually compressed. Austin
et al. [8] uses a Tucker decomposition based method to com-
press extreme-scale data in parallel. The results show that
the parallel decomposition can achieve high compression
ratios and be easily scaled to high core counts.

The initial version of SZ 0.1 [7] was released in 2016. It
flattens multi-dimensional data into a single-dimensional
array and exploits the local smoothness within an array for
compression. It uses multiple curve-fitting schemes to pre-
dict a data point from preceding points. The curve-fitted
points are further compressed using Huffman encoding,
while the curve-missed points are compressed by the
binary representation analysis. SZ 1.4 [16] further improves
the compression ratio of multi-dimensional data through
enhancing the curve-fitting prediction. In this version,
multi-dimensional data is no longer flattened into single
dimension first but curve-fitted using a multi-dimensional
prediction method via a linear-scaling quantization. Fur-
thermore, SZ 2.0 [17] improves the compression quality at
high compression ratio cases by introducing an adaptive
selection method between the mean-integrated Lorenzo
predictor and a linear regression-based predictor. The lin-
ear regression-based predictor is shown to be more accu-
rate for data that follow the normal distribution while the
mean-integrated Lorenzo predictor is more effective if data
is non-smooth.

Due to the distinct characteristics of applications aswell as
data in the HPC domain, the general-purpose compression
often cannot satisfy all needs. As a result, improvements and
modifications have also beenmade on a per application basis.
For efficient and low-overhead compression of quantum
chemistry data, SZ was recently improved to leverage latent
data features and optimized on the number of bits for storing
the two-electron repulsion integrals [18]. Further, in order to
mitigate the bottlenecks on memory and network for high-
resolution multi-dimensional visualization, a tensor decom-
position based lossy compression [19] is introduced to use

the higher-order singular value decomposition (HOSVD) to
achieve high reduction ratios. In our prior work Canopus
[11], a progressive data management scheme is designed to
store and analyze extreme-scale scientific data. It co-designs
data decimation, compression and storage, mapping data to
different storage tiers with different latency levels. A key
advantage of Canopus is that users can decide the trade-off
between analysis speed and data accuracy, and allows analy-
sis to work on lower-accuracy data and augment its accuracy
only if needed.

Despite the recent success in this area, there is still a lack
of understanding of the interplay between reduction perfor-
mance and various design parameters. In our prior work
[13], the relationship between reduction performance and
error tolerance has been briefly discussed. It was observed
that the compression ratio of a lossy compressor increases
as the error bound loosens. This trend generally holds for
ZFP, but it displays some inconsistency with SZ when the
error bound is tight. The work developed an analytical
model to predict the compression ratio of a full dataset from
a sampled dataset. The model reduces the overhead of proc-
essing large datasets while maintaining low estimation
error. It is evaluated that when sampling at the ratio of 1
and 10 percent, the estimation error is at 15.7 and 6.9 per-
cent, respectively, for the astro dataset. However, in reality,
when dealing with HPC datasets at the scale of petabytes, 1
percent of sampling will still result in a data volume that is
expensive to process.

A recent work by Tao et al. [20] developed a lightweight
online selection tool to choose between SZ and ZFP during
compression. It estimates the compression ratios of SZ and
ZFP under the same peak signal-to-noise ratio (PSNR) on a
uniformly sampled subset of the original dataset. Specifi-
cally, it computes the probability density function (PDF) of
quantization factor distribution on sampled dataset to
approximate the bit-rate of SZ. For ZFP, the size of each block
is estimated using the number of significant bits on sampled
data. Then the compressor that yields a higher compression
ratio is selected for compression. In comparison, our work
has a different goal of estimating the compression ratio
across error bound, based upon the compression metrics col-
lected at the base error bound only.

3 MOTIVATION

Our previous work [13] first proposed a sampling-based
methodology to predict compression ratios of SZ and ZFP.
The key idea is to use sampled data to extrapolate the com-
pression ratios of the full data, leveraging the statistical sim-
ilarity between the two datasets. Despite the fact that the
estimation scheme achieves a high accuracy, the outcome of
the estimation is sensitive to the sampling ratio. With a
higher sampling ratio (thus smaller sampled data), more
information is lost, and thus the estimation will deviate
from the true compression ratio. Conversely, with a lower
sampling ratio, such as 1 and 0.1 percent, the scheme can
achieve fair estimations. However, extreme-scale datasets at
the level of petabytes will still be very costly to handle after
being downsampled to terabytes. Further, to estimate the
compression ratios at multiple error bounds, one has to
compress the downsampled data at each of the target error
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bounds, which would be too expensive. At last, estimating
the compression ratio of the full dataset from the sampled
dataset is not always feasible, since this approach strictly
requires the bounded locality [21].

In light of the issues above, we take a new direction to
achieve compression ratio estimation across error bounds.
Our approach is motivated by the correlation between com-
pression metrics and error bounds. We show the compres-
sion metrics of SZ and ZFP on the Dpot dataset followed by
the Pearson correlation with the logarithm of error bound in
Tables 1 and 2, respectively. The detailed explanation of
these compression metrics can be found in Sections 4.3.1
and 4.4.1.

For SZ, most compression metrics, e.g., HitRatio, Outlier-
Size, Mean of quantization factor and Variance of quantization
factor are highly correlated to the error bound. However,
NodeCount, TreeSize, EncodeSize,OutlierSize andQuantization-
Factor are less correlated to the error bound. This is because
NodeCount is observed to increase first and decrease later
with the error bound, thus being less correlated with the
error bound, and it is a dominating factor that in turn affects
TreeSize, EncodeSize,OutlierSize, andQuantizationFactor.

Similarly, for ZFP, the compression metrics with Pearson
correlation coefficients to the logarithms of error bounds are
shown in Table 2. It is shown that all parameters are highly
correlated to the error bound, except MaxExp which is con-
stant across the error bound. We note that the Pearson

correlation coefficient is undefined for a random variable
that zero variance.

This observation motivates us to leverage the correlation
and capture the trend of compression metrics in order to
estimate the compression ratio. We next discuss the meth-
odology of capturing the trend of compression metrics and
compression ratio estimation.

4 COMPRESSION RATIO ESTIMATION ACROSS

ERROR BOUNDS

In this section, we first discuss the general methodology of
estimating compression ratios across error bounds. We then
develop the prediction models for SZ and ZFP. For both
compressors, our approach is to first predict the internal
compression metrics across error bounds and then estimate
compression ratios.

4.1 Basics

For the convenience of discussion, we list the notations used
in the paper in Table 3. The datasets used for evaluation are
briefly described in Table 4. The approach here is that by
compressing data once at EBbase and additionally collecting
a small set of compression metrics, one can capture the char-
acteristics of data and behavior of a compressor, as well as
the interplay between them. Based on this, we can further
assess the compression ratio at EBnew. The compression

TABLE 1
SZ Compression Metrics Across Error Bounds

Compression
Metric

EB1 EB2 EB3 EB4

Correlation
w. log of

error bound

Errorbound 10�9 10�7 10�5 10�3 1.00
NodeCount 20,551 40,421 13,383 1,467 �0.66
HitRatio 0.78 0.98 1.0 1.0 0.82
Quantization
Factor

20,551 40,421 13,383 1,467 �0.66

Mean of
quantization
factor

798,747 1,024, 573 1,048, 574 1,048, 576 �0.87

Variance of
quantization
Factor

207,742,
027,628

30,042,
598,502

37,446,
718

3,770 0.87

TreeSize 184,960 363,790 120,448 13,204 �0.66
EncodeSize 49,900 70,639 50,503 27,354 �0.64
OutlierSize 74,205 4,623 0 0 �0.80

EB1 to EB4 are Four Error Bound Configurations. The detailed description of
these metrics can be found in Table 3.

TABLE 2
ZFP Compression Metrics Across Error Bounds

Compression
Metricy EB1 EB2 EB3 EB4

Correlation
w. log of

error bound

Errorbound 10�9 10�7 10�5 10�3 1.00
BitsPerBitplane 3.50 3.48 3.44 3.37 �0.98
MaxPrec 33.84 26.84 19.84 13.84 �1.0
MaxExp 2.84 2.84 2.84 2.84 N/A
BlockSize 118.53 93.34 68.15 46.56 �0.99

y Since ZFP compresses each block of data individually, instead of showing the
compression metrics for all blocks, we show the average value. The correlation
coefficient is undefined forMaxExp, since it has zero variance.

TABLE 3
A List of Symbols

Symbols Description

General

InputSize Size of uncompressed dataset
OutputSize Size of compressed dataset
CompressionRatio The ratio of InputSize to OutputSize
EBbase, EBnew base error bound and target error bound

to predict CompressionRatio

SZ compression metrics

NodeCount Number of Huffman tree nodes
HitRatio Curve-fitting hit ratio
QuantizationFactors Number of quantization factors used in

Huffman encoding
TreeSize Size of Huffman tree structure (in bytes)
EncodeSize Size of Huffman encoding for all nodes

(in bytes)
OutlierSize Size of binary representation of curve-

missed points (in bytes)
qf_ebase_min,
qf_ebase_max

The smallest and largest quantization
factor at EBbase

qf_enew_min,
qf_enew_max

The smallest and largest quantization
factor at EBnew

ZFP compression metrics

BitsPerBitplane Number of bits used in encoding each
bit plane

MaxPrec Maximum number of bit planes to
encode in order to meet the accuracy
demand

MaxExp The common (largest) exponential of
each block

BlockSize Size of each block data (in bits)
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ratio, denoted as CompressionRatio, is defined as the ratio of
original data size, InputSize, to the compressed data size,
OutputSize, as shown in Equation (1). Clearly, for a given
dataset, the problem of modeling CompressionRatio comes
down to the modeling of OutputSize.

CompressionRatio ¼ InputSize

OutputSize
: (1)

As aforementioned, the error bound EBi controls the toler-
ance of information loss during data compression. In gen-
eral, there are two types of error bounds, absolute and
relative error bounds, that are widely used in HPC data com-
pression. Assume a data point has a value denoted as V , the
absolute error bound is an upper bound of the difference
between the original value and the decompressed value, so
the decompressed value is in the range of [V � EBi, Vþ
EBi]. In contrast, the relative error bound allows for an
error that is relative of V and has an error tolerance range of
[V � ð1�EBiÞ, V � ð1þ EBiÞ]. Unless otherwise specified,
we adopt the relative error bound in our work, since it
results in commensurate information loss for both high and
low values.

4.2 Methodology

To predict the compression ratio at error bound EBnew, we
first perform a standard compression at error bound EBbase.
During this process, we collect a set of compression metrics
(detailed in Table 3) that have shown to be correlated with
error bounds (Section 3). For example, we experimentally
observed in SZ that the distribution of quantization factors,
a key intermediate compression product that is more com-
pressible than the original data, are highly similar at differ-
ent error bounds and can be approximated by the Gaussian

distribution. This critical observation enables us to extrapo-
late the quantization factors from EBbase to EBnew (Section
4.3.1). Once the quantization factors are obtained at EBnew,
we can further construct the new Huffman tree and extrapo-
late the compression ratio. Also, for ZFP, due to its block-
wise operation (Section 4.4.1), characterizing the number of
bits used per each block via two parameters, the number of
bit planes to encode and the average bits used to encode
each bit plane, will allow us to predict the average block
size at other error bounds. The general methodology is
described as follows:

Step 1: We run a standard compression at EBbase and col-
lect a set of internal compression metrics, which are
compressor dependent.

Step 2: We analyze the compression metrics at EBbase and
build models to predict them at EBnew. The intui-
tion behind this is that by capturing the compres-
sion metrics, we can indirectly understand the data
characteristics as well as how a compressor reacts
to the data. These can be further exploited to
extrapolate the compression performance.

Step 3: We use the estimated compression metrics to fur-
ther predict the compression ratio at EBnew.

Next, we discuss the estimation of SZ and ZFP,
respectively.

4.3 Prediction of SZ Compression Ratio

4.3.1 SZ Compression and Its Internal Metrics

In this work, we focus on a recent version of SZ 2.0. Since
some of the datasets have already been linearized, we com-
press all datasets as one-dimensional across the board
for consistency. Therefore, the proposed regression-based

TABLE 4
Dataset Description

Dataset Dimension and type Size Description

Dpot 1� 20694, double precision 166 KB Electric potential deviation in a plasma physics simulation
Astro 1� 65536, double precision 524 KB Velocity magnitude in a supernova simulation
Fish 1� 65536, double precision 524 KB Velocity magnitude in a CFD calculation of cooling air being

injected into a mixing tank
Sedov 1� 78144, double precision 625 KB Pressure of strong shocks in a hydrodynamical simulation
Blast2_p 1� 578880, double precision 5 MB Pressure of strong shocks in a gas-dynamical simulation
Eddy 1� 282616, double precision 2 MB Velocity in a 2D solution to Navier-Stokes equations
Yf17_p 1� 97104, double precision 777 KB Pressure in a computational fluid dynamics calculation
Yf17_t 1� 97104, double precision 777 KB Temperature in a computational fluid dynamics calculation
Bump 1� 55692, double precision 446 KB Flow density of an axisymmetric bump
CEMS_ATM 26� 1800� 3600, single precision 674 MB Climate simulation
EXAALT 1� 2869440, single precision 12 MB Molecular dynamics simulation
Hurricane_ISABEL 100� 500� 500, single precision 100 MB Climate simulation of hurricane
HACC 1� 280953867, single precision 1 GB Cosmology: particle simulation
NYX 1� 512� 512, single precision 537 MB Cosmology: Adaptive mesh hydrodynamics + N-body

cosmological simulation
NWChem 1� 102953248, double precision 824 MB Two-electron repulsion integrals computed over Gaussian-type

orbital basis sets
QMCPACK 115� 69� 69� 288, single precision 631 MB Many-body ab initio QuantumMonte Carlo (electronic structure

of atoms, molecules, and solids)
S3D 500� 500� 500, double precision 11 GB Combustion simulation
XGC 20694� 512, double precision 339 MB Fusion Simulation
Brown 1� 8388609, double precision 268 MB Synthetic, generated to specified regularity
SCALE_LETKF 98� 1200� 1200, single precision 565 MB Climate simulation
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prediction model is not used in our work since it targets
multi-dimensional compression. For each data point, SZ
checks whether it can be predicted by its previous points
using either linear or quadratic curve-fitting, subject to a
user specified error bound. If so, this data point is deemed to
be curve-fitted and is further discretized using a quantiza-
tion factor followed by Huffman encoding. The intuition is
that if there is local smoothness in data, the likelihood that
data points are distributed closely around the predicted
value is high. Therefore, after quantization, data points could
potentially be mapped to an identical quantization factor
and thus can be further compressed using Huffman encod-
ing. The number of quantization factors, denoted as Quanti-
zationFactor, is the number of discrete levels that SZ maps a
curve-fitted data value into. This parameter can be either
prescribed by the user or calculated by the compressor based
on the data range and error bound. If the data point cannot
be predicted by its previous points, it is deemed to be curve-
missed and is encoded using binary representation analysis.
Namely, it utilizes IEEE format 754 to represent curve-missed
data points where data values are normalized and truncated
based on the error bound, and then optimized by a leading-
zero based compressionmethod [7].

As such, the size of SZ-compressed data consists of Huff-
man tree size, Huffman encoding size for curve-fitted data
points, and binary representation size for curve-missed data
points, as shown in Equation (2). We next first analyze the
impact of each individual component on OutputSize.

OutputSize ¼ TreeSizeþEncodeSizeþOutlierSize: (2)

We observe that most of the compression power in SZ
comes from the curve-fitting and Huffman encoding. For
example for Astro, as shown in Fig. 2, when the relative
error bound is higher than 10�8, HitRatio is consistently
above 90 percent. Thus, the majority of data points are hit
by curve-fitting. Therefore, we focus on curve-hitting and
Huffman encoding in what follows.

HitRatio. A key compression metric that measures the
effectiveness of curve-fitting is HitRatio, which is the per-
centage of data points that can be curve-fitted and encoded
using the Huffman tree under a given error bound. In
Fig. 2a, we observe that for Astro, HitRatio increases mono-
tonically from 70 percent to approximately 100 percent

when the error bound loosens from 10�9 to 10�1. Intuitively,
the associated Huffman tree quantities TreeSize and Encode-
Size should also increase since more data points need to be
encoded as a result of increasing HitRatio. Nevertheless, the
results in Figs. 2c and 2d show that TreeSize and EncodeSize
increase at first and then drop after the error bound reaches
10�7. Thus, despite being an important metric, HitRatio may
not be the sole factor in determining the outcome of
compression.

NodeCount. Here NodeCount is the number of Huffman
tree nodes used to encode the quantization factors. We
observe that the resulting TreeSize and EncodeSize follow a
similar trend as NodeCount across error bounds, indicating
that NodeCount is another key factor that affects compres-
sion. Namely, it increases at first and then drops when error
bound reaches 10�7, which is also the point where HitRatio
reaches 100 percent (Fig. 2b). Since NodeCount is equivalent
to the unique number of quantization factors used in Huff-
man encoding, we aim to study the distribution of quantiza-
tion factors across different error bounds and understand
the trend of NodeCount. It can be seen from Fig. 3 that quan-
tization factors exhibit similar shapes across error bounds
from 10�9 to 10�7, but the shape narrows drastically thereaf-
ter. Namely, the range of quantization factors decreases
from ½0; 2497152� to ½1048540; 1048612�, and the number of
points represented by each factor, indicated by the bar
height, increases. We observe that fewer quantization fac-
tors are used after HitRatio approximates to 100 percent.
The reason is that no more data points can be curve-fitted,
and further loosening error bound will result in more data
points being covered by a single quantization factor. The
decreasing of unique quantization factors further leads to
the decreasing of NodeCount.

Therefore, we believe HitRatio and NodeCount are the two
main metrics affecting the compression of SZ. To extrapo-
late the compression ratio, we need to first model HitRatio
and NodeCount, respectively.

4.3.2 SZ Modeling and Estimation

In this section, we aim to predict SZ compression metrics
from the base error bound, EBbase, to another error bound,
EBnew, and further predict CompressionRationew—the com-
pression ratio at EBnew. To this end, we first discuss the
modeling of HitRatio and NodeCount.

Fig. 2. SZ compression metrics versus relative error bound (Astro).
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HitRatio. For SZ, HitRatio can be fairly well predicted,
since whether a data point is a hit or a miss only involves a
simple comparison between the prediction error and the
radius of hit, denoted as HitRadius, which is calculated as
HitRadius ¼ EBnew � V , where V is the first value of each
data segment. The prediction error is the difference between
the predicted value, e.g., using linear or quadratic curve fit-
ting, and the real value. When compressing data at EBbase, if
the prediction error atEBnew is no greater thanHitRadius, the
data point is considered as a hit; otherwise, it is considered
as a miss. Thus, scanning all data points when compressing
data atEBbase,HitRatio atEBnew can be additionally obtained
with essentially no extra overhead.

The results of HitRatio estimation are shown in Fig. 4,
where the estimated HitRatio (in red) are compared against
the real values (in blue) for error bounds from 10�9 to 10�1.
Overall the estimation of HitRatio is accurate, and the trend
of HitRatio against error bound is well modeled. Neverthe-
less, the estimation deviates from the real value for Dpot at
error bounds of 10�7 and 10�5, and Eddy at 10�7. We com-
ment that the deviation is caused by the simplification in
modeling HitRatio. Namely, during compression, SZ calcu-
lates HitRadius on the basis of segments that consists of 32
data points. However, during our estimation, we use the
same HitRadius for all data points for simplification, which

would otherwise require storing a vector of HitRadius and
can be expensive for large datasets. This simplification can
cause inaccuracy for HitRatio prediction. Also, the prior
work on SZ [7] suggests that one should use the preceding
compressed values, instead of the original values to predict
future values, so that the predicted values are bounded by
the error bounds. In our case, since that the difference
between compressed values and original values are limited
by the error bound, which is typically under 10�1, we use the
preceding original values for prediction to simply the design.

NodeCount. As aforementioned, NodeCount can be esti-
mated utilizing the distribution of quantization factors. We
further notice that, among all datasets we evaluated, the dis-
tributions of quantization factors across different error
bounds are highly similar, and they follow the Gaussian dis-
tribution. In general, to characterize a Gaussian distribution,
one only needs to determine the mean and variance. A
caveat is that, despite that quantization factor distributions
of EBbase and EBnew are observed to have identical means,
they exhibit different variances, as shown in Fig. 3. There-
fore, when extrapolating NodeCount from EBbase to EBnew,
the variance needs to be compensated. We notice that when
the error bound is enlarged from EBbase to EBnew, assuming
EBnew > EBbase, those data points missed under EBbase but
hit under EBnew essentially extend the tails of the Gaussian

Fig. 3. Quantization factor distribution (Astro). Each plot shows the histogram of quantization factors under a particular error bound. The x-axis is the
value of quantization factor, and the y-axis is the count of occurrence. The title of each plot is the relative error bound used.

Fig. 4. HitRatio estimation on evaluation datasets. Note that EBbase is set to 10�9.
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distribution under EBbase, thus increasing the variance.
Hence, compensating the variance at EBnew comes down to
obtaining the distribution of those newly hit points on both
tails. Since the tails of Gaussian distribution are relatively
smooth, we simplify the problem by using a uniform distri-
bution to model the added tails.

We illustrate the variance compensation scheme in Fig. 5.
The distribution of quantization factors at EBnew (red curve)
has a wider range than the distribution at EBbase (blue curve).
We model the added tails of newly hit data points (grey bars)
using the uniform distribution. To this end, we need to iden-
tify the range of added tails, i.e., ½qf enew min; qf ebase min�
and ½qf ebase max; qf enew max�. We note that qf ebase
min and qf ebase max are the minimum and maximum val-
ues of quantization factors at EBbase. For qf enew min and
qf enew max, we use the minimum and maximum of newly
hit data points as approximation. We note that the newly hit
data points at EBnew can be easily obtained by simply com-
paring HitRadius with the curve-fitting prediction error.

Next, we apply the uniform distribution to randomly
generate two sets of values in the range of ½qf enew min;
qf ebase min� and ½qf ebase max; qf enew max�, respe
ctively, to compensate the difference in quantization factor
distribution. The two sets of quantization factors generated
from the uniform distribution are combined with the origi-
nal distribution at EBbase to approximate the distribution at
EBnew. We show the compensation results of astro in Fig. 6.
We can see that the distributions under EBbase (in green
bars) and EBnew (in blue bars) have the same mean value of
1,048,576. The variances of distribution under EBnew and
EBbase are 37,446,718, and 375,682, respectively. And the
compensated variance of distribution at EBbase with the
extended tails is 35,443,720, which is very close to the true
ilei1leivariance at EBnew. Once the quantization factor dis-
tribution at EBnew is obtained, we can estimate NodeCount
by counting the number of unique quantization factors in
the estimated distribution.

CompressionRatio. Based upon the HitRatio and NodeCount
estimations, we next describe the complete CompressionRatio
estimation. The process of CompressionRatio extrapolation
from EBbase to EBnew involves the following steps:

Step 1: Run the standard SZ compression for a given data-
set at EBbase. Calculate HitRadius at EBnew. Record
the SZ compression metrics listed in Table 3. In
addition, record the prediction error for each value.

Step 2: Extrapolate HitRatio to EBnew based on estimated
HitRadius and the recorded prediction error.

Step 3: Calculate qf_enew_min and qf_enew_max. Construct
the quantization factor distribution and estimate
the NodeCount at EBnew.

Step 4: Estimate TreeSize, EncodeSize, andOutlierSize, based
on the estimated NodeCount and HitRatio. The esti-
mated size of compressed data,OutputSizenew, is the
sum of the estimated TreeSizenew, EncodeSizenew
andOutlierSizenew.

In particular, for Step 4, the methodology used here, sim-
ilar to our previous work [13], is based upon the following
observations: 1) the Huffman tree size is proportional to the
tree node count; 2) the encoding size is related to the depth
of Huffman tree; and 3) the size of outliers is proportional
to the number of outliers, with the size of each outlier being
similar. The values of TreeSizenew, EncodeSizenew, and
OutlierSizenew at EBnew can be estimated as follows.

TreeSizenew ¼ TreeSizebase � NodeCountnew
NodeCountbase

EncodeSizenew ¼ EncodeSizebase � log2NodeCountnew
log2NodeCountbase

OutlierSizenew ¼ OutlierSizebase � OutlierCountnew
OutlierCountbase

:

Therefore,

OutputSizenew ¼ TreeSizenew þEncodeSizenew

þOutlierSizenew

CompressionRationew ¼ InputSize

OutputSizenew
:

We take the Astro dataset as an example to illustrate the
estimation of each component, as shown in Fig. 7. We can
see that the two key factors, HitRatio and NodeCount, are
well predicted. The non-linearity observed in NodeCount is
also captured, which leads to the modeling of TreeSize, Enco-
deSize, and OutlierSize. More comprehensive evaluation of
SZ CompressionRatio are presented in Section 5.

Fig. 5. Illustration of variance compensation for quantization factor distri-
bution. In the figure, qf_ebase_min and qf_ebase_max stand for the
smallest and largest quantization factor in the distribution of EBbase (blue
curve). Meanwhile, qf_enew_min, and qf_enew_max stand for the
smallest and largest quantization factor in the distribution of EBnew (red
curve). Tails (grey bars) are added between qf_ebase_min and qf_
enew_min as well as between qf_ebase_max and qf_enew_max to com-
pensate the difference in variance.

Fig. 6. Quantization factor variance compensation (Astro). The quantiza-
tion factor at EBbase (in green) has a smaller variance, while the quanti-
zation factor at EBnew (in blue) has a larger variance due to the newly hit
points on the tails. We use the uniform distribution to model the added
tails (in yellow).

1628 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 7, JULY 2020

Authorized licensed use limited to: Xubin He. Downloaded on July 25,2020 at 02:33:58 UTC from IEEE Xplore.  Restrictions apply. 



4.4 Prediction of ZFP Compression Ratio

4.4.1 ZFP Compression and Its Internal Metrics

ZFP compresses data based upon blocks. For each block,
ZFP first transforms it into a set of floating-point mantissas
along with a common exponent. The common exponent is
computed from the largest absolute value in the block,
resulting in mantissas in the range of ½�1; 1�. Next, the float-
ing-point mantissas are converted to fixed-point values and
then taken into a reversible orthogonal transformation. The
transformation, similar to the discrete cosine transform
(DCT) used in JPEG image encoding, decorrelates spatially
correlated values, resulting in near-zero transform coeffi-
cients that are typically more compressible. The transform
incurs equal importance for each transform coefficient, and
each bit of coefficients within the same bit plane has the
same impact on accuracy [6], [22]. Thus, transform coeffi-
cients can be compressed using embedded encoding [23]
where one bit plane of coefficients is encoded at a time.
Note that the number of bit planes to be encoded can be cal-
culated from the user specified precision.

ZFP can work in different modes depending on the user
requirements. In this work, we choose the fixed-accuracy
mode, in which the absolute error bound is set by the
parameter accuracy. The data points in each block are com-
pressed up to a common minimum bit planes to meet the
target error tolerance.

MaxPrec and BitsPerBitplane. Given that ZFP compresses
data by blocks, OutputSize is simply the sum of size of all
compressed blocks (see in Equation (3)). We denote the
compressed size of block i as BlockSizei (in bits), where
0 � i < n and n is the total number of blocks.

OutputSize ¼ 1

8

Xn�1

i¼0

BlockSizei: (3)

In the extreme case where a block has all zero values,
BlockSize is one and only a single bit of zero is written. If a
block has non-zero values, BlockSize is the total number of
bits used to encode the values in the block. To control the
accuracy of compressed dataset, ZFP operates on one bit
plane of coefficients at a time using embedded encoding (as
shown in Fig. 8). When compressing the coefficients in a

block by bit planes, BlockSize depends onMaxPrec, the num-
ber of bit planes to encode, and BitsPerBitplane, the number
of bits consumed to encode each bit plane (see Equation (5)).

BlockSizei ¼
XMaxPrec�1

j¼0

BitsPerBitplaneij; (4)

where BitsPerBitplaneij is the jth bit plane to encode for
block i. In order to estimate CompressionRatio of ZFP, we
must model and estimate these two parameters.

Note that ZFP in the fixed accuracy mode only supports
the absolute error bound. In order to select a spectrum of
error bounds that covers both loose and tight bounds, we
set the absolute error bound to the product of root mean
square (RMS) and the prescribed relative error bound. The
definition of root mean square is defined as follows:

RMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 x
2
i

n

r
; (5)

where x1; x2; :::xn is a set of values.

4.4.2 ZFP Modeling and Estimation

In this section, we aim to model and estimate two key com-
pression metrics, MaxPrec and BitsPerBitplane, and further
predict CompressionRatio. The central idea is to take advan-
tage of the correlation between compression metrics and
error bounds to make predictions.

As shown in Table 2, MaxExp, the maximum exponent
value in a block, is constant across error bounds. MaxPrec
decreases as the error bound loosens. It indicates that for
each block, it requires fewer bit planes be encoded to satisfy
the error tolerance. For BitsPerBitplane, although it decreases
monotonically as well, we observe that the average number
of bits to encode each bit plane decreases slowly from 3.50
to 3.37, when the error bound loosens from 10�9 to 10�3.
The reason is that this quantity highly depends on the actual
bits of each bit plane but is not impacted by the error bound.
Therefore, BitsPerBitplane is deemed to be less sensitive to
the error bound, thus highly predictable at EBnew.

MaxPrec.We studied the ZFP implementation1 and notice
thatMaxPrec is empirically calculated by Equation (6). In the
equation, MaxExp is the largest exponent value in a block,
and log2Accuracy is the smallest bit plane number that
should be encoded to [24].

Fig. 7. SZ compression metric estimation.

Fig. 8. Bit planes in a ZFP block. LSB and MSB represent the least and
the most significant bit, respectively. ZFP encodes from bit plane 0 at
MSB to bit plane 63 at LSB until the accuracy requirement is satisfied.

1. This is of ZFP 0.5.3.
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MaxPrec ¼ MaxExp� log2Accuracyþ 2 � ð1þ dÞ: (6)

BitsPerBitplane. For a bit plane that has non-zero values,
an embedded encoding scheme is applied to encode the
bits of each of 4d numbers into two parts: the first m bits
are encoded verbatim where the value of m depends on
the previous bit plane; then n bits are used to encode the
remaining 4d �m bits using run-length encoding. The total
number of bits (mþ n) used to encode is in general data
dependent, and it is non-trivial to calculate the exact num-
ber of bits used to encode each bit plane. Nevertheless, we
observe that the distribution of BitsPerBitplane is highly
similar for each dataset across error bounds. It is shown in
Fig. 9 that for Eddy, each bit plane uses around 3.5 bits on
average, and this stands true for all error bounds. There-
fore, we use a weighted average of BitsPerBitplane at EBbase

to approximate that at EBnew. In eddy for example, the total
number of bit planes to encode at error bound 10�9 is
1715895, among which, there are ½78281; 120245; 68547;
1404963; 36905; 6882; 72� bit planes using ½1; 2; 3; 4; 5; 6; 7�
bits to encode, respectively. Thus, the weighted average of
BitsPerBitplane is 3.71.

The weighted averages of BitsPerBitplane for Eddy across
error bounds are shown in Fig. 9. It is observed that BitsPer-
Bitplane decreases slowly from 3.71 to 3.15 when the error
bound loosens from 10�9 to 10�1, validating the intuition
that fewer bits are needed to encode each bit plane at a
looser error bound. It also suggests that BitsPerBitplane is
insensitive to error bound. This conclusion stands for all
twenty datasets and the complete results of BitsPerBitplane
distributions are shown in Fig. 13 (Section 5.2).

CompressionRatio. Now that we have modeled MaxPrec
and BitsPerBitplane, BlockSizei can be approximated by the

product of MaxPrec and the weighted average of BitsPer

Bitplaneij, denoted as BitsPerBitplanei.

BlockSizei ¼
XMaxPrec�1

j¼0

BitsPerBitplaneij

� MaxPrec �BitsPerBitplanei:
(7)

We take the Eddy dataset as an example to show the estima-
tion result of BlockSize. As shown in Fig. 10, the distributions
of real (in red) and estimated (in blue) BlockSize are highly
similar across error bounds. We note that the estimation
error is a result of using weighted average of BitsPerBitplane
at EBbase for prediction. With BlockSize modeled, OutputSize
can be estimated using Equation (3). The process of com-
pression ratio estimation can be broken down into the fol-
lowing steps:

Step 1: For a given dataset, we run the ZFP compression in
the fixed-accuracy mode at EBbase, to obtain Max-
Exp of each block and BitsPerBitplane of each bit
plane.

Step 2: We calculate the weighted average of BitsPerBitplane
at EBbase and calculate the MaxPrec for error bound
EBnew.

Step 3: We estimate BlockSize at EBnew using Equation (7)
and calculate the compressed data size OutputSize
andCompressionRatio.

The results of compression ratio prediction for all data-
sets can be found in Section 5.2.

5 EVALUATION

In this section, we present evaluations of our models for SZ
and ZFP, respectively, on twenty real scientific datasets.

Fig. 9. Histogram of bits used in each bit plane (Eddy). Note that the x-
axis is BitsPerBitplane and the y-axis is the occurrence of using the
associated number of bits to encode. The distributions of BitsPerBitplane
of other datasets are shown in Fig. 13 in Section 5.2.

Fig. 10. Distribution of real and estimated BlockSize across error bounds
(Eddy). The x-axis is the value of BlockSize, and y-axis is the number of
blocks with the corresponding BlockSize.
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Fig. 11. SZ compression estimation.

Fig. 12. Quantization factor distribution (Blast2_p).

Fig. 13. Distribution of BitsPerBitplane over error bound. Note that the y-axis label for each plot is occurrence of bit planes. We observe that in each
dataset, the distributions of BitsPerBitplane at different error bounds (bars with different colors) are highly similar.
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Among them, eleven datasets are adopted from a suite of
Scientific Data Reduction Benchmarks [25] which contains
data from real-world scientific simulations, including cli-
mate simulation [26], hurricane simulation [27], cosmologi-
cal simulation [28], molecular dynamic simulation [29], N-
body cosmological simulation [30], example molecular 2-
electron integral values [31], weather simulation [32],
many-body ab initio Quantum Monte Carlo [33], combus-
tion simulation [34], and fusion simulation [35]. We com-
pare the estimated compression ratios with the real ones
across error bounds. Note that EBbase is set to 10�9. We
also quantitatively analyze the estimation error of compres-
sion ratios for both compressors.

5.1 SZ Compression Estimation

We apply the proposed estimation scheme to extrapolate
the compression ratios of SZ across error bounds from 10�9

to other error bounds, as shown in Fig. 11. We further show
the prediction error for each dataset in Fig. 15. For most
datasets, the proposed scheme can capture the trend of com-
pression ratio well and make reasonable estimation under
most error bounds. However, for Blast2_p, the scheme
shows a substantial departure from the real compression
ratios. This is due to the very unique data distribution of
Blast2_p, in which data points mostly center around two val-
ues. As a result, the quantization factor deviates from the
exact Gaussian by a large margin (Fig. 12), and this in turn
affects the accuracy of NodeCount estimation.

For Eddy, Sedov and Yf17_p, although the relative estima-
tion errors shown in Fig. 15 are high, the absolute estimation
errors are not. For example, for Eddy, the estimation errors
at error bound 10�5 and 10�3 are 0.45 and 1.74, respectively.
None of the absolute estimation errors exceeds an order of
magnitude difference—the goal of compression estimation
is to capture the trend of compression ratio, as opposed to
predicting the precise value.

Furthermore, it is observed that for loose error bounds,
e.g., 10�2 or 10�1, the estimation is less accurate (except for
Astro). The reduced accuracy is caused by the following: 1)
our approximation of using uniform distribution to model
newly hit points, and 2) the amount of newly hit points
become very small as the error bound increases, thus mak-
ing it hard to statistically capture their characteristics. We
comment that loose error bounds are often not preferred in
scientific productions due to the significant information
loss, and they are listed here only for comparisons.

5.2 ZFP Compression Estimation

We first evaluate the estimation of BitsPerBitplane. In Fig. 13,
we plot the distributions of BitsPerBitplane under error

TABLE 5
Weighted Average of BitperBitplane

Dataset Weighted average

Astro 3.50
Blast2_p 2.95
Bump 2.28
Dpot 3.67
Eddy 3.71
Fish 3.31
Sedov 3.44
Yf17_p 3.58
Yf17_t 2.88
CESM_ATM 3.41
EXALLT 3.85
Hurricane_ISABEL 3.76
HACC 3.77
NYX 3.48
NWChem 3.82
QMCPACK 3.85
S3D 3.01
XGC 3.52
Brown 3.18
SCALE_LETKF 3.13

Fig. 14. ZFP compression estimation.
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bounds from 10�9 to 10�1. It can be seen that the distribution
of BitsPerBitplane maintains a similar shape across error
bounds for all datasets. The weighted average of BitsPerBit-
plane under EBbase is listed in the Table 5.

The results of ZFP compression estimation are shown in
Fig. 14. Overall, we can capture the trend of compression
ratio well across error bounds. For Yf17_p, Yf17_t and Sedov,
our proposed model over-estimates the output size which
results in lower compression ratios. This is because BitsPer-
Bitplane under EBbaseð10�9) is always larger than others (see
in Fig. 13) due to tighter error tolerance. The relative estima-
tion error of CompressionRatio for ZFP is shown in Fig. 15.
As compared to SZ (Fig. 15), the estimation error of Com-
pressionRatio for ZFP is significantly lower than SZ. For SZ,
the quantization factor approximation involves significant
simplifications of Gaussian tails, while ZFP does not have
this problem. In addition, the estimation error generally
increases as the error bound deviates from the EBbase (i.e.,
10�9 in our runs). The largest relative estimation error
observed is below 35 percent (for Fish and Yf17_t data at
error bound 10�1) while we observe that the absolute esti-
mation error is 4.75 and 4.23, respectively.

6 CONCLUSIONS

Motivated by the insufficient understanding of lossy com-
pressors, this paper thoroughly studies the mechanisms of
two lossy compressors, SZ and ZFP. In particular, we exam-
ine how the error bound influences the compression ratio
and identify the key factors that affect the outcome of com-
pression. Thiswork developsmodeling techniques to predict
the compression ratios based upon the estimation of key
compression metrics across a set of error bounds. For SZ, we
focus on the modeling and estimation of HitRatio and Node-
Count; whereas for ZFP we capture the trend ofMaxPrec and
BitsPerBitplane. We evaluate the modeling and estimation
schemes on real HPC datasets. The results show that our

estimation scheme achieves a good accuracy on the compres-
sion ratios of SZ and ZFP for all datasets across error bounds.
Ourwork is beneficial to domain scientists for choosing error
boundswhen compressing large datasets onHPC systems. A
limitation of this work is that the SZ compression estimation
is limited to the one-dimensional case. In the future, we plan
to evaluate the case of multi-dimensional compression along
with the performance prediction across compressors. In con-
junction with this work, we plan to put together a complete
estimation scheme for large-scale data compression.
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