2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS)

EC-Fusion: An Efficient Hybrid Erasure Coding Framework to Improve
Both Application and Recovery Performance in Cloud Storage Systems

Han Qiu', Chentao Wu'*, Jie Lil, Minyi Guo!, Tong Liu2, Xubin He?, Yuanyuan D0ng3, and Yafei Zhao®
!Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
2Department of Computer and Information Sciences, Temple University, Philadelphia, United States

3Alibaba Group, Hangzhou, China
*Corresponding Author: wuct@cs.sjtu.edu.cn

Abstract—Nowadays erasure coding is one of the most sig-
nificant techniques in cloud storage systems, which provides
both quick parallel I/O processing and high capabilities of fault
tolerance on massive data accesses. In these systems, triple
disk failure tolerant arrays (3DFTs) is a typical configuration,
which is supported by several classic erasure codes like Reed-
Solomon (RS) codes, Local Reconstruction Codes (LRC), Min-
imum Storage Regeneration (MSR) codes, etc. For an online
recovery process, the foreground application workloads and
the background recovery workloads are handled simultaneously,
which requires a comprehensive understanding on both two types
of workload characteristics. Although several techniques have
been proposed to accelerate the I/0 requests of online recovery
processes, they are typically unilateral due to the fact that the
above two workloads are not combined together to achieve high
cost-effective performance.

To address this problem, we propose Erasure Codes Fusion
(EC-Fusion), an efficient hybrid erasure coding framework in
cloud storage systems. EC-Fusion is a combination of RS and
MSR codes, which dynamically selects the appropriate code based
on its properties. On one hand, for write-intensive application
workloads or low risk on data loss in recovery workloads, EC-
Fusion uses RS code to decrease the computational overhead
and storage cost concurrently. On the other hand, for read-
intensive or frequent reconstruction in workloads, MSR code
is a proper choice. Therefore, a better overall application and
recovery performance can be achieved in a cost-effective fashion.
To demonstrate the effectiveness of EC-Fusion, several experi-
ments are conducted in hadoop systems. The results show that,
compared with the traditional hybrid erasure coding techniques,
EC-Fusion accelerates the response time for application by up to
1.77x, and reduces the reconstruction time by up to 69.10%.

Index Terms—Erasure Coding, Storage Fusion, High Reliabil-
ity, Reconstruction, Storage Efficiency

I. INTRODUCTION

Nowadays, data reliability becomes a critical issue in cloud
storage systems, due to the expansion of data volumes and high
risks on data loss [1] [2] [3] [4] [5]. Erasure coding utilizes a
small amount of redundant data as parities to ensure high fault
tolerance, which is a typical technique for high reliable cloud
storage. In general, erasure codes are divided into two types
[6] [7], XOR-based codes [8] [9] [10] [11] [12] [13] and Reed
Solomon (RS)-based codes [14] [15] [16]. Although they can
maintain high fault tolerance with low storage cost, the overall
performance is significantly affected by diverse factors, such as
the computational and network transmission overhead during
reconstruction period [2] [15] [16] [17]. As online recovery
becomes frequent in cloud storage systems, it is difficult to

1530-2075/20/$31.00 ©2020 IEEE
DOI 10.1109/IPDPS47924.2020.00029

191

find a perfect code to achieve high performance under both
application and recovery workloads, which are foreground and
background I/Os in the online recovery, respectively.

Therefore, hybrid redundancy schemes [15] [16] [18] [19]
are proposed to speed up the processing of both application
and recovery workloads in several directions, such as reducing
I/0 cost, decreasing transmission bandwidth, etc. Typical hy-
brid redundancy schemes can be categorized into three classes,
Internal Hybrid Erasure Coding (IH-EC), External Hybrid
Erasure Coding (EH-EC), and Combination of Replications
and Erasure Coding (REC). IH-EC methods integrate different
erasure codes into a single code via multiple dimensional
constructions. Previous methods like Local Reconstruction
Code (LRC) [15], Minimum Storage Regeneration (MSR)
code [16] [20] [21], and Hybrid-RC [22] are internal hy-
brid erasure codes. General EH-EC methods include Hadoop
Adaptively-Coded Distributed File System (HACFES) [18] and
HeART [23], which are designed to adapt various workloads
by dynamically selecting the appropriate code from a series
of family codes'. For example, HACFS adaptively deploys
erasure codes based on access patterns to optimize the recovery
performance. The third class is Combination of Replications
and Erasure Coding (REC) such as MIngling Chained Storage
(MICS) [24] and Cocytus [25]. On the basis of various erasure
codes, these methods maintain multiple copies of data (the
whole data or a part of data) to enhance the reliability with
competitive I/O performance.

However, existing solutions have some drawbacks on the
online recovery scenarios in cloud storage systems, where the
foreground application and the background recovery work-
loads are handled simultaneously. Regarding to IH-EC meth-
ods, the output of internal hybrid erasure coding is a static
code, which cannot adapt the dynamic changing on I/O
patterns or failure characteristics. Therefore, the effectiveness
of these approaches is restricted.

Second, although previous EH-EC methods can reduce the
reconstruction I/Os, basically they focus on single workload
and still have potential to be improved via a comprehensive
analysis on both application and recovery I/Os in disk arrays
[26] [27] [28] [29]. Finally, REC methods result in extremely
high monetary cost.

IThe codes are from the same family [18], which can be encoded/decoded
in the same way. For example, RS(4,2) and RS(6,3) can be regarded as family
codes.

IEEE
(@ computer
socl

ety

To address the above problems, in this paper, we propose
Erasure Codes Fusion (EC-Fusion), an efficient hybrid erasure
coding framework to improve the overall performance on
both application and recovery workloads. Unlike HACFS and
HeART using two erasure codes from the same family, EC-
Fusion is a comprehensive solution to dynamically select
proper codes based on the access or recovery patterns in
different workloads.

The contribution of this paper include,

1) We propose Erasure Codes Fusion (EC-Fusion) to in-
corporate Reed Solomon (RS) and Minimum Storage
Regeneration (MSR) codes, which is an effective and
adaptive framework to select proper erasure codes to
enhance the overall performance on both application and
recovery workloads.

We conduct several experiments in an original hadoop
system to demonstrate the effectiveness of EC-Fusion.
Compared to existing hybrid erasure coding approaches,
EC-Fusion is one of the best solutions to balance com-
putation complexity and transmission overhead with a
low monetary cost concurrently.

2)

The rest of paper is organized as follows. In Section II, the
related work and our motivation are introduced. In Section III,
the design of EC Fusion and the related modules are illustrated
in detail. The evaluation is presented in Section IV and the
conclusion of our work is in Section V.

TABLE 1
SYMBOLS USED IN THIS PAPER

[Symbols

Description

total number of nodes in a storage system

total number of parity nodes

total number of data nodes (k = n —)

the number of groups in LRC

an factor of n used in MSR code

another factor of n in MSR code (n = sm)

the integer in MSR code (I = s™)

the element at the ¢th row and jth column

the ith data element in a codeword of RS code
the 7th parity element in a codeword of RS code
the 7th data vector in a codeword of MSR code
the 4th parity vector in a codeword of MSR code
the 4th local parity node in LRC

the ith data node in LRC

the 7th global parity node in LRC

a parity-check matrix

the submatrix correlated to data in H

the submatrix correlated to parities in H

the size of a block

the ratio of write/read

the number of bytes obtained by one I/O operation
the write overhead

the reconstruction cost

the ratio of (writes/recoveries)

the threshold in EC-Fusion

the calculation speed (number of XOR/GF multiplications
per second) in the storage system

the number of bytes can be transmitted in network
per second

M

S

T~

S

<

SIS

) Ju:ugﬂ‘mQ_UmUmE

>

II. RELATED WORK AND OUR MOTIVATION

In this section, we briefly illustrate the hybrid redundancy
schemes and related erasure codes. At the end, we discuss

192

the motivation of this paper. To facilitate our discussion, the
relevant symbols are summarized in Table I.

A. Basic Erasure Codes

The existing hybrid redundancy schemes are based on Reed
Solomon (RS) based codes and XOR-based codes [6] [7]. RS-
based codes are a series of variants of Reed Solomon (RS)
code [14], which include Cauchy-RS [30], Local Reconstruc-
tion Code (LRC) [15], Minimum Storage Regeneration (MSR)
code [16] [18]. In XOR-based codes, the parities are generated
via XOR operations among data, such as EVENODD [8], X-
Code [11], RDP code [9], STAR codes [31], H-Code [12],
TIP-Code [13], etc. Here we take RS and EVENODD codes
as examples to illustrate the generation of these two types of
erasure codes.

1) Reed Solomon (RS) Code: 1t is a classic code based on
the computations over Galois Field (GF). A specific layout of
RS code can be expressed as RS(k, r), where k and r represent
the number of data and parity nodes, respectively. In Fig. 1(a),
we show the parity-check matrix [6] of RS code.

pou pI0g

53

|—bu by b1z bu 1

[
Y

. spduning

by by by b [
|_21 I Parity-check matrix H

Parity-check matrix H

sapoll ariod
sapou Ayiod

Codeword

Codeword

(a) The construction of RS code. (b) The construction of EVENODD.

Fig. 1. The construction of RS and EVENODD codes. (For RS code, a square
stands for an element in Galois Field; For EVENODD, a square denotes a
bit, and a white square represents bit 0 while a green square denotes bit 0.)

2) EVENODD Code: As shown in Fig. 1(b), EVENODD
is composed of horizontal and diagonal parities, which are
generated by XOR operations among data and can tolerate
two concurrent failures.

According to the above, single codes can be easily con-
structed, which provide high efficiency for application 1/Os.
However, a large amount of the reconstruction bandwidth
causes high latency on recovery workloads.

B. Internal Hybrid Erasure Coding (IH-EC)

Internal hybrid erasure coding (IH-EC) combines two dif-
ferent erasure codes via multiple dimensional constructions.
Typical IH-EC methods involve GRID Codes [32], H-Code
[12], HV Code [33], RDP Code [9], HDP Code [10], X-Code
[11], Code 5-6 [34], MSR code [16] [18], LRC [15], Hybrid-
RC [22], AZ-Code [35], etc. Here we give a brief introduction
to MSR and LRC codes.

1) Minimum Storage Regeneration (MSR) Code: The con-
struction of MSR code is based on RS code and enhances the
coupling among data. As shown in Fig. 2(a), an MSR code can
be represented as MSR(n, k,7,1) (n = sm, | = s™), where
n, k, r and [are the number of total nodes, data nodes, parity
nodes, and the dimensions of vectors, respectively.

2) Local Reconstruction Code (LRC): As shown in Fig.
2(b), LRC is a mixture of RS and XOR-based codes, which
improves the recovery performance with flexible lengths of
parity chains. An LRC code is denoted as LRC(k, r, z), where
k, r, z are the number of data nodes, global parity nodes, local
parity nodes, respectively.

[T i

i 1 |

’—Au Az Az Au Ass A:‘ ; d; \; ds | da |
0o i

H I |

An An An Au Ax Ak 11 ds | de H d7 | ds !

Parity-check matrix H

Codeword

(a) The construction of MSR Code. (b) The construction of LRC.

Fig. 2. The construction of LRC and MSR codes. (For MSR code, Parity-
check matrix of MSR(n, k, r, 1) contains r X n sub-matrices A;; with the size
of Ix1,wherei € [1,7] and j € [1,n]. D and P are I-dimensional element
vectors, and all of them form a codeword in MSR code; For LRC, global
parities g are generated from RS code while local parities p are calculated
by XOR operation among local data. Here p1 = di @ d2 @ ds @ ds, and
p2 =d3 P ds D d7r Dds.)

Although TH-EC methods can significantly improve the
recovery performance, the lack of adaptation to I/Os reduces
the effects on the overall performance.

C. External Hybrid Erasure Coding (EH-EC)

Different from IH-EC methods, external hybrid erasure
coding (EH-EC) incorporates a series of family codes and
dynamically selects the appropriate one to adapt application
or recovery workloads. In this part, we mainly describe two
EH-EC schemes, HACFS [18] and HeART [23].

1) HACFS: Hadoop Adaptively-Coded Distributed File
System (HACFS) [18] uses two erasure codes (namely fast
code and compact code) from the same XOR-based family
codes. Fast code provides high recovery performance for hot
data, and compact code aims to save the storage cost for cold
data, which are shown in Fig. 3(a).

CodeSchemel:

High Recovery

Performance

CodeScheme2:

High Storage

Efficiency

(a) HACFS. (b) HeART.

Fig. 3. The basic framework of HACFS and HeART methods. (HACFS:
hot data in applications—fast code, cold data in applications—compact code.
HeART: high risk on data loss — code scheme 1, low risk on data loss—code
scheme 2.)

2) HeART: HeART [23] utilizes heterogeneous levels of
reliability to tradeoff the storage and recovery performance in
a long term. The basic idea of HeART is to adopt a code with

193

high recovery speed for high risk data, and another code for
high storage efficiency is applied during low risk period, as
shown in Fig. 3(b).

Based on the above, HACFS further decreases the recov-
ery overhead by adaptation to application I/Os, and HeART
effectively reduces monetary cost with high reliability via
analysis on failure characteristics. However, the one-sided
adaptation of the existing EH-EC methods cannot maximize
thier effectiveness.

D. Combination of Replications and Erasure Coding (REC)

Replications and Erasure Coding (REC) are highly comple-
mentary on recovery performance and monetary cost, so they
are combined together for comprehensive solutions such as
MICS [24] , Cocytus [25], EC-Cache [36], Diskreduce [37],
Encoding-Aware Replication [38], etc. Here we give a brief
introduction to MICS and Cocytus methods.

1) MICS: Mlngling Chained Storage (MICS) [24] is a
general method to incorporate replications and erasure codes.
Fig. 4 shows the construction of MICS, which provides both
high efficiency on both computation and reconstruction.

| Erasure Coded Chain
Master node I

A
——— r hY
N; R e ——
- I @ - -
Nis | \ AN J
= | e Y
Copyof | k Data nodes r Parity nodes

k Data nodes’

Fig. 4. The basic framework of MICS. (MICS: MICS maintains a full copy
of data object in MN, and in ECC, k segments of the object are encoded by
RS code to generate r parity segments.)

2) Cocytus: Cocytus [25] is designed to achieve high effi-
ciency on both storage and encoding/decoding for in-memory
KV-store. Generally, Cocytus dynamically uses replications for
small-sized and scattered data while applying erasure code for
relatively large data.

Replications can bring the improvement on the performance
but lead to high storage cost, which means that REC ap-
proaches are not appropriate for large-scale systems.

E. Our Motivation

We summarize the properties of various hybrid redundancy
approaches in Table II. It is clear that IH-EC methods cannot
adapt the dynamic change on both application and recovery
workloads. When a sharp alteration on application or recovery
data stream, the overall performance are restrictedly lim-
ited.Due to the extremely high storage cost, REC methods are
not suitable for large-scale distributed storage systems, either.
For EH-EC methods, the usage of the same family codes and
one-sided analysis on application or recovery workload limit
the potential to improve the overall performance for online
recovery.

From Table II, an EH-EC method with adaptive adjustment
on both application and recovery workloads are highly de-
sired. Therefore, from the existing erasure codes, selecting

TABLE II
SUMMARY OF HYBRID REDUNDANCY SCHEMES

Hybrid Redundancy Name Storage Performance on Application Workloads Performance on Recovery Workloads
Methods Cost Computation | Transmission 1/0 Adaptive? | Computation | Transmission | I/O | Adaptive?
. LRC code high high low high X high high high X
Ié‘:zgﬁ‘r‘é C}i}:i):d MSR code Tow Tow high high X Tow high high X
(IH-EC) = AZ-Code high low low high X low high high X
Hybrid-RC high low low high X low high high X
External Hybrid HACFS medium high low high v/ high high high X
Erasure Coding HeART low high high high X high low high v
(EH-EC) EC-Fusion Tow high high high v/ high high high \/
Combination of Replications MICS very high low medium medium X low low low X
& Erasure Coding (REC) Cocytus very high low N/A N/A X low N/A N/A X
ro T T T T (@]
RS-Based Codes : (o B B [| _ : / Aeeovery™ TV Appleation™ |
7 \\ | | | Workload | Workload | m———————
(\ RS ;‘$ |:> | | Read- (Read-dominant | Write-intensive |
N_ 7 Y | o 3_ _ 1 | \ | Aeriiant | I High loss risk | Low loss risk |
: A;IQE Mo AJ®% : ez | ¢ W ::>. nJo]r]r] [2]o 2]
Ao An T A Aw | | intensive | Fostostes e oo)
XOR-Based Codes \EFE B =R By Yz 0 ==

D data . RS parity E MSR parity

Selection

Code
Transformation

Workload
Adaptation

Fig. 5. The framework of EC-Fusion.

appropriate codes, analyzing both application and recovery
I/Os, and then designing an adaptive hybrid coding scheme
via externally combining the codes can be a proper way to
achieve complementarity and maximize the overall perfor-
mance, which motivates us to propose a novel EC-Fusion in
this paper.

ITII. EC-FUSION

In this section, the design of EC-Fusion is introduced in
detail. Compared to the existing EH-EC methods, the key
idea of EC-Fusion is to maximize the overall performance
based on a global point view on both application and recovery
workloads. The following sections describe an overview of
EC-Fusion and the corresponding main modules in detail.

A. Overview of EC-Fusion

To achieve the above design purpose, EC-Fusion mainly
includes three modules, Code Selection, Workload Adaptation,
and Code Transformation, which are shown in Fig. 5. Here is
a brief illustration of these modules as below,

1) Code Selection: Giving a brief understanding to the
encoding/decoding of hybrid erasure codes, and then
selecting the appropriate parameters for them.
Workload Adaptation: Statically allocating a proper cod-
ing scheme for each of them, and providing adaptive
rules to dynamically adjust the hybrid coding schemes.
Code Transformation: Providing a fusion approach to
achieve efficient conversions among different codes.

A combination of XOR-based codes is introduced in
HACEFS [18], so in this paper we mainly focuses on the fusion
of RS-based codes and introduces each module in detail.

2)

3)

194

B. Code Selection

In order to select a pair of appropriate codes to adaptively
adjust both application and recovery workloads, we summarize
the following requirements,

1) the selected codes should have similar layout, which
means that it is possible to establish the conversions
among them.
the selected codes should have high flexibility to support
arbitrary number of storage nodes, which are suitable for
dynamic application and recovery workloads.
the selected codes play different roles in application
and recovery workloads, respectively. They can give us
an opportunity to externally combine them and achieve
complementarity.

2)

3)

Node Node Node Node

Application
1/Os
dominant” |
Recovery
1/Os

&High risk ‘L
Fig. 6. A sample design of EC Fusion. (EC-Fusion adopts RS code for write-
intensive data in application workloads or low probabilities on data loss, and
selects MSR code for read-intensive data in application workloads and high
probabilities on data loss.)

Write-
intensive
| Low risk

Except for XOR-based codes in HACFS [18], RS-based
codes can be also be candidates. Firstly, we select RS and
MSR codes as an EH-EC method (shown in Fig. 6). As we

know, both RS and MSR codes can be calculated over Galois
Field. RS and MSR codes have high scalability for most of
storage systems. Moreover, on one hand, as shown in Fig.
7(a) and 8(a), since the construction of the matrices involved
in MSR code is complex, RS code has low computational
cost, which provides lower overhead for write requests in
applications. On the other hand, according to Fig. 7(b) and
8(b), the total amount of data and parities for single disk failure
reconstruction is decreased in the MSR decoding process.
Therefore, MSR has great advantage on reducing the network
transmission cost for recovery, which can help to accelerate
the processing of recovery workloads.

di
(o 0n [ba [bu] | @
*
(b (b (b [| o
Matrix Hp d, z

d2 Nozde

d3 Node
dy "%

Matrix Hps

(b) Decoding of RS code

Fig. 7. The encoding/decoding processes of RS Code. (In the encoding
process, r parity elements are generated via GF calculations over k data
elements. In the decoding process, the lost data element is recovered via
the any k survivors of data or parities, which means that extra network
transmission is needed during the recovery process.)

. | Node

N

]« Node o, | Tode
A A Az Awu E2= 2 Ais Ais P

* = * ——

==L =

Ay Ay A Ay BB Az Az ==
Matrix Hp . (o Matrix Hp Parity nodes
B 4

Data nodes

(a) Encoding of MSR code

D’

r l r 1 Dy
A1 #=Dr= A, A5 Ay As A * DT
L IJ [. 4 P
H, D, Hs =

(b) Decoding of MSR code

Fig. 8. The encoding/decoding processes of MSR Code. (In the encoding
process, T parity vectors are generated from the multiplication of the rl X nl
matrix Hp and k data vectors. In the decoding process, MSR code transforms
the matrix Hp and Hp to H}, and Hg, and fetches (1/r) of each remaining
data and parity vectors to restore the lost vector Dy,.)

195

Next, we choose appropriate parameters for RS and MSR
codes, based on the encoding/decoding processes of RS(k,)
and MSR(n, k, r,). The application and recovery performance
on a single block are summarized in Table III.

TABLE III
PERFORMANCE 2 COMPARISONS AMONG HYBRID CODE SCHEMES
Code Scheme RS(k, r) MSR(n, k, 7, 1)
Computational 8 8 /13
Application Cost 1+8 vkr 1+58 (% + I x ykr)
Performace Disk /0 /é
Cost 7
Transmission B(r+k)/k+1
Cost 1+8
Computational 2 3 n—1
Recovery Cost nrt + vk Ptlxy=
Performance Disk /0
Cost v/ v/ (ré) ~v/¢
Transmission
Cost k (n—1)/r

Finally, EC-Fusion selects RS(k,r) and MSR(2r,r,r,7?)
as the hybrid coding strategy, namely EC-Fusion(k, 7). In this
way, we can obtain the following benefits,

1) RS(k,r) guarantees high storage efficiency for the whole
system, and keeps high application performance for
write-intensive I/Os.

MSR(2r, r,7,72) provides high recovery performance
for high risk data and incurs low side-effect for read-
dominant I/Os.

The conversion between MSR(2r, r, 7, 72) and RS(k,r)
can be conveniently added to the original coding scheme.

C. Workload Adaptation

Based on the characteristics of I/Os, we statically divide
them into six categories (shown in Table IV), 1) cold data with
low risk; 1) cold data with high risk; 3) write-intensive data
with low risk; 4) write-intensive data with high risk; 5) read-
dominant data with low risk; 6) read-dominant data with high
risk. Here both read-dominant and write-intensive data belongs
to hot data, and the application with balanced read and write
can belong to write-intensive or read-dominant. In general,
under a low risk environment, this application is more likely
to be write-intensive, since the overall performance is mainly
affected by write operations. Otherwise, it can be treated as
read-dominant. Then we determine which code to allocate for
them, and provide adaptive rules for dynamic I/Os.

1) Code Allocation: Here we allocates appropriate coding
schemes to workloads with matching features. And we sum-
marize the code allocation in Table IV.

Intuitively, it is no doubt that cold data or low risk data are
encoded with RS code, which keeps high storage efficiency
and guarantees good application performance, especially for
write-intensive 1/Os. For read-dominant data with high failure
risk, MSR code can save a lot of reconstruction bandwidth
and cause few side effects to application I/Os.

However, it seems to be difficult to choose a proper code
scheme for write-intensive data with high risk, since we should

2)

3)

2In this table, we evaluate the performance of the traditional RS code and
a specific MSR code [20]. And the computational cost are approximate.

TABLE IV
CODE ALLOCATION FOR VARIOUS WORKLOADS IN EC-FUSION

Recovery Workload
Code Scheme High Risk Low Risk
Write
Application Intensive MSR or RS RS
Workload Read MSR RS
Dominant
Cold RS RS

trade off application and recovery I/Os and determine a proper
code to maximize the overall performance. To solve this
problem, we define the variables (based on Table III) as below,

Wrs =y(kr/a+ ((k+7)/k)/A+1/9),

Rps = (n1® +vk)/a +y(k/A +1/9),

Warsr = (r* +7)/a+~(2/A+1/9¢),

Rysr = (r® +7(2r® —r))/a+y((2r = 1)/(rA) + 1/¢).
Then we obtain the following inequality to determine which
code scheme to apply,

writes Rrs — Rysr _

ey

recoveries ~ Wirsr — Wrs

And 6 > 7 means that the overall performance is mainly
affected by write requests, so RS code is preferred; otherwise,
the reconstruction bandwidth is the main factor, and then MSR
code becomes a better choice. In practice, in order to reduce
the overhead caused by frequently switching the schemes, we
can adjust the inequality (1) as following,

(©))

2) Adaptive Rules: Since both data accesses and failures
usually exhibit temporal and spatial localities [39] [40] [41]
[42] [43], EC-Fusion can apply existing cache algorithms
(such as LRU, LFU etc), for the identification of hot or cold
data. In EC-Fusion, two queues are used for access patterns
and failure characteristics, respectively. And existing cache
algorithms can be applied in these queues.

o>n+Ajord<n—A, (0<A<n).

@ New write request

~

S | |moek read | | piock | "9 | block | "% S)

é n0- | write n0- | write -1 write S

Q

32

[

3

-”‘ <

raj ecovery| lrecovery| ecovery| Q

S block block block g

2 [N [3

S 0.1 fag - | g 0. | fag a
@ New recovery request

Fig. 9. Two queues are used for capturing the data access patterns and failure
characteristics, respectively. (Three conditions to trigger an adaptive process
are marked with @, @, and ®.)

As shown in Fig. 9, we use a queue named "Queuel” to log
the information of data accesses, which records the block IDs
and the number of cache hits. "Queue2” stores the recovery

196

requests to each block, including the block IDs, the number
of cache hits, and flags indicating coding scheme.

Initially, we set RS(k,r) as the default code for the whole
storage system, and these queues can have a warm-up after
the startup of the system. In adaptive rules, there are three
conditions needed to trigger an adaptive process, which is
shown in Fig. 9. And the adaptive processes are based on the
inequality (1). First, for each recovery request being inserted at
the head of Queue2, EC-Fusion should determine the related
blocks whether they need to be allocated with MSR code.
Second, for each write request being inserted at the head
of Queuel, EC-Fusion should determine the related block
whether need to be encoded by RS code. Third, for each
recovery request being deleted at the tail of Queue2, EC-
Fusion should convert the MSR code to RS code. And we
summarize the adaptive rules in Algorithm 1.

Algorithm 1 Adaptive Selection Algorithm in EC-Fusion
Input: Queuel, Queue2 and 7;
for each request inserted at the head of Queue2 do
if flag # MSR and (writes/recoveries) < 7 then

set flag = MSR;
convert to MSR code;
end if
end for

for each request inserted at the head of Queuel do
if flag # RS and (writes/recoveries) > 7 then

set flag = RS;
convert to RS code;
end if
end for

for each request deleted at the tail of Queue2 do
if flag == MSR then

set flag = RS;
convert back to RS code;
end if
end for

D. Code Transformation

In order to cope with dynamical workloads, code transfor-
mation between the hybrid erasure codes is necessary, which
is the core module in EC-Fusion.

Based on the construction of RS(k,), we can separate the
parity-check matrix into several submatrices with the size of
r x r, as shown in Fig. 10. When r cannot divide k, empty
data nodes are added. For example, one empty data node can
be added into RS(8,3). For convenience, assume that k£ can be
divisible by r and k = ¢r. And then the equation of parity
generation can be rewritten as below,

q
p=)» B;xd;=p|+ps+-+Dp) 3)

=1

where p = {p1,p2, - ,pr}T, By is a r x r submatrix, d; =
{dii—1yrs1, - ,d(i_l),,.+,,.}T, p’ stands for the intermediary

parity. In this way, p can be viewed as the combination of

(p/lap/27 o ap;)

[RS parity
intermediary parity

shown in Fig.11(b), where “Trans1” and “Trans2” can be
derived as following,

Transl = B; x HBl x Hp, (6)
Trans2 = Hp' x Hp x B';. %)

Therefore, the intermediary parities can be served as a
highway to achieve efficient transformation between RS and
MSR. As shown in Fig. 12(a), for the transformation from
MSR code to RS code, (k/r) sets of the original parities can
be transformed into the intermediary parities, and then they
are merged into the final RS parities.

Encode
| _Submatrix B,

Fig. 10. The separation of the construction in RS(k,). (In this process, the
encoding process of RS(k,) is divided into (k/r) sub-encoding processes,
which generate the (k/r) sets of intermediary parities.)

Since any r x r submatrix of parity-check matrix in RS code
is invertible, each intermediary p’; has the following property,

d; =B; ' xp,. 4

As we know, MSR(2r, 7,7, %) has the same property shown
in Fig. 11(a). In order to match the scale of RS and MSR
codes, we extend the element d; in d; to the vector D; as
”dj — Dj = {djl,djg, ce ,djl}T”, where | = 2. And then
we obtains "D; = {D(;_1yrt15 5 Dim1yrart

The related intermediary parity p’; is extended to P’;. For
the inverted matrix B; ', each element ¥’ in B; ! is extended to
a | x | diagonal matrix diag(b’,¥,...,b’). Thus, an extension
of B;” ! contains r x 7 submatrices with the size of [x I, which
is denoted as B’;. Then the equation (4) can be rewritten by,

Di = B/i X P/i. (5)

Similarly, the original matrix B; can be extended as B,;.

[Rs parity
[msR parity
intermediary parity

Dy (| D) Dy | D
I ! =454 2 ddsd
A=A il Rl
Gl L]
T 2
& | watra watriz| &

(a) MSR to RS.

® Trans2
Matrix1

N 2

® Trans2
Matrix2

—___¥_

[0 MSR parity intermediary parity
T T
D A11 Az Az Ay Pl
&
e |i\21 Azz_l |f23 A24_| P
(Hp)* Hp
(a) MSR(2r, T, 7, 72).
T Trans1 rj‘__‘-‘
BJ: 91 :® Matrix _’: Ei;i; N :
I I R I
i : Mk N |
2 2| Trans2 NN
L___JH— Matrix ®L___JI

Fig. 11.

(b) The conversion between the intermediary and
MSR parities.

The establishment of the transformation between the intermediary

and MSR parities.

Then we can easily establish the conversion between the

intermediary parities and the parities of MSR(2r, r, r,72), as

(b) RS to MSR.

Fig. 12. Transformation between MSR and RS codes.

The conversion from RS to MSR can be viewed as a
reverse process, where one set of the original RS is divided
into the final (k/r) sets of MSR. The detail is shown in
Fig. 12(b), where (k/r) — 1 sets of data are multiplied by
their corresponding submatrices. In this way, the intermediary
parities of the last set can be obtained by all existing parities,
and then all the intermediary parities are transformed into the
final MSR code.

197

IV. EVALUATION

In this section, we conduct a series of mathematical analysis
and experiments to demonstrate the effectiveness of EC-Fusion
under various application and recovery workloads.

A. Evaluation Methodology

To evaluate the effectiveness of EC-Fusion, we select the
following hybrid erasure coding methods in our evaluation,

o [H-EC methods: MSR code [16] [20], LRC [15].

o EH-EC methods: HACFS [18] method.
And we add RS code in our comparisons as well. Because
AZ-Code [35] and Hybrid-RC [22] adopt an idea similar to
LRC, HeART method is implemented for long term recovery
optimization, and REC methods have extremely high storage
cost, so they are excluded in our comparisons.

TABLE V
SUMMARY OF TRACES
Trace # of Requests Read% 10PS Avg. Req. Size
MSR-mds] 1637711 92.88% | 27.29 113.00 KB
MSR-rsrch2 207597 65.69% 3.54 8.17 KB
MSR-webl 160891 54.11% 2.66 58.14 KB
MSR-rsrchO 1433655 9.32% 23.70 17.86 KB

1) Application Workloads: We select four traces [44] as the
typical application workloads shown in Table V. Here we give
a brief introduction to them as following.

e MSR-mdsl is traced from media server with the highest

read percentage among the selected traces.

o MSR-rsrchO and MSR-rsrch2 are generated by research
projects. rsrchO has the lowest percentage while rsrch2
gets medium read percentage.

e MSR-webl is traced from Web/SQL server with the
medium read percentage.

2) Recovery Workloads: We initialize the generation of
failures randomly, and then records the locations and times-
tamps of the failures. For temporal locality, we calculate the
time intervals from the last time when failures occur, and
generate failure probabilities by normal distribution with the
interval inputted. Regarding to spatial locality, the relative
distances between the target location and the nearest failure is
inversely proportional to the failure probabilities. Since 98%
failures in storage systems are single disk failures [18], we
evaluate the recovery performance of single chunk failures in
our experiments.

3) Metrics and Methods for Mathematical Analysis: We use
the Storage Cost, Computational Cost, and Transmission
Cost as the metrics for mathematical analysis.

(1.a) Storage Cost is defined as p = (k +r)/k in a storage
system with &k data nodes and r parity nodes.

(1.b) Computational Cost is defined as the number of GF-
multiplication/Exclusive-OR operations in the application and
recovery workloads.

(1.c) Transmission Cost is defined as the number of chunks
transmitted on the application and recovery workloads.

As EH-EC methods adjust the parity chains to adapt work-
loads, the above metrics can also change dynamically. To

198

simplify the evaluation, we select various combination ratios
of two erasure codes in EH-EC schemes.

4) Metrics and Methods for Experiments: We use the
Application Performance, Recovery Performance, Overall
Performance, and Cost-effective Ratio as the metrics. They
are defined as following,

(2.a) Application Performance €, is measured by the average
latency of read and write operations on application workloads,
which contains computational and data access (transmission +
disk I/Os) costs.

(2.b) Recovery Performance €3 is measured by the average
overhead of decoding on recovery workloads, including com-
putational and access costs.

(2.c) Overall Performance € is defined by, € = (u1e1 +
pa€2)/(p1 + p2), where pq and po represents the number of
requests on application and recovery workloads, respectively.

(2.d) Cost-effective Ratio ¢ is defined as (= 1/(e x p),
which is the ratio between the whole performance and the
storage cost.

5) Experimental Environment: The environment of our
experiments is shown in Table VI. We set up a Hadoop system
to evaluate the performance of hybrid erasure coding schemes.
And requests to files in HDFS are used for the simulation of
application workloads, and each file is composed of k£ chunks.
In order to facilitate the implementation of MSR, each chunk
is set to 27 MB. Since a file can only be written once in
HDES, we treat each write request in traces as a new write, and
each read request reads one data chunk. Finally, we implement
EC-Fusion and the mentioned coding schemes, and use a
test program to obtain their application/recovery performances
during workloads.

TABLE VI
PARAMETERS OF OUR EVALUATION PLATFORM

Description DELL R730 Server
CPU Intel Xeon 3.0GHz
NIC 1Gbps

Memory 32GB

Disk 3TB SSD

OS Ubuntu 16.04
Platform Hadoop HDEFS 3.1.2

Our evaluation consists of five parts: 1) mathematical
analysis on hybrid erasure coding schemes, 2) experiments
to evaluate the application performance, 3) experiments to
evaluate the recovery performance, 4) evaluation on the whole
performance, 5) evaluation on the cost-effective ratio.

B. Numerical Results of Mathematical Analysis

In this section, we show the numerical results of mathe-
matical analysis on the storage cost, computational cost, and
transmission cost for EC-Fusion and other hybrid erasure
coding schemes. Here, we set RS(k,3) (k = 6, 8) as the
baseline, and list the mentioned coding schemes as following,
1) Internal Hybrid Erasure Coding Schemes:

e MSR code: MSR(k + 3, k,3,1). when k = 8, one virtual
nodes are added into the systems.

e LRC: LRC(k,2,2) with two additional local parities and
the same fault tolerance with RS(k, 3).
2) External Hybrid Erasure Coding Schemes:
o EC-Fusion: EC-Fusion(k, 3) is a combination of RS(k, 3)
and MSR(6, 3, 3,9).
o HACFS: HACFS-£ is a combination of LRC(k, 2, 2) and
LRC(k,2,k/2).

1) Storage Cost: In this part, we compare the storage cost
of the above approaches. Typically, RS code and the IH-EC
methods have a constant value for storage cost, while EH-EC
methods adopt different coding schemes for application and
recovery workloads. Thus, we set a hybrid ratio h% for MSR
applied in EC-Fusion and fast code (ie, LRC(k, 2, k/2)) used
in HACFS. The result is shown in Fig.13, EC-Fusion increases
9.1% at most (k = 8) to the original RS, but never exceeds
LRC or HACFS.

k=6 k-8
1.75 156
154
17 152
/ -
3 5 |[-&RsE3)
8 [A-Rs(83) 8" MSR(11,8,3,81)
% MSR(9,6,3,27) % 146 LRC(8,2,2)
S 16 LRC(6.2,2) S | 4ul|~#—EC-Fusion83)
2] ~4—EC-Fusion(6,3) & "*[|—e—HACFs-8
—e—HACFS-6 142
1.55 14
13847
I A s
0.05 0.1 0.15 0.2 0.05 0.1 0.15 02

Hybrid Ratio (h%) Hybrid Ratio (h%)

Fig. 13. Mathematical analysis on storage cost.

2) Computational Cost: In this part, we shows the compu-
tational cost (defined in Section IV-A3) on application and
recovery workloads, respectively. Fig.14 shows the results
for the scenarios with k x 64 KB data (one stripe) written
and 64 KB data (one column in a stripe) reconstructed. As
shown in Fig.14, EC-Fusion basically keeps the computational
efficiency with RS, LRC and HACFS. Compared to MSR, EC-
Fusion can saves at least 96.30% and 79.24% computational
cost for application and recovery workloads, respectively.
k=8

35210 k=6 x107

[Application Workload
3 [Recovery Workload

14
I Application Workload
I Recovery Workload

I
® 3 S

Computational Cost
>

IS

Computational Cost

o

RS

MSR LRC EC-Fusion HACFS LRC EC-Fusion HACFS

Fig. 14. Mathematical analysis on computational cost.

3) Transmission Cost: In this section, we discuss the trans-
mission cost of various coding schemes on application and
recovery workloads separately. Fig.15(a) shows the results for
application workloads, where one stripe with k& data chunks is

199

written. Compared to LRC and HACFS, EC-Fusion can save
the transmission cost at least 8.33%.

For recovery workload, we assume EH-EC methods can im-
prove all recovery requests. As the results are shown Fig.15(b),
EC-Fusion reduces the transmission up to 79.12% compared
to the original RS, and improves the transmission performance
at least by 16.67% compared with HACFS.

Application Workload Recovery Workload

o o N

~

Transmission Cost
Transmission Cost

©

~

1
RS MSR LRC EC-Fusion HACFS RS MSR LRC EC-Fusion HACFS

Fig. 15. Mathematical analysis on transmission cost.

C. Results of Application Performance

According to Fig.16, EC-Fusion causes no more than 1.04%
overhead to the original RS. Besides, EC-Fusion improves the
application performance up to 78.03% for MSR, and 10.81%
for LRC and HACFS.

MSR-mds1 MSR-rsrch2

EEIRead Access Cost
/I Write Computational Cost|
[Ewrite Access Cost

B Road Access Cost
B Wite Computational Cost
[EE write Access Cost

Application Performance (ms)

MSR-web1 MSR-rsrch0
Il Read Access Cost
/I write Computational Cost
| [Ewrite Access Cost

/I Read Access Cost
/I Write Computational Cost|
[Ewrite Access Cost

Application Performance (ms)

Fig. 16. Application performance under different application workloads.

D. Results of Recovery Performance

As the results shown in Fig.17, compared with RS, MSR and
LRC, EC-Fusion saves up to 67.83%, 69.10% and 38.36% of
the recovery overhead, respectively. Since EC-Fusion should
balance both application and recovery 1/0s, HACFS performs
better in terms of recovery performance.

E. Results of Overall Performance

As shown in Fig.18, EC-Fusion always gains better overall
performance than MSR and LRC by up to 77.98% and

TABLE VII
IMPROVEMENT OF EC-FUSION OVER OTHER ERASURE CODING SCHEMES IN TERMS OF THE OVERALL PERFORMANCE AND COST-EFFECTIVE RATIO.

Code) R Overall Performance Cost-effective Ratio
MSR-mdsl | MSR-rsrch2 | MSR-webl | MSR-rsrchO | MSR-mdsl | MSR-rsrch2 | MSR-webl | MSR-rsrchO

RS 8 3 18.15% 4.24% 2.08% 0.60% 16.71% 2.71% 1.40% 0.23%
6 3 14.28% 3.84% 1.86% 0.48% 13.17% 2.69% 1.36% 0.22%
MSR 8 3 51.45% 72.55% 74.51% 77.98% 50.59% 72.11% 74.33% 77.90%
6 3 19.59% 37.08% 39.56% 45.00% 18.55% 36.34% 39.25% 44.85%
LRC 8 | 242 6.37% 4.75% 5.18% 7.61% 12.66% 11.29% 12.48% 15.00%
6 | 2+2 5.20% 7.32% 7.96% 10.81% 13.58% 15.60% 16.74% 19.52%
HACES 8 | 4(6) 0.16% 3.75% 6.63% 7.48% 19.72% 22.80% 25.80% 26.93%
6 | 405 1.72% 7.09% 9.79% 10.75% 10.76% 15.67% 18.65% 19.56%

10.81%. Compared with RS, EC-Fusion gets 18.15% im-
provement on overall performance in the read-dominant en-
vironment, and in the write-intensive workload, EC-Fusion
achieves a 10.75% performance improvement over HACFS.
Besides, the extra cost for EC-Fusion is included in the overall
performance, and accounts for up to 1.47% of the overall
performance.

MSR-mds1

[ERecovery Computaional Cosi|
I Recovery Access Cost

MSR-rsrch2

I Recovery Computaional Cos|
| B Recovery Access Cost

Recovery Performance (ms)
Recovery Performance (ms)

@ D AP P & P B P P ¢ e o & @ B P P S
2 ¥ @ & & @ @ & S & ¥ @ & & @ g @ &

Qéz»@‘ RO & F & o Rty & & &

W <& <& W <& <&

MSR-web?
000 3000,

@R ecovery Computaional Cos|
I Recovery Access Cost

MSR-rsrch0

[Recovery Computaional Cosl|
2500 2500 |- I Recovery Access Cost

1500 s00)

1000

Recovery Performance (ms)

Recovery Performance (ms)

©° LA S , 27 @ 4
¥ 2 o ¥ oF K
E &S E T P S
%& KalPCa PO
& & & &

Fig. 17. Recovery performance under online recovery workloads.

MSR-mds1

1600 6000,
[EEIRead Access Cost

1400 - I Write Computational Cost

[wite Access Gost

B Recovery Computational Cosi|
I Recovery Access Cost
[Extra Cost

MSR-rsrch2

[Read Access Cost

s000|-{ I Wie Computational Cost
[Ewirte Access Cost

B Fecovery Computational Cost

4000 - [Rocovery Access Cost

[ERExtra Cost

a000]

Whole Performance (ms)
Whole Performance (ms)

S S
@ o P @ P 2P &
& & & € X
SN & &%
N <& ® <&

MSR-rsrch0
14000

I Read Access Cost

JWiite Computational Cost 12000 - EE Wrte Computational Cost

[write Access Cost

10000 |-{HE Recovery Computatona Cost
IS Recovery Access Cost

5000 |- I Extra Cost

Rocovery Computational Cosi|
[Recovery Access Cost
[Extra Cost

c000

Whole Performance (ms)

o)

Whole Performance (ms)

2000]

Fig. 18. Overall performance under different application and online recovery
workloads.

F. Results of Cost-effective Ratio

The results of the cost-effective ratio are shown in Fig.
19. Compared with RS and MSR, EC-Fusion obtains better
cost-effective ratio by up to 16.71% and 77.90%, respectively.
Compared to LRC and HACFS, EC-Fusion increases the ratio
by up to 19.52% and 26.93%, respectively.

MSR-mds1 MSR-rsrch2
2200 8000

< =

5 2000 5 7000

3 3

o o

21800 2 6000

g]

= =

% 1600 % 5000

] 3

] 2

o o

5 1400 5 4000

g K]

8 8

51200 53000

] S

] 3

o o
1000 2000

RS MSR LRC EC-Fusion HACFS RS MSR LRC EC-Fusion HACFS
MSR-web1 MSR-rsrch2

10000 8000

< <

° © 7000

& 8000 g

2 2 6000

8 3

= =

$ 6000 % 5000

3 3

] 3

o o

5 5 4000

8 4000 8

] 8

-3 53000

] S

3 3

o o
2000 2000

RS MSR LRC EC-Fusion HACFS RS MSR LRC EC-Fusion HACFS

Fig. 19. Cost-effective ratio under different application and online recovery
workloads.

G. Analysis

We summarize the results in Table VII. From these results
listed in this section, it is clear that EC-Fusion have great ad-
vantages compared to other hybrid erasure coding approaches.
There are several reasons to achieve these gains. First, EC-
Fusion is a comprehensive solution based on RS and MSR
codes, which are popular codes to provide high efficiency
on fast decoding. Second, EC-Fusion selects proper codes
according to a global point of view on access/failure patterns,
which dynamically improves the effects on storage systems.
Third, RS and MSR codes provide flexible configurations (i.e.,
supports arbitrary number of data nodes), which are easily
adapted to varying fusion rules. Fourthly, the transformation
overhead between RS and MSR code is very low (shown in
Fig. 18), which guarantees the overall efficiency of EC-Fusion.

200

V. CONCLUSION

In this paper, we propose EC-Fusion, a hybrid erasure
coding method to integrate RS and MSR codes together for the
balance of application and recovery I/Os. For write-intensive
workloads with infrequent decoding, we select RS code to
decrease the computational overhead and storage cost. On
the other hand, when read-dominant workloads with frequent
decoding, MSR code is a proper choice. Therefore, the storage
and decoding costs can be balanced. To demonstrate the
effectiveness of EC-Fusion, we conduct several experiments.
Compared to the typical hybrid erasure coding methods, EC-
Fusion 1) improves up to 78.03% by reducing computational
cost on write-intensive I/Os in application workloads com-
pared to MSR code; 2) decreases the recovery latency by up
to 67.83% compared to the original RS; 3) improves whole
performance up to 10.75% compared to HACFS and 4) gains
higher cost-effective ratio up to 19.52% compared to LRC.

VI. ACKNOWLEDGMENTS

We thank anonymous reviewers for their insightful com-
ments. This work is partially sponsored by the National Key
R&D Program of China (No.2018YFB0105203), the Natural
Science Foundation of China (NSFC) (No.61972246), the
Natural Science Foundation of Shanghai (No.18ZR1418500),
the Alibaba Group through Alibaba Innovative Research (AIR)
program, and the U.S. National Science Foundation grant
CCF-1813081. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the funding
agencies.

REFERENCES

L. Qian et al., “Cloud computing: An overview,” in Proc. of the
CLOUD’09.

M. Copeland et al., “Microsoft azure and cloud computing,” in Microsoft
Azure. Springer, 2015, pp. 3-26.

M. Sathiamoorthy et al., “Xoring elephants: Novel erasure codes for big
data,” in Proc. of the VLDB’13.

S. Muralidhar et al., “f4: Facebook’s warm blob storage system,” in
Proc. of the OSDI’14.

K. Rashmi et al., “A “hitchhiker’s” guide to fast and efficient data re-
construction in erasure-coded data centers,” in Proc. of the Sigcomm’14.
Y. Zhang et al., “Pcm: A parity-check matrix based approach to improve
decoding performance of xor-based erasure codes,” in Proc. of the
SRDS’15.

J. Gu et al., “Optimizing the parity check matrix for efficient decoding
of rs-based cloud storage systems,” in Proc. of the IPDPS’19.

M. Blaum et al., “EVENODD: An efficient scheme for tolerating double
disk failures in RAID architectures,” IEEE Transactions on Computers,
vol. 44, no. 2, pp. 192-202, 1995.

P. Corbett et al., “Row-Diagonal Parity for double disk failure correc-
tion,” in Proc. of the FAST 04.

C. Wu et al., “HDP code: A Horizontal-Diagonal parity code to optimize
I/0 load balancing in RAID-6,” in Proc. of the DSN’11.

L. Xu et al., “X-Code: MDS array codes with optimal encoding,” IEEE
Transactions on Information Theory, vol. 45, no. 1, pp. 272-276, 1999.
C. Wu et al., “H-Code: A hybrid MDS array code to optimize partial
stripe writes in RAID-6,” in Proc. of the IPDPS’11.

Y. Zhang et al., “Tip-code: A three independent parity code to tolerate
triple disk failures with optimal update complextiy,” in Proc. of the
DSN’15.

I. Reed and G. Solomon, “Polynomial codes over certain finite fields,”
Journal of the Society for Industrial & Applied Mathematics, vol. 8,
no. 2, pp. 300-304, 1960.

(11]
(12]

[13]

(14]

201

[15]
[16]
[17]
(18]

[19]

(20]

[30

(31]

[32]

C. Huang et al., “Erasure coding in windows azure storage.” in Proc.
of the ATC’12.

M. Vajha et al., “Clay codes: Moulding mds codes to yield an msr code,”
in Proc. of the FAST’1S.

T. Zhou and C. Tian, “Fast erasure coding for data storage: A compre-
hensive study of the acceleration techniques,” in Proc. of the FAST’19.
M. Xia et al., “A tale of two erasure codes in hdfs,” in Proc. of the
FAST’15.

H. Jin et al., “Approximate code: A cost-effective erasure coding
framework for tiered video storage in cloud systems,” in Proc. of the
ICPP’19.

M. Ye and A. Barg, “Explicit constructions of optimal-access mds
codes with nearly optimal sub-packetization,” IEEE Transactions on
Information Theory, vol. PP, no. 99, pp. 1-1, 2017.

Y. Hu et al., “Analysis and construction of functional regenerating codes
with uncoded repair for distributed storage systems,” in Proc. of the
INFOCOM’13.

L. Ye et al., “Hybrid-rc: Flexible erasure codes with optimized recovery
performance and low storage overhead,” in Proc. of the SRDS’17.

S. Kadekodi et al., “Cluster storage systems gotta have heart: improving
storage efficiency by exploiting disk-reliability heterogeneity,” in Proc.
of the FAST’19.

Y. Tang et al., “Mics: Mingling chained storage combining replication
and erasure coding,” in Proc. of the SRDS’15.

H. Zhang et al., “Efficient and available in-memory kv-store with hybrid
erasure coding and replication,” in Proc. of the FAST’16.

L. Tian et al, “Pro: A popularity-based multi-threaded reconstruc-
tion optimization for raid-structured storage systems.” in Proc. of the
FAST’07.

S. Wu et al., “Workout: I/o workload outsourcing for boosting raid
reconstruction performance.” in Proc. of the FAST’09.

S. Wan et al., “Victim disk first: an asymmetric cache to boost the
performance of disk arrays under faulty conditions,” in Proc. of the
ATC’13.

L. Li et al., “Favorable block first: A comprehensive cache scheme to
accelerate partial stripe recovery of triple disk failure tolerant arrays,”
in Proc. of the ICPP’17.

J. Plank and L. Xu, “Optimizing Cauchy Reed-Solomon codes for Fault-
Tolerant network storage applications,” in Proc. of the NCA’06.

C. Huang and L. Xu, “STAR: An efficient coding scheme for correcting
triple storage node failures,” IEEE Transactions on Computers, vol. 57,
no. 7, pp. 889-901, 2008.

M. Li et al., “GRID codes: Strip-based erasure code with high fault
tolerance for storage systems,” ACM Trans. on Storage, vol. 4, no. 4, p.
Article 15, Jan. 2009.

Z. Shen and J. Shu, “HV code: An all-around mds code to improve
efficiency and reliability of RAID-6 systems,” in Proc. of the DSN’14.
C. Wu et al., “Code 5-6: An efficient mds array coding scheme to
accelerate online raid level migration,” in Proc. of the ICPP’15.

X. Xie et al., “Az-code: An efficient availability zone level erasure code
to provide high fault tolerance in cloud storage systems,” in Proc. of the
MSST’19.

K. Rashmi et al., “Ec-cache: Load-balanced, low-latency cluster caching
with online erasure coding,” in Proc. of the OSDI’16.

B. Fan et al., “Diskreduce: Raid for data-intensive scalable computing,”
in Proc. of the PDS’09.

R. Li, Y. Hu, and P. P. Lee, “Enabling efficient and reliable transition
from replication to erasure coding for clustered file systems,” IEEE
Transactions on Parallel and Distributed Systems, vol. 28, no. 9, pp.
2500-2513, 2017.

P. K. Gummadi et al., “Measurement, modeling, and analysis of a peer-
to-peer file-sharing workload,” in Proc. of the SOSP’03.

S. Kavalanekar et al., “Characterization of storage workload traces from
production windows servers,” in Proc. of the IISWC’08.

L. Bairavasundaram et al., “An analysis of latent sector errors in disk
drives,” in Proc. of the SIGMETRICS’07.

A. Oprea and A. Juels, “A Clean-Slate look at disk scrubbing,” in Proc.
of the FAST’10.

E. Pinheiro et al., “Failure trends in a large disk drive population.” in
Proc. of the FAST’07.

D. Narayanan, A. Donnelly, and A. Rowstron, “Write off-loading:
Practical power management for enterprise storage,” ACM Transactions
on Storage (TOS), vol. 4, no. 3, p. 10, 2008.

