
EC-Fusion: An Efficient Hybrid Erasure Coding Framework to Improve
Both Application and Recovery Performance in Cloud Storage Systems

Han Qiu1, Chentao Wu1∗, Jie Li1, Minyi Guo1, Tong Liu2, Xubin He2, Yuanyuan Dong3, and Yafei Zhao3
1Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
2Department of Computer and Information Sciences, Temple University, Philadelphia, United States

3Alibaba Group, Hangzhou, China
∗Corresponding Author: wuct@cs.sjtu.edu.cn

Abstract—Nowadays erasure coding is one of the most sig-
nificant techniques in cloud storage systems, which provides
both quick parallel I/O processing and high capabilities of fault
tolerance on massive data accesses. In these systems, triple
disk failure tolerant arrays (3DFTs) is a typical configuration,
which is supported by several classic erasure codes like Reed-
Solomon (RS) codes, Local Reconstruction Codes (LRC), Min-
imum Storage Regeneration (MSR) codes, etc. For an online
recovery process, the foreground application workloads and
the background recovery workloads are handled simultaneously,
which requires a comprehensive understanding on both two types
of workload characteristics. Although several techniques have
been proposed to accelerate the I/O requests of online recovery
processes, they are typically unilateral due to the fact that the
above two workloads are not combined together to achieve high
cost-effective performance.

To address this problem, we propose Erasure Codes Fusion
(EC-Fusion), an efficient hybrid erasure coding framework in
cloud storage systems. EC-Fusion is a combination of RS and
MSR codes, which dynamically selects the appropriate code based
on its properties. On one hand, for write-intensive application
workloads or low risk on data loss in recovery workloads, EC-
Fusion uses RS code to decrease the computational overhead
and storage cost concurrently. On the other hand, for read-
intensive or frequent reconstruction in workloads, MSR code
is a proper choice. Therefore, a better overall application and
recovery performance can be achieved in a cost-effective fashion.
To demonstrate the effectiveness of EC-Fusion, several experi-
ments are conducted in hadoop systems. The results show that,
compared with the traditional hybrid erasure coding techniques,
EC-Fusion accelerates the response time for application by up to
1.77×, and reduces the reconstruction time by up to 69.10%.

Index Terms—Erasure Coding, Storage Fusion, High Reliabil-
ity, Reconstruction, Storage Efficiency

I. INTRODUCTION

Nowadays, data reliability becomes a critical issue in cloud

storage systems, due to the expansion of data volumes and high

risks on data loss [1] [2] [3] [4] [5]. Erasure coding utilizes a

small amount of redundant data as parities to ensure high fault

tolerance, which is a typical technique for high reliable cloud

storage. In general, erasure codes are divided into two types

[6] [7], XOR-based codes [8] [9] [10] [11] [12] [13] and Reed

Solomon (RS)-based codes [14] [15] [16]. Although they can

maintain high fault tolerance with low storage cost, the overall

performance is significantly affected by diverse factors, such as

the computational and network transmission overhead during

reconstruction period [2] [15] [16] [17]. As online recovery

becomes frequent in cloud storage systems, it is difficult to

find a perfect code to achieve high performance under both

application and recovery workloads, which are foreground and

background I/Os in the online recovery, respectively.
Therefore, hybrid redundancy schemes [15] [16] [18] [19]

are proposed to speed up the processing of both application

and recovery workloads in several directions, such as reducing

I/O cost, decreasing transmission bandwidth, etc. Typical hy-

brid redundancy schemes can be categorized into three classes,

Internal Hybrid Erasure Coding (IH-EC), External Hybrid

Erasure Coding (EH-EC), and Combination of Replications

and Erasure Coding (REC). IH-EC methods integrate different

erasure codes into a single code via multiple dimensional

constructions. Previous methods like Local Reconstruction

Code (LRC) [15], Minimum Storage Regeneration (MSR)

code [16] [20] [21], and Hybrid-RC [22] are internal hy-

brid erasure codes. General EH-EC methods include Hadoop

Adaptively-Coded Distributed File System (HACFS) [18] and

HeART [23], which are designed to adapt various workloads

by dynamically selecting the appropriate code from a series

of family codes1. For example, HACFS adaptively deploys

erasure codes based on access patterns to optimize the recovery

performance. The third class is Combination of Replications

and Erasure Coding (REC) such as MIngling Chained Storage

(MICS) [24] and Cocytus [25]. On the basis of various erasure

codes, these methods maintain multiple copies of data (the

whole data or a part of data) to enhance the reliability with

competitive I/O performance.
However, existing solutions have some drawbacks on the

online recovery scenarios in cloud storage systems, where the

foreground application and the background recovery work-

loads are handled simultaneously. Regarding to IH-EC meth-

ods, the output of internal hybrid erasure coding is a static

code, which cannot adapt the dynamic changing on I/O

patterns or failure characteristics. Therefore, the effectiveness

of these approaches is restricted.
Second, although previous EH-EC methods can reduce the

reconstruction I/Os, basically they focus on single workload

and still have potential to be improved via a comprehensive

analysis on both application and recovery I/Os in disk arrays

[26] [27] [28] [29]. Finally, REC methods result in extremely

high monetary cost.

1The codes are from the same family [18], which can be encoded/decoded
in the same way. For example, RS(4,2) and RS(6,3) can be regarded as family
codes.

191

2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS)

1530-2075/20/$31.00 ©2020 IEEE
DOI 10.1109/IPDPS47924.2020.00029

To address the above problems, in this paper, we propose

Erasure Codes Fusion (EC-Fusion), an efficient hybrid erasure

coding framework to improve the overall performance on

both application and recovery workloads. Unlike HACFS and

HeART using two erasure codes from the same family, EC-

Fusion is a comprehensive solution to dynamically select

proper codes based on the access or recovery patterns in

different workloads.

The contribution of this paper include,

1) We propose Erasure Codes Fusion (EC-Fusion) to in-

corporate Reed Solomon (RS) and Minimum Storage

Regeneration (MSR) codes, which is an effective and

adaptive framework to select proper erasure codes to

enhance the overall performance on both application and

recovery workloads.

2) We conduct several experiments in an original hadoop

system to demonstrate the effectiveness of EC-Fusion.

Compared to existing hybrid erasure coding approaches,

EC-Fusion is one of the best solutions to balance com-

putation complexity and transmission overhead with a

low monetary cost concurrently.

The rest of paper is organized as follows. In Section II, the

related work and our motivation are introduced. In Section III,

the design of EC Fusion and the related modules are illustrated

in detail. The evaluation is presented in Section IV and the

conclusion of our work is in Section V.

TABLE I
SYMBOLS USED IN THIS PAPER

Symbols Description

n total number of nodes in a storage system

r total number of parity nodes

k total number of data nodes (k = n − r)

z the number of groups in LRC

s an factor of n used in MSR code

m another factor of n in MSR code (n = sm)
l the integer in MSR code (l = sm)

bij the element at the ith row and jth column

di the ith data element in a codeword of RS code

pi the ith parity element in a codeword of RS code

Di the ith data vector in a codeword of MSR code

Pi the ith parity vector in a codeword of MSR code

Li the ith local parity node in LRC

Ni the ith data node in LRC

Gi the ith global parity node in LRC

H a parity-check matrix

HD the submatrix correlated to data in H
HP the submatrix correlated to parities in H
γ the size of a block

β the ratio of write/read

φ the number of bytes obtained by one I/O operation

W the write overhead

R the reconstruction cost

δ the ratio of (writes/recoveries)

η the threshold in EC-Fusion

α
the calculation speed (number of XOR/GF multiplications
per second) in the storage system

λ
the number of bytes can be transmitted in network
per second

II. RELATED WORK AND OUR MOTIVATION

In this section, we briefly illustrate the hybrid redundancy

schemes and related erasure codes. At the end, we discuss

the motivation of this paper. To facilitate our discussion, the

relevant symbols are summarized in Table I.

A. Basic Erasure Codes

The existing hybrid redundancy schemes are based on Reed

Solomon (RS) based codes and XOR-based codes [6] [7]. RS-

based codes are a series of variants of Reed Solomon (RS)

code [14], which include Cauchy-RS [30], Local Reconstruc-

tion Code (LRC) [15], Minimum Storage Regeneration (MSR)

code [16] [18]. In XOR-based codes, the parities are generated

via XOR operations among data, such as EVENODD [8], X-

Code [11], RDP code [9], STAR codes [31], H-Code [12],

TIP-Code [13], etc. Here we take RS and EVENODD codes

as examples to illustrate the generation of these two types of

erasure codes.

1) Reed Solomon (RS) Code: It is a classic code based on

the computations over Galois Field (GF). A specific layout of

RS code can be expressed as RS(k, r), where k and r represent

the number of data and parity nodes, respectively. In Fig. 1(a),

we show the parity-check matrix [6] of RS code.

b11 b12

b21 b22

0

1
* 0

d2

d3

d4

p1

p2

d1

b13

b23

b14

b24

1

0

Node
1

Node
2

Node
3

Node
4

Node
5

Node
6

Codeword

Data nodes
Parity nodes

=

Parity-check matrix H

(a) The construction of RS code. (b) The construction of EVENODD.

Fig. 1. The construction of RS and EVENODD codes. (For RS code, a square
stands for an element in Galois Field; For EVENODD, a square denotes a
bit, and a white square represents bit 0 while a green square denotes bit 0.)

2) EVENODD Code: As shown in Fig. 1(b), EVENODD

is composed of horizontal and diagonal parities, which are

generated by XOR operations among data and can tolerate

two concurrent failures.

According to the above, single codes can be easily con-

structed, which provide high efficiency for application I/Os.

However, a large amount of the reconstruction bandwidth

causes high latency on recovery workloads.

B. Internal Hybrid Erasure Coding (IH-EC)

Internal hybrid erasure coding (IH-EC) combines two dif-

ferent erasure codes via multiple dimensional constructions.

Typical IH-EC methods involve GRID Codes [32], H-Code

[12], HV Code [33], RDP Code [9], HDP Code [10], X-Code

[11], Code 5-6 [34], MSR code [16] [18], LRC [15], Hybrid-

RC [22], AZ-Code [35], etc. Here we give a brief introduction

to MSR and LRC codes.

1) Minimum Storage Regeneration (MSR) Code: The con-

struction of MSR code is based on RS code and enhances the

coupling among data. As shown in Fig. 2(a), an MSR code can

be represented as MSR(n, k, r, l) (n = sm, l = sm), where

n, k, r and l are the number of total nodes, data nodes, parity

nodes, and the dimensions of vectors, respectively.

192

2) Local Reconstruction Code (LRC): As shown in Fig.

2(b), LRC is a mixture of RS and XOR-based codes, which

improves the recovery performance with flexible lengths of

parity chains. An LRC code is denoted as LRC(k, r, z), where

k, r, z are the number of data nodes, global parity nodes, local

parity nodes, respectively.

A11 A12

A21 A22

A16

A26

* 0

D2

D3

D4

P1

P2

A13

A23

A14

A24

A15

A25

Parity-check matrix H

D1

Codeword

Node
1

Node
2

Node
3

Node
4

Node
5

Node
6

Data nodes
Parity nodes

=

(a) The construction of MSR Code. (b) The construction of LRC.

Fig. 2. The construction of LRC and MSR codes. (For MSR code, Parity-
check matrix of MSR(n, k, r, l) contains r×n sub-matrices Aij with the size
of l× l , where i ∈ [1, r] and j ∈ [1, n]. D and P are l-dimensional element
vectors, and all of them form a codeword in MSR code; For LRC, global
parities g are generated from RS code while local parities p are calculated
by XOR operation among local data. Here p1 = d1

⊕
d2

⊕
d5

⊕
d6, and

p2 = d3
⊕

d4
⊕

d7
⊕

d8.)

Although IH-EC methods can significantly improve the

recovery performance, the lack of adaptation to I/Os reduces

the effects on the overall performance.

C. External Hybrid Erasure Coding (EH-EC)

Different from IH-EC methods, external hybrid erasure

coding (EH-EC) incorporates a series of family codes and

dynamically selects the appropriate one to adapt application

or recovery workloads. In this part, we mainly describe two

EH-EC schemes, HACFS [18] and HeART [23].

1) HACFS: Hadoop Adaptively-Coded Distributed File

System (HACFS) [18] uses two erasure codes (namely fast

code and compact code) from the same XOR-based family

codes. Fast code provides high recovery performance for hot

data, and compact code aims to save the storage cost for cold

data, which are shown in Fig. 3(a).

(a) HACFS. (b) HeART.

Fig. 3. The basic framework of HACFS and HeART methods. (HACFS:
hot data in applications→fast code, cold data in applications→compact code.
HeART: high risk on data loss → code scheme 1, low risk on data loss→code
scheme 2.)

2) HeART: HeART [23] utilizes heterogeneous levels of

reliability to tradeoff the storage and recovery performance in

a long term. The basic idea of HeART is to adopt a code with

high recovery speed for high risk data, and another code for

high storage efficiency is applied during low risk period, as

shown in Fig. 3(b).

Based on the above, HACFS further decreases the recov-

ery overhead by adaptation to application I/Os, and HeART

effectively reduces monetary cost with high reliability via

analysis on failure characteristics. However, the one-sided

adaptation of the existing EH-EC methods cannot maximize

thier effectiveness.

D. Combination of Replications and Erasure Coding (REC)

Replications and Erasure Coding (REC) are highly comple-

mentary on recovery performance and monetary cost, so they

are combined together for comprehensive solutions such as

MICS [24] , Cocytus [25], EC-Cache [36], Diskreduce [37],

Encoding-Aware Replication [38], etc. Here we give a brief

introduction to MICS and Cocytus methods.

1) MICS: MIngling Chained Storage (MICS) [24] is a

general method to incorporate replications and erasure codes.

Fig. 4 shows the construction of MICS, which provides both

high efficiency on both computation and reconstruction.

Fig. 4. The basic framework of MICS. (MICS: MICS maintains a full copy
of data object in MN, and in ECC, k segments of the object are encoded by
RS code to generate r parity segments.)

2) Cocytus: Cocytus [25] is designed to achieve high effi-

ciency on both storage and encoding/decoding for in-memory

KV-store. Generally, Cocytus dynamically uses replications for

small-sized and scattered data while applying erasure code for

relatively large data.

Replications can bring the improvement on the performance

but lead to high storage cost, which means that REC ap-

proaches are not appropriate for large-scale systems.

E. Our Motivation

We summarize the properties of various hybrid redundancy

approaches in Table II. It is clear that IH-EC methods cannot

adapt the dynamic change on both application and recovery

workloads. When a sharp alteration on application or recovery

data stream, the overall performance are restrictedly lim-

ited.Due to the extremely high storage cost, REC methods are

not suitable for large-scale distributed storage systems, either.

For EH-EC methods, the usage of the same family codes and

one-sided analysis on application or recovery workload limit

the potential to improve the overall performance for online

recovery.

From Table II, an EH-EC method with adaptive adjustment

on both application and recovery workloads are highly de-

sired. Therefore, from the existing erasure codes, selecting

193

TABLE II
SUMMARY OF HYBRID REDUNDANCY SCHEMES

Hybrid Redundancy
Methods

Name
Storage

Cost
Performance on Application Workloads Performance on Recovery Workloads

Computation Transmission I/O Adaptive? Computation Transmission I/O Adaptive?

Internal Hybrid
ErasureCoding

(IH-EC)

LRC code high high low high × high high high ×
MSR code low low high high × low high high ×
AZ-Code high low low high × low high high ×

Hybrid-RC high low low high × low high high ×
External Hybrid
Erasure Coding

(EH-EC)

HACFS medium high low high
√

high high high ×
HeART low high high high × high low high

√
EC-Fusion low high high high

√
high high high

√
Combination of Replications

& Erasure Coding (REC)
MICS very high low medium medium × low low low ×

Cocytus very high low N/A N/A × low N/A N/A ×

Code
Selection

Workload
Adaptation

Code
Transformation

XOR-Based Codes

data RS parity MSR parity

b11 b12 b13 b14

b21 b22 b23 b24
=

d0

d1

d2

d3

p0

p1

A11 A12

A21 A22

=
P0

P1

D0

D1

A13 A14

A23 A24

High
Risk

Low
Risk

Read-
dominant

Write-
intensive

Recovery
Workload

Application
Workload

D0 D1 P0 P1

D2 D3 P2 P3

Read-dominant
High loss risk

Write-intensive
Low loss risk

D0 D1 P0 P1

D2 D3

RS-Based Codes

RS
MSR

Fig. 5. The framework of EC-Fusion.

appropriate codes, analyzing both application and recovery

I/Os, and then designing an adaptive hybrid coding scheme

via externally combining the codes can be a proper way to

achieve complementarity and maximize the overall perfor-

mance, which motivates us to propose a novel EC-Fusion in

this paper.

III. EC-FUSION

In this section, the design of EC-Fusion is introduced in

detail. Compared to the existing EH-EC methods, the key

idea of EC-Fusion is to maximize the overall performance

based on a global point view on both application and recovery

workloads. The following sections describe an overview of

EC-Fusion and the corresponding main modules in detail.

A. Overview of EC-Fusion

To achieve the above design purpose, EC-Fusion mainly

includes three modules, Code Selection, Workload Adaptation,

and Code Transformation, which are shown in Fig. 5. Here is

a brief illustration of these modules as below,

1) Code Selection: Giving a brief understanding to the

encoding/decoding of hybrid erasure codes, and then

selecting the appropriate parameters for them.

2) Workload Adaptation: Statically allocating a proper cod-

ing scheme for each of them, and providing adaptive

rules to dynamically adjust the hybrid coding schemes.

3) Code Transformation: Providing a fusion approach to

achieve efficient conversions among different codes.

A combination of XOR-based codes is introduced in

HACFS [18], so in this paper we mainly focuses on the fusion

of RS-based codes and introduces each module in detail.

B. Code Selection

In order to select a pair of appropriate codes to adaptively

adjust both application and recovery workloads, we summarize

the following requirements,

1) the selected codes should have similar layout, which

means that it is possible to establish the conversions

among them.

2) the selected codes should have high flexibility to support

arbitrary number of storage nodes, which are suitable for

dynamic application and recovery workloads.

3) the selected codes play different roles in application

and recovery workloads, respectively. They can give us

an opportunity to externally combine them and achieve

complementarity.

Fig. 6. A sample design of EC Fusion. (EC-Fusion adopts RS code for write-
intensive data in application workloads or low probabilities on data loss, and
selects MSR code for read-intensive data in application workloads and high
probabilities on data loss.)

Except for XOR-based codes in HACFS [18], RS-based

codes can be also be candidates. Firstly, we select RS and

MSR codes as an EH-EC method (shown in Fig. 6). As we

194

know, both RS and MSR codes can be calculated over Galois

Field. RS and MSR codes have high scalability for most of

storage systems. Moreover, on one hand, as shown in Fig.

7(a) and 8(a), since the construction of the matrices involved

in MSR code is complex, RS code has low computational

cost, which provides lower overhead for write requests in

applications. On the other hand, according to Fig. 7(b) and

8(b), the total amount of data and parities for single disk failure

reconstruction is decreased in the MSR decoding process.

Therefore, MSR has great advantage on reducing the network

transmission cost for recovery, which can help to accelerate

the processing of recovery workloads.

b14

b24

b11 b12

b21 b22

*
d2

d3

d4

p1

p2

d1

b13

b23

Node
1

Node
2

Node
3

Node
4

Node
5

Node
6

Data nodes

Parity nodes

=

Matrix HD

(a) Encoding of RS code

1

0

b1,4

b2,4

b11b1,2

b21b2,2

*

d2

d3

d4 p2

p1

d1b1,3

b2,3

Node
1

Node
2

Node
3

Node
4

Node
6

Node
5

=

Matrix HDS

0

1
*

Matrix HDL

(b) Decoding of RS code

Fig. 7. The encoding/decoding processes of RS Code. (In the encoding
process, r parity elements are generated via GF calculations over k data
elements. In the decoding process, the lost data element is recovered via
the any k survivors of data or parities, which means that extra network
transmission is needed during the recovery process.)

(a) Encoding of MSR code

(b) Decoding of MSR code

Fig. 8. The encoding/decoding processes of MSR Code. (In the encoding
process, r parity vectors are generated from the multiplication of the rl×nl
matrix HD and k data vectors. In the decoding process, MSR code transforms
the matrix HD and HP to H′

L and H′
S , and fetches (1/r) of each remaining

data and parity vectors to restore the lost vector DL.)

Next, we choose appropriate parameters for RS and MSR

codes, based on the encoding/decoding processes of RS(k, r)
and MSR(n, k, r, l). The application and recovery performance

on a single block are summarized in Table III.

TABLE III
PERFORMANCE 2 COMPARISONS AMONG HYBRID CODE SCHEMES

Code Scheme RS(k, r) MSR(n, k, r, l)

Application
Performace

Computational
Cost

β
1+β γkr β

1+β (l3 + l × γkr)

Disk I/O
Cost

γ/φ

Transmission
Cost

β(r+k)/k+1
1+β

Recovery
Performance

Computational
Cost

nr2 + γk l3 + l × γ n−1
r

Disk I/O
Cost

γ/φ γ/(rφ) ∼ γ/φ

Transmission
Cost

k (n − 1)/r

Finally, EC-Fusion selects RS(k, r) and MSR(2r, r, r, r2)
as the hybrid coding strategy, namely EC-Fusion(k, r). In this

way, we can obtain the following benefits,

1) RS(k, r) guarantees high storage efficiency for the whole

system, and keeps high application performance for

write-intensive I/Os.

2) MSR(2r, r, r, r2) provides high recovery performance

for high risk data and incurs low side-effect for read-

dominant I/Os.

3) The conversion between MSR(2r, r, r, r2) and RS(k, r)
can be conveniently added to the original coding scheme.

C. Workload Adaptation

Based on the characteristics of I/Os, we statically divide

them into six categories (shown in Table IV), 1) cold data with

low risk; 1) cold data with high risk; 3) write-intensive data

with low risk; 4) write-intensive data with high risk; 5) read-

dominant data with low risk; 6) read-dominant data with high

risk. Here both read-dominant and write-intensive data belongs

to hot data, and the application with balanced read and write

can belong to write-intensive or read-dominant. In general,

under a low risk environment, this application is more likely

to be write-intensive, since the overall performance is mainly

affected by write operations. Otherwise, it can be treated as

read-dominant. Then we determine which code to allocate for

them, and provide adaptive rules for dynamic I/Os.
1) Code Allocation: Here we allocates appropriate coding

schemes to workloads with matching features. And we sum-

marize the code allocation in Table IV.

Intuitively, it is no doubt that cold data or low risk data are

encoded with RS code, which keeps high storage efficiency

and guarantees good application performance, especially for

write-intensive I/Os. For read-dominant data with high failure

risk, MSR code can save a lot of reconstruction bandwidth

and cause few side effects to application I/Os.

However, it seems to be difficult to choose a proper code

scheme for write-intensive data with high risk, since we should

2In this table, we evaluate the performance of the traditional RS code and
a specific MSR code [20]. And the computational cost are approximate.

195

TABLE IV
CODE ALLOCATION FOR VARIOUS WORKLOADS IN EC-FUSION

Code Scheme
Recovery Workload

High Risk Low Risk

Application
Workload

Write
Intensive

MSR or RS RS

Read
Dominant

MSR RS

Cold RS RS

trade off application and recovery I/Os and determine a proper

code to maximize the overall performance. To solve this

problem, we define the variables (based on Table III) as below,

WRS = γ(kr/α+ ((k + r)/k)/λ+ 1/φ),

RRS = (nr2 + γk)/α+ γ(k/λ+ 1/φ),

WMSR = r4(r2 + γ)/α+ γ(2/λ+ 1/φ),

RMSR = (r6 + γ(2r2 − r))/α+ γ((2r − 1)/(rλ) + 1/φ).

Then we obtain the following inequality to determine which

code scheme to apply,

δ =
writes

recoveries
≥ RRS −RMSR

WMSR −WRS
= η. (1)

And δ ≥ η means that the overall performance is mainly

affected by write requests, so RS code is preferred; otherwise,

the reconstruction bandwidth is the main factor, and then MSR

code becomes a better choice. In practice, in order to reduce

the overhead caused by frequently switching the schemes, we

can adjust the inequality (1) as following,

δ ≥ η +Δ, or δ ≤ η −Δ, (0 ≤ Δ < η). (2)

2) Adaptive Rules: Since both data accesses and failures

usually exhibit temporal and spatial localities [39] [40] [41]

[42] [43], EC-Fusion can apply existing cache algorithms

(such as LRU, LFU etc), for the identification of hot or cold

data. In EC-Fusion, two queues are used for access patterns

and failure characteristics, respectively. And existing cache

algorithms can be applied in these queues.

Fig. 9. Two queues are used for capturing the data access patterns and failure
characteristics, respectively. (Three conditions to trigger an adaptive process
are marked with �, �, and �.)

As shown in Fig. 9, we use a queue named ”Queue1” to log

the information of data accesses, which records the block IDs

and the number of cache hits. ”Queue2” stores the recovery

requests to each block, including the block IDs, the number

of cache hits, and flags indicating coding scheme.

Initially, we set RS(k, r) as the default code for the whole

storage system, and these queues can have a warm-up after

the startup of the system. In adaptive rules, there are three

conditions needed to trigger an adaptive process, which is

shown in Fig. 9. And the adaptive processes are based on the

inequality (1). First, for each recovery request being inserted at

the head of Queue2, EC-Fusion should determine the related

blocks whether they need to be allocated with MSR code.

Second, for each write request being inserted at the head

of Queue1, EC-Fusion should determine the related block

whether need to be encoded by RS code. Third, for each

recovery request being deleted at the tail of Queue2, EC-

Fusion should convert the MSR code to RS code. And we

summarize the adaptive rules in Algorithm 1.

Algorithm 1 Adaptive Selection Algorithm in EC-Fusion

Input: Queue1, Queue2 and η;

for each request inserted at the head of Queue2 do
if flag �= MSR and (writes/recoveries) < η then

set flag = MSR;

convert to MSR code;

end if
end for
for each request inserted at the head of Queue1 do

if flag �= RS and (writes/recoveries) ≥ η then
set flag = RS;

convert to RS code;

end if
end for
for each request deleted at the tail of Queue2 do

if flag == MSR then
set flag = RS;

convert back to RS code;

end if
end for

D. Code Transformation

In order to cope with dynamical workloads, code transfor-

mation between the hybrid erasure codes is necessary, which

is the core module in EC-Fusion.

Based on the construction of RS(k, r), we can separate the

parity-check matrix into several submatrices with the size of

r × r, as shown in Fig. 10. When r cannot divide k, empty

data nodes are added. For example, one empty data node can

be added into RS(8,3). For convenience, assume that k can be

divisible by r and k = qr. And then the equation of parity

generation can be rewritten as below,

p =

q∑

i=1

Bi × di = p′
1 + p′

2 + · · ·+ p′
q, (3)

where p = {p1, p2, · · · , pr}T , Bi is a r × r submatrix, di =
{d(i−1)r+1, · · · , d(i−1)r+r}T , p′ stands for the intermediary

196

parity. In this way, p can be viewed as the combination of

(p′
1,p

′
2, · · · ,p′

q).

Fig. 10. The separation of the construction in RS(k, r). (In this process, the
encoding process of RS(k, r) is divided into (k/r) sub-encoding processes,
which generate the (k/r) sets of intermediary parities.)

Since any r×r submatrix of parity-check matrix in RS code

is invertible, each intermediary p′
i has the following property,

di = B−1
i × p′

i. (4)

As we know, MSR(2r, r, r, r2) has the same property shown

in Fig. 11(a). In order to match the scale of RS and MSR

codes, we extend the element dj in di to the vector Dj as

”dj → Dj = {dj1, dj2, . . . , djl}T ”, where l = r2. And then

we obtains ”Di = {D(i−1)r+1, · · · , D(i−1)r+r}T ”.
The related intermediary parity p′

i is extended to P′
i. For

the inverted matrix B−1
i , each element b′ in B−1

i is extended to

a l× l diagonal matrix diag(b′, b′, . . . , b′). Thus, an extension

of B−1
i contains r×r submatrices with the size of l× l, which

is denoted as B′
i. Then the equation (4) can be rewritten by,

Di = B′
i ×P′

i. (5)

Similarly, the original matrix Bi can be extended as Bi.

(a) MSR(2r, r, r, r2).

(b) The conversion between the intermediary and
MSR parities.

Fig. 11. The establishment of the transformation between the intermediary
and MSR parities.

Then we can easily establish the conversion between the

intermediary parities and the parities of MSR(2r, r, r, r2), as

shown in Fig.11(b), where ”Trans1” and ”Trans2” can be

derived as following,

Trans1 = Bi ×H−1
D ×HP , (6)

Trans2 = H−1
P ×HD ×B′

i. (7)

Therefore, the intermediary parities can be served as a

highway to achieve efficient transformation between RS and

MSR. As shown in Fig. 12(a), for the transformation from

MSR code to RS code, (k/r) sets of the original parities can

be transformed into the intermediary parities, and then they

are merged into the final RS parities.

(a) MSR to RS.

(b) RS to MSR.

Fig. 12. Transformation between MSR and RS codes.

The conversion from RS to MSR can be viewed as a

reverse process, where one set of the original RS is divided

into the final (k/r) sets of MSR. The detail is shown in

Fig. 12(b), where (k/r) − 1 sets of data are multiplied by

their corresponding submatrices. In this way, the intermediary

parities of the last set can be obtained by all existing parities,

and then all the intermediary parities are transformed into the

final MSR code.

197

IV. EVALUATION

In this section, we conduct a series of mathematical analysis

and experiments to demonstrate the effectiveness of EC-Fusion

under various application and recovery workloads.

A. Evaluation Methodology

To evaluate the effectiveness of EC-Fusion, we select the

following hybrid erasure coding methods in our evaluation,

• IH-EC methods: MSR code [16] [20], LRC [15].

• EH-EC methods: HACFS [18] method.

And we add RS code in our comparisons as well. Because

AZ-Code [35] and Hybrid-RC [22] adopt an idea similar to

LRC, HeART method is implemented for long term recovery

optimization, and REC methods have extremely high storage

cost, so they are excluded in our comparisons.

TABLE V
SUMMARY OF TRACES

Trace # of Requests Read% IOPS Avg. Req. Size

MSR-mds1 1637711 92.88% 27.29 113.00 KB

MSR-rsrch2 207597 65.69% 3.54 8.17 KB

MSR-web1 160891 54.11% 2.66 58.14 KB

MSR-rsrch0 1433655 9.32% 23.70 17.86 KB

1) Application Workloads: We select four traces [44] as the

typical application workloads shown in Table V. Here we give

a brief introduction to them as following.

• MSR-mds1 is traced from media server with the highest

read percentage among the selected traces.

• MSR-rsrch0 and MSR-rsrch2 are generated by research

projects. rsrch0 has the lowest percentage while rsrch2
gets medium read percentage.

• MSR-web1 is traced from Web/SQL server with the

medium read percentage.

2) Recovery Workloads: We initialize the generation of

failures randomly, and then records the locations and times-

tamps of the failures. For temporal locality, we calculate the

time intervals from the last time when failures occur, and

generate failure probabilities by normal distribution with the

interval inputted. Regarding to spatial locality, the relative

distances between the target location and the nearest failure is

inversely proportional to the failure probabilities. Since 98%
failures in storage systems are single disk failures [18], we

evaluate the recovery performance of single chunk failures in

our experiments.
3) Metrics and Methods for Mathematical Analysis: We use

the Storage Cost, Computational Cost, and Transmission
Cost as the metrics for mathematical analysis.

(1.a) Storage Cost is defined as ρ = (k+ r)/k in a storage

system with k data nodes and r parity nodes.

(1.b) Computational Cost is defined as the number of GF-

multiplication/Exclusive-OR operations in the application and

recovery workloads.

(1.c) Transmission Cost is defined as the number of chunks

transmitted on the application and recovery workloads.

As EH-EC methods adjust the parity chains to adapt work-

loads, the above metrics can also change dynamically. To

simplify the evaluation, we select various combination ratios

of two erasure codes in EH-EC schemes.

4) Metrics and Methods for Experiments: We use the

Application Performance, Recovery Performance, Overall
Performance, and Cost-effective Ratio as the metrics. They

are defined as following,

(2.a) Application Performance ε1 is measured by the average

latency of read and write operations on application workloads,

which contains computational and data access (transmission +

disk I/Os) costs.

(2.b) Recovery Performance ε2 is measured by the average

overhead of decoding on recovery workloads, including com-

putational and access costs.

(2.c) Overall Performance ε is defined by, ε = (μ1ε1 +
μ2ε2)/(μ1 + μ2), where μ1 and μ2 represents the number of

requests on application and recovery workloads, respectively.

(2.d) Cost-effective Ratio ζ is defined as ζ = 1/(ε × ρ),
which is the ratio between the whole performance and the

storage cost.

5) Experimental Environment: The environment of our

experiments is shown in Table VI. We set up a Hadoop system

to evaluate the performance of hybrid erasure coding schemes.

And requests to files in HDFS are used for the simulation of

application workloads, and each file is composed of k chunks.

In order to facilitate the implementation of MSR, each chunk

is set to 27 MB. Since a file can only be written once in

HDFS, we treat each write request in traces as a new write, and

each read request reads one data chunk. Finally, we implement

EC-Fusion and the mentioned coding schemes, and use a

test program to obtain their application/recovery performances

during workloads.

TABLE VI
PARAMETERS OF OUR EVALUATION PLATFORM

Description DELL R730 Server

CPU Intel Xeon 3.0GHz

NIC 1Gbps

Memory 32GB

Disk 3TB SSD

OS Ubuntu 16.04

Platform Hadoop HDFS 3.1.2

Our evaluation consists of five parts: 1) mathematical

analysis on hybrid erasure coding schemes, 2) experiments

to evaluate the application performance, 3) experiments to

evaluate the recovery performance, 4) evaluation on the whole

performance, 5) evaluation on the cost-effective ratio.

B. Numerical Results of Mathematical Analysis

In this section, we show the numerical results of mathe-

matical analysis on the storage cost, computational cost, and

transmission cost for EC-Fusion and other hybrid erasure

coding schemes. Here, we set RS(k, 3) (k = 6, 8) as the

baseline, and list the mentioned coding schemes as following,

1) Internal Hybrid Erasure Coding Schemes:

• MSR code: MSR(k+ 3, k, 3, l). when k = 8, one virtual

nodes are added into the systems.

198

• LRC: LRC(k, 2, 2) with two additional local parities and

the same fault tolerance with RS(k, 3).

2) External Hybrid Erasure Coding Schemes:

• EC-Fusion: EC-Fusion(k, 3) is a combination of RS(k, 3)
and MSR(6, 3, 3, 9).

• HACFS: HACFS-k is a combination of LRC(k, 2, 2) and

LRC(k, 2, k/2).

1) Storage Cost: In this part, we compare the storage cost

of the above approaches. Typically, RS code and the IH-EC

methods have a constant value for storage cost, while EH-EC

methods adopt different coding schemes for application and

recovery workloads. Thus, we set a hybrid ratio h% for MSR

applied in EC-Fusion and fast code (ie, LRC(k, 2, k/2)) used

in HACFS. The result is shown in Fig.13, EC-Fusion increases

9.1% at most (k = 8) to the original RS, but never exceeds

LRC or HACFS.

0 0.05 0.1 0.15 0.2

Hybrid Ratio (h%)

1.5

1.55

1.6

1.65

1.7

1.75

S
to

ra
ge

 C
os

t

k = 6

RS(6,3)
MSR(9,6,3,27)
LRC(6,2,2)
EC-Fusion(6,3)
HACFS-6

0 0.05 0.1 0.15 0.2

Hybrid Ratio (h%)

1.36

1.38

1.4

1.42

1.44

1.46

1.48

1.5

1.52

1.54

1.56

S
to

ra
ge

 C
os

t

k = 8

RS(8,3)
MSR(11,8,3,81)
LRC(8,2,2)
EC-Fusion(8,3)
HACFS-8

Fig. 13. Mathematical analysis on storage cost.

2) Computational Cost: In this part, we shows the compu-

tational cost (defined in Section IV-A3) on application and

recovery workloads, respectively. Fig.14 shows the results

for the scenarios with k × 64 KB data (one stripe) written

and 64 KB data (one column in a stripe) reconstructed. As

shown in Fig.14, EC-Fusion basically keeps the computational

efficiency with RS, LRC and HACFS. Compared to MSR, EC-

Fusion can saves at least 96.30% and 79.24% computational

cost for application and recovery workloads, respectively.

k = 6

RS MSR LRC EC-Fusion HACFS
0

0.5

1

1.5

2

2.5

3

3.5

C
om

pu
ta

tio
na

l C
os

t

107

Application Workload
Recovery Workload

k = 8

RS MSR LRC EC-Fusion HACFS
0

2

4

6

8

10

12

14

C
om

pu
ta

tio
na

l C
os

t

107

Application Workload
Recovery Workload

Fig. 14. Mathematical analysis on computational cost.

3) Transmission Cost: In this section, we discuss the trans-

mission cost of various coding schemes on application and

recovery workloads separately. Fig.15(a) shows the results for

application workloads, where one stripe with k data chunks is

written. Compared to LRC and HACFS, EC-Fusion can save

the transmission cost at least 8.33%.

For recovery workload, we assume EH-EC methods can im-

prove all recovery requests. As the results are shown Fig.15(b),

EC-Fusion reduces the transmission up to 79.12% compared

to the original RS, and improves the transmission performance

at least by 16.67% compared with HACFS.

RS MSR LRC EC-Fusion HACFS
9

9.5

10

10.5

11

11.5

12

T
ra

ns
m

is
si

on
 C

os
t

Application Workload

k=6
k=8

RS MSR LRC EC-Fusion HACFS
1

2

3

4

5

6

7

8

T
ra

ns
m

is
si

on
 C

os
t

Recovery Workload

k=6
k=8

Fig. 15. Mathematical analysis on transmission cost.

C. Results of Application Performance

According to Fig.16, EC-Fusion causes no more than 1.04%

overhead to the original RS. Besides, EC-Fusion improves the

application performance up to 78.03% for MSR, and 10.81%

for LRC and HACFS.

0

200

400

600

800

1000

1200

1400

A
pp

lic
at

io
n

P
er

fo
rm

an
ce

 (
m

s)

MSR-mds1

RS(6
,3

)

M
SR(9

,6
,3

,2
7)

LR
C(6

,2
,2

)

EC-F
us

ion
(6

,3
)

HACFS-6

RS(8
,3

)

M
SR(1

1,
8,

3,
81

)

LR
C(8

,2
,2

)

EC-F
us

ion
(8

,3
)

HACFS-8

Read Access Cost
Write Computational Cost
Write Access Cost

0

1000

2000

3000

4000

5000

6000

A
pp

lic
at

io
n

P
er

fo
rm

an
ce

 (
m

s)

MSR-rsrch2

RS(6
,3

)

M
SR(9

,6
,3

,2
7)

LR
C(6

,2
,2

)

EC-F
us

ion
(6

,3
)

HACFS-6

RS(8
,3

)

M
SR(1

1,
8,

3,
81

)

LR
C(8

,2
,2

)

EC-F
us

ion
(8

,3
)

HACFS-8

Read Access Cost
Write Computational Cost
Write Access Cost

0

1000

2000

3000

4000

5000

6000

7000

8000

A
pp

lic
at

io
n

P
er

fo
rm

an
ce

 (
m

s)

MSR-web1

RS(6
,3

)

M
SR(9

,6
,3

,2
7)

LR
C(6

,2
,2

)

EC-F
us

ion
(6

,3
)

HACFS-6

RS(8
,3

)

M
SR(1

1,
8,

3,
81

)

LR
C(8

,2
,2

)

EC-F
us

ion
(8

,3
)

HACFS-8

Read Access Cost
Write Computational Cost
Write Access Cost

0

2000

4000

6000

8000

10000

12000

14000

A
pp

lic
at

io
n

P
er

fo
rm

an
ce

 (
m

s)

MSR-rsrch0

RS(6
,3

)

M
SR(9

,6
,3

,2
7)

LR
C(6

,2
,2

)

EC-F
us

ion
(6

,3
)

HACFS-6

RS(8
,3

)

M
SR(1

1,
8,

3,
81

)

LR
C(8

,2
,2

)

EC-F
us

ion
(8

,3
)

HACFS-8

Read Access Cost
Write Computational Cost
Write Access Cost

Fig. 16. Application performance under different application workloads.

D. Results of Recovery Performance

As the results shown in Fig.17, compared with RS, MSR and

LRC, EC-Fusion saves up to 67.83%, 69.10% and 38.36% of

the recovery overhead, respectively. Since EC-Fusion should

balance both application and recovery I/Os, HACFS performs

better in terms of recovery performance.

E. Results of Overall Performance

As shown in Fig.18, EC-Fusion always gains better overall

performance than MSR and LRC by up to 77.98% and

199

TABLE VII
IMPROVEMENT OF EC-FUSION OVER OTHER ERASURE CODING SCHEMES IN TERMS OF THE OVERALL PERFORMANCE AND COST-EFFECTIVE RATIO.

Code k r Overall Performance Cost-effective Ratio
MSR-mds1 MSR-rsrch2 MSR-web1 MSR-rsrch0 MSR-mds1 MSR-rsrch2 MSR-web1 MSR-rsrch0

RS
8 3 18.15% 4.24% 2.08% 0.60% 16.71% 2.71% 1.40% 0.23%
6 3 14.28% 3.84% 1.86% 0.48% 13.17% 2.69% 1.36% 0.22%

MSR
8 3 51.45% 72.55% 74.51% 77.98% 50.59% 72.11% 74.33% 77.90%
6 3 19.59% 37.08% 39.56% 45.00% 18.55% 36.34% 39.25% 44.85%

LRC
8 2+2 6.37% 4.75% 5.18% 7.61% 12.66% 11.29% 12.48% 15.00%
6 2+2 5.20% 7.32% 7.96% 10.81% 13.58% 15.60% 16.74% 19.52%

HACFS
8 4(6) 0.16% 3.75% 6.63% 7.48% 19.72% 22.80% 25.80% 26.93%
6 4(5) 1.72% 7.09% 9.79% 10.75% 10.76% 15.67% 18.65% 19.56%

10.81%. Compared with RS, EC-Fusion gets 18.15% im-

provement on overall performance in the read-dominant en-

vironment, and in the write-intensive workload, EC-Fusion

achieves a 10.75% performance improvement over HACFS.

Besides, the extra cost for EC-Fusion is included in the overall

performance, and accounts for up to 1.47% of the overall

performance.

0

500

1000

1500

2000

2500

3000

R
ec

ov
er

y
P

er
fo

rm
an

ce
 (

m
s)

MSR-mds1

RS(6
,3

)

M
SR(9

,6
,3

,2
7)

LR
C(6

,2
,2

)

EC-F
us

ion
(6

,3
)

HACFS-6

RS(8
,3

)

M
SR(1

1,
8,

3,
81

)

LR
C(8

,2
,2

)

EC-F
us

ion
(8

,3
)

HACFS-8

Recovery Computaional Cost
Recovery Access Cost

0

500

1000

1500

2000

2500

3000

R
ec

ov
er

y
P

er
fo

rm
an

ce
 (

m
s)

MSR-rsrch2

RS(6
,3

)

M
SR(9

,6
,3

,2
7)

LR
C(6

,2
,2

)

EC-F
us

ion
(6

,3
)

HACFS-6

RS(8
,3

)

M
SR(1

1,
8,

3,
81

)

LR
C(8

,2
,2

)

EC-F
us

ion
(8

,3
)

HACFS-8

Recovery Computaional Cost
Recovery Access Cost

0

500

1000

1500

2000

2500

3000

R
ec

ov
er

y
P

er
fo

rm
an

ce
 (

m
s)

MSR-web1

RS(6
,3

)

M
SR(9

,6
,3

,2
7)

LR
C(6

,2
,2

)

EC-F
us

ion
(6

,3
)

HACFS-6

RS(8
,3

)

M
SR(1

1,
8,

3,
81

)

LR
C(8

,2
,2

)

EC-F
us

ion
(8

,3
)

HACFS-8

Recovery Computaional Cost
Recovery Access Cost

0

500

1000

1500

2000

2500

3000

R
ec

ov
er

y
P

er
fo

rm
an

ce
 (

m
s)

MSR-rsrch0

RS(6
,3

)

M
SR(9

,6
,3

,2
7)

LR
C(6

,2
,2

)

EC-F
us

ion
(6

,3
)

HACFS-6

RS(8
,3

)

M
SR(1

1,
8,

3,
81

)

LR
C(8

,2
,2

)

EC-F
us

ion
(8

,3
)

HACFS-8

Recovery Computaional Cost
Recovery Access Cost

Fig. 17. Recovery performance under online recovery workloads.

0

200

400

600

800

1000

1200

1400

1600

W
ho

le
 P

er
fo

rm
an

ce
 (

m
s)

MSR-mds1

RS(6
,3

)

M
SR(9

,6
,3

,2
7)

LR
C(6

,2
,2

)

EC-F
us

ion
(6

,3
)

HACFS-6

RS(8
,3

)

M
SR(1

1,
8,

3,
81

)

LR
C(8

,2
,2

)

EC-F
us

ion
(8

,3
)

HACFS-8

Read Access Cost
Write Computational Cost
Write Access Cost
Recovery Computational Cost
Recovery Access Cost
Extra Cost

0

1000

2000

3000

4000

5000

6000

W
ho

le
 P

er
fo

rm
an

ce
 (

m
s)

MSR-rsrch2

RS(6
,3

)

M
SR(9

,6
,3

,2
7)

LR
C(6

,2
,2

)

EC-F
us

ion
(6

,3
)

HACFS-6

RS(8
,3

)

M
SR(1

1,
8,

3,
81

)

LR
C(8

,2
,2

)

EC-F
us

ion
(8

,3
)

HACFS-8

Read Access Cost
Write Computational Cost
Write Access Cost
Recovery Computational Cost
Recovery Access Cost
Extra Cost

0

1000

2000

3000

4000

5000

6000

7000

8000

W
ho

le
 P

er
fo

rm
an

ce
 (

m
s)

MSR-web1

RS(6
,3

)

M
SR(9

,6
,3

,2
7)

LR
C(6

,2
,2

)

EC-F
us

ion
(6

,3
)

HACFS-6

RS(8
,3

)

M
SR(1

1,
8,

3,
81

)

LR
C(8

,2
,2

)

EC-F
us

ion
(8

,3
)

HACFS-8

Read Access Cost
Write Computational Cost
Write Access Cost
Recovery Computational Cost
Recovery Access Cost
Extra Cost

0

2000

4000

6000

8000

10000

12000

14000

W
ho

le
 P

er
fo

rm
an

ce
 (

m
s)

MSR-rsrch0

RS(6
,3

)

M
SR(9

,6
,3

,2
7)

LR
C(6

,2
,2

)

EC-F
us

ion
(6

,3
)

HACFS-6

RS(8
,3

)

M
SR(1

1,
8,

3,
81

)

LR
C(8

,2
,2

)

EC-F
us

ion
(8

,3
)

HACFS-8

Read Access Cost
Write Computational Cost
Write Access Cost
Recovery Computational Cost
Recovery Access Cost
Extra Cost

Fig. 18. Overall performance under different application and online recovery
workloads.

F. Results of Cost-effective Ratio

The results of the cost-effective ratio are shown in Fig.

19. Compared with RS and MSR, EC-Fusion obtains better

cost-effective ratio by up to 16.71% and 77.90%, respectively.

Compared to LRC and HACFS, EC-Fusion increases the ratio

by up to 19.52% and 26.93%, respectively.

RS MSR LRC EC-Fusion HACFS
1000

1200

1400

1600

1800

2000

2200
MSR-mds1

k=6
k=8

RS MSR LRC EC-Fusion HACFS
2000

3000

4000

5000

6000

7000

8000
MSR-rsrch2

k=6
k=8

RS MSR LRC EC-Fusion HACFS
2000

4000

6000

8000

10000
MSR-web1

k=6
k=8

RS MSR LRC EC-Fusion HACFS
2000

3000

4000

5000

6000

7000

8000
MSR-rsrch2

k=6
k=8

Fig. 19. Cost-effective ratio under different application and online recovery
workloads.

G. Analysis

We summarize the results in Table VII. From these results

listed in this section, it is clear that EC-Fusion have great ad-

vantages compared to other hybrid erasure coding approaches.

There are several reasons to achieve these gains. First, EC-

Fusion is a comprehensive solution based on RS and MSR

codes, which are popular codes to provide high efficiency

on fast decoding. Second, EC-Fusion selects proper codes

according to a global point of view on access/failure patterns,

which dynamically improves the effects on storage systems.

Third, RS and MSR codes provide flexible configurations (i.e.,

supports arbitrary number of data nodes), which are easily

adapted to varying fusion rules. Fourthly, the transformation

overhead between RS and MSR code is very low (shown in

Fig. 18), which guarantees the overall efficiency of EC-Fusion.

200

V. CONCLUSION

In this paper, we propose EC-Fusion, a hybrid erasure

coding method to integrate RS and MSR codes together for the

balance of application and recovery I/Os. For write-intensive

workloads with infrequent decoding, we select RS code to

decrease the computational overhead and storage cost. On

the other hand, when read-dominant workloads with frequent

decoding, MSR code is a proper choice. Therefore, the storage

and decoding costs can be balanced. To demonstrate the

effectiveness of EC-Fusion, we conduct several experiments.

Compared to the typical hybrid erasure coding methods, EC-

Fusion 1) improves up to 78.03% by reducing computational

cost on write-intensive I/Os in application workloads com-

pared to MSR code; 2) decreases the recovery latency by up

to 67.83% compared to the original RS; 3) improves whole

performance up to 10.75% compared to HACFS and 4) gains

higher cost-effective ratio up to 19.52% compared to LRC.

VI. ACKNOWLEDGMENTS

We thank anonymous reviewers for their insightful com-

ments. This work is partially sponsored by the National Key

R&D Program of China (No.2018YFB0105203), the Natural

Science Foundation of China (NSFC) (No.61972246), the

Natural Science Foundation of Shanghai (No.18ZR1418500),

the Alibaba Group through Alibaba Innovative Research (AIR)

program, and the U.S. National Science Foundation grant

CCF-1813081. Any opinions, findings, and conclusions or

recommendations expressed in this material are those of the

authors and do not necessarily reflect the views of the funding

agencies.

REFERENCES

[1] L. Qian et al., “Cloud computing: An overview,” in Proc. of the
CLOUD’09.

[2] M. Copeland et al., “Microsoft azure and cloud computing,” in Microsoft
Azure. Springer, 2015, pp. 3–26.

[3] M. Sathiamoorthy et al., “Xoring elephants: Novel erasure codes for big
data,” in Proc. of the VLDB’13.

[4] S. Muralidhar et al., “f4: Facebook’s warm blob storage system,” in
Proc. of the OSDI’14.

[5] K. Rashmi et al., “A ”hitchhiker’s” guide to fast and efficient data re-
construction in erasure-coded data centers,” in Proc. of the Sigcomm’14.

[6] Y. Zhang et al., “Pcm: A parity-check matrix based approach to improve
decoding performance of xor-based erasure codes,” in Proc. of the
SRDS’15.

[7] J. Gu et al., “Optimizing the parity check matrix for efficient decoding
of rs-based cloud storage systems,” in Proc. of the IPDPS’19.

[8] M. Blaum et al., “EVENODD: An efficient scheme for tolerating double
disk failures in RAID architectures,” IEEE Transactions on Computers,
vol. 44, no. 2, pp. 192–202, 1995.

[9] P. Corbett et al., “Row-Diagonal Parity for double disk failure correc-
tion,” in Proc. of the FAST’04.

[10] C. Wu et al., “HDP code: A Horizontal-Diagonal parity code to optimize
I/O load balancing in RAID-6,” in Proc. of the DSN’11.

[11] L. Xu et al., “X-Code: MDS array codes with optimal encoding,” IEEE
Transactions on Information Theory, vol. 45, no. 1, pp. 272–276, 1999.

[12] C. Wu et al., “H-Code: A hybrid MDS array code to optimize partial
stripe writes in RAID-6,” in Proc. of the IPDPS’11.

[13] Y. Zhang et al., “Tip-code: A three independent parity code to tolerate
triple disk failures with optimal update complextiy,” in Proc. of the
DSN’15.

[14] I. Reed and G. Solomon, “Polynomial codes over certain finite fields,”
Journal of the Society for Industrial & Applied Mathematics, vol. 8,
no. 2, pp. 300–304, 1960.

[15] C. Huang et al., “Erasure coding in windows azure storage.” in Proc.
of the ATC’12.

[16] M. Vajha et al., “Clay codes: Moulding mds codes to yield an msr code,”
in Proc. of the FAST’18.

[17] T. Zhou and C. Tian, “Fast erasure coding for data storage: A compre-
hensive study of the acceleration techniques,” in Proc. of the FAST’19.

[18] M. Xia et al., “A tale of two erasure codes in hdfs,” in Proc. of the
FAST’15.

[19] H. Jin et al., “Approximate code: A cost-effective erasure coding
framework for tiered video storage in cloud systems,” in Proc. of the
ICPP’19.

[20] M. Ye and A. Barg, “Explicit constructions of optimal-access mds
codes with nearly optimal sub-packetization,” IEEE Transactions on
Information Theory, vol. PP, no. 99, pp. 1–1, 2017.

[21] Y. Hu et al., “Analysis and construction of functional regenerating codes
with uncoded repair for distributed storage systems,” in Proc. of the
INFOCOM’13.

[22] L. Ye et al., “Hybrid-rc: Flexible erasure codes with optimized recovery
performance and low storage overhead,” in Proc. of the SRDS’17.

[23] S. Kadekodi et al., “Cluster storage systems gotta have heart: improving
storage efficiency by exploiting disk-reliability heterogeneity,” in Proc.
of the FAST’19.

[24] Y. Tang et al., “Mics: Mingling chained storage combining replication
and erasure coding,” in Proc. of the SRDS’15.

[25] H. Zhang et al., “Efficient and available in-memory kv-store with hybrid
erasure coding and replication,” in Proc. of the FAST’16.

[26] L. Tian et al., “Pro: A popularity-based multi-threaded reconstruc-
tion optimization for raid-structured storage systems.” in Proc. of the
FAST’07.

[27] S. Wu et al., “Workout: I/o workload outsourcing for boosting raid
reconstruction performance.” in Proc. of the FAST’09.

[28] S. Wan et al., “Victim disk first: an asymmetric cache to boost the
performance of disk arrays under faulty conditions,” in Proc. of the
ATC’13.

[29] L. Li et al., “Favorable block first: A comprehensive cache scheme to
accelerate partial stripe recovery of triple disk failure tolerant arrays,”
in Proc. of the ICPP’17.

[30] J. Plank and L. Xu, “Optimizing Cauchy Reed-Solomon codes for Fault-
Tolerant network storage applications,” in Proc. of the NCA’06.

[31] C. Huang and L. Xu, “STAR: An efficient coding scheme for correcting
triple storage node failures,” IEEE Transactions on Computers, vol. 57,
no. 7, pp. 889–901, 2008.

[32] M. Li et al., “GRID codes: Strip-based erasure code with high fault
tolerance for storage systems,” ACM Trans. on Storage, vol. 4, no. 4, p.
Article 15, Jan. 2009.

[33] Z. Shen and J. Shu, “HV code: An all-around mds code to improve
efficiency and reliability of RAID-6 systems,” in Proc. of the DSN’14.

[34] C. Wu et al., “Code 5-6: An efficient mds array coding scheme to
accelerate online raid level migration,” in Proc. of the ICPP’15.

[35] X. Xie et al., “Az-code: An efficient availability zone level erasure code
to provide high fault tolerance in cloud storage systems,” in Proc. of the
MSST’19.

[36] K. Rashmi et al., “Ec-cache: Load-balanced, low-latency cluster caching
with online erasure coding,” in Proc. of the OSDI’16.

[37] B. Fan et al., “Diskreduce: Raid for data-intensive scalable computing,”
in Proc. of the PDS’09.

[38] R. Li, Y. Hu, and P. P. Lee, “Enabling efficient and reliable transition
from replication to erasure coding for clustered file systems,” IEEE
Transactions on Parallel and Distributed Systems, vol. 28, no. 9, pp.
2500–2513, 2017.

[39] P. K. Gummadi et al., “Measurement, modeling, and analysis of a peer-
to-peer file-sharing workload,” in Proc. of the SOSP’03.

[40] S. Kavalanekar et al., “Characterization of storage workload traces from
production windows servers,” in Proc. of the IISWC’08.

[41] L. Bairavasundaram et al., “An analysis of latent sector errors in disk
drives,” in Proc. of the SIGMETRICS’07.

[42] A. Oprea and A. Juels, “A Clean-Slate look at disk scrubbing,” in Proc.
of the FAST’10.

[43] E. Pinheiro et al., “Failure trends in a large disk drive population.” in
Proc. of the FAST’07.

[44] D. Narayanan, A. Donnelly, and A. Rowstron, “Write off-loading:
Practical power management for enterprise storage,” ACM Transactions
on Storage (TOS), vol. 4, no. 3, p. 10, 2008.

201

