

1 Discrimination of β -1,4 and β -1,3 linkages in native oligosaccharides via
2 charge transfer dissociation mass spectrometry.

3

4 Hagen Buck-Wiese^{1,2,3}; Mathieu Fanuel^{4,5}; Manuel Liebeke²; Kim Le Mai Hoang⁶; Alonso Pardo-Vagas⁶;
5 Peter H. Seeberger^{6,7}; Jan-Hendrik Hehemann^{1,3}; Hélène Rogniaux^{4,5}; Glen P. Jackson^{8,9*}; David
6 Ropartz^{4,5*}

7 ¹MARUM MPG Bridge Group Marine Glycobiology, Max-Planck-Institute for Marine Microbiology,
8 Celsiusstrasse 1, 28359 Bremen, Germany

9 ²Research Group Metabolic Interactions, Department of Symbiosis, Max-Planck-Institute for Marine
10 Microbiology, Celsiusstrasse 1, 28359 Bremen, Germany

11 ³Marine Glycobiology, Marum Center for Marine Environmental Sciences, Leobener Strasse 8, 28359
12 Bremen, Germany

13 ⁴INRAE, UR BIA, F-44316 Nantes, France

14 ⁵INRAE, BIBS facility, F-44316 Nantes, France

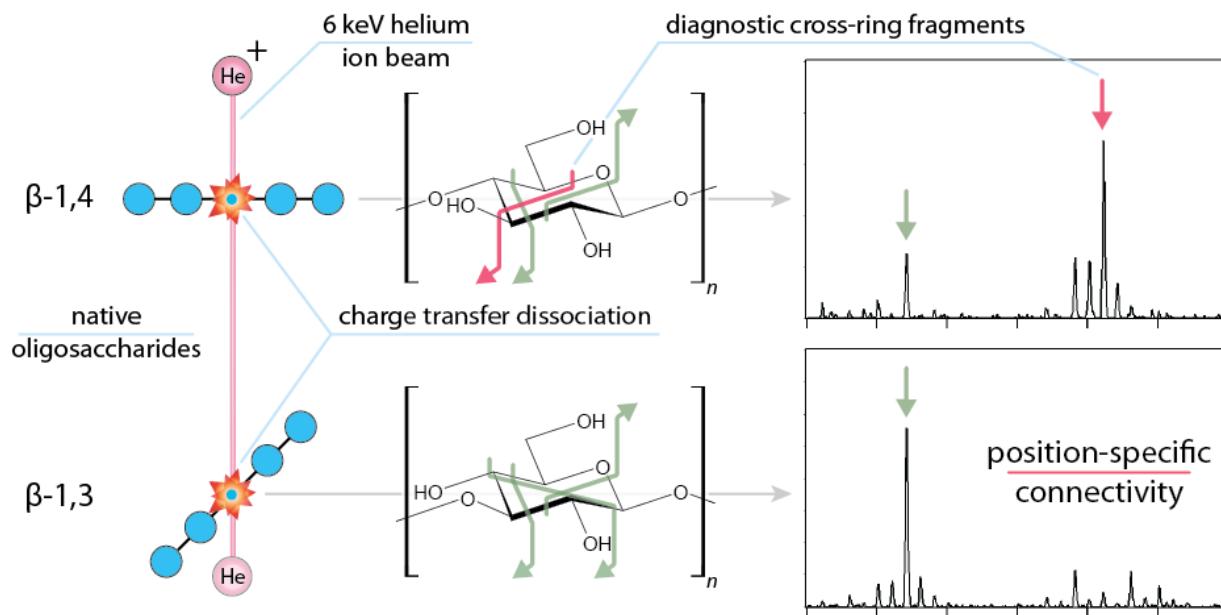
15 ⁶Max-Planck-Institute of Colloids and Interfaces, Department of Biomolecular Systems, Am Mühlenberg 1,
16 14476 Potsdam, Germany.

17 ⁷Institute for Chemistry and Biochemistry, Free University Berlin, Arnimallee 22, 14195 Berlin, Germany

18 ⁸Department of Forensic and Investigative Science, West Virginia University, Morgantown, WV 26506, USA

19 ⁹C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, USA

20


21

22

23

24

25 Address reprint requests to Dr. Glen P. Jackson, PhD, Dept. of Forensic and Investigative Science, West
26 Virginia University, Morgantown, WV 26506-6121, USA, Email: glen.jackson@mail.wvu.edu, Tel: +01 304-
27 293-9236

28 **Abstract.** The connection between monosaccharides influences the structure, solubility and biological
 29 function of carbohydrates. Although tandem mass spectrometry (MS/MS) often enables the compositional
 30 identification of carbohydrates, traditional MS/MS fragmentation methods fail to generate abundant
 31 cross-ring fragments of intra-chain monosaccharides that could reveal carbohydrate connectivity. We
 32 examined the potential of helium-charge transfer dissociation (He-CTD) as a method of MS/MS to decipher
 33 the connectivity of β -1,4 and β -1,3 linked oligosaccharides. In contrast to collision-induced dissociation
 34 (CID), He-CTD of isolated oligosaccharide precursors produced both glycosidic and cross-ring cleavages of
 35 each monosaccharide. The radical-driven dissociation in He-CTD induced single cleavage events, without
 36 consecutive fragmentations, which facilitated structural interpretation. He-CTD of various standards up to
 37 a degree of polymerization of 7 showed that β -1,4- and β -1,3-linked carbohydrates can be distinguished
 38 based on diagnostic ${}^{3,5}\text{A}$ fragment ions that are characteristic for β -1,4 linkages. Overall, fragment ion
 39 spectra from He-CTD contained sufficient information to infer the connectivity specifically for each
 40 glycosidic bond. When testing He-CTD to resolve the order of β -1,4- and β -1,3-linkages in mixed-linked
 41 oligosaccharide standards, He-CTD spectra sometimes provided less confident assignment of connectivity.
 42 Ion mobility spectrometry-mass spectrometry (IMS-MS) of the standards indicated that ambiguity in the
 43 He-CTD spectra was caused by isobaric impurities in the mixed-linked oligosaccharides. Radical-driven
 44 dissociation induced by He-CTD can thus expand MS/MS to carbohydrate linkage analysis, as
 45 demonstrated by the comprehensive fragment ion spectra on native oligosaccharides. The determination
 46 of connectivity in true unknowns would benefit from the separation of isobaric precursors, through UPLC
 47 or IMS, before linkage determination via He-CTD.

48 **Introduction**

49 Branching, modifications and stereochemistry of carbohydrate structures contribute to their versatile
50 roles in biology.¹ A mere shift in the connectivity of glycosidic bonds can result in substantial differences
51 in structure, solubility and biological function between two oligomers. For example, laminarin and
52 cellulose are both β -linked linear polymers of glucose; however, the β -1,3 linkages in laminarin make it
53 flexible and soluble, which supports its role as energy storage in algae,² whereas the β -1,4 linkages in
54 cellulose make it a rigid, insoluble, crystalline fiber supporting its function as a major cell-wall component
55 in plants.² Similar stereochemical linkage differences in linkage from β -1,3 to β -1,4 provide the difference
56 between histo-blood types 1 and 2 in human tissues.^{3,4} Despite the importance and apparent simplicity in
57 describing the linkage differences between structures like laminarin and cellulose, it is surprisingly difficult
58 to assess the linkage order of carbohydrates using common analytical approaches for oligomers any longer
59 than two or three sugar units in length.

60 Whereas bulk glycosyl linkage analysis of permethylated and depolymerized glycans by gas
61 chromatography-mass spectrometry can elucidate the average proportion of different linkages in a
62 carbohydrate polymer, the initial depolymerization step eliminates the ability to elucidate the sequence
63 of the linkages.^{5,6} For example, using bulk glycosyl-linkage analysis methods like GC-MS, a polymer of
64 glucose with the repeated sequence $(\beta\text{-}1,3)_2(\beta\text{-}1,4)_2$ would be indistinguishable from the sequence $(\beta\text{-}1,3,$
65 $\beta\text{-}1,4)_2$ because both contain an equal proportion of β -1,3 and β -1,4 linkages. This shortcoming of complete
66 depolymerization for GC-MS has led to the development of liquid chromatography-mass spectrometry (LC-
67 MS) techniques that enable the separation of stereoisomers of carbohydrates,⁷ and LC-MS requires only
68 partial depolymerization of polymers into oligomers before the analysis. The distinction of linkages using
69 LC-MS necessitates tandem mass spectrometry (MS/MS) strategies because the oligomers typically exhibit
70 similar or identical molecular masses.

71 To distinguish and identify separated carbohydrate isomers, MS/MS aims to produce informative
72 fragments from the precursor ions. During collisional activation of isolated precursors in MS/MS⁸ energy
73 moves freely within the molecule and induces cleavage at the weakest bonds.^{7,9-12} In carbohydrates, the
74 weakest bonds are usually the glycosidic bonds. This bias towards glycosidic bond cleavage is useful for
75 determining the sequence order of mixed sugar sequences but limits the ability to infer connectivity or to
76 distinguish aldohexoses from one another. In contrast to the lower energy rearrangements of CID,
77 techniques like electron-induced dissociation (ExD), ultraviolet photodissociation (UVPD) or helium-charge
78 transfer dissociation (He-CTD) tend to produce fragments with higher energy radical-driven cleavages.¹¹

79 13-18 These radical-driven techniques produce fragments that are more informative than CID about the
80 structure and stereochemistry of the activated molecule.

81 Cross-ring cleavages by radical-driven dissociation methods permit detailed structural analyses of
82 carbohydrates, but unambiguous linkage determination requires many informative cross-ring fragments,
83 which is not always possible. ExD is typically the most reliable and informative approach to cross-ring
84 cleavages, but ExD is typically restricted to high-end FT-ICR mass spectrometers, and even ExD encounters
85 limitations in the variety of induced cleavages.^{14, 15, 18-20} UVPD has been highly informative, but it does not
86 consistently produce sufficient cross-ring fragments for a linkage determination to be routinely
87 achievable.^{21, 22} However, experiments on carbohydrates using He-CTD demonstrate effective
88 fragmentation with abundant cross-ring cleavages, the maintenance of labile sulfate modifications²³ and
89 the absence of consecutive fragmentation.^{23, 24} The last two studies established the performance of He-
90 CTD for structural determination of carbohydrates, although they did not specifically address the issue of
91 linkage determination.

92 Here, we work on the hypothesis that radical-driven He-CTD can provide a sufficient array of cross-
93 ring cleavages to resolve the connectivity in carbohydrates. To test this hypothesis, oligomers of laminarin
94 and cellulose with a degree of polymerization of between DP4-DP7 were analyzed in their isolated forms
95 using electrospray ionization. Each oligomer was isolated in the 3D ion trap and fragmented as $[M+Na]^+$
96 species without permethylation or derivatization. Most of the results describe observations on DP4 and
97 DP5. For comparison purposes, the same oligomers were analyzed on the same instrument in pseudo-real
98 time using either He-CTD or CID. In a typical spectrum of a DP4 oligomer, He-CTD produced more than 80
99 peaks from the $[M+Na]^+$ precursor compared to less than 20 peaks using CID. Peaks from He-CTD
100 corresponded to B/Y, C/Z, and A/X ions, the latter of which originated from various cross-ring cleavage
101 sites and distinguished β -1,4 linkages in cellulose from β -1,3 linkages in laminarin. He-CTD, but not CID,
102 succeeded in determining the positions of β -1,3 and β -1,4 linkages in three mixed-linked tetrasaccharides.
103 This capability makes He-CTD a unique analytical tool for mass spectrometry-based carbohydrate research.

104 **Experimental**105 *Analytes*

106 Cellulose and laminarin oligosaccharides with degree of polymerization (DP) 3 through 6, and mixed linked
107 tetrasaccharides were obtained from Megazyme (Bray, Ireland). Laminarin DP7 was prepared by
108 automated glycan assembly.²⁵ For all electrospray (ESI) analyses, solutions of 1 $\mu\text{g mL}^{-1}$ were prepared in
109 1/1 (v/v) methanol/water and injected at 5 $\mu\text{L min}^{-1}$ flow rate.

110 *Helium-charge transfer dissociation (He-CTD)*

111 He-CTD mass spectra were obtained on a Bruker amazOn 3D ion trap (amazOn SL, Bruker Daltonics,
112 Bremen, Germany) interfaced with a saddle field fast ion source (VSW/Atomtech, Macclesfield, UK) with
113 UHP helium as the CTD reagent gas. The flow of helium from the ion gun to the main vacuum chamber
114 raised the base pressure from $\sim 8 \times 10^{-6}$ mbar to $\sim 1.2 \times 10^{-5}$ mbar. The ion beam flux was on the order of 5
115 μA . Singly charged precursor ions were isolated as sodium adducts in positive mode using a window of 2
116 Da. Ion accumulation times were typically on the order of 0.5 msec for CID and 5 msec for CTD. Although
117 the 5-msec accumulation time ordinarily causes deleterious space charge conditions, the unreacted
118 precursors were resonantly ejected using a 5 V ejection amplitude after the CTD reaction and before mass
119 acquisition to maximize the signal to noise ratio of the product ion spectra while negating the space charge
120 that the unreacted precursors would cause. The CTD beam was pulsed on for 170 msec using a 6-keV
121 potential to provide a beam of ~ 5.1 keV helium ions with a low mass cut off of 250 Da. CTD product ion
122 spectra were recorded for 1-2 min over a *m/z* range of 200-1500.

123 *Data treatment*

124 Raw files were converted into mzML format using MSConvert
125 (<http://proteowizard.sourceforge.net/tools.shtml>) and averaged using mMash version 5.5.0.²⁶⁻²⁸ Averaged
126 spectra were normalized to the most intense peak. Peak picking was performed using a threshold signal-
127 to-noise ratio of 5 and a minimum relative intensity of 1%, with inbuilt tools for baseline correction,
128 smoothing and deisotoping active. Peaks were annotated according to the nomenclature of Domon and
129 Costello²⁹ using a compound library created in R version 3.6.1³⁰ (Table S1), and the annotation function in
130 mMash with a tolerance of 0.1 Da. For the figures, spectra were exported from mMash as PNG files and
131 processed in Adobe Illustrator CS5.

132 *Ion mobility*

133 For the cellulose DP4 and the three mixed linked tetrasaccharides, arrival time distributions were
134 measured using a Synapt G2Si HDMS (Waters, Manchester, UK) in positive ionization mode over the mass

135 range of m/z 300-1200. The four tetrasaccharides were isolated using the quadrupole at m/z 689.2 as [M-
136 Na] $^{+}$ and were separated in the TWIM cell using nitrogen (99.9999%, 90 ml min $^{-1}$) as the drift IMS gas after
137 cooling in the helium cell (99.9999%, 180 mL min $^{-1}$). The signal was recorded for 0.5 min at a constant wave
138 velocity of 550 m sec $^{-1}$. Data acquisition and analysis were performed using MassLynx 4.1 (Waters,
139 Manchester, UK).

140 Results and discussion

141 *Linkage determination in oligomers with homogeneous linkages*

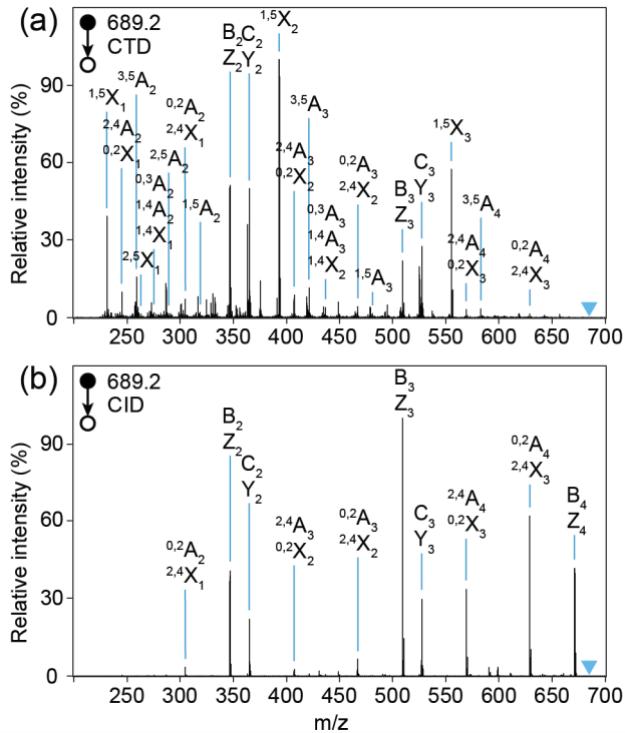
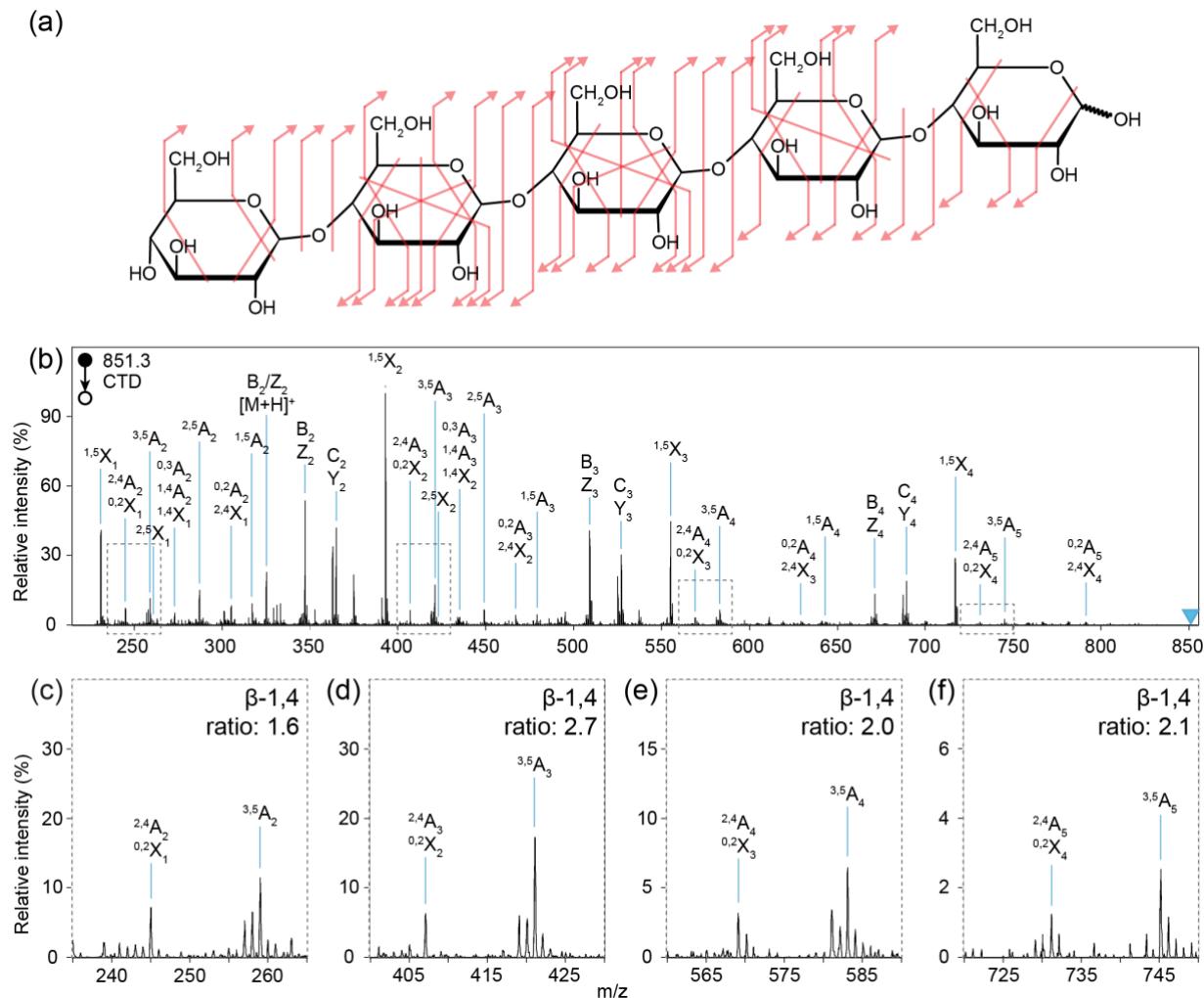
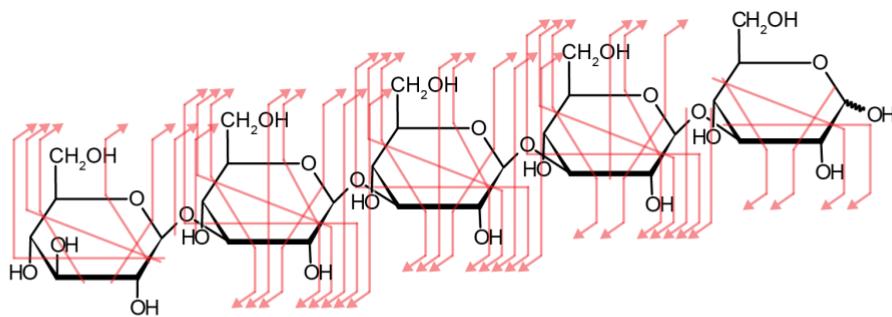

142 Almost all of the hypothetical glycosidic and cross-ring cleavages of cellulose share an isobaric analog ion
 143 with laminarin. The only exceptions are the $^{3,5}A_n$ ion of cellulose and the isobaric $^{0,3}X_n$ and $^{3,5}X_n$ ions for
 144 cellulose, which share no theoretical isobars with laminarin. We tested the ability of He-CTD and CID to
 145 form the hypothetically unique fragments for cellulose relative to laminarin. First, we fragmented cellulose
 146 DP4, which has four β -1,4-linked glucose units using either He-CTD or CID. He-CTD produced 88 peaks from
 147 the cellulose DP4 precursor ($[M+Na]^+$, $C_{24}H_{42}O_{21}Na$, m/z 689.21), whereas CID only produced 16 peaks. The
 148 peak assignments for He-CTD and CID are summarized in Table 1.

Table 1: Fragment ions from He-CTD and CID on cellulose DP4. The added symbol " to a fragment ion indicates an extra H_2 loss. Nomenclature following Domon and Costello.²⁹

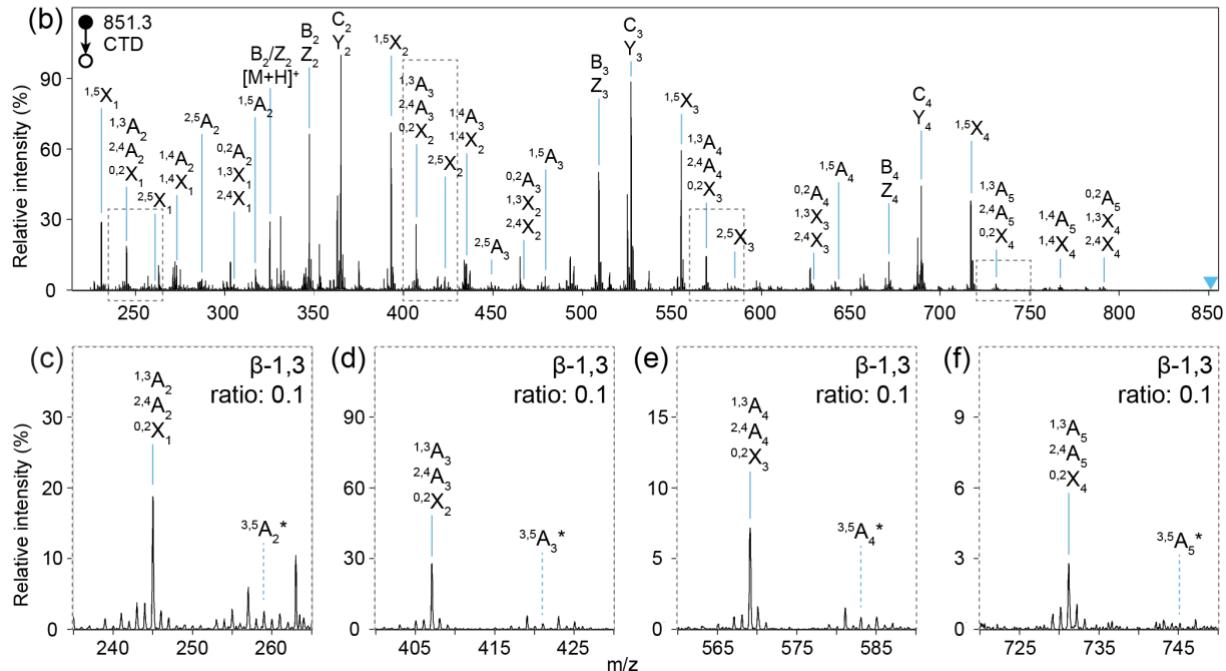
<i>m/z</i>	Annotation (0.1 Da tolerance)	Relative intensity (%)		<i>m/z</i>	Annotation (0.1 Da tolerance)	Relative intensity (%)	
		CTD	CID			CTD	CID
228.99	$^{1,5}X_1''$		2.40	405.04	$^{0,2}X_2''/^{2,4}A_3''$		1.40
230.99	$^{1,5}X_1$		39.19	407.07	$^{0,2}X_2/^{2,4}A_3$		8.72
243.00	$^{0,2}X_1''/^{2,4}A_2''$		2.05	419.07	$^{3,5}A_3''$		7.67
245.00	$^{0,2}X_1/^{2,4}A_2$		9.75	421.09	$^{2,5}X_2''/^{3,5}A_3$		11.57
257.01	$^{3,5}A_2''$		4.57	435.06	$^{1,4}X_2''/^{1,4}A_3''/^{0,3}A_3''$		4.03
259.02	$^{2,5}X_1''/^{3,5}A_2$		15.68	437.07	$^{1,4}X_2/^{1,4}A_3/^{0,3}A_3$		3.47
261.00	$^{2,5}X_1$		1.62	449.07	$^{2,5}A''$		6.00
273.00	$^{1,4}X_1''/^{1,4}A_2''/^{0,3}A_2''$		5.66	465.07	$^{2,4}X_2''/^{0,2}A_3''$		2.51
275.03	$^{1,4}X_1/^{1,4}A_2/^{0,3}A_2$		1.97	467.09	$^{2,4}X_2/^{0,2}A_3$		4.20
287.03	$^{2,5}A_2''$		13.26	479.08	$^{1,5}A_3''$		4.07
289.02	$^{2,5}A_2$		1.52	481.11	$^{1,5}A_3$		1.43
303.03	$^{2,4}X_1''/^{0,2}A_2''$		2.73	507.05	B_3''		3.81
305.05	$^{2,4}X_1/^{0,2}A_2$		6.70	509.08	B_3/Z_3		22.42
317.05	$^{1,5}A_2''$		7.94	525.08	C_3''/Y_3''		19.67
319.04	$^{1,5}A_2$		2.06	527.09	C_3/Y_3		28.31
345.04	B_2''		4.41	553.09	$^{1,5}X_3''$		1.49
347.06	B_2/Z_2		51.55	555.07	$^{1,5}X_3$		57.62
349.07	Z_2''		2.29	569.10	$^{0,2}X_3/^{2,4}A_4$		3.27
363.05	C_2''/Y_2''		35.60	583.09	$^{2,5}X_3''/^{3,5}A_4$		3.29
365.07	C_2/Y_2		49.25	611.11	$^{2,5}A_4''$		1.14
391.03	$^{1,5}X_2''$		7.85	629.09	$^{2,4}X_3/^{0,2}A_4$		1.53
393.05	$^{1,5}X_2$		100.00	671.12	B_4/Z_4		61.35
							41.99

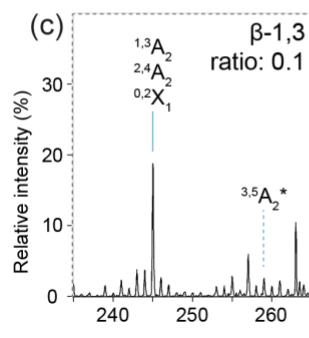
149

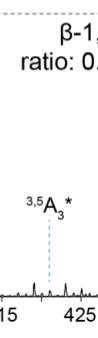

150 In the He-CTD spectrum of cellulose DP4 (Figure 1a), major peaks corresponded to cross-
 151 ring cleavages, which tended to be of the type $^{1,5}X_n$ and $^{3,5}A_n$, as well as glycosidic bond cleavages. Less
 152 abundant ions in the He-CTD spectra included cross-ring cleavages of the types $^{2,4}A_n/0,2X_{n-1}$, $^{2,5}X_n$,
 153 $^{2,5}A_n$, $^{1,5}A_n$, and $^{0,3}A_n/1,4A_n/1,4X_{n-1}$. Ions separated by a forward slash, e.g. $^{2,4}A_n/0,2X_{n-1}$, are isobars that
 154 cannot be unambiguously identified unless one of the termini is altered in such a way as to break the
 155 mass symmetry. Fragment ions in the He-CTD spectrum were often accompanied by peaks at -1
 156 and -2 Da, which very likely are the result of extra
 157 H^+ or H_2 losses, respectively.^{14, 15, 23, 24} In the CID
 158 spectrum of cellulose DP4 (Figure 1b), B and Y
 159 fragment ions from glycosidic bond-cleavages
 160 dominate, and ions from cross-ring cleavage are
 161 restricted to the types $^{2,4}A_n/0,2X_{n-1}$ and $^{0,2}A_n/2,4X_{n-1}$
 162 (Table 1). Cross-ring cleavages of the type $^{0,2}X_{n-1}$ and $^{0,2}A_n$ are essentially uninformative. In contrast to CID,
 163 He-CTD yielded cross-ring fragment ions of a variety of positions of all glucose units, which provided
 164 information on the connectivity of the glycosidic bonds along the complete backbone.


Figure 1: Fragment ion spectra of cellulose DP4 ($[M+Na]^+$, $C_{24}H_{42}O_{21}Na$, m/z 689.21). a) He-CTD, b) CID. Annotations following the nomenclature of Domon and Costello.²⁹ Blue triangles indicate the m/z of the resonantly ejected precursor.

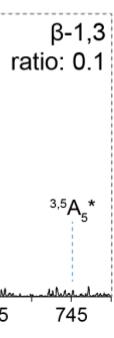
171 Fragmentation spectra of He-CTD on cellulose DP5 and laminarin DP5 (both $[M+Na]^+$, $C_{30}H_{52}O_{26}Na$,
 172 m/z 851.26) are displayed in Figures 2 and 3, respectively. Note that, as described above, unreacted
 173 precursor ions are not visible at m/z 851.26, because they have been resonantly ejected before mass
 174 acquisition. As observed before for cellulose DP4, the He-CTD spectra for cellulose DP5 and laminarin DP5
 175 are rich in cross-ring cleavages. We explored those spectra to find a signature of the different connectivity
 176 of the two structures. In theory, a $^{3,5}A$ fragment cannot be formed by 1,3-linked carbohydrates (see Table
 177 S1 in the Supplementary Information SI). Thus, $^{3,5}A_n$ fragments should be produced only in the case of the
 178 cellulose (all β -1,4) DP5 product and not for laminarin (all β -1,3) DP5. Indeed, He-CTD fragmentation of
 179 cellulose DP5 yielded a consistent series of $^{3,5}A_n$ fragments (Figure 2c-f). In contrast, very minor peaks were
 180 present at same m/z values of $^{3,5}A_n$ peaks in He-CTD fragment spectra of laminarin DP5 (Figure 3c-f). To
 181 determine whether these peaks stemmed from isobaric fragments such as $^{2,5}X_{n-1}$, or from contamination,


182 we compared the commercially available laminarin DP5 to a synthesized laminarin DP7 of high purity. He-
 183 CTD on the synthesized laminarin DP7 ($[M+Na]^+$, $C_{42}H_{72}O_{36}Na$, m/z 1175.37) yielded very similar fragment
 184 ion spectra compared to the laminarin DP5 (Figure 4), including the minor peaks at the m/z of $^{3,5}A_n$.
 185 Notably, the ratio of the intensity of $^{3,5}A_n$ over the sum of isobaric $^{1,3}A_n/^{2,4}A_n/^{0,2}X_{n-1}$ ions ranged between
 186 1.6 and 2.7 for β -1,4 bonds, but remained consistently below 0.2 for β -1,3 bonds (Figures 2c-f, 3c-f and 4b-
 187 e).


(a)


(b)

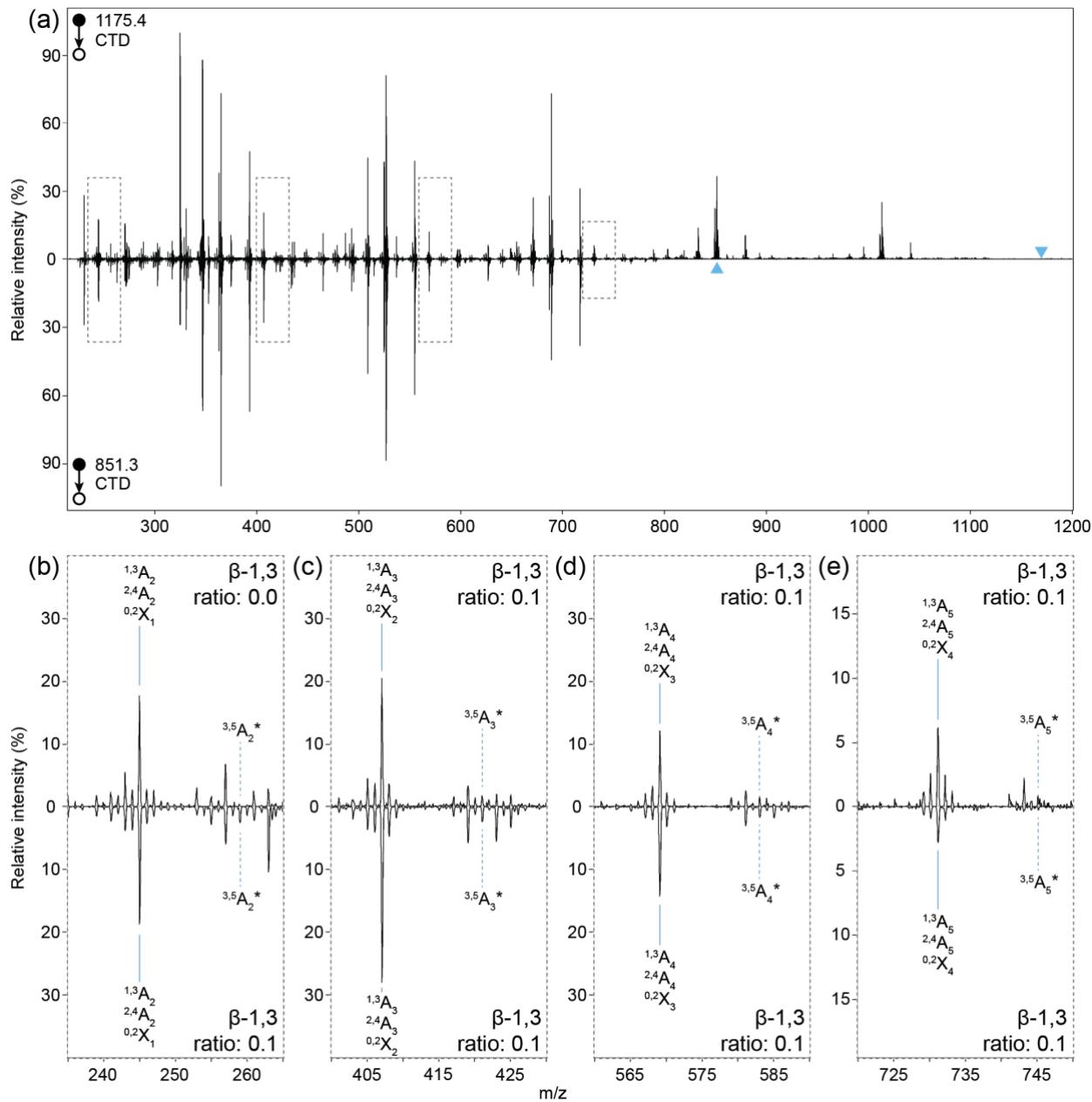
(c)


(d)

(e)

(f)

189


Figure 3: Fragmentation pattern indicative of a 1,3 glycosidic linkage from He-CTD on laminarin DP5. a) Structure of laminarin DP5 with observed cleavages in red. b) Fragment ions generated from laminarin DP5 ($[M+Na]^+$, $C_{30}H_{52}O_{26}Na$, m/z 851.26). c-f) Magnified regions show ratio of peak at m/z of $^{3,5}A_n$ over $^{1,3}A_n/^{2,4}A_n/^{0,2}X_{n-1}$ fragments characteristic of 1,3 linkages. Annotations following nomenclature of Domon and Costello.²⁹ The blue triangle indicates the m/z of the resonantly ejected precursor. The $^{3,5}A_n^*$ labels with an asterisk indicate that these fragments are only possible for a β -1,4 linkage at these positions.

190 A 1,4-linked carbohydrate could hypothetically produce $^{0,3}X_n$ and $^{3,5}X_n$ fragments, whereas a 1,3-linked
 191 carbohydrate cannot. However, neither the He-CTD product ion spectra of cellulose nor laminarin
 192 provided any notable $^{0,3}X_n/^{3,5}X_n$ fragment ions. The absence of $^{0,3}X_n/^{3,5}X_n$ fragments in He-CTD spectra is
 193 consistent with observations from electron-induced dissociation¹⁴ of similar substrates. In radical-driven
 194 fragmentation techniques, $^{0,3}X$ and $^{3,5}X$ cleavages are believed to form via a diradical, which then
 195 undergoes β -elimination to form a $^{1,5}X$ fragment.¹⁴ The higher intensity of $^{1,5}X_n$ fragments for cellulose
 196 (Figures 1a and 2b) compared to laminarin (Figures 3b and 4) supports this theory of β -elimination. In

197 contrast to laminarin, He-CTD of cellulose likely does form $^{0,3}X_n$ and $^{3,5}X_n$ fragments, which probably rapidly
 198 undergo β -elimination to form $^{1,5}X_n$ fragments. Resonance ejection experiments (described later) confirm
 199 that any consecutive fragmentations during He-CTD occur on the timescale that is faster than the time
 200 required for a primary product ion to obtain an unstable trajectory in the trap, which is on the order of a
 201 few rf oscillations at ~ 1 MHz, or ~ 50 μ s.³¹

202 In contrast to the unique $^{3,5}A_n$ ions for cellulose, laminarin can theoretically form $^{1,3}A_n$ fragments,
 203 whereas cellulose cannot. However, the $^{1,3}A_n$ fragments of laminarin are isobaric with the $^{2,4}A_n$ and $^{0,2}X_{n-1}$
 204 fragments of cellulose, so there are no unique mass fragments indicative of 1,3 linkages. Note, however,
 205 that when the $^{1,3}A_n$ fragment of laminarin coincides with the isobaric $^{2,4}A_n$ and $^{0,2}X_{n-1}$ fragments, laminarin
 206 provides peaks with a higher intensity for the combined $^{1,3}A_n/^{2,4}A_n/^{0,2}X_{n-1}$ peak than does cellulose for
 207 $^{2,4}A_n/^{0,2}X_{n-1}$ (Figures 2 and 3). The theoretical differences between cross-ring cleavages of cellulose and
 208 laminarin predict that the ratio of the abundance at $^{1,3}A_n/^{2,4}A_n/^{0,2}X_{n-1}$ to $^{3,5}A_n$ should be greatest for
 209 laminarin and the smallest for cellulose. Finally, $^{1,4}A_n/^{1,4}X_{n-1}$ fragment ions were less abundant in the He-
 210 CTD spectrum of cellulose when compared to laminarin, despite isobaric $^{0,3}A_n$ fragments that could
 211 theoretically be formed by cellulose, but not by laminarin. To our surprise, the intensity of the $^{1,4}A_n/^{1,4}X_{n-1}$
 212 fragments from laminarin were consistently >2 x the intensity of $^{0,3}A_n/^{1,4}A_n/^{1,4}X_{n-1}$ fragments from cellulose
 213 (Figures 2b and 3b). Relative to β -1,4-glycosidic linkages, the β -1,3-glycosidic linkage must favor 1,4 cross-
 214 ring cleavages. The consistent differences in fragment ion intensities from He-CTD spectra of cellulose and
 215 laminarin of different DPs demonstrate the dependency of cross-ring fragments on linkage position and
 216 may enable computational methods for carbohydrate identification.

217 In CID, the elevated internal energy of a precursor ion is randomized throughout the ion and
 218 consecutive fragmentation reactions are quite common because the primary product ions can be created
 219 with an excess of internal energy.³¹ Consecutive fragmentations are an expected part of the quasi-
 220 equilibrium theory of unimolecular fragmentation.^{11, 32-34} Such consecutive reactions are obviated, or at
 221 least less common, in non-ergodic fragmentations induced by electron activation.³⁵ In the present study,
 222 our conclusion about connectivity relies on signature fragments such as $^{3,5}A_n$ ions, and any consecutive
 223 fragmentation during He-CTD could jeopardize our approach to infer connectivity from fragment ions by
 224 creating uncertainty on the origin of these fragments.

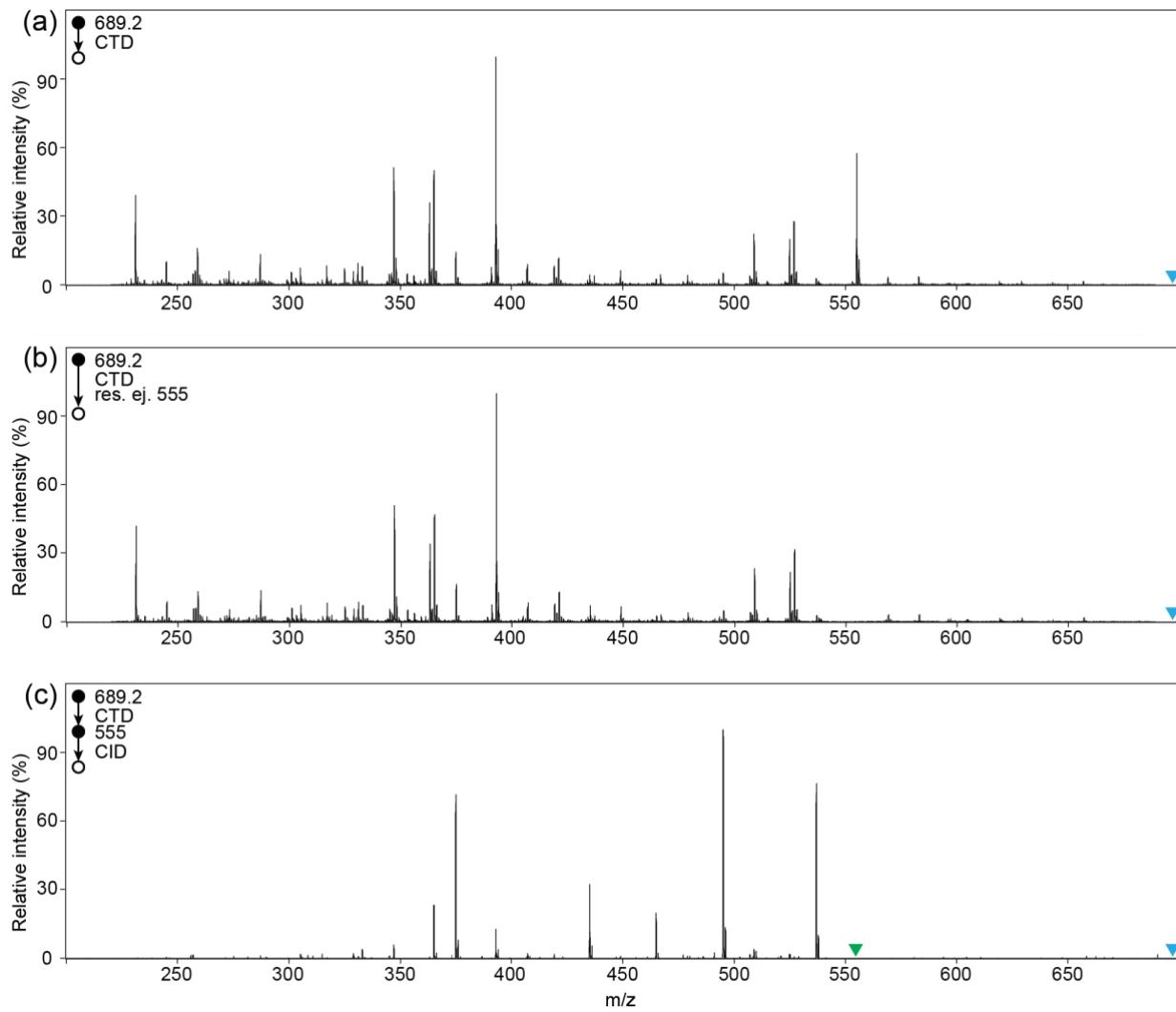


Figure 4: He-CTD on solid-phase-synthesized laminarin DP7 of high purity and commercially available laminarin DP5. a) Fragment ion spectrum of laminarin DP7 ($[M+Na]^+$, $C_{42}H_{72}O_{36}Na$, 851.26) on top and fragment ion spectrum of fragment ion spectrum of laminarin DP5 ($[M+Na]^+$, $C_{30}H_{52}O_{26}Na$, 851.26) below. b-e) Magnified regions show ratio of peak at m/z of $^{3,5}A_n$ over $^{1,3}A_n/^{2,4}A_n/^{0,2}X_{n-1}$ fragments characteristic of 1,3 linkages for laminarin DP7 on top and laminarin DP5 below. Annotations following the nomenclature of Domon and Costello.²⁹ Blue triangles indicate the m/z of the resonantly ejected precursor. The $^{3,5}A_n^*$ labels with an asterisk indicate that these fragments are only possible for a β -1,4 linkage at these positions.

225 To demonstrate the absence of consecutive fragmentation in He-CTD, we performed resonance
 226 ejection experiments of a variety of different primary products during He-CTD (Figure 5). For example, He-
 227 CTD of cellulose DP5 ($[M+Na]^+$, m/z 851.26) produces an abundant fragment at m/z 555 as well as a less

228 abundant fragment at m/z 495 (Figure 5b). Isolation of the He-CTD-product at m/z 555 followed by
229 collisional activation at the MS^3 level results in a base peak at m/z 495 in the MS^3 spectrum (Figure 5b),
230 which is easily rationalized by the loss of 60 Da ($C_2O_2H_4$). The fact that the fragment at m/z 555 *can* undergo
231 consecutive fragmentation to m/z 495 provides uncertainty in the relative proportion of m/z 495 that is
232 formed directly or via an intermediate fragment such as the one at m/z 555. However, resonant ejection
233 of m/z 555 during He-CTD did not cause any significant decrease in the abundance of the m/z 495, nor of
234 any other known CID products of m/z 555 (Figure 5b). Therefore, the fragment ions observed in the He-
235 CTD spectrum must result from direct cleavages, or consecutive fragmentations that are faster than a few
236 rf cycles at \sim 1 MHz. Similar observations were made on more than six different fragments for laminarin
237 and cellulose.

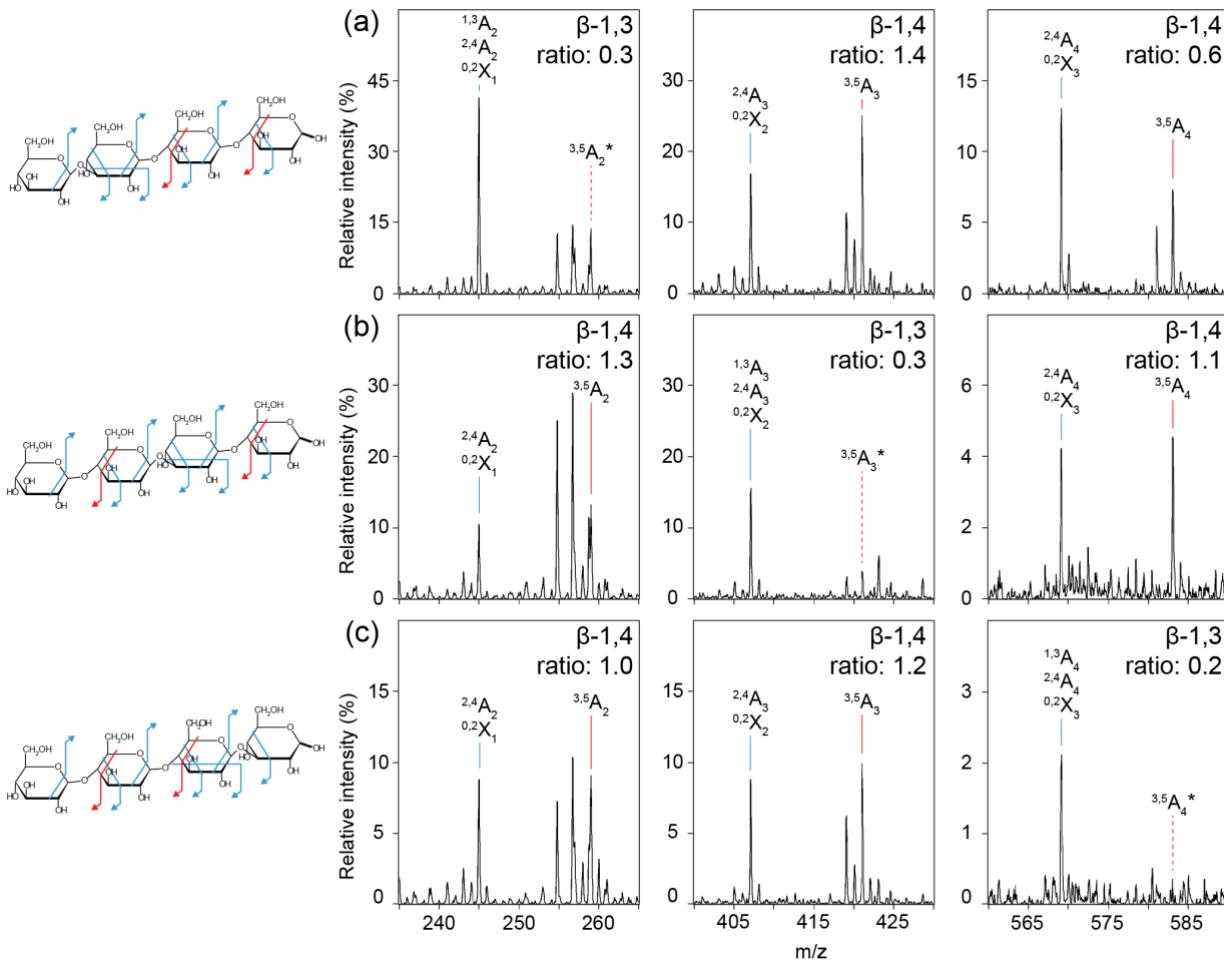

238 The lack of consecutive fragmentations in He-CTD, which is experimentally demonstrated here for
239 the first time, permits the exclusion of internal fragments or consecutive fragments when annotating He-
240 CTD product ion spectra. The fragment ions from a single cleavage event in He-CTD facilitate the *in-silico*
241 reconstruction of molecules and to decipher the linkage configuration of each glycosidic bond within a
242 carbohydrate.

Figure 5: He-CTD spectra of cellulose DP4 to demonstrate the absence of consecutive fragmentation during He-CTD. a) He-CTD of cellulose DP4 ($[M+Na]^+$, $C_{24}H_{42}O_{21}Na$, m/z 689.21). b) He-CTD of cellulose DP4 with simultaneous resonance ejection at m/z 555. c) He-CTD of cellulose DP4 followed by isolation and resonance excitation (CID) at m/z 555 ± 1 . Blue triangles indicate the m/z of the resonantly ejected precursor. The green triangle in c) indicates the m/z of the isolated and fragmented m/z 555 fragment ion.

244 *Linkage determination in structures with mixed linkages*

245 To validate our observations and verify that He-CTD can decipher the connectivity of mixed-linked
 246 carbohydrates, we analyzed three commercial mixed-linked tetrasaccharide standards (Figure 6). These
 247 isomers each contain two β -1,4 glycosidic bonds and one β -1,3 glycosidic bond, with the β -1,3 glycosidic

Figure 6: Linkage identification in three stereoisomers of mixed linked glucans via He-CTD. Left: Structures of mixed-linked tetrasaccharides differing in the position of the β -1,3 linkage. a–c) Regions of He-CTD spectra with ratio indicating the $^{3,5}A_n$ over $^{1,3}A_n/^{2,4}A_n/^{0,2}X_n$. $^{1,3}A_n$, $^{2,4}A_n$ and $^{0,2}X_n$ cleavages and fragment ions indicated in blue and $^{3,5}A_n$ cleavages and fragment ions in red. The $^{3,5}A_n^*$ labels with an asterisk indicate that these fragments are only possible for a β -1,4 linkage at these positions.

248 bond in position 1, 2 or 3. Position 1 refers to the glycosidic bond closest to the non-reducing end, position
 249 2 refers to the central glycosidic bond, and position 3 refers to the glycosidic bond furthest away from the
 250 non-reducing end and closest to the reducing end. Based on the experiments on cellulose and laminarin,
 251 one would expect that a β -1,3 linkage in a certain position would not produce a $^{3,5}A$ fragment ion at that
 252 position. Instead, one would expect the β -1,3 link to produce a $^{1,3}A$ fragment ion that enhances the
 253 abundance of the isobaric peaks with the identities $^{2,4}A$ and $^{0,2}X$. Moreover, fragments ions can be assigned
 254 to originate from a specific cleavage due to the absence of consecutive fragmentation.

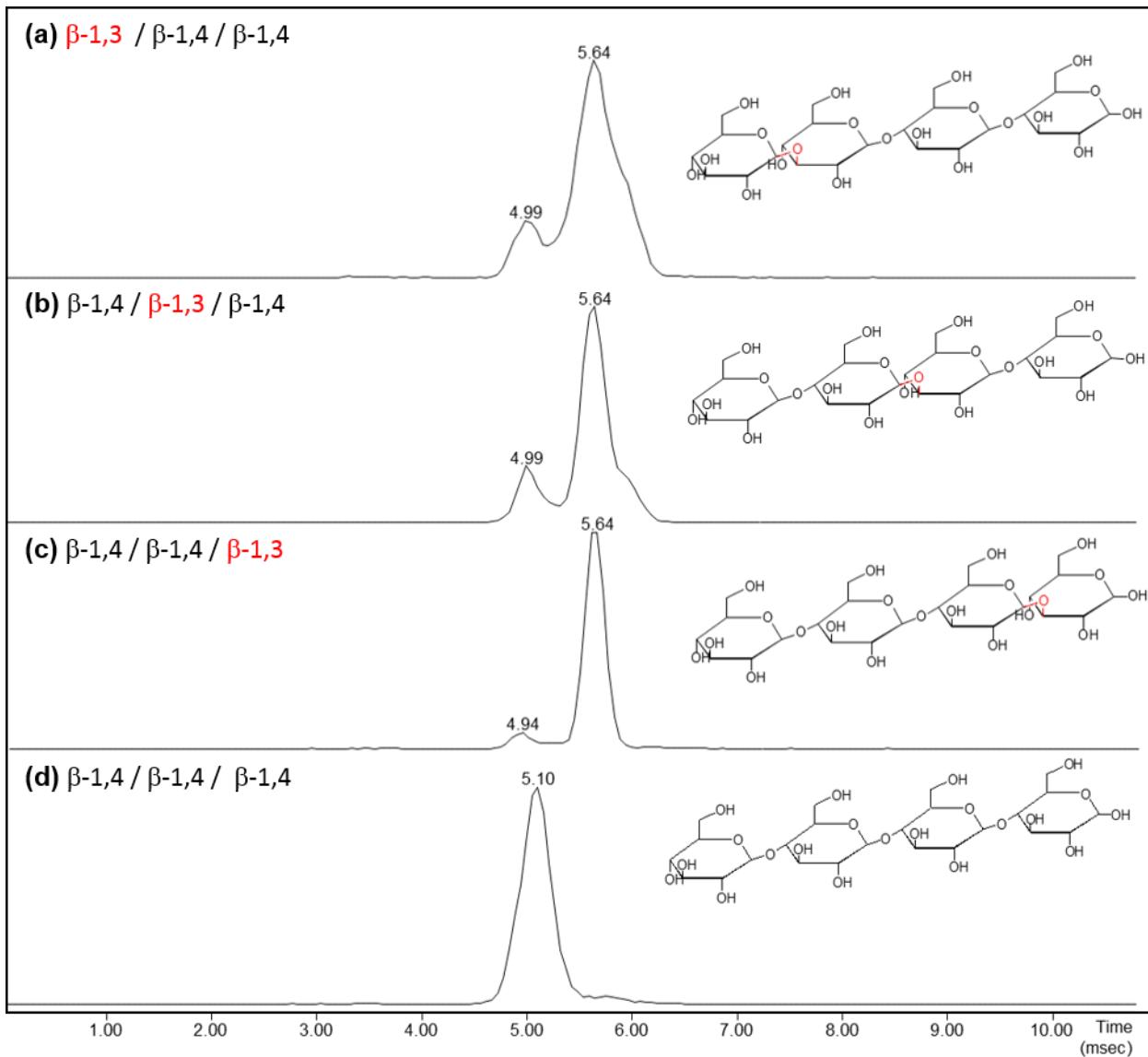
255 For He-CTD of the mixed-linked tetrasaccharides ($[M+Na]^+$, $C_{24}H_{42}O_{21}Na$, m/z 689.21), the
 256 abundances of the $^{3,5}A_n$ fragment ions are markedly reduced in positions that contain the β -1,3 linkages,

257 whereas the $^{3,5}A_n$ fragments are similar or greater in abundance than the corresponding $^{1,3}A_n/^{2,4}A_n/^{0,2}X_{n-1}$
 258 ions in positions that contain the β -1,4 linkages (Figure 6). For example, the first panel in Figure 6a is of
 259 He-CTD of the tetrasaccharide with the linkages in the order β -1,3/ β -1,4/ β -1,4. At the β -1,3 linkage, the
 260 abundance of the $^{3,5}A_2$ peak at m/z 259 is 0.3x the abundance of the $^{1,3}A_2/^{2,4}A_2/^{0,2}X_1$ peak at m/z 245. In
 261 contrast, the second panel of Figure 6a shows that, in the first β -1,4 position, the abundance of the $^{3,5}A_3$
 262 peak at m/z 421 is 1.4x the abundance of the $^{2,4}A_3/^{0,2}X_2$ peak at m/z 417. In all but one case, the abundances
 263 of the $^{3,5}A_n$ ions at the β -1,4 positions exceed the abundances of the corresponding $^{2,4}A_n/^{0,2}X_{n-1}$ ions.

264 In contrast to He-CTD, CID on the mixed-linked tetrasaccharides did not yield fragment ions that
 265 could reveal the connectivity of the three tetrasaccharides (see Fig. S1 in the Supporting Information SI).
 266 For example, the abundance of the $^{2,4}A_2/^{0,2}X_1$ reference peak at m/z 245 is very weak; the abundance is
 267 consistently less than 1%. In contrast, the He-CTD results in Figure 6 show that the abundance of the same
 268 fragments is consistently greater than 7%. Whereas the absence of the corresponding $^{3,5}A_2$ peak at m/z
 269 259 in Fig. S1a is correctly indicative of the β -1,3 linkage in this isomer, this indicator of β -1,4 linkages is
 270 also unreliably weak in Fig. S1b and c. Another example of the ambiguity of the CID spectra is that the $^{3,5}A_4$
 271 fragments at m/z 583 were not observed at all in the two isomers that theoretically can provide this
 272 fragment. The absence of any signal for the $^{3,5}A_4$ peak might erroneously lead one to conclude that there
 273 might be a β -1,3 linkage at this position. In short, the abundances of the $^{3,5}A_n$ and $^{2,4}A_n/^{0,2}X_{n-1}$ fragments
 274 ions in CID were not helpful in differentiating β -1,3 from β -1,4 linkages.

275 Returning to the He-CTD spectra on the three isomeric tetrasaccharides, we were initially
 276 disappointed that the ratios of the $^{3,5}A_n$ to $^{2,4}A_n/^{0,2}X_{n-1}$ products ions were not as unambiguous as the iso-
 277 linked cellulose and laminarin standards. For example, the ratio of $^{3,5}A_n$ to $^{2,4}A_n/^{0,2}X_{n-1}$ always exceeded 1.5
 278 in cellulose (Figure 2c-f), but the same β -1,4 linkage in one of the mixed-link tetrasaccharides only provided
 279 a ratio of 0.6 (Figure 6a). A hypothetical possibility to explain the abundance at the $^{3,5}A_2$ and $^{3,5}A_3$ ions seen
 280 for cellulose in Figure 6a and 6b is through internal fragments such as $Y_2/^{3,5}A_4$ (or $Y_3/^{3,5}A_3$) and $Y^3/^{3,5}A_4$,
 281 respectively. If such internal fragments were also possible in the mixed-linkage tetrasaccharides, then CTD
 282 of the tetrasaccharide with the β -1,3 in position 3 (Figure 6c) could not generate an internal fragment that
 283 is isobaric to $^{3,5}A_4^*$, and thus has the lowest ratio of contaminant cross-ring fragments. However, for such
 284 internal fragments to be observed in the resonance ejection experiments described above, the cleavage
 285 sites on either end of the internal fragment must occur pseudo-simultaneously. Given that there is no
 286 adequate mechanism to explain such simultaneous activation at disparate sites of the precursor in a single
 287 collision event, the occurrence of internal fragments in CTD seems less likely than the presence of

288 impurities. Also, previous work with heavy ^{18}O labeling on the reducing terminus of Iota- and Kappa-
289 carrageenans showed that CTD spectra were devoid of internal fragments.²³


290

291 We, therefore, investigated alternative reasons for the slight ambiguity in the He-CTD spectra of the mixed
292 linked tetrasaccharides compared to our cellulose and laminarin standards. One obvious explanation are
293 isomeric (or isobaric) impurities in the mixed-linked tetrasaccharides. To confirm this hypothesis, ion
294 mobility-mass spectrometry (IM-MS) was performed on the three tetrasaccharides and cellulose DP4

Carbohydrate connectivity from He-CTD

295 (Figure

7).

296

Figure 7: Ion mobility spectra on mixed-linked tetrasaccharide standards and cellulose DP4 (all $([M+Na]^+, C_{24}H_{42}O_{21}Na, m/z 689.21)$). Sequence order of glycosidic linkages is presented in the top left corner of each subplot.

297 Arrival time distributions (ATDs) from IM-MS recorded for the precursor at $m/z 689.2$ exhibited a
 298 single isoform for the pure β -1,4 cellulose DP4 with an arrival time of 5.1 msec (Figure 7d). In contrast,
 299 ATDs for the precursor at $m/z 689.2$ of the three mixed-linked tetrasaccharides indicated the presence of
 300 one or more impurities in all the tetrasaccharide standards (Figure 7a-c). The main isoform has an arrival
 301 time of 5.64 msec in all three samples. Based on the precursor mass and ion mobility measurement at this
 302 resolution, each mixed-link isomer is indistinguishable from the others. However, the ATDs in Figure 7a-c
 303 clearly show the presence of impurities that are isobaric with, but have measurably different ion mobilities

304 than, the mixed-linked tetrasaccharides at m/z 689.2. The impurities must therefore be branched
305 impurities of have more than one β -1,3 linkage.

306

307 The ATDs serve as a measure of the degree of purity of the mixed-linked tetrasaccharides. A small-
308 to-significant isoform at 5.0 msec in Figures 7a-c suggests a slight to significant contamination by a β -1,4
309 tetrasaccharide in each sample. In addition, the peak at 5.6 msec in Figure 7b contains a shoulder on the
310 right-hand-side for the structure with the β -1,3 bond at position 2, and the same shoulder is even more
311 apparent in Figure 7a with the β -1,3 bond at position 1. The shapes of the ATDs testify the occurrence of
312 a greater diversity of conformers or linkages in these samples than initially expected. However, as
313 described below, the correlation between the diversity of structures in the ATD and the unexpected
314 abundance at the $^{3,5}A_n$ positions indicates that the diversity of structures in the ATD is more likely to be
315 due to aberrant linkages rather than dispersity in gas phase conformations.

316 The proportion of contaminant isomers as revealed by ion mobility in each of the mixed-linked
317 tetrasaccharides correlates with the intensity of fragment ions in He-CTD that did not match the expected
318 linkage position (Figure 6). For example, for structure C, the ATD contains the purest isoform at 5.6 msec
319 (Figure 7c). Accordingly, the He-CTD spectrum (Figure 6c) shows a pure structure with the β -1,3 glycosidic
320 linkage in position 3 with a negligible peak at m/z 583 where the $^{3,5}A_4$ fragment would appear if a β -1,4 (or
321 1,6) linkage was present. The ratio of $^{3,5}A_3$ to $^{2,4}A_3/^{0,2}X_2$ exceeds 1 for the other linkages, just like the
322 cellulose standards (Figures 1 and 2). Concerning the structure B in Figure 7b, the contamination at 5.0
323 msec is more pronounced and the shoulder around 6.0 msec is also more pronounced. The corresponding
324 He-CTD spectrum (Figure 6b) provides a ratio for the intensity of the $^{3,5}A_3$ and $^{1,3}A_3/^{2,4}A_3/^{0,2}X_2$ fragments
325 of 0.3. The minor $^{3,5}A_3$ peak in this isomer indicates that the major structure has the expected β -1,3
326 glycosidic linkage at position 2 and that the contaminants present have either a 1,4 or 1,6 linkage at this
327 position. The latter is supported by the presence of a $^{3,5}A_3$ fragment ion, which cannot arise from either
328 1,2- nor 1,3-linked carbohydrates. The peak at 5.0 msec and the shoulder of the dominant peak in the ATD
329 of structure A in Figure 7a indicate that this isomer has the largest contribution of mixed-link impurities.
330 This isomer yielded the most ambiguous ratio of $^{3,5}A_4$ to $^{2,4}A_4/^{0,2}X_3$ of the three isomers (Figure 6a).

331 The evidence suggests that, in this case study, deviations from the expected ion ratios in the He-
332 CTD spectra are caused by impurities of the mixed-linked isomers and not by inconsistencies in the
333 performance of He-CTD itself. The quality of the structural information produced in He-CTD could be

Carbohydrate connectivity from He-CTD

334 further enhanced if He-CTD was coupled with liquid chromatography or ion mobility to address the issue
335 of heterogeneous mixtures of carbohydrates.

336 Conclusion

337 He-CTD can be used to determine the connectivity, i.e. the position of the glycosidic bond, of β -1,3- and
338 β -1,4-linked native carbohydrates. The same He-CTD capabilities have not yet been tested in such detail
339 for linkages with different anomericity (e.g. β -1,3 versus α -1,3) or different connectivity (e.g. β -1,3 versus
340 β -1,6). One characteristic of He-CTD that enables such unambiguous structural characterization is the
341 demonstration that consecutive fragmentations are not observed in the He-CTD product ion spectra.
342 Although He-CTD creates high energy, radical, cross-ring cleavages, fragmentation does not continue past
343 the primary fragments, and cleavages at multiple sites are not observed.

344 The abundance of specific cross-ring fragments from He-CTD depends on the position of the
345 respective glycosidic bond. Although relatively low in intensity, the comparison of the abundance of cross-
346 ring fragments to other cross-ring fragments provides a simple tool to assign connectivity. In the few
347 examples that provided slightly ambiguous ratios for the expected β -1,3 linkages, ion mobility
348 spectrometry confirmed that the ambiguity was proportional to the abundance of impurities in the mixed-
349 linked standards. To be able to fully use the potential of He-CTD activation on complex mixtures, an
350 efficient separation technique such as IMS would be required. Coupling He-CTD to IMS holds a number of
351 advantages as IMS can distinguish compositional isomers, e.g. glucose from galactose³⁶ and multistage
352 high-resolution ion mobility can discriminate anomers and distinguish isomeric fragment ions from both
353 ends of the molecule.^{37,38} Although IMS-CTD would need to be demonstrated experimentally, an analytical
354 instrument combining IMS prior to He-CTD fragmentation and permitting high-resolution ion mobility on
355 precursor and fragment ions would enable unprecedented structural information on each peak/conformer
356 in an arrival time distribution. In addition, the activation times in He-CTD are compatible with condensed-
357 phase separation techniques such as hydrophilic interaction chromatography (HILIC), porous graphitic
358 carbon (PGC) and electrophoretic separation methods, so any of these condensed-phase separation
359 approaches could also be coupled to resolve the question about the identity of the isobaric impurities in a
360 sample. On-line HPLC-CTD-MS or IMS-CTD-MS therefore has significant potential for the structural
361 elucidation of unknown and complex oligosaccharides.

362

363

364 **Author information**

365 *Corresponding authors*

366 *Glen P. Jackson, Email: glen.jackson@mail.wvu.edu

367 *David Ropartz, Email: david.ropartz@inrae.fr

368 *ORCID*

369 Hagen Buck-Wiese: 0000-0002-4807-5795

370 Mathieu Fanuel: 0000-0001-8384-8266

371 Manuel Liebeke: 0000-0002-2339-1409

372 Peter H. Seeberger: 0000-0003-3394-8466

373 Jan-Hendrik Hehemann: 0000-0002-8700-2564

374 Helene Rogniaux: 0000-0001-6083-2034

375 Glen P. Jackson: 0000-0003-0803-6254

376 David Ropartz: 0000-0003-4767-6940

377 *Author Contributions*

378 JHH and ML initiated the project. HBW, MF, GPJ and DR performed MS experiments. KLMH, APV and PHS
379 synthesized pure standards. HBW, HR, GPJ and DR wrote the manuscript. All authors contributed to the
380 interpretation of the results, reviewed the manuscript and have given approval to the final version.

381 *Notes*

382 The authors declare no competing financial interest.

383

384 **Acknowledgements**

385 This material is based upon work supported by the National Science Foundation (NSF) under Grant No.
386 CHE-1710376. Any opinions, findings, and conclusions or recommendations expressed in this material are
387 those of the authors and do not necessarily reflect the views of the NSF. HBW acknowledges support from
388 the Max-Planck-Society for doctoral studies and research travel opportunities. PHS thanks the Max-Planck-
389 Society for generous financial support. The authors thank Guillermo Cayon for help with figure design.

390 References

391 1. Laine, R.A.: Invited Commentary: A calculation of all possible oligosaccharide isomers both
 392 branched and linear yields 1.05×10^{12} structures for a reducing hexasaccharide: the Isomer
 393 Barrier to development of single-method saccharide sequencing or synthesis systems.
 394 *Glycobiology*. **4**, 759-767 (1994).

395 2. Julius, M.L.: Carbohydrate Diversity in Microalgae. *Microalgae in Health and Disease Prevention*,
 396 p. 133-144. (2018).

397 3. Clausen, H. and S.-i. Hakomori: ABH and Related Histo-Blood Group Antigens; Immunochemical
 398 Differences in Carrier Isotypes and Their Distribution1. *Vox Sang.* **56**, 1-20 (1989).

399 4. Liu, Y.-H., N. Fujitani, Y. Koda, and H. Kimura: Distribution of H Type 1 and of H Type 2 Antigens of
 400 ABO Blood Group in Different Cells of Human Submandibular Gland. *J Histochem Cytochem.* **46**,
 401 69-76 (1998).

402 5. Patnode, M.L., Z.W. Beller, N.D. Han, J. Cheng, S.L. Peters, N. Terrapon, B. Henrissat, S. Le Gall, L.
 403 Saulnier, D.K. Hayashi, A. Meynier, S. Vinoy, R.J. Giannone, R.L. Hettich, and J.I. Gordon:
 404 Interspecies Competition Impacts Targeted Manipulation of Human Gut Bacteria by Fiber-Derived
 405 Glycans. *Cell*. **179**, 59-73 e13 (2019).

406 6. Heiss, C., J. Stacey Klutts, Z. Wang, T.L. Doering, and P. Azadi: The structure of Cryptococcus
 407 neoformans galactoxylomannan contains β -d-glucuronic acid. *Carbohydr Res.* **344**, 915-920
 408 (2009).

409 7. He, H., Y. Wen, Z. Guo, P. Li, and Z. Liu: Efficient Mass Spectrometric Dissection of Glycans via Gold
 410 Nanoparticle-Assisted in-Source Cation Adduction Dissociation. *Anal Chem.* **91**, 8390-8397 (2019).

411 8. Cody, R.B., R.C. Burnier, and B.S. Freiser: Collision-Induced Dissociation with Fourier Transform
 412 Spectrometry. *Anal Chem.* **54**, 96-101 (1982).

413 9. Zaia, J.: Mass Spectrometry and Glycomics. *OMICS A Journal of Integrative Biology*. **14** (2010).

414 10. Deguchi, K., H. Ito, Y. Takegawa, N. Shinji, H. Nakagawa, and S. Nishimura: Complementary
 415 structural information of positive- and negative-ion MS_n spectra of glycopeptides with neutral and
 416 sialylated N-glycans. *Rapid Commun Mass Spectrom.* **20**, 741-6 (2006).

417 11. Chen, X., Z. Wang, Y.E. Wong, R. Wu, F. Zhang, and T.D. Chan: Electron-ion reaction-based
 418 dissociation: A powerful ion activation method for the elucidation of natural product structures.
 419 *Mass Spectrom Rev.* **37**, 793-810 (2018).

420 12. An, H.J. and C.B. Lebrilla: Structure elucidation of native N- and O-linked glycans by tandem mass
 421 spectrometry (tutorial). *Mass Spectrom Rev.* **30**, 560-78 (2011).

422 13. Hoffmann, W.D. and G.P. Jackson: Charge transfer dissociation (CTD) mass spectrometry of
 423 peptide cations using kiloelectronvolt helium cations. *J Am Soc Mass Spectrom.* **25**, 1939-43
 424 (2014).

425 14. Tang, Y., Y. Pu, J. Gao, P. Hong, C.E. Costello, and C. Lin: De Novo Glycan Sequencing by Electronic
 426 Excitation Dissociation and Fixed-Charge Derivatization. *Anal Chem.* **90**, 3793-3801 (2018).

427 15. Tang, Y., J. Wei, C.E. Costello, and C. Lin: Characterization of Isomeric Glycans by Reversed Phase
 428 Liquid Chromatography-Electronic Excitation Dissociation Tandem Mass Spectrometry. *J Am Soc*
 429 *Mass Spectrom.* **29**, 1295-1307 (2018).

430 16. Wong, Y.L.E., X. Chen, R. Wu, Y.L.W. Hung, and T.D. Chan: Structural Characterization of Intact
 431 Glycoconjugates by Tandem Mass Spectrometry Using Electron-Induced Dissociation. *Anal Chem.*
 432 **89**, 10111-10117 (2017).

433 17. Pu, Y., M.E. Ridgeway, R.S. Glaskin, M.A. Park, C.E. Costello, and C. Lin: Separation and
 434 Identification of Isomeric Glycans by Selected Accumulation-Trapped Ion Mobility Spectrometry-
 435 Electron Activated Dissociation Tandem Mass Spectrometry. *Anal Chem.* **88**, 3440-3 (2016).

436 18. Yu, X., Y. Huang, C. Lin, and C.E. Costello: Energy-dependent electron activated dissociation of
437 metal-adducted permethylated oligosaccharides. *Anal Chem.* **84**, 7487-94 (2012).

438 19. Kornacki, J.R., J.T. Adamson, and K. Hakansson: Electron detachment dissociation of underivatized
439 chloride-adducted oligosaccharides. *J Am Soc Mass Spectrom.* **23**, 2031-42 (2012).

440 20. Schaller-Duke, R.M., M.R. Bogala, and C.J. Cassady: Electron Transfer Dissociation and Collision-
441 Induced Dissociation of Underivatized Metallated Oligosaccharides. *J Am Soc Mass Spectrom.* **29**,
442 1021-1035 (2018).

443 21. Klein, D.R., F.E. Leach, 3rd, I.J. Amster, and J.S. Brodbelt: Structural Characterization of
444 Glycosaminoglycan Carbohydrates Using Ultraviolet Photodissociation. *Anal Chem.* **91**, 6019-6026
445 (2019).

446 22. Crittenden, C.M., E.E. Escobar, P.E. Williams, J.D. Sanders, and J.S. Brodbelt: Characterization of
447 Antigenic Oligosaccharides from Gram-Negative Bacteria via Activated Electron Photodetachment
448 Mass Spectrometry. *Anal Chem.* **91**, 4672-4679 (2019).

449 23. Ropartz, D., P. Li, G.P. Jackson, and H. Rogniaux: Negative Polarity Helium Charge Transfer
450 Dissociation Tandem Mass Spectrometry: Radical-Initiated Fragmentation of Complex
451 Polysulfated Anions. *Anal Chem.* **89**, 3824-3828 (2017).

452 24. Ropartz, D., P. Li, M. Fanuel, A. Giuliani, H. Rogniaux, and G.P. Jackson: Charge Transfer
453 Dissociation of Complex Oligosaccharides: Comparison with Collision-Induced Dissociation and
454 Extreme Ultraviolet Dissociative Photoionization. *J Am Soc Mass Spectrom.* **27**, 1614-9 (2016).

455 25. Plante, O.J., E.R. Palmacci, and P.H. Seeberger: Automated solid-phase synthesis of
456 oligosaccharides. *Science.* **291**, 1523-7 (2001).

457 26. Niedermeyer, T.H. and M. Strohalm: mMass as a software tool for the annotation of cyclic peptide
458 tandem mass spectra. *PLoS One.* **7**, e44913 (2012).

459 27. Strohalm, M., D. Kavan, P. Novák, M. Volný, and V. Havlíček: mMass 3: A Cross-Platform Software
460 Environment for Precise Analysis of Mass Spectrometric Data. *Anal Chem.* **82**, 4648-4651 (2010).

461 28. Strohalm, M., M. Hassman, B. Kosata, and M. Kodicek: mMass data miner: an open source
462 alternative for mass spectrometric data analysis. *Rapid Commun Mass Spectrom.* **22**, 905-8 (2008).

463 29. Domon, B. and C.E. Costello: A systematic nomenclature for carbohydrate fragmentations in FAB-
464 MS/MS spectra of glycoconjugates. *Glycoconj J.* **5**, 397-409 (1988).

465 30. R Core Team, *R: A language and environment for statistical computing*. R Foundation for Statistical
466 Computing: Vienna, Austria (2019).

467 31. Vachet, R.W., K.L. Ray, and G.L. Glish: Origin of Product Ions in the MS/MS Spectra of Peptides in
468 a Quadrupole Ion Trap. *J Am Soc Mass Spectrom.* **9**, 341-344 (1998).

469 32. Sleno, L. and D.A. Volmer: Ion activation methods for tandem mass spectrometry. *J Mass
470 Spectrom.* **39**, 1091-1112 (2004).

471 33. Rosenstock, H.M., M.B. Wallenstein, A.L. Wahrhaftig, and H. Eyring: Absolute Rate Theory for
472 Isolated Systems and the Mass Spectra of Polyatomic Molecules. *Proc Natl Acad Sci U S A.* **38**, 667-
473 678 (1952).

474 34. Marcus, R.A.: Unimolecular Dissociations and Free Radical Recombination Reactions. *J Chem Phys.*
475 **20**, 359-364 (1952).

476 35. Zubarev, R.A., N.L. Kelleher, and F.W. McLafferty: Electron Capture Dissociation of Multiply
477 Charged Protein Cations. A Nonergodic Process. *J Am Chem Soc.* **120**, 3265-3266 (1998).

478 36. Hofmann, J., H.S. Hahm, P.H. Seeberger, and K. Pagel: Identification of carbohydrate anomers
479 using ion mobility-mass spectrometry. *Nature.* **526**, 241-244 (2015).

480 37. Ujma, J., D. Ropartz, K. Giles, K. Richardson, D. Langridge, J. Wildgoose, M. Green, and S. Pringle:
481 Cyclic Ion Mobility Mass Spectrometry Distinguishes Anomers and Open-Ring Forms of
482 Pentasaccharides. *J Am Soc Mass Spectrom.* **30**, 1028-1037 (2019).

483 38. Ropartz, D., M. Fanuel, J. Ujma, M. Palmer, K. Giles, and H. Rogniaux: Structure Determination of
484 Large Isomeric Oligosaccharides of Natural Origin through Multipass and Multistage Cyclic
485 Traveling-Wave Ion Mobility Mass Spectrometry. *Anal Chem.* **91**, 12030-12037 (2019).

486

487