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Abstract

This study investigated the relationship between the personal traits and computational thinking
skills of second graders within the context of robotics activities. The hypothesized model showed
that learning preference, intrinsic motivation, and self-efficacy were the main predictors of
coding achievement and computational thinking skills, while no direct relationship was found
between learning preference, intrinsic, or extrinsic motivation. The final path analysis revealed
that intrinsic and extrinsic motivation predict self-efficacy, self-efficacy predicts coding
achievement, and coding achievement predicts computational thinking skills. Another important
finding was the strong impact of self-efficacy on coding achievement as well as computational
thinking skills. Results are interpreted with reference to implications for potential methods of
improving computational thinking skills when using robotics in the lower grades in elementary
schools.

Keywords: robotics, intrinsic motivation, extrinsic motivation, self-efficacy, coding achievement, computational
thinking skills

1. Introduction

Robotics, as a promising new way to engage students in STEM (Atmatzidou & Demetriadis, 2016), can benefit
students in various ways such as inspiring them to engage in STEM careers (Gomoll, Hmelo-Silver, Sabanovi¢, &
Francisco, 2016; Master, Cheryan, Moscatelli, & Meltzoff, 2017), enhancing students’ higher order thinking skills
(Blanchard, Freiman, & Lirrete-Pitre, 2010), and improving students’ science literacy (Sullivan, 2008). The
integration of robotics into education has gained increasing attention from researchers and teachers alike, and is being
widely introduced in schools from kindergarten to university (Xia & Zhong, 2018). In particular, robotics in
elementary schools has attracted significant interest over the past few years, and numerous empirical studies on the
effects of robotics on young students have been conducted. For instance, Hong, Yu, and Chen (2011) reported that
elementary students’ collaboration and problem-solving skills were enhanced by engaging in robot design activities.
Students reflected deeply on the design challenges they engaged in, in addition to cooperating with peers (Hong et al,
2011). Barker and Ansorge (2007) implemented an after-school program where science and technology courses
integrated robotics for 9-11 years old students. Their findings indicated that robotics was an effective tool for teaching
students science, engineering, and technical concepts. The application of robotics in schools is not, however, confined
to only science-related subjects; it has great potential in other subjects as well. For example, Chang and colleagues
(2010) used a humanoid robot to teach a second language in an elementary school. Results suggested that the students
were more motivated to learn in the interactive and engaging learning environment created by the robot (Chang et al.,
2010).

In her seminal paper on computational thinking (CT), Wing (2006) proposed that CT “represents a universally
applicable attitude and skill set for everyone, not just for computer scientists, who would be eager to learn and use”
(p. 33). Since then, the studies on CT around the world have been accumulating momentum, covering a wide range of
topics such as the integration of CT in K-12 education (Sengupta, Kinnebrew, Basu, Biswas, & Clark, 2013; Yadav,
Hong, & Stephenson, 2016), the development of CT (Ching, Hsu, & Baldwin, 2018; Ioannou & Makridou, 2018), and
the assessment of CT (Chen et al., 2017; Zhong, Wang, Chen, & Li, 2016). Despite the myriad of ways to foster CT,
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the development of CT through robotics has attracted the most attention. For instance, Leonard et al. (2016) described
a pilot study in which LEGO EV3 robotics and game design were used to develop middle school students’ CT
strategies. Their findings indicated that students’ CT strategies were improved as a result of engaging in robotics and
game design. Atmatzidou and Demetriadis (2016) showed that junior high and high school vocational students’ CT
skills were improved significantly towards the end of the learning activity with Lego Mindstorms NXT.

Broadly speaking, existing studies on the application of robotics in education show that educational robots can foster
students’ cognitive and social skills (Ioannou & Makridou, 2018), with some studies indicating that the use of robotics
can improve students’ CT skills (Atmatzidou & Demetriadis, 2016; Leonard et al., 2016). However, there is a paucity
of studies investigating the personal traits (e.g., self-efficacy) relating to the development of CT skills in the context
of educational robotics at the elementary school level. Moreover, in their review of the potential of using robotics to
develop CT skills, although Ioannou and Makridou (2018) identified 9 empirical studies published as of 2016, notably,
none of those studies were conducted in the context of elementary education. To fill this gap in research, students’
personal traits (e.g., self-efficacy, learning preference, and motivation, etc.) in relation to CT skills in robotics were
explored in this study. The research question that guided this study was: What are the personal traits that influence
coding achievement and computational thinking skills of second grade students in robotic activities?

2. Literature Review for Constructing Hypotheses

In this section, the authors reviewed previous relevant studies on the six variables of interest in this study, namely,
learning preference, intrinsic motivation, extrinsic motivation, self-efficacy, coding achievement, and computational
thinking skills. Based on the review, the rationale for the seven proposed hypotheses was presented. Moreover, a
research model that contained the relationships between variables was developed.

2.1. Learning Preference, Motivation and Self-Efficacy

Self-efficacy, as defined by Bandura (1986), is “people’s judgments of their capabilities to organize and execute
courses of action required to attain designated types of performances” (p. 391). Over the years, self-efficacy has been
studied in various academic subject areas, and a range of specific measures have been produced (Aesaert & Van Braak,
2014). For example, mathematical self-efficacy (Ozgen, 2013), ICT self-efficacy (Aesaert & Van Braak, 2014),
reading self-efficacy (Baker & Wigfield, 2011), and computer self-efficacy (Shiue, 2005).

However, to the best knowledge of authors in this study, no studies have investigated the relationship between learning
preference and self-efficacy in K-12 robotics learning environment. To fill this gap, this exploratory study thus
hypothesized that students’ learning preference is positively related to self-efficacy:

H1: Student’s learning preference is positively related to self-efficacy.

As proposed by Oxford and Shearin (1994), motivation is regarded as “a built-in unconscious striving towards more
complex and differentiated development of the individual’s mental structures” (p. 23). And since motivation is a very
broad concept, it is hard to cover all its aspects (de Brabander & Martens, 2014). For instance, self-determination
theory only distinguished between two kinds of motivation: intrinsic and extrinsic motivation (Deci & Ryan, 1985;
Jon Chao Hong, Hwang, Tai, & Lin, 2017). Further, intrinsic motivation refers to “doing an activity for the inherent
satisfaction of the activity itself” (Ryan & Deci, 2000, p. 71). Prior studies have demonstrated that when learners are
faced with challenges, those who are intrinsically motivated tend to persist more than those who are extrinsically
motivated (Grant, 2008). As described above, self-efficacy has been studied in various subject areas, and is perceived
as an important facet when investigating human learning.

Quite a few of the studies have been conducted to investigate the relationship between intrinsic motivation and self-
efficacy. Hong et al. (2017) found that the intrinsic motivation of learning Chinese could predict online learning self-
efficacy. Similar results could be found in another study in which the intrinsic motivation, combined with extrinsic
motivation and academic achievement, could predict students’ social studies self-efficacy and is accountable for 64%
of self-efficacy variance (Kilicoglu, 2018). Based on the above listed evidence, this study hypothesized that students’
intrinsic motivation is positively related to self-efficacy:

H2: Student’s intrinsic motivation is positively related to self-efficacy.



This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at
Information Discovery and Delivery, published by Emerald Group Publishing, Ltd. Copyright restrictions may apply. doi: 10.1108/IDD-09-
2019-0065

Extrinsic motivation refers to the performance of activities driven by an outcome or by external factors (e.g., personal
benefits such as promotion) (Ryan & Deci, 2000). Self-efficacy is perceived by an individual as successfully
performing a given task (Huang & Liaw, 2007), and as proposed by Bandura (1977), self-efficacy can be connected
to certain behaviors related to achievement, for example, skills performance, motivation, and choice of activities.
Studies have been conducted to investigate the relationship between extrinsic motivation and self-efficacy (e.g.,
Kilicoglu, 2018; Liao, Edlin, & Ferdenzi, 2014; McGeown et al., 2014). For instance, Kiligoglu (2018) found that
extrinsic motivation combined with intrinsic motivation and academic achievement could explain 64% of the variance
in self-efficacy. Liao et al. (2014) found that self-efficacy measures had a strong correlation with both intrinsic and
extrinsic motivation measures. McGeown et al. (2014) revealed that self-efficacy predicted significant variances in
extrinsic motivation. The studies reviewed above confirmed an existing relationship between self-efficacy and
extrinsic motivation regardless of which one is the predictive variable in research. Thus, this study hypothesized that
students’ extrinsic motivation is positively related to self-efficacy:

H3: Student’s extrinsic motivation is positively related to self-efficacy.

As reviewed above, various studies have investigated the relationship between extrinsic motivation and self-efficacy
(e.g., Kiligoglu, 2018; Liao et al., 2014; McGeown et al., 2014). And it was hypothesized in H3 that students’ extrinsic
motivation is positively related to self-efficacy. Numerous studies indicated that self-efficacy has a positive
relationship with academic performance (e.g., Richardson, Bond, & Abraham, 2012; Robbins, Lauver, Le, David, &
Langley, 2004). And HS5 in this study hypothesized that students’ self-efficacy is positively related to coding
achievement. Moreover, given the paucity of studies directly investigating the relationship between extrinsic
motivation and coding achievement, an indirect hypothesis that student’s extrinsic motivation is positively related to
coding was proposed based on H3 and H5.

H4: Student’s extrinsic motivation is positively related to coding achievement.
HS: Student’s self-efficacy is positively related to coding achievement.

2.2. Self-Efficacy, Coding, and Computational Thinking SKills

Self-efficacy is one of the most prominent factors that drive and regulate people’s behaviors, which refers to an
individual’s “judgments of their capabilities to organize and execute courses of action required to attain designated
types of performances” (Bandura, 1986, p. 391). Within the academic context, self-efficacy is usually described in the
term of academic self-efficacy (ASE) (Honicke & Broadbent, 2016), which, according to Elias and MacDonald (2007),
refers to learners’ judgement of one’s ability to successfully achieve educational goals. Numerous studies have been
conducted to highlight the importance of ASE for academic performance across a wide range of learning environments
from elementary education (Joét, Usher, & Bressoux, 2011) to high school (Alivernini & Lucidi, 2011) and university
(Robbins et al., 2004). Notably, regardless of the different learning environments, ASE has shown a consistent positive
correlation with academic performance, reporting a moderate effect size (Richardson et al., 2012; Robbins et al.,
2004). In this study, the coding achievements of participating second graders were evaluated in two ways, namely, the
designed robots and coding at code.org. The students were required to design a robot which could successfully locate
“water” in a simulated Mars environment and complete 12 coding items at code.org. Computational thinking skills
were tested using the computational thinking test developed by Roman-Gonzalez (2015). Both coding achievements
and computational thinking skills can be included under the realm of academic performance.

Few studies have been conducted to investigate self-efficacy in the context of robotics (coding and computational
thinking more specifically). However, given the consistent positive correlation between self-efficacy and academic
performance as evidenced in previous research (e.g., Richardson et al., 2012; Robbins et al., 2004), this study proposes
the following two hypotheses, namely, H5: Student’s self-efficacy is positively related to coding achievement, and
H6: Student’s self-efficacy is positively related to computational thinking skills.

He: Student’s self-efficacy is positively related to computational thinking skills.

H7: Student’s coding achievement is positively related to computational thinking skills.
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During the coding activities in this study, students had ample opportunities to practice a wide range of skills. For
instance, students needed to work in groups and communicate with each group member to code their robots in such a
way that the robots could successfully locate “water” in a Mars simulation. Throughout the process, students not only
practiced their communication skills, they also improved their conditional logic, data collection, data analysis, and
decomposition skills. Yang et al. (2019) reviewed previous studies on computational thinking in elementary schools
and summarized various components reflected in different computational thinking definitions, including
communication, data collection, data analysis, and conditional logic. Since these components are inherently practiced
in the coding activities in this study, it was hypothesized that students’ coding achievement is positively related to
computational thinking skills:

H7: Student’s coding achievement is positively related to computational thinking skills.
3. Materials and Methods

3.1. Research Model and Hypotheses

Based on the aforementioned hypothesized relationships, the research model was constructed to illustrate the assumed
interrelationships of the variables studied. The purpose of this study was twofold: a) to investigate whether individual
traits- e.g., learning preference, intrinsic motivation, self-efficacy and coding achievement- could predict the levels of
computational thinking skills, and b) to explore the relationship between self-efficacy and coding achievement, and
computational thinking skills.

The hypothesized model was constructed based on seven hypotheses. First, this study sought to explore learning
preference as a predictor of self-efficacy. Since learning preference represents differences in how students prefer to
learn, the study assumed that participants with certain learning preference would affect self-efficacy. Intrinsic and
extrinsic motivation also could be predictors of self-efficacy. Additionally, extrinsic motivation and self-efficacy were
assumed to be predictors of coding achievement. Lastly, coding achievement and self-efficacy were introduced as
predictors of computational thinking in an attempt to explore whether there was a direct association between coding
achievement and computational thinking skills, and between self-efficacy and computational thinking skills.

Extrinsic
Motivation

Learning
Preference

Computational
Thinking Skills
Y

Coding
Achievement
TN

e )

Intrinsic
Motivation
Figure 1. The hypothesized model
H1: Student’s learning preference is positively related to self-efficacy.
H2: Student’s intrinsic motivation is positively related to self-efficacy.

H3: Student’s extrinsic motivation is positively related to self-efficacy.

H4: Student’s extrinsic motivation is positively related to coding achievement.
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HS: Student’s self-efficacy is positively related to coding achievement.
He: Student’s self-efficacy is positively related to computational thinking skills.
H7: Student’s coding achievement is positively related to computational thinking skills.

3.2. Participants

The participants in this study were 122 second graders from five classes in an elementary school in Boise, Idaho. All
of the students were excited about the prospect of learning about Mars, robots, building, and programming their own
robots, though most had no prior robotics experience. Most students had limited resources or exposure to coding,
except for what they had done once or twice at school through code.org. There were 55 male and 67 female students
participating in this study with their age ranging from seven to eight years old.

3.3. Procedure and Data Collection

Before the intervention began, teachers from five classes discussed a pre-prepared lesson plan that was made by the
researchers and one teacher. The researchers explained the intervention in detail, as well as about the questionnaires
they would administer before and after the intervention. Teachers fully understood the lesson plan and shared the
objectives and procedures of the intervention.

The robotics activities lasted for 13 days for 45 minutes per day. During the robot design portion of the lesson, the
instructors made a circle map about robotics led by a question: What do you know about robotics? Before the
programming part of the lesson, students talked about what they knew about coding, relating back to code.org which
they had already done throughout the program. A teacher demonstrated giving and receiving instructions, and then
executing them, showcasing the importance of simple and precise directions. Then students practiced by playing the
role of the robot, similarly receiving and executing simple commands. This was an engaging and helpful way to build
an understanding of the specifics of coding, as code has to be exact since robots cannot figure out what to do on their
own.

Same-gender groups were created which allowed the girls to be more engaged and interactive with what is typically
considered “boy toys”. The younger girls in the second grade needed the support of older 6th grade girls to get them
started with the LEGO robot designs, whereas the boys immediately jumped into their designs without hesitation.
Once students started the robot building, they were shown how the blocks click together and how to build wheels. The
girls were able to quickly complete the building of the robots as quickly as the boys did in the program. On the LEGO
robots redesign day, the girls and boys were equally independent.

Question type and questioning techniques, are the most crucial part of pushing understanding with students. For
example, initially getting the students to determine “why would we send a robot to Mars instead of an astronaut”
helped them focus on the type of information we were looking for, and also built interest in the activity. When students
were in the process of designing and building their own robots, questions like “what is it you want your robot to do?”
and “how will it do that?” helped keep the students focused on the facts they had learned about Mars, why we would
send a robot there and what the intention of the design was. Teachers utilized students’ prior knowledge about how
their own bodies work to connect the robot parts. For example, actuators/motors can move in reaction to feedback
from its sensors. This leads into the idea of the robot ‘brain’ as a control system that does not work on its own.

In order to accomplish a given task, a robot needs to receive a series of commands since they operate off of
‘instructions’. Students studied basic commands and practiced writing algorithms, coding, and debugging. Students
performed hands-on coding activities that taught them code-specific symbols, how robots would potentially react to
symbols, and how detailed and specific coding needs to be. For example, students worked in groups of three and each
student had a specific role (robot, code writer, and speaker). The robot only did what the speaker said after the code
writer wrote the appropriate symbol. The speaker used code-specific terminology for the code writer and robot to
follow. The code writer only wrote what the speaker said. An extension for this activity additionally included the
concept of loops. Throughout this activity, a computational problem-solving process was used to guide student
thinking and problem-solving when the students in the role of the robot did not do what the speaker and/or code writer
said.
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After two days of coding lessons, teachers provided information about Mars to develop students’ background
knowledge about a problem that they would solve with their robots later in the unit. Students also spent some time on
PebbleGo researching Mars and outer space more in detail. Language support was provided through the explicit
teaching of vocabulary words and using Thinking Maps to organize thinking and research.

Students rotated between 3-4 stations that supported different parts of the problem-solving process and coding. Two
stations were teacher guided; these stations were identical and allowed students to build the Lego WeDo 2.0 Robots
following directions in its app. Students took turns building one step at a time until the robot completed. Students
rotated between another station using code.org to continue having additional opportunities to practice coding. The last
station allowed students to create their own robot models using Legos. Students were expected to draw a detailed
design and build the same model. Students then redesigned their model by predicting what obstacles their model may
experience as if it were on Mars. Teachers created a problem for students to solve using their knowledge of coding
and of the computational problem-solving model. Students worked independently and in small groups.

Closure activities followed the computational thinking map (wheel). Students reviewed the map for how it was used
it, how their computational thinking was used to guide their coding, designing, redesigning, etc. They associated ideas
from how computational thinking was used to past lessons and even lessons like math, unrelated to the STEM project.

3.4. Psychometric Properties of Measures

3.4.1. Learning preference

The learning preference in this study was measured using the “Problem Solving Style Questionnaire” developed by
Duff (2004). This scale consisted of two constructs: concreteness versus abstractness and reflection versus action. The
first construct has seven items. One item has a six-point Likert scale gauging concreteness to abstractness. The higher
the score becomes, it moves from concreteness to abstractness. The second construct, reflection versus action, has the
same seven items. If the score gets higher, it moves from reflection to action. The scale with two constructs is
positively and strongly correlated with academic achievement showing that the most effective learners are likely to
emphasize abstract conceptualization and active experimentation. Thus, he concludes that the scale of fourteen items
is valid and useful as a measure of learning preference.

3.4.2. Intrinsic and Extrinsic Motivation

The Intrinsic Motivation Inventory (IMI) can be used to assess users’ subjective experience with computer games and
was used in previous studies related to intrinsic motivation (Ryan,1982; Ryan, Mims, & Koestner, 1983; Ryan,
Koestner, & Deci, 1991). The IMI instrument contains 45 items and assesses users’ experiences on seven dimensions:
interest/enjoyment, perceived/competence, effort/importance, pressure/tension, perceived choice, value/usefulness,
and relatedness. McAuley, Duncan, and Tammen (1987) conducted a study to test the validity of IMI and concluded
that as many or as few of the items of the items can be used without having a significant impact on the psychometric
aspects of the instrument. Hanus and Fox (2015) also reported a Cronbach alpha value of 0.86 on the 22-item scale
used by Ryan et al. (1991). As such, the scale used in this study comprises 25 items within four subscales:
interest/enjoyment, perceived choice, perceived competence, and pressure/tension. Items in IMI are measured on a 7-
point Likert scale from 1 (strongly disagree) to 7 (strongly agree).

3.4.3. Self-Efficacy

Self-efficacy was measured using the perceived competence subscale of the Intrinsic Motivation Inventory (IMI)
which was used in previous studies related to intrinsic motivation (Ryan, 1982; Ryan et al., 1983; Ryan et al., 1991).
This measure includes 6 items, such as “I think I am pretty good at this activity,” and one negative item, “This was an
activity that I couldn’t do very well.” Each item was assessed using a 7-point Likert scale from 1 (strongly disagree)
to 7 (strongly agree). The scale has been shown to be reliable and valid (McAuley et al.,1989). Cronbach’s alpha for
the subscale was strong, a. = .80.
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3.4.4. Coding Achievement Test

Coding achievement of students was evaluated using two methods: The first test was the evaluation of students’ coding
project and the other was a test on code.org. The final project was to individually code a robot to reach a fountain on
Mars (see Figure 2). Students’ final projects were evaluated using a rubric (see Table 1) by two researchers and the
mean score was adopted as one of the coding achievement scores.

S S

Figure 2. Mars simulator for students’ robot and coding project.
Table 1

Rubric for the coding and robot activity (searching water on Mars)

Criteria/Score 0-2 3-4 5-7 6-8 9-10
Completion <70 70-79 80 -89 90-99 100

Trial Number > Fourth Fourth Thrice Twice Once
Time (minutes) to >17 6-7 5-6 3-4 1-2
Water

Number of Collisions >6 5-6 3-4 1-2 0

The second test consisted of twelve items for second graders. The test-retest reliability for the second test was .89.
The sum of the two scores was used as students’ coding achievement.

3.4.5. Computational Thinking Skills

The Computational Thinking Test created by Roman-Gonzalez (2015) was used to assess participants’ computational
thinking skills. This is a 28-item test which consists of multiple-choice questions with four answer options, only one
of which is correct. Answer options are either visual arrows or visual blocks. Questions require students to complete
one of three cognitive tasks: sequencing commands, completion of incomplete commands, or debugging incorrect
commands. Test completion requires about 45 minutes. Internal consistency reliability was found to be good
(Cronbach’s alpha; 0.793). Roman-Gonzalez, Perez-Gonzalez, and Jimenez-Fernandez (2016) concluded there is
powerful evidence of the criterion concurrent validity of the test.
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4. Results

4.1. Methodological Rationale

Path analysis is appropriate for testing model fitness and in other conditions where common sense or existent findings
point to probable relationships (Cook & Campbell, 1979). It is a comprehensive methodology, which is appropriate
for investigating achievements, self-concepts, and self-efficacy among other phenomenon (Suhr, 2008). The model
used in this study focuses on examining direct effects between three exogenous variable (learning preference, intrinsic
motivation, and extrinsic motivation) and three endogenous variables (self-efficacy, coding achievement, and
computational thinking skills). Exogenous variables are not influenced by other variables in the model, so learning
preference, intrinsic motivation, and extrinsic motivation are variables without observed influences. Lastly, the sample
size (n=122) satisfies the criteria for the lower bounds of sample size for any type of Structural Equation Modeling
(SEM). According to Anderson and Gerbing (1988), the threshold is approximately 87 participants for models that
are comprised of three to four indicators.

4.2 Path Analysis

To check that there are no questionable relationships between the variables presented in the model, a Pearson
Correlation analysis was conducted. Results show that all variables were significantly correlated to self-efficacy
(Table 1). No link was dropped for the hypothesis model as discussed in the next section.

A path analysis was conducted to investigate the relationships depicted in the hypothesized model. At first, the model
showed poor fit ¥2 (df = 8, N =122) = 17.47, p < .05; RMSEA = 0.099; AGFI = .882; NFI = .852. The model also
showed that the paths from learning preference to self-efficacy (= .041, p=.087) and from extrinsic motivation to
coding achievement (= .039, p= .140) were insignificant. Consequently, these two paths were dropped from the
model and the model was re-analyzed.

The result of the second path analysis indicated that the model was a fit to the data, ¥2 (df =5, N =122) = 8.08, p =
.152. The fit indexes were excellent (RMSEA = 0.71; AGFI = .918; NFI = .922); 90% Confidence Interval (CI) for
RMSEA: (0.00; 0.158), pClose =.288. All paths in this revised model were significant (see Figure 3).

4.3. Multiple Regression Analyses

In addition to path analysis, a series of multiple regression analyses were conducted to explore the relationships
depicted in the hypothesized and revised models. It was found that intrinsic motivation (B = .328, p < 0.01), and
extrinsic motivation (B = .183, p < 0.01) were significant predictors of self-efficacy. Self-efficacy was a significant
predictor of coding achievement (B =.174, p < 0.01) and coding achievement (B = .444, p < 0.01) was a significant
predictor of computational thinking skills (Table 4).

Extrinsic
Motivation

28
— - 33 37
Intrinsic 28 Self-Efficacy Coding Computational
Motivation Achievemsant Thinking 3kills

35

Figure 3. The final path model
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Table 2

Correlation matrix

1 2 3 4 5 6
1. Learning preference - .090 147 2017 1957 3177
2. Intrinsic Motivation .090 - 159 319" 253" 205
3. Extrinsic Motivation 147 159 - 3217 237" 158
4. Self-Efficacy 201" 319" 3217 - 380" 489™
5. Coding Achievement .195° 253" 237 3807 - 503
6. Computational Thinking 3177 205 158 4897 503" -

Note: *p < .05, two-tailed. **p < .01, two-tailed. N=122
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Table 3

Goodness-of-fit indices for the total sample (N=122)

Fit Statistics

X2 df RMSEA GFI AGFI TLI CFI
8.083 5 0.71 973 918 934 967
Path Path Estimates
| Intrinsic Motivation —Self-Efficacy | 328" |

Extrinsic Motivation — Self-Efficacy 183"
Self-Efficacy — Coding Achievement 174™
Self-Efficacy — Computational Thinking 192%
Coding Achievement — Computational Thinking 441

Note: “p <.05; *p <0.01
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Table 4

Multiple regression analysis

Predictor(s) Dependent B SE B B t
Variable
1. Intrinsic Motivation Self-Efficacy 328 .100 275" 3.264
2. Extrinsic Motivation 183 .056 278" 3.298
1. Self-Efficacy Coding 174 .039 380" 4.505
Achievement
1. Self-Efficacy Computational ~ .192 044 349" 4.383
Thinking
2. Coding Achievement Skills 444 095 370" 4.655

"5 <0.01, N=122

4.4. Hypothesis Testing

First, to address the research question stated earlier which inquired about the factors that influence both coding and
computational thinking skills of second grade students in robotics activities, final analysis has shown that self-efficacy
was significantly influenced by intrinsic and extrinsic motivation, with both factors having the same amount of
influence. Coding achievement was only directly influenced by self-efficacy, while intrinsic and extrinsic motivation
had no direct influence on coding achievement.

As shown in Table 1 and 3, the seven hypotheses presented in this study were all supported. The model shows that the
relationship between self-efficacy and coding achievement was the strongest in the model. However, in the final path
model, learning preference did not predict self-efficacy. Intrinsic and extrinsic motivation were positively correlated
with self-efficacy. As such, H2 and H3 were supported. Self-efficacy was also positively correlated with
computational thinking skills, which supported H6. In the final path model, intrinsic and extrinsic motivation predicted
self-efficacy. Coding achievement is positively correlated with extrinsic motivation, self-efficacy, and computational
thinking skills. Thus, H4, H5, and H7 were supported. Self-efficacy was the most important factor predicting coding
achievement and computational thinking skills.

5. Discussions

Several studies have revealed a positive relationship between intrinsic motivation and self-efficacy (e.g., Hong et al.,
2017; Kiligoglu, 2018). For instance, Hong et al. (2017) found that the intrinsic motivation of Chinese learning could
predict online learning self-efficacy. Kilicoglu (2018) found that intrinsic motivation combined with extrinsic
motivation and academic achievement could predict students’ social studies self-efficacy and could explain 64% of
the variance in self-efficacy. Therefore, this study hypothesized that students’ intrinsic motivation was positively
related to self-efficacy. The correlation analysis showed that intrinsic motivation is positively related to self-efficacy
(p < .01), which confirmed H2 in this study. The multiple regression analysis results further indicated that intrinsic
motivation was a significant predictor of self-efficacy (B =.328, p < 0.01). Even though several previous studies have
investigated the relationship between intrinsic motivation and self-efficacy across different fields, for example, in
Chinese language learning (Hong et al., 2017) and social studies (Kiligoglu, 2017), few studies were conducted in the
field of robotics (computational thinking). This study addressed this research gap and showed a positive relationship
between intrinsic motivation and self-efficacy in robotics. Moreover, as suggested by the regression analysis result,
intrinsic motivation was a significant predictor of self-efficacy, which could have implications for the instruction of
robotics in elementary school settings.
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Various studies have been conducted to investigate the relationship between extrinsic motivation and self-efficacy
(e.g., Kiligoglu, 2018; Liao et al., 2014; McGeown et al., 2014). For instance, Kiligoglu (2018) suggested that extrinsic
motivation combined with intrinsic motivation and academic achievement could explain 64% of the variance in self-
efficacy. Liao et al. (2014) study revealed a strong correlation between self-efficacy and extrinsic motivation. By
contrast, McGeown et al.’s (2014) study suggested a reverse relationship between extrinsic motivation and self-
efficacy, indicating that self-efficacy could explain significant variances in extrinsic motivation. The above reviewed
studies confirmed an existing relationship between self-efficacy and extrinsic motivation no matter which one served
as the predictive variable. This study, therefore, hypothesized that students’ extrinsic motivation is positively related
to self-efficacy, and the correlation analysis confirmed this hypothesis (p < .01). The multiple regression analysis
revealed that extrinsic motivation was a significant predictor of self-efficacy (B = .183, p < 0.01). The correlation
analysis results in this study corroborated the previous studies and addressed the research gap by showing that extrinsic
motivation could significantly predict students’ self-efficacy in the robotics teaching in elementary schools.

While few studies have directly investigated the relationship between self-efficacy and coding achievement and
computational thinking skills, there were studies revealing a positive relationship between self-efficacy and academic
performance (e.g., Richardson et al., 2012; Robbins et al., 2004). In this study, both students’ coding achievement and
computational thinking skills could be included under the realm of academic performance. Therefore, it was
hypothesized that student’s self-efficacy is positively related to coding achievement, and student’s self-efficacy is
positively related to computational thinking skills. Both hypotheses were supported by the correlation analysis results,
with a correlation coefficient between self-efficacy and coding achievement as .380 (p < .01), and a correlation
coefficient between self-efficacy and computational thinking skills as .489 (p <.01). The multiple regression analysis
results in this study suggested that self-efficacy could significantly predict students’ coding achievement (B = .174, p
< 0.01) and computational thinking skills (B =.192, p < 0.01). As mentioned earlier, there was a paucity of studies
investigating the relationship between self-efficacy and coding achievement and computational thinking skills
respectively. This study, therefore, addressed the research gap and supplements the existing literature. Moreover, the
multiple regression results suggested that self-efficacy was a significant predictor in predicting students’ coding
achievement and computational thinking skills, which could have important implications for the robotics instruction
in elementary schools.

In coding activities, the students would practice the key components included in computational thinking, which
implies that students engaged in coding activities will normally practice computational thinking skills. Therefore, even
though few studies have been conducted to investigate the relationship between coding achievement and
computational thinking skills, this study hypothesized that student’s coding achievement is positively related to
computational thinking skills, which was evidenced by the correlation analysis results in this study (p < .01). The
multiple regression analysis results showed that students’ coding achievement was a significant predictor of their
computational thinking skills (B = .444, p < 0.01). The examination of the positive relationship between coding
achievement and computational thinking skills was scarce in existing literature, therefore, the result filled the research

gap.

The correlation analysis indicated a positive correlation between learning preference and self-efficacy (p <.05), which
supported the H1 in this study. The path analysis showed that the path between them was not significant (B= .041,
p=-087). Therefore, the path between learning preference and self-efficacy was dropped from the final model, and was
not analyzed in the multiple regression procedure. Moreover, the correlation analysis results showed that extrinsic
motivation was positively related to coding achievement with a correlation coefficient as .237 (p < .01), however,
since path analysis suggested that the path between extrinsic motivation and coding achievement was not significant
(B= .039, p= .140), the path was therefore dropped from the final model and was not analyzed in the multiple
regression.

The correlation analysis results confirmed all the seven hypotheses in this study, and the same results could be found
in previous studies (e.g., Kilicoglu, 2018; Liao et al., 2014; McGeown et al., 2014). Moreover, this study addressed
some research gaps by investigating the relationships between intrinsic motivation and self-efficacy, self-efficacy and
coding achievement, and self-efficacy and computational thinking.
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6. Conclusions and Implications for Further Studies

As indicated by the correlation analysis results, all seven hypotheses proposed in this study were well supported. A
research model was built based on the analysis results of path analysis and multiple regression analysis. This
hypothesized model showed that learning preference, intrinsic motivation and self-efficacy were the main predictors
of coding achievement and computational thinking skills, while no direct relationship was found between learning
preference, intrinsic and extrinsic motivation. The final path analysis revealed that intrinsic and extrinsic motivation
predicts self-efficacy, self-efficacy predicts coding achievement, and coding achievement predicts computational
thinking skills. Another important finding was the strong impact of self-efficacy on coding achievement and on
computational thinking skills as well.

The research findings have several important implications for both the research and practice in robotics instruction in
elementary schools. First, the examination of relationships as described above in the discussion section addressed
research gaps existing in the literature on the personal traits related to second grader’s computational thinking skills.
Specifically, few studies have investigated the various relationships in the context of robotics instruction in elementary
schools as in this study. For instance, the relationship between self-efficacy and coding achievement, the relationship
between motivation and self-efficacy, and the relationship between self-efficacy and computational thinking skills,
etc. Given the increasing popularity of robotics education in elementary schools, the re-examination and identification
of the pivotal role of self-efficacy in predicting second graders’ learning of coding and computational thinking skills
have important implications for the implementation of robotics education. Knowing the important role of self-efficacy,
instructors may measure students’ self-efficacy levels prior to the formal implementation of robotics curricula. And
special attention may, therefore, be allocated to those students with relatively low self-efficacy by designing specific
activities that could boost their self-efficacy. In this way, it is more likely that students’ coding achievement and
computational thinking skills could be improved. Therefore, when teaching robotics in elementary education to
improve students' computational thinking skills, teachers could consider boosting students’ self-efficacy as a starting
point. Second, this study not only examined these relationships, but also it proposed, tested, and built a research model
containing a wide range of personal traits based on path analysis and multiple regression analysis, which, to the best
of the researchers’ knowledge, has not been investigated in the current literature. Hence, this gap was filled by this
study by building a research model which could be an important reference for future studies on robotics education in
elementary schools. The research model contains several prominent variables in influencing learning processes as
identified in current literature, for instance, intrinsic motivation (Grant, 2008; Ryan & Deci, 2000), extrinsic
motivation (Ryan & Deci, 2000), and self-efficacy (Gappi, 2013; Kuo et al., 2015), and presents a comprehensive
picture of what individual traits could predict the learning of coding and computational thinking skills in robotics
education in elementary settings. Future studies could use this research model as a starting point and extend it by
adding more personal traits (e.g., gender) to explore the factors impacting the learning of coding and computational
thinking skills. Third, as reflected in the final research model, self-efficacy played an important role in impacting
second grader’s coding achievement and computational thinking skills. Therefore, in the instruction of robotics in
elementary school settings, attention should be focused not only on the development of students coding skills, but an
adequate amount of attention should also be paid to students’ self-efficacy (i.e., in grouping students).

Even though it was suggested in this study that learning preference has a positive relationship with self-efficacy, it
was dropped from the final model due to its insignificant result in path analysis. Given its evident importance, more
studies should be conducted to further investigate its role in impacting students’ learning of coding and computational
thinking skills in the context of robotics education.
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