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Abstract— This paper proposes a data-driven framework
to address the worst-case estimation problem for switched
discrete-time linear systems based solely on the measured data
(input & output) and an `∞ bound over the noise. We start
with the problem of designing a worst-case optimal estimator
for a single system and show that this problem can be recast
as a rank minimization problem and efficiently solved using
standard relaxations of rank. Then we extend these results
to the switched case. Our main result shows that, when the
mode variable is known, the problem can be solved proceeding
in a similar manner. To address the case where the mode
variable is unmeasurable, we impose the hybrid decoupling
constraint(HDC) in order to reformulate the original problem
as a polynomial optimization which can be reduced to a
tractable convex optimization using moments-based techniques.

I. INTRODUCTION

The problem of estimating the value of the output of a
system based on previous noisy measurements and a priori
information that includes knowledge of both noise and sys-
tem models is ubiquitous in fields ranging from robotics and
navigation to control and video/data analytics, to name just a
few. For the case of a single, known system, several solutions
have been proposed (depending on the characterization of the
dynamics and the noise), including the well-known Kalman
filter (KF) [1], extended / unscented Kalman filter [2] [3],
particle filter (PF) [4], moving horizon estimation (MHE)
[5] and so on. On the other hand, (optimal) estimation for
switched systems is considerably less developed.

Roughly speaking, there are two scenarios arising in the
context of estimation problems for switched system. The
first one assumes full knowledge of the dynamics of the
system. In this case, several extensions of the non-switching
methods have been proposed to solve the estimation problem.
The switching KF [6] assumes Gaussian noise and finds
the maximum likelihood estimate using the expectation-
maximization (EM) algorithm. The switching PF [7] has
the flexibility of choosing the type of noise and models the
probability density function using a set of discrete points.
[8] proposes the switching MHE by minimizing a receding-
horizon quadratic cost function which depends on the recent
measurements. In the contex of `∞ optimal filters, [9]
proposed an approach based on the concept of superstability,
assuming that the switching sequence is available to the
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filter. Finally, a worst-case `∞ optimal filter for the case of
unknown switching sequences was proposed in [10], based
on polynomial optimization.

The second scenario involves situations where models
of the underlying dynamics are not available a priori (an
example of this situation is 3D printing, where the un-
derlying processes are typically complex and subject to
large parameter variability). In principle this scenario can
be handled through a two-step procedure, where a model
is identified first, followed by estimation using any of the
methods introduced before. However, a potential pitfall of
this approach arises from the fact that the identification of
switched systems is known to be NP-hard [11]. Typically
this forces the use of relaxations that can lead to inaccurate
plant models and potentially large errors when using these
models for estimation.

To avoid this difficulty, in this paper we propose a data-
driven method that produces (worst-case) `∞ optimal estima-
tors directly from the observed data and some priors, (bounds
on the order and number of subsystems and on the noise).
In this context, we will consider both the case where the
mode variable (e.g. the variable indicating which subsystem
is active) is or is not available to the estimator. Motivated by
the earlier work [12] which considered the case of a single
system and by the ideas in [13], given the experimental data
in both cases, we will characterize all the systems consistent
with these observations and the given priors in terms of the
null space of a matrix constructed from the data. This allows
for recasting the optimal switched estimation problem into a
rank-constrained optimization which in turn can be relaxed to
a convex semi-definite program using the well known nuclear
norm surrogate for rank.

The rest of paper is organized as follows: section II
introduces the required notations and background knowledge
used in the remainder of the paper and formally states the
problem of interest. Section III gives the main results of
this paper where three cases are discussed: a single system,
and switched systems with or without a priori knowledge of
the switching sequence. For space reasons, this discussion
is confined to the single input single output (SISO) case.
Section IV illustrates our results with several academical
examples. Finally, section V presents some conclusions and
directions for further research.
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II. PRELIMINARIES

A. Notation
R,N set of real number, set of non-negative

integers
x,X a vector in Rn, a matrix in Rm×n
X � 0 X is positive semi-definite
‖x‖∞ `∞-norm of the vector x ∈ Rn

‖x‖∞
.
= sup

i
|x(i)|

σi(X) the ith largest singular value of X
diag(X) create a block diagonal matrix from the

matrix X
Eµ(x) Expected value of x with respect to the

Borel measure µ
vs(x) Veronese map of degree s from Rn to

Rm, where m =
(
s+ n− 1

s

)
. Specifi-

cally, vs([x1, . . . , xn]T ) = [ζs1 , . . . , ζ
s
m]T ,

where ζs = xs11 x
s2
2 . . . xsnn ,

∑
si = s.

B. Information Based Complexity

Next, we recall some concepts from information based
complexity(IBC) [14]. These concepts will be used in the
paper to define worst-case optimal estimators for switched
systems. Consider three linear normed spaces: element,
measurement and solution spaces, denoted by Λ, Y and X
respectively. We define three linear operators connecting
these spaces:

F : Λ→ Y information operator
S : Λ→ X solution operator
φ : Y → X algorithm

(1)

The goal of estimation is to find an approximation of S(λ) ∈
X for all λ ∈ Λ. However, only partial information about
λ is known, i.e. the measurements of λ given by F (λ). In
practice, the exact information about F (λ) is not available,
in this paper, we assume it is perturbed by bounded additive
noise ‖η‖∞ ≤ ε. Therefore, the available information is y =
F (λ)+η ∈ Y . The problem of interest is to find an algorithm
φ giving the closest mapping from measurements y to an
estimate of S(λ), such that ‖φ(y) − S(λ)‖∞ is minimized.
We define the worst-case local error as

E(φ, ε) = sup
λ
‖φ(y)− S(λ)‖∞ (2)

The algorithm φ0 is called worst-case locally optimal if
E(φ0, ε) = infφE(φ, ε), i.e. for every measurement y,
the algorithm minimizes the worst-case local error. It is
worth noting that E(φ0, ε) is also called local radius of
information, since it provides the smallest worst case bound
of the estimation error among all possible noise.

C. Polynomial Optimization Problems

Polynomial optimization is one of the fundamental prob-
lems in the field of optimization and has applications in
multiple areas. Given a multivariable polynomial p(x) =

∑
α pαx

α, with pα,xα denoting the coefficients and mono-
mials of the polynomial, the goal is to minimize p(x) subject
to a set of polynomial inequalities:

p∗ = min
x∈K

p(x)

K = {x ∈ Rn : gk(x) ≥ 0, k = 1, · · · , N}
(3)

As shown in [15], the above problem is equivalent to
minimizing the expectation of the polynomial p(x) over all
Borel measures µ supported on the semi-algebric set K, e.g:

p∗ = min
µ∈P(K)

∫
p(x)µ(dx) (4)

The problem above is an (infinite dimensional) linear pro-
gram in µ. To obtain finite dimensional relaxations, start by
rewriting the equation (4) as:

p∗ = min
mα

∑
α

pαmα

M � 0

L � 0

where mα :=

∫
xαµ(dx)

(5)

Here mα is the αth moment with respect to the Borel
measure µ, M is the moment matrix with entries mα and
L is the localizing matrix with entries Eµ[gk(x)xα]. Finite
dimensional relaxations can be obtained by simply consider-
ing truncated versions of the matrices M and L containing
moments of order up to 2d, leading to the approximation

p∗d = min
mα

∑
α

pαmα

Md � 0

Ld � 0

(6)

As shown in [15], p∗d ↑ p∗ under mild conditions. Moreover,
if for some d the so called flat extension condition

rank[Md(m)] = rank
[
Md−max(deg(gk(x))

]
(7)

holds then pdm = p∗. Specially, when d = 1, it is easy to see
that rank(M1) = 1 is a sufficient condition for pdm = p∗.

D. Reweighed Heuristic for Rank Minimization

Given a matrix X ∈ Rm×n, as shown in [16] a convex
relaxation of the problem min rank(X) is given by the
following iterative procedure:

min
Y,Z

Trace(WkH0,k)

subject to Hk � 0
(8)

where

H0,k =

[
Yk 0
0 Zk

]
Hk =

[
Yk X
XT Zk

]
Wk = (H0,k−1 + δI)−1, W1 = I

(9)
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E. Statement of Problem

The general problem addressed in this paper is: given (i)
experimental measurements (inputs & outputs) corrupted by
unknown but bounded noise, and (ii) a priori information
consisting of bounds on the number and order of the sub-
systems and on the norm of the noise, obtain a worst-case
optimal estimation of the last output. Formally:

Problem 1: Given a switched output error (SOE) model:

yk =

na∑
i=1

ai(γk)yk−i +

nb∑
i=1

bi(γk)uk−i

ỹk = yk − ηk, ‖ηk‖∞ ≤ ε
(10)

where the system parameters ai(.), bi(.) are unknown, find a
worst-case optimal estimate ŷk, of yk, based on all available
data ỹ

.
= [ỹ1, . . . , ỹk]T and u

.
= [u1, . . . , uk]T . Here uk, yk

and ỹk denote the input, output and its measured value,
corrupted by bounded noise ηk, respectively, γk = 1, . . . , s
is the mode of the system, and na, nb its order.

III. MAIN RESULTS

In this section, we show that Problem 1 above can be
reduced to a convex optimization. To this effect, we will
consider first the case where the system mode γ is known.
The case of unknown γ will be addressed in section III-C.

Define the consistency set T (ỹ,u, ε, k) as the set of all
yk compatible with the existing observations and priors, that
is:

T (ỹ,u, ε, k)
.
= {yk : there exists some sequence η,

‖η‖∞ ≤ ε, and system parameters ai(γk), bi(γk)

such that (10) holds}
(11)

The following result provides the theoretical foundations for
the estimators proposed in this paper:

Lemma 1: Define

y+k = max
η,ai,bi

yk subject to yk ∈ T (ỹ,u, ε, k)

y−k = min
η,ai,bi

yk subject to yk ∈ T (ỹ,u, ε, k)

ŷk = 1
2 ( y+k + y−k ),

(12)

then the vector ŷk is a worst case `∞ optimal estimator of
yk.

Proof: Follows from Theorem 2.4 in [17] by noting that
ŷk is the Chebyshev center, in the `∞ sense, of T (ỹ,u, ε, k).

A. Estimation for a Single System

To illustrate the main idea of the proposed estimator in a
simple setting, we begin by considering the case of a single
system. In this case, (10) holds with γk = 1. For ease of
notation, define

c = [ana
, . . . , a1,−1, bnb

, . . . , b1]T

dk = [yk−na
, . . . , yk, uk−nb

, . . . , uk−1]T
(13)

It is easy to see that dTk c = 0 holds for all time instants
k > na. Thus, the observed data was generated by a model
of the form (10) if and only if the Hankel matrix

H =

 ỹ1+η1 ... ỹ1+na+η1+na u1 ... unb
ỹ2+η2 ... ỹ2+na+η2+na u2 ... u1+nb

...
...

...
...

ỹk−na+ηk−na ... ỹk+ηk uk−nb
... uk−1

 (14)

is rank deficient. It follows that in this case, the consistency
set can be rewritten as

T (ỹ,u, ε, k)
.
= {yk : there exist some sequence η,

‖η‖∞ ≤ ε, such that H is rank deficient}
(15)

The main advantage of the reformulation above over (11)
is that (15) does not contain the unknown parameters ai, bi,
leading to the following result:

Lemma 2: For the case of a single system, Problem 1 is
equivalent to the following optimization:

ηmax = argmax ηk and ηmin = argmin ηk

subject to rank(H) ≤ R .
= na + nb and ‖η‖∞ ≤ ε

(16)

The corresponding worst-case optimal estimator is given by
ŷk = ỹk + 1

2 (ηmax + ηmin).
Proof: Follows immediately from the discussion above

and the fact that, since ỹk is known, maximizing/minimizing
yk is equivalent to maximizing/minimizing ηk
Note that the optimization above is non-convex, due to the
rank constraint. A convex relaxation can be obtained by
combining a line search over ηk with rank minimization, as
outlined in Algorithm 1. The main idea here is to choose
a value for ηk, minimize the rank of the corresponding
H by using a re-weighted nuclear norm heuristic and in-
crease/decrease the value of ηk until T (ỹ,u, ε, k)} 6= ∅.

Algorithm 1 Worst-case Estimation for Single System
1: Initialize: ε, δ, step size(ss), max iter(mi), W = I
2: for λ = −ε : ss : ε do
3: for iter = 0 : mi do
4: minη Trace(WM0)
5: subject to:
6: ‖η1→k−1‖∞ ≤ ε
7: ηk = λ
8: M � 0
9: if σ2R+1(M0) ≥ δ then

10: W = (M0 + σ2R+1(M0)I)−1

11: else
12: return λ
13: end if
14: end for
15: end for
16: where

M0 =

[
Y 0
0 Z

]
, M =

[
Y H
HT Z

]
17: ηmin = λ, to obtain ηmax, do the line search from the

other direction, i.e. λ = ε : −ss : −ε.
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Remark 1: A computationally efficient implementation of
the algorithm above can be obtained by considering a reced-
ing horizon version where only the previous q measurements
are used to predict the next output. Thus, in general this
approach may lead to conservative estimates since part of
the information is discarded after computing these bounds.
However, if the window size is chosen properly, this receding
horizon version leads to similar result as Algorithm 1, with
a substantial reduction in the computational burden.

B. Estimation for Switched System with Known Switches

Next, we consider switched models of the form (10) in
scenarios where the mode variable γ can be measured. Pro-
ceeding as in the single system case, collect the input/output
data in a Hankel matrix H and define the submatrices
Hi, i = 1, 2, . . . , s where Hi contains the rows of H
corresponding to time instants where the ith subsystem was
active (e.g. those time instants where γk = i). As before,
there exists a model of the form (10) that explains the data
if and only if there exist an admissible noise sequence such
that all the matrices Hi are rank deficient. Equivalently, in
this case the consistency set is given by:

T (ỹ,u, ε, k)
.
= {yk : there exist some sequence η,

‖η‖∞ ≤ ε, such that Hi are rank deficient, i = 1, . . . , s}
(17)

Thus, an optimal estimator can be found by solving:

ηmax = argmax ηk and ηmin = argmin ηk

subject to rank (D) ≤ R .
=

s∑
γk=1

na(γk) + nb(γk)

and ‖η‖∞ ≤ ε, where D
.
= diag(H1,H2, . . . ,Hs)

(18)

Problem (18) can be efficiently solved using an algorithm
similar to Algorithm 1, with H and R replaced by D, R as
defined above.

C. Estimation for Switched System with Unknown Switches

When the mode variable γ is unknown, the problem
becomes non-trivial. In this case, since the data segmentation
is not available, one cannot proceed as in section III-B to
build the submatrices Hi and impose rank deficiency of D.
However, in this case, as noted in [18], since the data point
always belongs to one of the subsystem, the so called hybrid
decoupling constraint (HDC) always holds, i.e.

s∏
γ=1

dTk cγ = 0 (19)

where

cγ = [ana(γ), . . . , a1(γ),−1, bnb
(γ), . . . , b1(γ)]T (20)

Note that, for each k, the equation above can be written in
terms of an homogeneous multivariate polynomial of degree
s in the variables dk of the form

vTs (dk)ĉγ = 0

where vs(.) denotes the Veronese map of degree s, and ĉγ
is a vector related to cγ . Thus, given the experimental data,
there exist some switching sequence γ such that a model of
the form (10) explains the data if and only if the matrix Vs

formed by stacking the vectors vTs (dk) is rank deficient. To
illustrate the idea, consider the following example

Example 1: Assume (na, nb) = (1, 1), s = 2, then cγ =
[a1(γ), b1(γ)]T (γ = 1, 2), dk = [yk−1, yk, uk−1]T . In this
case, the corresponding Veronese map vs(dk)T and ĉγ are
given by

vs(dk)T = [y2k, −ykyk−1, −ykuk−1,
y2k−1, u2k−1, yk−1uk−1]

(21)

ĉγ = [1, a1(1) + a1(2), b1(1) + b1(2), a1(1)a1(2),

b1(1)b1(2), a1(1)b1(2) + a1(2)b1(1)]T
(22)

Lemma 3: For the case of switched systems with an
unknown switching sequence, Problem 1 is equivalent to the
following optimization:

ηmax = argmax ηk and ηmin = argmin ηk

subject to rank(Vs) ≤ R and ‖η‖∞ ≤ ε

where R
.
=

(
na + nb + s

na + nb

)
− 1

(23)

The corresponding worst-case optimal estimator is given by
ŷk = ỹk + 1

2 (ηmax + ηmin)
Proof: Follows from the discussion above by noting

that in this case

T (ỹ,u, ε, k)
.
= {yk : there exist some sequence η,

‖η‖∞ ≤ ε, such that Vs is rank deficient}
(24)

Note that, as stated, the optimization (23) is intractable, since
it requires minimizing the rank of a matrix that depends poly-
nomially in the variables. Further, since rank is not a semi-
algebraic function, standard polynomial (or moment) based
tools cannot be used. Nevertheless, as we show next, this
problem can be relaxed to a tractable convex optimization.

Theorem 1: Let mα denote the moment sequence corre-
sponding to the noise variable η and Ṽs(mα) denote the
matrix obtained by replacing each αth degree monomial
ηα in Vs(η) with the corresponding αth order moment
mα. Consider the following rank constrained minimization
problem (affine in the variables mα):

η̃max = argmax ηk and η̃min = argmin ηk

subject to:

rank(Ṽs) ≤ R, |mt| ≤ ε, t = 1, . . . , k − 1 and
rank(Mη) = 1

(25)

where mt denotes the entry of the moment matrix Mη

corresponding to E(η) Then, η̃max = ηmax and η̃min =
ηmin.

Proof: (only sketch given due to space constraints)
From Theorem 2 in [13], there exist a sequence η, |η| ≤ ε
that renders V rank deficient if and only if there exist
a sequence of moments m with a representing measure
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supported in [−ε, ε] such that Ṽs(m) is rank deficient. The
rank 1 constraint on Mη and |mt| < ε in (25) are sufficient
conditions for the existence of this measure.

Note that (25) is now a constrained rank minimization
subject to semidefinite constraints, where all the matrices
involved are affine in the variables m. Therefore, as before,
a convex relaxation can be obtained by replacing rank with
a (weighted) nuclear norm. The resulting problem can be
solved using an algorithm similar to Algorithm 1, replacing
H, R by P

.
= diag (Ṽs(m),Mη) and S = R+ 1.

IV. EXPERIMENTS

In this section we illustrates the proposed filtering frame-
work with several academic examples. We start from the
estimation for a single system. The model we used to
generate the data is

yk = 1.1yk−1 − 0.28yk−2 + 0.3uk−1 + 0.2uk−2 (26)

The initial output is y = [1, 2]. The input ‖u‖∞ ≤ 1 and
the noise ‖η‖∞ ≤ ε are uniformly distributed. We chose the
following values for the hyper-parameters: ε = 0.1, δ = 1e−
4, ss = 0.004,mi = 5. The results of applying Algorithm 1
are shown in Fig. 1, where the green line segment gives the
noise bound.

Fig. 1. Estimation for a Single System

The results of using the corresponding receding-horizon
version of the algorithm with window size 21 are shown in
Fig. 2

Fig. 2. Receding Horizon Estimation for a Single System (T=21)

As expected the receding-horizon version gives a larger
estimation error since it only uses the previous 21 mea-
surements for prediction, and hence is more conservative.
Increasing the window size reduces the conservatism at the
price of an increased computational cost.

For the switched system with a known switching sequence,
we use the following model consisting of two subsystems:

yk = yk−1 − 0.24yk−2 + 0.2uk−1 + 0.6uk−2

yk = 1.2yk−1 − 0.35yk−2 + 0.4uk−1 + 0.3uk−2
(27)

In this case the switch sequence was generated randomly
without any dwell time assumptions. The estimates obtained
solving a convex relaxation of (18) are shown in Fig. 3

Fig. 3. Estimation for a Switched System (Known Switches)

with the results of the corresponding receding-horizon ver-
sion (size 41) shown in Fig. 4

Fig. 4. Receding Horizon Estimation for a Switched System (Known
Switches, T=41)

Finally, consider the following switched system with un-
known switches:

yk = 0.6yk−1 + 0.4uk−1

yk = 0.8yk−1 + 0.5uk−1
(28)

For this experiment, we pick as initial value y = 1 and
changed mi to be 50, since rank minimization of a moment
matrix is slow to converge. The results obtained by solving
a convex relaxation of (25) are shown in Fig. 5

Fig. 5. Estimation for a Switched System (Unknown Switches)
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To assess the conservatism introduced by not being able
to measure the mode variable, we solved (18) on the same
model, using information about which subsystem is active at
a given time instant, leading to the results shown in Fig. 6

Fig. 6. Estimation for Switched System (Known Switches)

As expected, comparing Figures 6 and 5 shows that
exploiting knowledge about the switching sequence leads to
a tighter bound of the estimate (and thus a smaller estimation
error).

V. CONCLUSION

This paper proposes a data-driven framework to address
the worst-case estimation problem for switching discrete-
time linear systems based only on the experimental mea-
surements and some minimal a priori information. We con-
sidered three scenarios (single system/switching system with
known/unknown switches) and showed that in all cases `∞
worst-case optimal estimators can be obtained by solving a
rank-constrained optimization. Efficient convex relaxations
of these problems can be obtained by replacing rank with its
nuclear norm surrogate. Further computational complexity
can be achieved by considering a receding-horizon version
of the algorithm, where information from the past is encap-
sulated in bounds for the observed variables. As illustrated
with examples, this receding horizon version achieves good
performance when the size of the sliding window is chosen
appropriately. The main advantage of the proposed method is
that it avoids a systems identification step (with the potential
entailed conservatism), producing worst-case optimal esti-
mates directly from the data. Further, the proposed algorithm
can be easily extended to the case of missing data (for
instance due to sensor failure) by simply treating this missing
data as an unknown in the optimization problem.

A potential difficulty of the proposed algorithm in the
case of unknown switches (shared with systems identification
algorithms for this case) is the non-trivial computational
burden, especially in cases where the number or order of
the subsystems is not small. Future research will seek to
exploit the structure of the matrix V (e.g. it can be shown that
the aggregate sparsity pattern of the graph associated with
this matrix has cliques which have at most size na) together
with recent results on rank-preserving matrix completions to
substantially reduce this complexity. Promising preliminary
results seem to indicate that this approach can lead to
algorithms that scale linearly with the number of data points
and subsystems.
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