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Abstract— Semidefinite programs (SDPs) often arise in re-
laxations of some NP-hard problems, and if the solution of the
SDP obeys certain rank constraints, the relaxation will be tight.
Decomposition methods based on chordal sparsity have already
been applied to speed up the solution of sparse SDPs, but
methods for dealing with rank constraints are underdeveloped.
This paper leverages a minimum rank completion result to
decompose the rank constraint on a single large matrix into
multiple rank constraints on a set of smaller matrices. The
re-weighted heuristic is used as a proxy for rank, and the
specific form of the heuristic preserves the sparsity pattern
between iterations. Implementations of rank-minimized SDPs
through interior-point and first-order algorithms are discussed.
The problem of subspace clustering is used to demonstrate the
computational improvement of the proposed method.

I. INTRODUCTION

Semidefinite programs (SDPs) are a class of convex op-
timization problems that minimize a linear functional of a
positive semidefinite (PSD) matrix under linear constraints.
SDPs often arise as relaxations of some NP-hard problems,
such as binary optimization, maxcut, and optimal power
flow [1]. In particular, subspace clustering is an NP-hard
problem that groups points originating from a union of
subspaces and admits an SDP relaxation [2].

In each case, SDP relaxations return equivalent optima if
the solution satisfies rank constraints. Maxcut, optimal power
flow, and subspace clustering all require rank-1 solutions.
The desire for a low-rank solution can be formulated as a
rank-constrained SDP

min
X

〈C,X〉

subject to 〈Ai, X〉 = bi, i = 1, . . . ,m,

X ∈ Sn+, rank(X) ≤ t,
(1)

where 〈M,N〉 = Tr(MTN) is an inner product and
C,A1, . . . , Am ∈ Sn, b ∈ Rm, and t ∈ N are problem data.
Throughout this work, Rm is the m-dimensional Euclidean
space, Sn is the space of n×n symmetric matrices and Sn+is
the subspace of symmetric PSD matrices.

While the rank-constrained SDP in (1) is in general NP-
hard, a great deal of interest has been put in developing
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tractable rank proxies. Matrix factorization (i.e., X = Y Y T )
upper bounds the possible rank by the width of Y , and
Burer-Monteiro results may ensure global optimality after
curvilinear optimization on the nonconvex low-rank manifold
[3]. Several convex relaxations of the rank constraint have
been developed, one of the most popular being the nuclear
norm ‖X‖∗ =

∑
i σi(X), and ‖X‖∗ = Tr(X) if X ∈ Sn+

[4]. The nuclear norm is the biconjugate of the rank function,
and under restricted isometry property (RIP)/coherence con-
ditions, the nuclear norm-minimized solution of an SDP is
equivalent to the rank-minimal optimum [5]. RIP/coherence
holds only in a very narrow set of problems since it weighs
all singular values equally. Low rank solutions can be encour-
aged by penalizing smaller singular values. The reweighted
heuristic is a linearization of log-det, and adds a penalty of
Tr(WtX) instead of the normal nuclear norm Tr(X), where
Wt = (X + δI)−1 updates at each iteration [6].

The complexity of solving SDPs scales in a polynomial
time w.r.t. the number of variables and constraints, and
imposing rank penalties may further increase this complexity.
In sparse cases, only a small subset of entries of X are
used in the cost C and constraints Ai, and the other entries
guarantee X � 0. When this sparsity pattern is (or can
be extended to) a chordal graph, chordal decomposition
theory can break up a large PSD cone (X � 0) into a
set of smaller coupled PSD cone (Xk � 0) [7]. Exploiting
this structure reduces computational time, as the complexity
of optimization problems is related to the graph’s tree-
width [8]. Chordal decomposition of SDPs can effectively
reduce dimension of sparse problems; see e.g., [9], [10] for
details.

After performing the chordal decomposition and optimiz-
ing over the Xk’s, there exist multiple matrix completions
to generate a valid X � 0 from Xk. One such choice is the
minimum rank completion [11], in which the minimal pos-
sible rank of the completion X is the maximal rank among
the blocks Xk. Numerical rounding on the eigenvalues of Xk

has already been used to reduce of rank(X), but penalizing
rank(Xk) in optimization was not considered [12]. Minimum
rank completions over linear matrix inequalities with general
graphs has been performed in the context of optimal power
flow, but few details were mentioned about how to penalize
the rank of tree components [13].

In this paper, we combine minimal rank completion and
the reweighted heuristic to effectively solve large-scale rank-
constrained SDPs. This heuristic penalty preserves the orig-
inal problem’s chordal sparsity while penalizing the rank of
smaller matrices, and offers a rank guarantee based on the
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Fig. 1: Examples of chordal graphs: (a) a path graph; (b) a
triangulated graph (with dashed edge). Without the dashed edge
there is a cycle of length 4 without a chord, so the graph is not
chordal. The graph with the dashed edge is a chordal extension.

size of the maximum clique. We apply the proposed method
to solve subspace clustering problems, which demonstrates
the computational improvements.

The rest of this paper is structured as follows: Section II
introduces chordal graphs, sparse matrices, and the minimum
rank completion problem. In Section III, we present an
equivalent reformulation of (1). Implementations of chordal
rank minimization in interior-point and first-order methods
are discussed in Section IV. These algorithms are used in
Section V to solve subspace clustering problems. Section VI
concludes the paper.

II. PRELIMINARIES

In this section, we cover chordal graphs, sparse (PSD)
matrices, and the minimum rank completion. For a compre-
hensive treatment, the interested reader is referred to [7].

A. Chordal graphs

An undirected graph G(V, E) is defined by a set of
vertices V = {1, 2, . . . , n} and edges E ⊆ V × V . A
cycle of length N is a set of unique nodes vk such that
(v1, v2), . . . , (vi, vi+1), . . . , (vN , v1) ∈ E . A chord is an
edge that connects two nonconsecutive nodes in a cycle. An
undirected graph is chordal if all cycles of length no less than
four have at least one chord [7]. A chordal extension (a.k.a.
completion) Gc(Vc, Ec) of graph G(V, E) is a chordal graph
Gc where V = Vc and E ⊆ Ec. Finding a chordal extension
with a minimal number of added edges is NP-hard, but
efficient heuristics exist to give good chordal extensions [14].

A clique C with cardinality |C| is a subset of vertices in
V that form a complete subgraph. A maximal clique is a
clique not contained inside another clique. Finding all max.
cliques is NP-hard for general graphs, but can be computed
on chordal graphs in linear time. Two chordal graphs are
shown in Fig. 1, where the graph in Fig. 1(a) has max. cliques
Ci = {i, i + 1}, i = 1, 2, 3, and the graph in Fig. 1(b) has
max. cliques C1 = {1, 2, 3} and C2 = {2, 3, 4}.

B. Sparse matrices and chordal decomposition

Considering the SDP (1), the graph G(V, E) arises from
taking a union of the sparsity graphs corresponding to the
data matrices C,A1, A2, . . . , Am. Precisely, let Ê = E ∪
{(i, i),∀i ∈ V} be the edge set with self loops, and we
define a cone of sparse symmetric matrices as:

Sn(E , 0) = {X ∈ Sn | Xij = 0, ∀(i, j) 6∈ Ê}

Sn+(E , 0) = S(E , 0) ∩ Sn+ forms a cone of sparse PSD
matrices. The dual cone Sn+(E , 0)∗ = Sn+(E , ?), which is the
set of matrices that can be completed to be PSD with entries
defined in E (∃M � 0 | Xij = Mij ∀(i, j) ∈ E∗). Such a
completion is not usually unique, as there may be multiple
M associated to each X . For chordal graphs, Sn+(E , ?) can
be equivalently decomposed into a set of smaller but coupled
convex cones:

Theorem 1 (Grone’s Theorem [15]): Let G(V, E) be a
chordal graph with a set of maximal cliques {C1, C2, . . . , Cp}.
Then, X ∈ Sn+(E , ?) if and only if

ECkXE
T
Ck ∈ S|Ck|+ , k = 1, . . . , p.

In Theorem 1, ECk are 0/1 entry selector matrices that
index out components of X involved in clique Ck. Grone’s
theorem provides a set equivalence Sn+(E , ?) =

∏p
k=1 S

|Ck|
+

modulo overlaps between cliques, breaking a large PSD cone
into a host of smaller PSD cones and equality constraints.
This fact underpins the idea of much work that exploits
sparsity in large-scale SDPs [7], [9], [10].

C. Minimum rank completion

Given X ∈ S+(E , ?), many choices of PSD completions
are available after determining Xk = ECkXE

T
Ck , two of

which are the maximum determinant completion and min-
imum rank completion. There exists a unique completion
with maximum determinant with an explicit formula [16].
Minimum rank completions are not necessarily unique:

Theorem 2 (Minimum rank completion [11]): Given a
chordal graph G(V, E) with a set of maximal cliques
{C1, C2, . . . , Cp}, for any X ∈ Sn+(E , ?), there exists
at least one minimum rank PSD completion, where
rank(X) = maxk rank(ECkXE

T
Ck).

A procedure to perform minimum rank completion is
Algorithm 3.1 in [12], which updates a factorization of the
completion while proceeding through the elimination tree.

We conclude this section with the following example:
3 0.5 ? 0.25

0.5 2 0.75 ?
? 0.75 1 ?

0.25 ? ? 5




3 0.5 −1.25 0.25
0.5 2 0.75 −3.05

−1.25 0.75 1 −1.65
0.25 −3.05 −1.65 5


Fig. 2: PSD Completable matrix (left) and rank-2 completion (right)

The maximum cliques of G(V, E) are {(1, 2), (2, 3), (1, 4)},
and their induced submatrices are all PSD with rank 2, so
there exists a completion with rank at least 2 (right matrix).

III. CHORDAL DECOMPOSITION IN SPARSE SDPS WITH A
RANK CONSTRAINT

In this section, we first introduce a chordal decomposition
approach in sparse SDPs with a rank constraint by combining
Theorems 1 and 2. Then, we discuss the application of
reweighted heuristic to the decomposed problem.
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A. An equivalent reformulation

Let the rank constrained SDP (1) be sparse with an
aggregate sparsity pattern G(V, E): C ∈ Sn(E , 0), Ai ∈
Sn(E , 0), i = 1, . . . ,m. Throughout this paper, we assume
that G(V, E) is chordal (or has a suitable chordal extension)
with a set of maximal cliques {Ck}pk=1. Combining Grone’s
theorem (Theorem 1) with the minimum rank completion
theorem (Theorem 2), leads to the following observation:

Proposition 1: Suppose that Problem (1) is feasible and
the problem data has an aggregate sparsity pattern G(V, E).
Then, (1) is equivalent to the following reformulation

min
X

〈C,X〉

subject to 〈Ai, X〉 = bi, i = 1, . . . ,m,

ECkXE
T
Ck ∈ S|Ck|+ , k = 1, . . . , p,

rank(ECkXE
T
Ck) ≤ t, k = 1, . . . , p,

(2)

in the sense that (1) and (2) have the same cost value, and
their optimal solutions can be mutually recovered.

Proof: Thanks to the aggregate sparsity pattern, the cost
function and the equality constraints in (1) depend only on
the elements Xij with (i, j) ∈ E∗. The PSD constraint X ∈
Sn+ in (1) can be equivalently replaced by a PSD completable
constraint X ∈ Sn+(E , ?). The rest of proof directly follows
the application of Theorems 1 and 2 to (1). We denote the
optimal cost values to (1) and (2) as f∗1 and f∗2 respectively.
• First, assume X∗1 is an optimal solution to (1) with cost
f∗1 = 〈C,X∗1 〉 and rank(X∗1 ) ≤ t. Then, X∗1 is also a
feasible solution to (2). Thus f∗2 ≤ f∗1 .

• Second, assume X∗2 is an an optimal solution to (2) with
an cost value f∗2 = 〈C,X∗2 〉. According to Theorems 1
and 2, we can find a PSD completion X̂∗2 , where
rank(X̂∗2 ) = maxk rank(ECkX

∗
2E

T
Ck) ≤ t. The PSD

completion X̂∗2 is a feasible solution to (1), indicating
that f∗1 ≤ f∗2 .

Combining these facts, we know f∗1 = f∗2 , and the optimal
solutions to (1) and (2) can be recovered from each other.

One key feature of problem (2) is that both the PSD
and rank constraints are only imposed on multiple small
symmetric matrices of smaller dimension rather than on the
single large symmetric matrix. The minimum rank comple-
tion automatically yields an upper bound on the minimized
full matrix rank according to maximum clique size.

B. Rank relaxations

In general, problem (2) is hard to solve due to the
rank constraints. In this paper, we replace the hard rank
constraint with a soft reweighted heuristic [6], leading to a
standard SDP with chordal sparsity. The reweighted heur-
sitic relaxes the hard rank(X) ≤ t constraint to a soft
〈W,X〉 term on the objective. For problem (2), each rank
constraint rank(ECkXE

T
Ck) ≤ t is replaced by a soft penalty

〈Wk, ECkXE
T
Ck〉 for a reweighting matrix Wk calculated in

Algorithm 1. In general, the inner product between Wk and
Xk promotes the concentration of energy of Xk onto the
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Fig. 3: Example of reweighting heuristic (Algorithm 1) on a
randomly generated Maxcut problem with 1000 vertices. There are
740 cliques with |Cmax| = 31 (black dots). The maximum clique
rank starts at 9 (blue), and drops to 4 (orange) after 15 rounds of
optimization.

Algorithm 1 Chordal SDP with Reweighted Heuristic

1: procedure CHORDAL RANK
2: Wk ← I ∀ k = 1, . . . , p
3: while X not converged do
4: (X)← optimum of (3) givenWk

5: W̃k ← (ECkXkE
T
Ck + δI)−1

6: Wk ← τkW̃k/‖W̃k‖2

dominant eigenspace of Xk,old and thus incentivizes the re-
duction of its rank. Weights Wk are normalized in Algorithm
1, and τk is a per clique regularization parameter. Reweighted
heuristic is a local linearization of log-det and has been
successfully used to solve rank minimization problems [6].
Fig. 3 demonstrates the rank reduction behavior of Algorithm
1 on a Maxcut SDP.

The individual Wk’s can be combined together into an ag-
glomerated penalty WC =

∑p
k=1E

T
CkWkECk by the cyclical

property of Trace:
p∑
k=1

〈Wk, ECkXE
T
Ck〉 =

〈
p∑
k=1

ETCkWkECk , X

〉
= 〈WC , X〉 .

This allows us to write the rank relaxed problem into the
following form:

min
X

〈C,X〉+ 〈WC , X〉

subject to 〈Ai, X〉 = bi, i = 1, . . . ,m,

ECkXE
T
Ck � 0,∀ k = 1, . . . , p.

(3)

The augmented cost matrix C + WC ∈ Sn(E , 0) and Ai ∈
Sn(E , 0), indicating that Problem (3) has the same aggregate
sparsity pattern as (1). If the original sparsity structure G
is non-chordal with a chordal extension Gc(V, Ec), the first
reweighting iteration will have WC ∈ Sn(Ec, 0). After the
initial reweighting, there will be no more fill-in.
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Remark 1: As shown in Proposition 1, Problems (1)
and (2) are equivalent. This tightness is lost when conducting
rank relaxations. Applying the reweighted heuristic directly
to Problem (1) requires the inverse of the big X to update
the weight W = (X + δI)−1. As inverses are generically
dense, the next iteration’s cost C +W would be dense and
the sparsity pattern would be destroyed. In the proposed
method, only the inverses of the small Xk matrices are
required and the weight WC in (3) preserves the sparsity
structure. Reweighted heuristic on problems (1) and (2)
produce different weights W and WC , and the resulting
optima will not generally match as W 6= WC . We note that
using W in the formulation of (1) will still penalize rank,
but may settle at a high rank solution as the upper bound
on clique size is lost. The convergence time of reweighted
heuristic increases as the size of X goes up, so in general it
will take fewer iterations for a WC-based scheme to converge
than an algorithm using W [17].

IV. ALGORITHM IMPLEMENTATIONS

Problem (3) is convex and readily solved by conic solvers,
e.g., SeDuMi or Mosek. However, naively passing to solvers
does not scale well to large-scale instances. In this section,
we modify Problem (3) to exploit its structure for adaptation
in both interior point methods and first order methods.

A. Interior-point methods

Interior point methods (IPM) such as SeDuMi will suf-
fer from additional equality constraints introduced from
the chordal decomposition forcing equality between cliques
(clique-tree method). A different chordal extension G̃ ⊃ G
may be used for optimization than the reweighting G that
forms WC . SparseCoLo [18] or other methods may perform
this decomposition to find an equivalent problem that is
kinder to IPM, but reweighting is strictly based on the
original pattern. IPM will be given Problem (3) as input,
after a possible decomposition. In Algorithm 1, only the cost
matrix C + WC changes between reweighting iterations, so
no repeat conversions are necessary. Interior point methods
generically find full rank solutions, so the low rank solution
can be extracted by indexing out and rounding the cliques
X∗k and then forming the minimal rank completion X∗r .

B. Alternating Direction Method of Multipliers (ADMM)

Following [10], we build an ADMM algorithm to solve
(2). Grone’s theorem has a natural variable split Xk =
ECkXE

T
Ck that separates affine and PSD constraints. The

resulting optimization problem is:

min
X,Xk

〈C +WC , X〉

subject to 〈Ai, X〉 = bi, i = 1, . . . ,m

Xk = ECkXE
T
Ck ,

Xk � 0,∀ k = 1, . . . , p.

(4)

Each iteration of ADMM has three steps [19]: The affine
constraints in X are handled in step 1, the PSD projection
in Xk is form step 2, and the dual ascent on dual variables

Λk to enforce the variable-split is on step 3. First order
algorithms such as ADMM sometimes converge slowly, but
have a relatively low per-iteration cost. Applying ADMM
to (4) requires solving subproblems at each iteration t (with
optional adjustment of ρ between iterations following [19]):
Step 1: Solve the following quadratic program (QP)

min
X
〈C +WC , X〉+

ρ

2

p∑
k=1

∥∥∥∥X(t)
k − ECkXE

T
Ck +

1

ρ
Λ

(t)
k

∥∥∥∥2

F

〈Ai, X〉 = bi, i = 1, . . . ,m.
(5)

Step 2: Project onto S|Ck|+ in parallel

min
Xk�0

ρ

2

∥∥∥∥Xk − ECkX(t+1)ETCk +
1

ρ
Λ

(t)
k

∥∥∥∥2

F

(6)

Step 3: Update the multipliers by dual ascent

Λ
(t+1)
k = Λ

(t)
k + ρ

(
X

(t+1)
k − ECkX(t+1)ETCk

)
.

The QP in step 1 can be solved by vectorizing all the
variables. Entry selection on the clique Ck can be replaced by
a matrix Hk where Hkvec(X) = vec(ECkXE

T
Ck). Likewise

ai = vec(Ai) is collated into A and bi into b, c = vec(C +

WC), and vk = vec(X
(t)
k + 1

ρΛ
(t)
k ). Step 1 is vectorized into:

min
x

〈c, x〉+
ρ

2

p∑
k=1

‖Hkx− vk‖22

subject to Ax = b.

(7)

The KKT system for the QP involves x and dual variable ω:[
D AT

A 0

] [
x
ω

]
=

[∑p
k=1H

T
k vk − c
b

]
.

Since each Hk is orthonormal, HT
k Hk is diagonal and

D =
∑p
k=1H

T
k Hk. The diagonal-offset lends itself nicely

to block elimination and precomputed factorization; see [10]
for detailed discussions on a numerical implementation.

Step 2 involves parallel PSD projections: find the eigen-
decomposition of Vk = ECkX

(t+1)ETCk−
1
ρΛ

(t)
k and keep the

positive eigencomponents. If desired, the reweighting WC on
X can be moved to an individual weighting Wk on Xk.

C. Homogeneous Self-Dual Embedding
Problem (4) can be solved through the homogeneous self-

dual embedding (HSDE) framework [20]. HSDE combines
the primal and dual problems together to allow for the iden-
tification of infeasible SDPs. Solutions of chordally-sparse
SDPs through HSDE have been already implemented [21],
which is based on the general conic formulation introduced in
[22]. Each iteration of HSDE is comprised of a large block-
sparse linear system, projection onto a product of multiple
cones, and a dual update step (see [21], [22] for details). If
s is the concatenation of vec(Xk) and c = vec(C + WC),
the linear system in HSDE v = Qu is:

h
z
r
w
k

 =


−AT −HT c

I 0
A −b
H −I
−cT 0T b



x
s
y
v
t

 .
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V. SUBSPACE CLUSTERING

In this section, we demonstrate the performance of Algo-
rithm 1 to solve subspace clustering (see Fig. 4 a.). Subspace
Clustering refers to the task of, given a set of Np points
xj ∈ RD ∀Np

j=1 sampled from Ns subspaces, find the normals
ri ∈ RD ∀Ns

i=1 of the sampled subspaces [23]. Alternatively, it
can be posed as finding the set of binary labels si,j ∀Ns

i=1∀
Np

j=1

that assign each point xj to the subspace spanned by the
normal vector ri. This problem arises in many practical
applications including switched system identification from
noisy input/output data (see e.g., [24], [25]), where each
subspace normal is defined by the coefficients of each
switching system.

(a) An application of SSC (b) SSC sparsity patterns

Fig. 4: SSC example and sparsity patterns

In the general formulation, a point xj belongs to subspace
i if rTi xj = 0. Under bounded noise, this orthogonality
constraint is relaxed to |rTi xj | ≤ ε, where ε is the noise
bound. The task of subspace clustering can be cast as the
following feasibility problem:

find
r,s

si,j |rTi xj | ≤ si,jε, ∀Ns
i=1,∀

Np

j=1, (8a)

si,j = s2
i,j , ∀Ns

i=1,∀
Np

j=1, (8b)
Ns∑
i=1

si,j = 1, ∀Np

j=1, (8c)

rTi ri = 1, ∀Ns
i=1, (8d)

where (8a) controls the orthogonality constraint and is only
active when si,j 6= 0, (8b) enforces binary labels, (8c) assigns
every point xj to a subspace and (8d) forces normal vectors
to have unit norm (otherwise ri = 0 is a trivial feasible
solution). Problem (8) is nonconvex due to quadratic equality
constraints and bilinear interactions between s and r.

Cheng et. al. proposed to reformulate (8) as an SDP by
defining a matrix X = [1, v] [1, v]T , with

v = [r1, . . . , rNs
, s1,1, . . . , sNs,1, . . . , sNs,Nj

]

containing all the variables of (8) in vectorized form [2].
X is a symmetric PSD matrix of size (1 + Ns(D + Np)),
and all the constraints in (8) become linear with respect to
the entries of X at the cost of adding a non-convex rank 1
constraint. The reweighted nuclear norm heuristic was then

employed to relax the rank constraint into a convex problem.
1

We note that problem (8) lacks bilinear interactions be-
tween different si,j terms or any interactions between sī,j
and rî when ī 6= î. As a result, only a very reduced number
of entries of X are actually used in the constraints of (8),
leading to a very sparse pattern. The sparsity pattern for an
SSC problem with parameters (D = 3, Np = 10, Ns = 5) is
shown in dark grey in Figure 4.b. To exploit this underlying
sparsity, [2] proposed to solve (8) with variables in a chordal
extension, shown by the union of light grey and red cells
in Figure 4.b. In this paper, we propose a reduced chordal
extension of X , shown in red in Figure 4.b. The new
extension is linear in Ns and Np, and imposes Ns [D + 1]-
size rank-1 constraints instead of a single larger [1 +NsD]
constraint. A summary of the clique matrix sizes |Ck| is:

Rank 1 PSD Other PSD

Problem # Cliques Size Cliques # Cliques Size Cliques % edges

Full X 1 1 +Ns(D +Np) ∅ ∅ 1637%
Cheng 1 1 +NsD Np 1 +Ns(D + 1) 350%
Ours Ns D + 1 NpNs D + 2 13%

1

TABLE I: Clique sizes in SSC. %edges measures size of chordal
extension over baseline E (variables in (8)). Parameters are (D =
3, Np = 10, Ns = 5) as in Fig. 4 b.

For our extension, each clique vi,j = [1, ri, si,j ] where
ri includes all coordinates of the normal. Experiments were
run on SSC using YALMIP and Mosek. Data was generated
by randomly choosing Ns subspace normals ri ∈ RD,
then sampling Np total points xj from these subspaces.
Points were corrupted by uniform noise with bounds ±ε.
WC-based regularization is applied until a rank-1 solution
(σ1/(

∑
σi) > 99%) is found or until 20 iterations. Results

are recorded in Fig. 6, all plots are mean±1 stdev.

97% rank-1 98% rank-1 100% rank-1

Fig. 5: SSC SDP convergence to satisfying Problem (8) as solution
approaches rank-1. Ns = 3, Np = 90, D = 2, ε = 0.15

Experiments are run on five penalty schemes: imposing
that X is rank-1, that the top-left corner of X is rank-1,
with the Cheng scheme, by Problem (3), and by prepro-
cessing Problem (3) with SparseCoLO. The SparseCoLO
scheme uses WC for rank penalization, and finds another
decomposition before passing to Mosek. As an example with
Ns = 4, Np = 80, D = 5, Problem (3) has 320 PSD blocks
of size D + 2 = 7, with 320 rank-1 constraints of size

1Due to the particular structure of the subspace clustering problem,
enforcing a rank 1 constraint on a particular principal submatrix of X is
equivalent to enforcing rank 1 on the overall matrix. The interested reader
is referred to Appendix A of [2] for the proof of this exact relaxation.
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D+1 = 6. For this problem, SparseCoLO generates 25 PSD
blocks with size between 12 and 30, and WC regularization
and rank-guarantees are performed on 6×6 sub-blocks. In all
tests, Problem (3) with SparseCoLO is an order of magnitude
faster than other problem formulations.

Fig. 6: SSC Experiments, changing individually Np (top), Ns

(bottom left), and D (bottom right).

The top left plot of Fig. 6 has Ns = 3, Np = 6 ∗
(1 . . . 13), D = 3. Imposing rank(X) = 1 directly never
converges to a rank-1 solution. Setting rank(Xtop left corner) =
1 is shown in yellow, and with Np = 42 each run takes
2 hours (not shown). The top right plot zooms in, and
shows the Cheng formulation, Problem (3), and Problem (3)
as preprocessed by SparseCoLO [18]. Adding in clique-
overlap constraints in Problem (3) degrades performance as
compared to Cheng, but with SparseCoLO preprocessing it
wins out. In the bottom left, Ns = 2 . . . 8, Np = 120, D = 2
over 12 tests. rank(X) = 1 and rank(Xcorner) = 1 do not
converge to rank-1 solutions, and in this case Problem (3)
without SparseCoLO is slower than Cheng. The bottom right
plot has Ns = 4, Np = 80, D = 2 . . . 8 over 8 tests, and as
D increases our proposed formulation clearly beats Cheng.
Variability in the plots is often due to iterations needed to
find a low rank solutions. In some cases, rank-1 solutions
are found in the first iterations, others require 20 iterations to
become nearly rank-1 (95%). These experiments also involve
all τk = 1. Unequal weights of cliques (possibly by size of
block) is of future interest.

VI. CONCLUSIONS

In this paper, we combined the minimum rank completion
with reweighted heuristic to solve rank-minimization prob-
lems with chordal sparsity. We showed that rank constraints
only need to be placed on the cliques Xk, and that using WC
maintains the sparsity pattern. We discussed implementations
of chordal rank minimized SDPs by interior-point and first-
order methods. We demonstrated the scalability and effi-
ciency of the chordal decomposition for rank minimization in
the specific example of subspace clustering. We expect that
these gains will hold in many other chordally sparse rank-
minimized SDPs, such as group (e.g. Z2) synchronization.
Future work includes utilizing other rank surrogate functions

and applying chordal rank minimization to more general
polynomial and rational optimization problems.
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