®

Check for
updates

Statement Voting

Bingsheng Zhang!®™ and Hong-Sheng Zhou?

! Lancaster University, Bailrigg, UK
b.zhang2@lancaster.ac.uk
2 Virginia Commonwealth University, Richmond, USA
hszhou@vcu.edu

Abstract. The conventional (election) voting systems, e.g., representa-
tive democracy, have many limitations and often fail to serve the best
interest of the people in a collective decision-making process. To address
this issue, the concept of liquid democracy has been emerging as an
alternative decision-making model to make better use of “the wisdom of
crowds”. However, there is no known cryptographically secure e-voting
implementation that supports liquid democracy.

In this work, we propose a new voting concept called statement voting,
which can be viewed as a natural extension of the conventional voting
approaches. In the statement voting, instead of defining a concrete elec-
tion candidate, each voter can define a statement in his/her ballot but
leave the vote “undefined” during the voting phase. During the tally
phase, the (conditional) actions expressed in the statement will be car-
ried out to determine the final vote. We initiate the study of statement
voting under the Universal Composability (UC) framework, and propose
several construction frameworks together with their instantiations. As
an application, we show how statement voting can be used to realize a
UC-secure liquid democracy voting system. We remark that our state-
ment voting can be extended to enable more complex voting and generic
ledger-based non-interactive multi-party computation. We believe that
the statement voting concept opens a door for constructing a new class
of e-voting schemes.

1 Introduction

Elections provide people with the opportunity to express their opinions in the
collective decision making process. The existing election/voting systems can be
mainly divided into two categories: direct democracy and representative democ-
racy. Unfortunately, either approach has many limitations, and it often fails to
serve the best interest of the people. For example, to make correct decisions,
the voters have to invest tremendous effort to analyze the issues. The cost of
identifying the best voting strategy is high, even if we assume that the voter has
collected all the necessary information accurately. In addition, misinformation
campaigns often influence the voters to select certain candidates which could be
against the voters’ true interests. We here ask the following challenging question:

© International Financial Cryptography Association 2019
I. Goldberg and T. Moore (Eds.): FC 2019, LNCS 11598, pp. 667-685, 2019.
https://doi.org/10.1007/978-3-030-32101-7_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32101-7_38&domain=pdf
https://doi.org/10.1007/978-3-030-32101-7_38

668 B. Zhang and H.-S. Zhou

Is it possible to introduce new technologies to circumvent the implementa-
tion barriers so that more effective democracy can be enabled?

A New Concept. We could approach the above problem via multiple angles.
In this paper, we propose a new powerful concept: statement voting. Statement
voting can be viewed as a natural extension of traditional candidate voting.
Instead of defining a fixed election candidate, each voter can define a statement
in his/her ballot but leave the vote “undefined” during the voting phase. During
the tally phase, the (conditional) actions expressed in the statement will be car-
ried out to determine the final vote. More specifically, in a statement voting, the
ballots typically contain a conditional statement that requires external inputs
(a.k.a. parameters and/or arguments) to be executed. For simplicity of illustra-
tion, here we consider (nested) if-statements or switch-statements: If A and B
then C else Cy, where A, B are conditions and C4, Cy are election candidates.
We emphasize that A and B are usually not defined yet at the time this ballot
is created; In the case that, A and B are defined, i.e., all the necessary infor-
mation is readily collected during the voting phase, the voter can evaluate such
a statement himself, and statement voting boils down to conventional voting.
Thus, statement voting can be viewed as a non-trivial extension of conventional
voting. We note that statement voting can be very flexible. For instance, a ballot
statement could be “if tomorrow is rainy, I vote for ‘staying at home’; otherwise,
I vote for ‘hiking’.” Note that the ballot can be cast today without even being
aware of tomorrow’s weather.

Single Transferable Vote (STV) is a special case of statement voting, where
the voters rank the election candidates instead of naming only one candidate in
their ballots. The ranked candidate list together with the STV tally rule can be
viewed as an outcome-dependent statement. Roughly speaking, the statement
declares that if my favorite candidate has already won or has no chance to win,

then I would like to vote for my second favorite candidate, and so on'.

Modeling Statement Voting. We provide a rigorous modeling for statement
voting. More concretely, we model statement voting in the well-known Universal
Composability (UC) framework, via an ideal functionality Fgv. The functionality
interacts with voters and trustees, where trustees are the set of voting committee
members who prepare the election and calculate the tally result. In our formu-
lation, we introduce a family of functionalities to facilitate various realizations.
In practice, there is a trade-off between efficiency and privacy guarantees; typi-
cally, more efficient constructions yield more privacy leakage. To capture various
leakage scenarios, in our ideal functionality, a working table W is introduced to
trace the election transcripts. Depending on which parties are corrupted (and
which scheme is considered), some part of the working table will be leaked to
the adversary.

Realizing Statement Voting. In this work, we provide several methods to
implement statement voting. Similar to most conventional e-voting systems, we

! Note that this is not a complete description of STV. For those readers who are
unfamiliar with STV, please see its full definition to avoid misunderstanding.

Statement Voting 669

assume a trusted Registration Authority (RA) to ensure voter eligibility and a
consistent Bulletin Board (BB) where the voting transactions and result will be
posted. The protocol involves a set of voters and a set of trustees, where the
trustees are the set of voting committee members who prepare the election and
compute the tally.

A Fully Homomorphic Encryption (FHE) Based Scheme. Intuitively, in this
scheme, the trustees first run a distributed key generation protocol to setup the
voting public key PK. Each voter V; then encrypts, signs and submits their vot-
ing statements, x; (in forms of (PID;, Encpk(z;))) to the BB. To prevent re-play
attacks, non-interactive zero-knowledge (NIZK) proofs are necessary to ensure
the voter knows the plaintext included in his/her submitted ciphertext. After
that, the tally processing circuit is evaluated over {(PID;, Encpk(2:))}iern) by
every trustee. The final tally ciphertext is then decrypted by the trustees and
the result will be announced on the BB.

A Publicly Auditable MPC Based Scheme. Intuitively, we can adopt BDO-type
of publicly auditable MPC [4], where the trustees form the MPC system. Dur-
ing the preparation phase, they pre-compute sufficiently many correlated ran-
domness (e.g., Beaver triples), and also set up a voting public key. Each voter
V; then encrypts, signs and submits their voting statements, x; (in forms of
(PID;, Encpx(x;))) together with necessary NIZK proofs to the BB. After that,
the trustees perform MPC online computation to first decrypt those encrypted
ballots and then evaluate the tally processing circuit over the secretly shared
ballots. Finally, the tally result will be posted on the BB. Note that during the
online phase, the BDO MPC scheme also posts audit information on the BB to
enable public verifiability.

Application: Liquid Democracy. In the past decades, the concept of lig-
uid democracy [16] has been emerging as an alternative decision making model
to make better use of collective intelligence. Liquid democracy is a hybrid of
direct democracy and representative democracy, where the voters can either
vote directly on issues, or they can delegate their votes to representatives who
vote on their behalf. Due to its advantages, liquid democracy has received high
attentions since the spread of its concept; however, there is no provably secure
solution in the form of either paper-voting or e-voting yet. Liquid democracy
can be viewed as a special case of statement voting. The vote delegation can
be expressed as a target-dependent statement, where a voter can define that
his/her ballot is the same as the target voter’s ballot. Therefore, we can have an
immediate construction for liquid democracy based on the above FHE-based and
MPC-based schemes. In addition to those “generic” constructions, we also show
how to realize liquid democracy with a more efficient construction. In Sect. 3.1,
we first define an ideal functionality for liquid democracy, and we then provide
a mix-net based construction. Note that the tally processing function must be
symmetric, otherwise we cannot use mix-net.

Further Remarks. In this work, we initiate the study of statement voting and
liquid democracy. Our statement voting concept can be significantly extended

670 B. Zhang and H.-S. Zhou

to support much richer ballot statements. It opens a door for constructing a new
class of e-voting schemes. This area of research is far from being completed, and
our design and modeling ideas can be further improved. For example, if there is
a delegation loop in which a set of voters delegate their votes to each other while
no one votes, then what should be the “right” policy? One possible approach is
to extend the delegation statement to include a default vote. When a delegation
loop exists, the involved ballots could be counted as their default votes. On the
other hand, if we don’t allow delegation loop in a liquid democracy voting, to
what extend can we guarantee voter privacy? How to refine the conventional
e-voting privacy to fit liquid democracy is still an open problem. We emphasize
that, voting policies can be heavily influenced by local legal and societal condi-
tions. How to define “right” voting policy itself is a very interesting question.
We believe our techniques have the potential to help people to identify suitable
voting policies which can further eliminate the barriers to democracy. Finally,
we note that several important security requirements, e.g., coercion resilience,
have not been investigated in this work. See more details in Sect. 4.

Related Work. To our best knowledge, Ford [16] first officially summarized the
main characteristics of liquid democracy and brought it to the vision of computer
science community. However, in terms of implementation/prototyping, there was
no system that can enable liquid democracy until very recently. All the exist-
ing liquid democracy voting systems only focus on the functionality aspect of
liquid democracy, and no privacy or some other advanced security properties
were considered. For instance, Google Votes [20] is a decision-making system
that can support liquid democracy, and it is built on top of social networks,
e.g., the internal corporate Google+ network. Similarly, systems such as Liqg-
uidFeedback [26], Adhocracy [1], GetOpinionated, [15] also fail to offer provable
security guarantees. It is worth mentioning that Sovereign [29] is a blockchain-
based voting protocol for liquid democracy; therefore, its privacy is inherited
from the underlying blockchain. As a special case of liquid democracy, Kulyk
et al. proposed several proxy voting schemes [23-25]. In terms of UC modeling
on e-voting. Groth [18] gave the first UC definition for an e-voting system, and
he proposed a protocol using (threshold) homomorphic encryption. Moran and
Naor [27] later studied the privacy and receipt-freeness of an e-voting system in
the stand-alone setting. Unruh and Muller-Quade [30] gave a formal study of
e-voting coerciability in the UC framework. Alwen et al. [3] considered stronger
versions of coerciability in the MPC setting under UC framework. Almost all the
end-to-end verifiable e-voting systems [2,13,21,22] requires a consistent bulletin
board. Finally, our temporary ID matching technique is closely related to the
queried term matching technique used in UnLynx[17] and the anonymous ID
linking technique used in [31].

2 Modeling

The parties involved in a statement voting system are a set of trustees T :=
{T1,..., Tk}, and a set of voters V:= {Vy,...,V,}.

Statement Voting 671

,—(Functionality]:SV) \

The functionality Fsv interacts with voters V, trustees T, and the adversary S. It is
parameterized by an algorithm TallyProcess (see Fig. 2), a working table W, and variables
result, Ty, T, and B; for all i € [n]. Let Vionest; Veorrupt and Thonests Teorrupt denote the set
of honest/corrupt voters and trustees, respectively.

Initially, set result := 0, Ty := 0, T := 0; for i € [n], set B; := 0.

Table W consists of n entries, and each entry consists of voter’s real ID, voter’s alter-
native ID, and the statement that the voter submitted; for all ¢ € [n], the ith entry
W(i] := (Vi, w;, statement;), where w; < {0,1}*, statement; := (.

Preparation:

1. Upon receiving input (INITIALTRUSTEE, sid) from the trustee T; € T, set
Ty :=T; U{T;}, and send (INITIALTRUSTEENOTIFY,sid, T;) to S.

Ballot Casting:

1. Upon receiving input (Cast,sid, (s;,w])) from V; € V, if |T1| < k, ignore it.
Otherwise,
— if V; is honest (w] := L), update W[i] := (V;, w;, s;); send
(CasTNoTIFY,sid, V;) to S.
— if V; is corrupt, then update W[i] := (V;, w], s;).
If |Teorrupt| = k, then additionally send a message (LEAK,sid, W[i]) to S.

Tally:

1. Upon receiving input (TALLY, sid) from the trustee T; € T, set Th :=T> U {T,} and
— set U:= W; then eliminate all V;’s in U; sort the entries in U lexicographically.
— define L. For example, set L := TallyProcess(U) or L :=U or L :=W.
Send a notification message (TaLLYNOTIFY,sid, T;) to S.
If |T% N Thonest| + |Teorrupt| = k, send a leakage message (LEAK,sid, L) to S.
If |T2| = k, compute result < TallyProcess(U).

2. Upon receiving input (READREsULT, sid) from a voter V; € V, if result =), ignore
the input. Otherwise, return (RESULTRETURN, sid, result) to V;.

Fig. 1. The voting functionality Fgy.

The Statement Voting Functionality. The ideal functionality for statement
voting, denoted as Fgy, is formally described in Fig. 1. Let Vhgnest, Veorrupt and
Thonest, Teorrupt denote the set of honest/corrupt voters and trustees, respectively.
Fgsvy consists of three phases—Preparation, Ballot Casting, and Tally. The func-
tionality uses a working table W to track the voters’ behavior during the entire
ideal execution. The working table W stores each voter’s information including
the voter’s original ID, his alternative/temporary ID, and the voting statement
that he submitted.

Preparation Phase. During the preparation phase, the trustees needs to indicate
their presence to Fgy by sending (INITIALTRUSTEE, sid) to it. The election will
not start until all the trustees have participated in the preparation.

Ballot Casting Phase. During the ballot casting phase, each voter can submit
his voting statement, and this voting statement will be recorded in the cor-
responding entry. If a voter is corrupt, then he is also allowed to revise his
own alternative/temporary ID in the working table. More concretely, based on
the input (CAST,sid, (s;,w])) from voter V;, the corresponding entry will be

672 B. Zhang and H.-S. Zhou

— TallyProcess N\

Input: a set of ballots B := (B1,..., By)
Output: the tally result result

Statement interpretation:

— Compute (v1,...,vy) < StatementProcess(B1, ..., By,), where StatementProcess takes
input as the set of statements and outputs the voters’ final votes.

Tally computation:
— Compute result < TallyAlg(vi, ..., v,), where TallyAlg(:) is the tally algorithm that

takes input as the votes and outputs the tally result.
— Return result.

Fig. 2. The extended tally processing algorithm.

updated, i.e., W[i] := (V;, w;, s;) if the voter is honest, and W[i] := (V;, w}, s;)
if V; is corrupt. When all the trustees are corrupted, the functionality Fgy leaks
the entire working tape of the election transcript (i.e., W), to the adversary.

Tally Phase. Voters’ information in the working table W will be used in the tally
phase to define the privacy leakage as well as the final result. More concretely,
we compute a new table U by first eliminating all V;’s in W, and then sorting all
the entries lexicographically. This carefully sanitised table U can now be used
to define (1) the final result via applying a circuit TallyProcess on U, and (2)
certain level of privacy leakage L. This formulation allows us to define a class of
statement voting functionalities. For instance, to define a functionality with full
privacy guarantees, we can set L := TallyProcess(U); we can also set L := U to
define a functionality with relatively weaker privacy guarantees, or set L := W
to define a functionality without privacy guarantees.

The Liquid Democracy Ideal Functionality. Given that liquid democracy
is the special case of statement voting, we can easily derive an ideal functionality
for liquid democracy from Fgy. The full description of the concrete functionality
for liquid democracy, Friqu, can be found in the full version. At a high level,
FrLiqun uses the following statement interpretation step in the TallyProcess. Each
ballot is in form of either B; = (w;,u;, L) or B; = (w;, L, z;), where w; and w;
are temporary ID’s; and z; is a vote. To resolve the delegation, the algorithm
needs to follow the “chain of delegation”, i.e., for each ballot B;:

— If B; is in form of (w;,u;, L), try to locate a ballot B, in form of (u;, X,Y).
If founded, replace B; := (w;, X,Y).

— Repeat the above step, until B; is in form of (w;, L, Z). If there is a delegation
loop, define B; := (w;, L, L).

In case of delegation loop, we set the ballot to blank ballot. Of course, we can
enrich the statement by adding another variable to indicate whether a voter
wants to be delegated. When the “chain of delegation” breaks by V; wants to
delegate his vote to V;, while V; does not want to be delegated. In this case,

Statement Voting 673

V,;’s ballot will be re-set to a blank ballot. The most preferable statement for
liquid democracy in practice shall be determined by computational social choice
theory, which is outside the scope of this paper.

3 Constructions

Due to space limitation, we present the two generic constructions — (i) FHE-
based construction and (ii) MPC-based construction, in the full version. In
the former one, the voters use FHE to encrypt and upload their statements
to the BB. The tally evaluation circuit can be then publicly evaluated over the
encrypted statements by any party. After that the trustees will jointly decrypt
the final ciphertext(s). In the latter one, any public key encryption scheme can
be adopted, so it is more efficient. Similarly, during the voting, the voters encrypt
their statements and post them on the BB. The trustees will then participate the
MPC evaluation to jointly decrypt the submitted statements and then compute
the tally algorithm in the shared format with privacy assurance.

3.1 A Practical Construction for Liquid Democracy

The construction is based on mix-net, and the privacy that it achieves is known as
pseudonymity. We emphasize that this level of privacy has been widely accepted
and is consistent with the existing paper-based voting systems.

As mentioned before, liquid democracy is an emerging type of voting system
that receives high attentions since the spread of its concept; however, there is no
provably secure solution in the form of either paper-voting or e-voting yet.? We
now show that how to define a simple statement to enable liquid democracy.

In a generic statement voting, the ballot can be defined in the following form:
(ID, targets, statement), where ID is the voter’s ID, targets is a set of target voters’
IDs which will be referenced in the statement, and statement is the (conditional)
statement. To realize liquid democracy voting, we can define the following simple
statement: (i) if voter V,; wants to delegate his vote to V;, then the ballot is
B = (V;,{V,},delegate); (ii) if voter V; wants to vote directly for election
option z, then the ballot is B := (V;, L, vote z); and (iii) if the voter does not
want to be delegated, then he can set his own ID to L. To obtain the basic
intuition, let’s first leave privacy aside and consider the following toy example.

Toy Example. Take the Yes/No election as an example. Suppose there are 7 bal-
lots: By := (V1, V7,delegate), By := (Va, L, vote Yes), Bs := (V3, L, vote No),

2 All the existing liquid democracy implementations do not consider pri-
vacy/anonymity. This drawback prevents them from being used in serious elections.
Here, we note that straightforward blockchain-based solutions cannot provide good
privacy in practice. Although some blockchains (e.g., Zerocash [5]) can be viewed
as a global mixer, they implicitly require anonymous channels. In practice, all the
implementations of anonymous channels suffer from time leakage, i.e., the user’s ID
is only hidden among the other users who are also using the system at the same
time. Subsequently, the adversary may easily identify the users during quiet hours.

674 B. Zhang and H.-S. Zhou

By := (L, 1,vote Yes), Bs := (V5,Vy,delegate), Bg := (L, V3, delegate) and
B; := (V7,V3,delegate). Here, the effective vote of Bj is defined by By, which
is further defined by Bj; note that Bs votes for No; that means, B; and B7 vote
for No by following B3. Now let’s consider Bg: Bg follows Bs; however, Bg is
not willing to be followed by anyone; as a result, Bg also votes for No. Finally,
let’s consider Bs: Bs follows By; however, B, is not willing to be followed by
anyone; as a consequence, Bj is re-defined as blank ballot, L. After interpreting
the delegation statements, the final votes are (No, Yes, No, Yes, L, No, No).

Intuition. At the beginning of each election, the voters V;, i € [n], are assigned
with a temporary random ID, denoted as ID;. Let Z := {IDy,...,ID,} be the
set of all the voter’s random IDs. The voter’s statement takes the input as an
ID in Z, and use it as a reference to point to the corresponding ballot that
will be involved in the statement execution, i.e., the potential vote delegation
of liquid democracy. To ensure privacy, the voters cannot post their temporary
IDs publicly on the bulletin board Ggg; however, the voters should be allowed
to freely refer to any voter’s ID.

To address this challenge, we introduce the following technique. Before
the ballot casting phase, each voter picks a random ID and posts the (re-
randomizable) encryption of the ID on the Gpg. If a voter wants to refer to
another voter in the statement, he/she simply copies and re-randomizes the
ciphertext of the corresponding voter’s ID. At the tally phase, all the ballots
are passing through re-encryption based mix-net, and then are decrypted to cal-
culate the statements and tally result. We remark that in practice the mix-net
servers can be different from talliers (a.k.a. decrypters). As such, they could have
different threshold.

Building Blocks. Our protocol utilises a bulletin board functionality, a cer-
tificate functionality, a threshold re-randomizable encryption scheme, and the
corresponding non-interactive zero-knowledge proofs. Their formal descriptions
and defintions can be found in the full version.

Bulletin Board Functionality. The public bulletin board (BB) is modeled as a
global functionality Gpp. The functionality is parameterized with a predicate
Validate that ensures all the newly posted messages are consistent with the
existing BB content w.r.t. Validate. Any party can use (SUBMIT,sid, msg) and
(READ, sid) to write/read the BB.

Certificate Functionality. We adopt the multi-session version of certificate func-
tionality following the modeling of [7]. The multi-session certificate functionality
.YT'CERT can provide direct binding between a signature for a message and the
identity of the corresponding signer. This corresponds to providing signatures
accompanied by “certificates” that bind the verification to the signers’ identities.

Threshold Re-randomizable Encryption. A threshold re-randomizable encryp-
tion scheme TRE consists of a tuple of algorithms: (Setup, Keygen, Enc, Dec,
CombinePK, CombineSK, ShareDec, ShareCombine, ReRand) as follows.

Statement Voting 675

— param « Setup(1*). The algorithm Setup takes input as the security parame-
ter A\, and outputs public parameters param. All the other algorithms implic-
itly take param as input.

— (pk, sk) < Keygen(param). The algorithm Keygen takes input as the public
parameter param, and outputs a public key pk, a secret key sk.

— ¢« Enc(pk, m). The algorithm Enc takes input as the public key pk and the
message m, and outputs the ciphertext c.

— ¢/ < ReRand(pk, ¢). The algorithm ReRand takes input as the public key pk
and a ciphertext ¢, and outputs a re-randomized ciphertext ¢’.

— m « Dec(sk,c). The algorithm Dec takes input as the secret key sk and a
ciphertext ¢, and outputs the decrypted plaintext m.

— pk := CombinePK(pky,...,pk;). The algorithm CombinePK takes input as a
set of public keys (pky, ..., pk;), and outputs a combined public key pk.

— sk <« CombineSK(sky, ..., sky). The algorithm CombineSK takes input as a
set of secret key (sky,...,sky), and outputs combined secret key sk.

— p; < ShareDec(sk;, ¢). The algorithm ShareDec takes input as the secret key
sk; and a ciphertext ¢, and outputs a decryption share ;.

— m « ShareCombine(c, 11, . .., ptr). The algorithm ShareCombine takes input
as a ciphertext ¢ and k decryption shares (p1, ..., ug), and outputs a plaintext
m.

— ¢« Trans(c, {sk; }iepk)\j1)- The algorithm Trans takes input as a ciphertext
¢ < TRE.Enc(pk;,m) and a set of secret keys {sk; }icx]\ (5}, and outputs a
ciphertext ¢’.

— {#;} ez < SimShareDec(c, m, {i; }iez). The algorithm SimShareDec takes
as input a ciphertext ¢, a plaintext m, and a set of decryption shares {u; ez
and outputs a set of decryption shares {1 };epu\z- Here Z C [k].

In Appendix A, we provide the corresponding TRE security definitions.

Non-interactive Zero-Knowledge Proofs/Arguments. Here we briefly introduce
non-interactive zero-knowledge (NIZK) schemes in the Random Oracle (RO)
model. Let R be an efficiently computable binary relation. For pairs (z,w) € R
we call x the statement and w the witness. Let L be the language consisting
of statements in R, i.e. Lr = {z|3w s.t. (z,w) € R}. An NIZK scheme includes
following algorithms: a PPT algorithm Prov that takes as input (z,w) € R and
outputs a proof 7; a polynomial time algorithm Verify takes as input (x,7) and
outputs 1 if the proof is valid and 0 otherwise.

Definition 1 (NIZK Proof in the RO Model). NIZK% .{Prov, Verify, Sim,
Ext} is an NIZK Proof of Membership scheme for the relation R if the following
holds:

— Completeness: For any (x,w) € R,
Pr¢ « {0,1}} 7 Prov© (z, w; ¢) : Verify®O (z, 1) = 0] < negl(X).
— Zero-knowledge: If for any PPT distinguisher A we have

| Pr[ARC:O1(1%) = 1] — Pr[ARO:92(1%) = 1] | < negl(A).

676 B. Zhang and H.-S. Zhou

,—{ Preparation N

Upon receiving (INITIALTRUSTEE, sid) from the environment Z, the trustee T;, j € [k],
operates as the follows:

— Generate (ﬁj7§j) < TRE.Keygen(param; ;) where «; is the fresh randomness, and
then compute

]U « NIZKg, { (Pk;), (@j, sk;) : (pk;, sk;) = TRE.Keygen(param; a;) }

7'r(.
— Send (SIcN,sid, ssid, (pikj,‘frj(.l))) to Foerr and receives

(SIGNATURE, sid, ssid, (ﬁj,wgl)),agl)) from]?CERT, where ssid = (T, ssid") for some

ssid’.

— Send (SusmrrT, sid, (ssid, (pikj,ﬂ;.1>),0‘;1)>) to GpB.-

\. J

Fig. 3. Mix-net based liquid democracy scheme ITyix-Liqun in {Q_BB7 fc}m}—hybrid world
(Part I)

The oracles are defined as follows: O1 on query (x,w) € R returns m,
where (m,auz) — Sim"°(x); Oy on query (z,w) € R returns w, where
7 Provi(z,w; ¢) and ¢ — {0,1}*.

— Soundness: For all PPT adversary A,

Pr[(z,7) «— ARO(1Y) 12 ¢ LR A VerifyRO (z,) = 1] < negl(X).

Definition 2 (NIZK PoK in the RO Model). NIZK} .{Prov, Verify, Sim,
Ext} is an NIZK Proof of Knowledge scheme for the relation R if the com-
pleteness, zero-knowledge, and extraction properties hold, where the extraction is
defined as follows. For all PPT adversary A, the following is 1 — negl(A).

Pr [(z,7) « ARO(1M);w Ext®O(z,7) : (z,w) € R if Verify®© (z, 7) = 1]

Protocol Description. The protocol is designed in the {Q_BB,]?CERT}—hybrid
world and it consists of three phases: preparation, ballot casting, and tally. For
the sake of notation simplicity, we omit the processes of filtering invalid messages
on Ggg. In practice, Gpp contains many messages with invalid signatures, and
all those messages should be ignored. We will use threshold re-randomizable
encryption (TRE) as a building block.

Preparation Phase. As depicted in Fig. 3, in the preparation phase, each trustee
T;, j € [k] first picks a randomness generates ¢; and generates a partial public
key using (ﬁj,ﬁj) «— TRE.Keygen(param; ;). It then generates an NIZK proof

7"« NIZKg, { (PK;), (ej, 5Kk;) : (pK;, 5k;) = TRE.Keygen(param; a;) }

to show that this process is executed correctly; namely, it shows knowledge of
(o, skj) w.r.t. to the generated partial public key ﬁj. It then signs and posts

(Pikjﬂrj(-l)) to Gpp-

Statement Voting 677

—{ Ballot Casting <

Upon receiving (CAasT, sid, (s;, L)) from the environment Z, the voter V; does:

o Round 1:

— Send (READ,sid) to Gea, and obtain (READ, sid, state) from Ger. If
{<ssid, (pikv,wsl)),a(vl))} is contained in state, then for j € [k], send

AN Ei Jek]

(VERIFY, sid, ssid, (pk;, 7T;1>)
(VeRriFiED, sid, ssid, (pk,;, 7¢1), b5 from Foper; If [T5_, 01" =1, check
NIZKr , Verify(pk,;, 7$")) = 1 for j € [K].

— Compute and store pk «— TRE.CombinePK({}Tkj }?:1).

— Randomly selects w; < {0, 1}A and compute W; < TRE.Enc(pk, w;; 3;) with fresh
randomness (3; together with

,o‘J(.l)) to Fcerr, and receive

71'52) — NIZKRry { (Pk, W2), (Bi, wi) : Wi = TRE.Enc(pk, wy; B:) }

— Send (SIGN, sid, ssid, (W;, 7r§2))) to Foerr, and receive
(SIGNATURE, sid, ssid, (W;, 7752)), 052)) from Fcerr, where ssid = (V;, ssid’) for some
ssid’.
— Send (SusmrT, sid, (ssid, (W;, 7(?), 0?)) to Ggp.
o Round 2:
— Send (READ,sid) to Ggg, and obtain (READ,sid, state) from Ggg. For ¢ € [n], if
(ssid, (Wg,ﬂ'f)),af)) is contained in state, then send
(VERIFY, sid, ssid, (Wg,wf)),af)) to]?Cr:m, and receive
(VERIFIED, sid, ssid, (W[,T(é2))7 bf)) from Fogr; For € € [n], set
W, < TRE.Enc(pk, L;0) if W, is missing or béz) =0 or
NIZK . Verify((pk, W), ={>) = 0.
— (i) If s; = (L, v;): compute
— V; < TRE.ReRand(pk, Wo;~;) and
7 NIZKgg { (pk, (Wo, ..., Wn), Vi), (7,0) : V; = TRE.ReRand(pk, We; i) }-
— U; + TRE.Enc(pk, v;;d;) and
7 NIZKg, { (pk, Us), (8;,v:) : U; = TRE.Enc(pk, vi; 6;) }.
— (ii) If s; = (V;, L): compute
— V; < TRE.ReRand(pk, Wj; ;) and
7 NIZKgg { (pk, (Wo, . .., W), Vi), (7, 4) : Vi = TRE.ReRand(pk, We; ;) }.
— U; < TRE.Enc(pk, L;4;) and
7 NIZKg, { (pk, Uy), (6;, L) : U; = TRE.Enc(pk, L;6;) }.
— Send (Sicn,sid, ssid, (U;, Vi, 7r£3), 7r£4))) to Fcerr and receive
(SIGNATURE, sid, ssid, (U;, V;, 7r£3>, 7r§4)), 0',53)
some ssid’.
— Send (SuswmrT,sid, (ssid, (U;, \/,;,7153),771{4)),023)>) to GpB.

) from J?CERTy where ssid = (V;, ssid’) for

Fig. 4. Mix-net based liquid democracy scheme ITyix-Liqui in {GgB, ﬁcW‘}—hybrid world
(Part 1II)

Ballot Casting Phase. As depicted in Fig. 4, the ballot casting phase consists of
two rounds. In the first round, each voter V;, i € [n] first fetches the trustees’
partial public keys {ﬁj}?:l from Gpp. She then checks the validity of their
attached NIZK proofs. If all the NIZK proofs are verified, she computes and
stores the election public key as pk «— TRE.CombinePK({pk; }§=1)~ In addition,

the voter V; picks a random temporary ID w; « {0,1}*. She then uses the

678 B. Zhang and H.-S. Zhou

Tally (Part I) N

Upon receiving (TALLY, sid) from the environment Z, the trustee T;, where j € [k], oper-
ates as the follows:

o Round 1 to k:
— If j =1, send (READ,sid) to i, and obtain (READ,sid, state) from Gpp. For
L€ [n]:
— If (ssid, (W, w (2)),a§2)> is contained in state, then send
(VERIFY, sid, ssid, (W[{,ﬂ'zz)), 022)) to]?cEm-, and receive
(VERIFIED, sid, ssid, (Wg,w,gz)),bgz)) from]?CERT;
— If (ssid, (U, Vo, (3> (4)) 0(3)), is contained in state, then send
(VERIFY, sid, ssid, (Uz,Vg, (3) (4)),023)) to ﬁCH!{Tu receive
(VERIFIED, sid, ssid, (Ug, Vi, T (3),7r(4)) b(.g)) from]?c[.-m-;
Set @ = 0. For £ € [n], define e(0> (We, Uy, V) and @ = i + 1 if the following holds:
— Wy, Uy, Vi exist in state and bf) -bég) =1
— NIZK g .Verify((pk, W), 75>) = 1;
— NIZK R Verify ((pk, (Wo, - . ., Wa), Vo), m¥) = 1
— NIZKR 5 .Verify((pk, Ue), 75) = 1;
(Set n/ := i after the above process.)
— (If 5 > 1, T; sends (READ,sid) to GpB, and obtain (READ,sid, state) from Gpp; T,
then fetches (e(J 2))171, 5371))1,1, (,5) from state and check
NIZK R, Verify((pk, (et’; V), ... e 3 1>) (ngg,...))l 7)) =1, for t € [3].)
T, randomly picks a permutatlon H over [n’]; For i € [n'], set
eE‘Jl) <+ TRE.ReRand(pk, egf(lg s (J)) 85122 <+ TRE.ReRand(pk, egf(lg Q,TEJQ))A, and

egjs < TRE.ReRand(pk, eg_f(l.; 3;7"(]3?), where T(]E, (32) ’r(]) are fresh randomness.
i PIGIIAEN 1073

Compute
(Pk7 (65.1—1)74_476(.1—1)) (e(.7’> J/)))
(13, 2,0)]
: no. (_ (G-=1) (@)
Trj(_5) NIZK, Vie [n'] : = TRE.ReRand | pk, en (i),1 3T
A 6572) = TRE.ReRand | pk, eg (i),2 ,7(J2)

A eEJ?Z = TRE.ReRand (pk, eg_][(lg 3 7TE]?3>

— Send (SIGN, sid, ssid, (6571> 65J2)7e§]))?l))) to Foemr and receive

e
.7
(4)) L()yn' 5)
(SIGNATURE, sid, ssid, (67]1,65‘72,61‘]:2 ", ;)

ssid = (T, ssid’) for some ssid’.

— Send (Suswmir,sid, (ssid, (55]1) eijg,eg’g A ;5),a'§4))) to GBB-

,054)) from]:CERTa where

Fig. 5. Mix-net based liquid democracy scheme Ily;x-Liquip in {GBB, ﬁcERT}—hybrid world
(Part I11)

election public key pk to encrypt w; as W; «— TRE.Enc(pk, w;; ;) with fresh
randomness [3;. She also computes the corresponding NIZK

7 — NIZKg, { (pk, W3), (Bi,w;) : W; = TRE.Enc(pk, w;; i)}

Statement Voting 679

Tally (Part II) \

o Round k + 1:
— Send (REaD,sid) to QBB, and obtain (READ,sid, state) from Gpp. For j € [k], if

(ssid, (e1), el9), e’ 7), <4>>

i1 €20 €53)i=1> is contained in state, then send

(VERIFY, sid, ssid, (e fjl),esz),eijg :‘ 1 (5)) 0(4)) to Fosnr, and receive

(VERIFIED, sid, ssid, (6(11) eijg (]))” ()y, b()Y from Fogr; if b§.4) = 1, check
—1 —1 j 5

NIZKz , Verify((pk, (e{’,), ..., el >) (@) ...,eij,{t)),w;)y =1, for t € [3]. If any

of the above checks is invalid, halt.

— For i € [n/], t € [3] compute m£7t) < TRE.ShareDec(pk, sk;, €' e;l t) and

o (P, eft) 7)), (o, 5Ky) -
T4, ¢ NIZKRg m(Jt) — TRE ShareDec(sk, e)
(pkj7 sk;) < TRE. Keygen(aj)

— Send (SicN, sid, ssid, (ﬁ(2,71'] iy t)ze[n’] teqs)) to Feprr and receives

(SIGNATURE, sid, ssid, (ﬁ“,, T t)LE[n’] te[3) ()) from Fcgrr, where ssid = (T;,ssid”)

for some ssid’.

— Send (SuBwmIT, sid, (ssid, (mEJt), ;61>t)l,€ 1,t€3)> f))) to GBB-

Upon receiving (READRESULT, sid) from the environment Z, the voter V;, where i € [n],
operates as the follows:
— Send (READ,sid) to Ggg, and and obtain (READ, sid, state) from Ggg.

For j € [k], if (ssid, (m(J)

(VERIFY, sid, ssid, (ﬁijt),ﬂﬁol)t)le 1, te(3]s <“')) to Foenr, and receive

(VERIFIED, sid, ssid, (7§Jt),7T] i t)icin’],te[3] () from Foemr. If 1_[‘;:1 b;5) =1, for all

j € [k],i € [n],t € [3], check NIZKRg. Verlfy((e,(bkt),'m(]) pk;), 56]').t) = 1. If any of the
above checks is invalid, return (ERROR,sid) to the environment Z and halt.

— For i € [n/]: compute m;, ¢ + TRE.ShareCombine((k, k), e(k) {W(]) 1), t € [3];
define Bj := (m;,1, m; 2, m;3).

— Calculate election result result < TallyProcess({B;};c[,/)), and return
(READRESULTRETURN, sid, result) to Z.

J i t)le [n/],te[3] ;5)) is contained in state, send

Fig. 6. Mix-net based liquid democracy scheme ITyx Liqup in {QBB,]/-\'CERT}-hybrid world
(Part IV)

to show she is the creator of this ciphertext. Voter V; then signs and posts
(Wi,ﬂ'gz)) to Gpp. In the second round, each voter V;, i € [n] first fetches all
the posted encrypted temporary IDs from Ggp, and checks their attached NIZK
proofs. For any missing or invalid (encrypted) temporary IDs, the voters replace
them with TRE.Enc(pk, L;0), which is the encryption of L with trivial random-
ness. Moreover, the voters also defines Wy «— TRE.Enc(pk, L;0). The statement
for liquid democracy, s;, can be parsed as either (i) (V;, L) or (ii) (L, v;).

In Case (i) (V;, L), i.e. delegating to voter V;, the voter produces V; as a
re-randomized W; and U; as encryption of L. She then gives a NIZK proof

showing that V; is re-randomized from one of the ciphertexts in (Wy,...,W,,)
and another NIZK proof showing U; is created by her. Denote the corresponding
(3)

proofs as m;”” and 71'2(4), respectively. V; signs and posts (U;, V;, 77(3), (4)) to GpB.

680 B. Zhang and H.-S. Zhou

In Case (ii) (L,v;), i.e. voting directly v;, analogous to Case (ii), the voter
produces V; as a re-randomized Wy and U, as encryption of v;. Meanwhile,
she also gives a NIZK proof showing that V; is re-randomized from one of the

ciphertexts in (Wy, ..., W,,) and another NIZK proof showing U; is created by
(3) (4)

her. Denote the corresponding proofs as m;”’ and 7,

posts (Ui,‘/;,wf),ﬁf)) to Gpp.

, respectively. V; signs and

Tally Phase. The tally phase is depicted in Figs.5 and 6. The trustees first
fetches (W;, V;,U;) (which is viewed as the submitted ballot for voter V;) from
Gpi and check their attached NIZK proofs. All the invalid ballots will be discard.
Let n’ be the number of valid ballots. All the trustees then jointly shuffle the
ballots via a re-encryption mix-net. More specifically, each trustee sequentially
permutes (W;, V;,U;) as a bundle using shuffle re-encryption. To ensure correct-
ness, the trustee also produces a NIZK proof showing the correctness of the
shuffle re-encryption process. After that, upon receiving (TALLY,sid) from the
environment, all the trustees T; check the correctness of the entire mix-net and
then jointly decrypt the mixed ballots using TRE.ShareDec. More specifically,
each trustee will sign and post its decryption shares to Ggg.

Each voter can then compute the tally result as follows. The voter first fetches
all the decryption shares and checks their validity using NIZKg,.Verify. Upon
success, the voter uses TRE.ShareCombine to reconstruct the messages. She then
use TallyProcess as described in Fig. 2 to calculate the final tally.

Remark 1. The re-randmonizable encryption (TRE) scheme used in this pro-
tocol can be replaced by a re-randomizable RCCA encryption scheme. Here
RCCA is the short name for replayable CCA defined by Canetti, Krawczyk, and
Nielsen [9]. Several RCCA constructions can be found in literature [11,12,19,28].
In our construction, it is possible to distribute a publicly verifiable RCCA encryp-
tion scheme, e.g. [12] and then use it as an enhanced version of TRE. Subse-
quently, NIZK%, can be removed. Since the running time of proving/verifying
NIZKR, is linear in the number of voters n, it is more efficient to use RCCA
instead of TRE for large n in practice.

Theorem 1. Protocol Il yx 1iqun described in Figs. 3, 4, 5 and 6 UC-realizes
Friquw n the {Gep, Fcgrr }-hybrid world against static corruption.

4 Further Discussions

Statement Policy. We initiate the study of statement voting and liquid democ-
racy in this work. Our statement voting concept can be significantly extended to
support much richer ballot statements, which opens a door for designing a new
class of e-voting schemes. A natural question to ask is what type of statements
are allowed. For correctness, the (deterministic) TallyProcess function should be
a symmetric function in the sense that its output does not depend on the order of
the ballots to be counted. Moreover, the voting statement has a maximum run-
ning time restriction to prevent DoS, and it should not depend on partial tally

Statement Voting 681

result. This is known as fairness. Namely, the statement execution cannot be
conditional on the partial tally result at the moment when the ballot is counted.
On the other hand, the statement can take input as external information oracles,
such as News, Stock market, etc. When statement voting is integrated with a
blockchain infrastructure, our scheme can be used to enable offline voting or
smart voting. In particular, the voters may submit their statement ballot any
time before the election on the blockchain; during the tally phase, the voter’s
ballots will be decrypted, and their statements will define their final votes based
on the latest information provided by News oracles on the blockchain.

This line of research is far from being completed. We also remark that, voting
policies can be heavily influenced by local legal and societal conditions. How to
define “right” voting policy itself is a very interesting question. We believe our
techniques here have the potential to help people to identify suitable voting
policies which can further eliminate the barriers to democracy.

Trusted Setup. Typically, trusted setup assumptions® are required for con-
structing UC-secure e-voting systems. Common Reference String (CRS) and
Random Oracle (RO) are two popular choices in practice. If an e-voting system
uses CRS, then we need to trust the party who generates the CRS, which, in
our opinion, is a stronger assumption than believing no adversary can break a
secure hash function, e.g., SHA3. Therefore, in this work, we realize our liquid
democracy voting system in the RO model. As a future direction, we will con-
struct more solutions to liquid democracy. For example, an alternative approach
is as follows: we first use MPC to generate a CRS; then we construct liquid
democracy voting system by using the CRS. As argued above, we need to trust
the parties who generate the CRS; e.g., at least one honest MPC player.

Privacy and Coercion Resilience. Both statement voting and liquid democ-
racy voting extend (deviate) from the conventional e-voting; therefore, the con-
ventional privacy definitions are no longer suitable for these new types of voting
schemes. For instance, if delegation loop is not allowed in the liquid democracy,
how much voter privacy can be possibly achieved? We will investigate the privacy
of statement voting and liquid democracy in depth in our future work.

Finally, we note that coercion resilience is critical in many scenarios. We will
investigate this strong security requirement in our future work, too. Recently,
Daian et al. [14] discussed the difficulty to achieve coercion resilience in the on-
chain voting. We remark that Daian et al. only excluded a special class of voting
protocols that “users can generate their own keys outside of a trusted environ-
ment”. A potential approach is to follow our preliminary result [3]; there, very
different technique has been explored for achieving coercion resilience: voters’
keys and correlated secret information are generated inside a trusted hardware
which cannot be obtained by the coercer.

Voter’s Complexity. In our FHE-based and MPC-based solutions, the voter’s
complexity is constant in the number of ballots; the voting tally members have

3 Most non-trivial functionalities (including the e-voting functionality) cannot be UC-
realized in the plain model [6,8,10].

682 B. Zhang and H.-S. Zhou

linear (or superlinear) complexity with respect to the number of voters, which
is asymptotically the same as many existing voting schemes. In our mix-net
based protocol, the voter’s complexity is linear in the number of ballots; we
remark that, this is our implementation choice for small scale, statement vot-
ing. As already discussed in Remark 1 in previous section, we can replace the
TRE encryption with an RCCA encryption [11,12,19,28] to achieve better (i.e.,
constant) voter’s complexity in the mix-net based protocol.

Acknowledgement. We thank Jeremy Clark and the anonymous reviewers for their
constructive comments. The first author was partially supported by EPSRC grant
EP/P034578/1. The second author was partially supported by NSF award #1801470.
This work is also supported by Ergo platform, Fractal Platform, and Blockchain
institute.

A Security Definition for TRE

Definition 3. Wesay TRE = {Setup, Keygen, Enc, Dec, CombinePK, CombineSK,
ShareDec, ShareCombine, ReRand} is a secure threshold re-randomizable public key
encryption if the following properties hold:

Key combination correctness: If {(pk;,sk;)}icx) are all valid key pairs,
pk := TRE.CombinePK({pk;};cjr]) and sk := TRE.CombineSK({sk;}ic[x]),
then (pk, sk) is also a valid key pair. For all ciphertext ¢ € Cpx, where Cyy is
the ciphertext-space defined by pk, we have

TRE.Dec(sk, ¢) = TRE.ShareCombine(c, TRE.ShareDec(ski, ¢), . . ., TRE.ShareDec(skg, c))

Ciphertext transformative indistinguishability:
There exists a PPT algorithm Trans such that if {(pk,,sk:)}icix) are
all walid key pairs, pk := TRE.CombinePK({pk;};cix)) and sk :=
TRE.CombineSK({sk;};cx)), then for all message m, for any j € [k|, the
following holds.

(param, TRE.Trans(c, {sk; }ieup\(j3)) ~ (param, TRE.Enc(pk,m))

IND-CPA security: We say that a TRE scheme achieves indistinguishability
under plaintext attacks (IND-CPA) if for any PPT adversary A the following
advantage AdvCPA is negligible.

EXPERIMENT T (1)
Run param «— TRE.Setup(1*).
Run (pk, sk) « TRE.Keygen(param);
A(pk) outputs mg, m1 of equal length;
Pick b — {0,1}; Run ¢ < TRE.Enc(pk, my);
6. A(c) outputs b*; It returns 1 if b = b*; else, returns 0.
We define the advantage of A as

ARSI T

1
AdvCPA 4(1*) = |Pr[EXPERIMENTPA(17) = 1] — 3

Statement Voting 683

Unlinkability: We say a TRE scheme is unlinkable if for any PPT adversary
A the following advantage AdvUnlink is negligible.

EXPERIMENTV"MK(14)

. A outputs a set T C {17 el k} of up to k — 1 corrupted indices.
. For i = [n], run (pk;, sk;) < TRE.Keygen(1*;w;);

) A({pkj }je[k]\Z) outputs cg, c1;

b~ {0, 1}; ¢’ «+ TRE.ReRand(pk, ¢p;w);

A(c) outputs b*; It returns 1 if b = b*; else, returns 0.

We define the advantage of A as

_ijl\ L D ~

; 1
AdvUnlink 4(1*) = |Pr[EXPERIMENT ™K (12) = 1] — 3

Share-simulation indistinguishability: We say TRE scheme achieves share-
simulation indistinguishability if there ezists a PPT simulator SimShareDec
such that for all valid key pairs {(pk;, sk;)}ic), all subsets T C [k], all mes-
sage m, the following two distributions are computationally indistinguishable:

(param, ¢, SimShareDec(c, m, {; }icz)) ~ (param, ¢, {1;}jeppz)

where param « TRE.Setup(1*), ¢ + TRE.Enc(pk,m) and p; <«
TRE.ShareDec(sk;, ¢) for j € [k] \ I.

References

1. Adhocracy. Adhocracy official website. Accessed 21 Oct 2017

2. Adida, B.: Helios: web-based open-audit voting. In: USENIX Security (2008)

3. Alwen, J., Ostrovsky, R., Zhou, H.-S., Zikas, V.: Incoercible multi-party computa-
tion and universally composable receipt-free voting. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 763-780. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-48000-7_37

4. Baum, C., Damgard, 1., Orlandi, C.: Publicly auditable secure multi-party com-
putation. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp.
175-196. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10879-7_11

5. Ben-Sasson, E., et al.: Zerocash: decentralized anonymous payments from bitcoin.
In: 2014 IEEE Symposium on Security and Privacy, pp. 459-474. IEEE Computer
Society Press, May 2014

6. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136-145. IEEE Computer Society Press, October
2001

7. Canetti, R.: Universally composable signatures, certification and authentication.
Cryptology ePrint Archive, Report 2003/239 (2003). http://eprint.iacr.org/2003/
239

8. Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 19-40. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44647-8_2

https://doi.org/10.1007/978-3-662-48000-7_37
https://doi.org/10.1007/978-3-319-10879-7_11
http://eprint.iacr.org/2003/239
http://eprint.iacr.org/2003/239
https://doi.org/10.1007/3-540-44647-8_2
https://doi.org/10.1007/3-540-44647-8_2

684

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

B. Zhang and H.-S. Zhou

Canetti, R., Krawczyk, H., Nielsen, J.B.: Relaxing chosen-ciphertext security. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 565-582. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45146-4_33

Canetti, R., Kushilevitz, E., Lindell, Y.: On the limitations of universally com-
posable two-party computation without set-up assumptions. In: Biham, E. (ed.)
EUROCRYPT 2003. LNCS, vol. 2656, pp. 68-86. Springer, Heidelberg (2003).
https://doi.org/10.1007/3-540-39200-9_5

Chaidos, P., Cortier, V., Fuchsbauer, G., Galindo, D.: Beleniosrf: a non-interactive
receipt-free electronic voting scheme. In: CCS 2016, pp. 1614-1625. ACM, New
York (2016)

Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Malleable proof sys-
tems and applications. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT
2012. LNCS, vol. 7237, pp. 281-300. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-29011-4_18

Chaum, D., Ryan, P.Y.A., Schneider, S.: A practical voter-verifiable election
scheme. In: di Vimercati, S.C., Syverson, P., Gollmann, D. (eds.) ESORICS 2005.
LNCS, vol. 3679, pp. 118-139. Springer, Heidelberg (2005). https://doi.org/10.
1007/11555827_8

Daian, P., Kell, T., Miers, I., Juels, A.: On-Chain Vote Buying and the Rise of Dark
DAOs (2018). http://hackingdistributed.com/2018/07/02/on-chain-vote-buying/
Degrave, J.: Getopinionated. GitHub repository. Accessed 21 Oct 2017

Ford, B.: Delegative democracy (2002). http://www.brynosaurus.com/deleg/deleg.
pdf

Froelicher, D., et al.: Unlynx: a decentralized system for privacy-conscious data
sharing. Proc. Privacy Enhancing Technol. 4, 152-170 (2017)

Groth, J.: Evaluating security of voting schemes in the universal composability
framework. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS, vol.
3089, pp. 46-60. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-
24852-1.4

Groth, J.: Rerandomizable and replayable adaptive chosen ciphertext attack secure
cryptosystems. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 152-170.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-1_9

Hardt, S., Lopes, L.: Google votes: a liquid democracy experiment on a corporate
social network. Technical Disclosure Commons (2015). http://www.tdcommons.
org/dpubs_series/79

Kiayias, A., Zacharias, T., Zhang, B.: DEMOS-2: scalable E2E verifiable elections
without random oracles. In: Ray, L., Li, N., Kruegel, C. (eds.) ACM CCS 2015, pp.
352-363. ACM Press, October 2015

Kiayias, A., Zacharias, T., Zhang, B.: End-to-end verifiable elections in the stan-
dard model. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part I1. LNCS,
vol. 9057, pp. 468-498. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6_16

Kulyk, O., Marky, K., Neumann, S., Volkamer, M.: Introducing proxy voting to
helios. In: ARES, pp. 98-106. IEEE Computer Society (2016)

Kulyk, O., Neumann, S., Marky, K., Budurushi, J., Volkamer, M.: Coercion-
resistant proxy voting. In: ICT Systems Security and Privacy Protection (2016)
Kulyk, O., Neumann, S., Marky, K., Volkamer, M.: Enabling vote delegation for
boardroom voting. In: Brenner, M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp.
419-433. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70278-0_26
LiquidFeedback. LiquidFeedback official website. Accessed 21 Oct 2017

https://doi.org/10.1007/978-3-540-45146-4_33
https://doi.org/10.1007/3-540-39200-9_5
https://doi.org/10.1007/978-3-642-29011-4_18
https://doi.org/10.1007/978-3-642-29011-4_18
https://doi.org/10.1007/11555827_8
https://doi.org/10.1007/11555827_8
http://hackingdistributed.com/2018/07/02/on-chain-vote-buying/
http://www.brynosaurus.com/deleg/deleg.pdf
http://www.brynosaurus.com/deleg/deleg.pdf
https://doi.org/10.1007/978-3-540-24852-1_4
https://doi.org/10.1007/978-3-540-24852-1_4
https://doi.org/10.1007/978-3-540-24638-1_9
http://www.tdcommons.org/dpubs_series/79
http://www.tdcommons.org/dpubs_series/79
https://doi.org/10.1007/978-3-662-46803-6_16
https://doi.org/10.1007/978-3-662-46803-6_16
https://doi.org/10.1007/978-3-319-70278-0_26

27.

28.

29.

30.

31.

Statement Voting 685

Moran, T., Naor, M.: Receipt-free universally-verifiable voting with everlasting pri-
vacy. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 373-392. Springer,
Heidelberg (2006). https://doi.org/10.1007/11818175_22

Prabhakaran, M., Rosulek, M.: Rerandomizable RCCA encryption. In: Menezes, A.
(ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 517-534. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-74143-5_29

Democracy Earth. The social smart contract. An open source white paper, 1
September 2017. Accessed 21 Oct 2017

Unruh, D., Miiller-Quade, J.: Universally composable incoercibility. In: Rabin, T.
(ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 411-428. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14623-7_22

Zhai, E., Wolinsky, D.I., Chen, R., Syta, E., Teng, C., Ford, B.: Anonrep: towards
tracking-resistant anonymous reputation. In: NSDI 2016, pp. 583-596 (2016)

https://doi.org/10.1007/11818175_22
https://doi.org/10.1007/978-3-540-74143-5_29
https://doi.org/10.1007/978-3-642-14623-7_22

	Statement Voting
	1 Introduction
	2 Modeling
	3 Constructions
	3.1 A Practical Construction for Liquid Democracy

	4 Further Discussions
	A Security Definition for TRE
	References

