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Abstract— This paper addresses the problem of identification
of error in variables switched linear models from experimental
input/output data. This problem is known to be generically NP
hard and thus computationally expensive to solve. To address
this difficulty, several relaxations have been proposed in the past
few years. While solvable in polynomial time these (convex)
relaxations tend to scale poorly with the number of points
and number/order of the subsystems, effectively limiting their
applicability to scenarios with relatively small number of data
points. To address this difficulty, in this paper we propose
an efficient method that only requires performing (number of
subsystems) singular value decompositions of matrices whose
size is independent of the number of points. The underlying
idea is to obtain a sum-of-squares polynomial approximation
of the support of each subsystem one-at-a-time, and use these
polynomials to segment the data into sets, each generated by
a single subsystem. As shown in the paper, exploiting ideas
from Christoffel’s functions allows for finding these polynomial
approximations simply by performing SVDs. The parameters
of each subsystem can then be identified from the segmented
data using existing error-in-variables (EIV) techniques.

I. INTRODUCTION

The problem of identifying switched affine systems from
experimental data is ubiquitous in several domain applica-
tions such as electronic circuits [1], biological systems [2],
computer vision [3], [4] and automated machines [5], [6],
to name just a few. In the so-called error in the process
model case, the problem has been thoroughly studied in the
past few years (see e.g. [5], [7]–[14] and references therein).
Recently, it has been shown in [15] that, when the goal is
to find a switching model that interpolates the data within
a given noise level with the minimum number of switches,
then the problem can be solved in polynomial time.

On the other hand, many scenarios require fitting the
data with a minimum (or known) number of subsystems.
Examples of these situations include not only control appli-
cations (fault tolerant control and anomaly detection), but
also, among others, computer vision and machine learning
(activity recognition, subspace clustering of dynamic data).
Unfortunately, in Error in Variables (EIV) cases where the
measured data is corrupted by noise, the minimum number
of subsystems scenario leads to a very challenging NP
hard problem. This difficulty has motivated the search for
tractable relaxations, leading to several approaches, which
can be roughly divided into optimization-based methods [13],
[14], [16]–[18], algebraic methods [19]–[21], and recursive
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methods [22]–[25]. While these methods have been shown
to be effective, most scale poorly with the number of data
points. Thus, their application is restricted to moderate num-
ber of data points and models with relatively few low order
subsystems (typically, these methods scale polynomially or
worse with the number of points, number of subsystems
and subsystem order). Methods designed explicitly to handle
large data sets include [14], [18], [26]. However, [18] needs
information about the moments of the noise distribution
(something that is not always available) and relies on the
solution to a (simple) optimization problem. [14] introduced
an efficient branch and bound approach, but the worst case
complexity of the method is still exponential in the dimen-
sion of the data and number of modes. Finally, [26] relies
on a spectral clustering step that can be computationally
expensive in situations where the number of clusters is large.

To address these difficulties, motivated by an earlier alge-
braic approach proposed in [19] for the noiseless case and its
stochastic reformulation in [27], in this paper we propose a
one-at-a-time algebraic method for efficient identification of
switched systems with a given number of subsystems. The
advantages of the proposed method are:

1) It can handle error-in-variables (EIV) scenarios
2) It only requires performing (number of subsystems)

singular value decompositions of a matrix whose di-
mension is independent of the number of data points

3) It scales linearly with the number of data points

The basic idea behind this method is to find, for each sub-
system, a sum-of-squares polynomial that approximates its
support, and use this polynomial to segment the data. Once
the data is segmented, the parameters of each subsystem can
be obtained using existing EIV methods for LTI systems.
Our main result, motivated by [27], [28], shows that these
polynomials can be found by performing a singular value
decomposition of the empirical moments matrix.

The rest of the paper is organized as follows. Section II
presents the notation used in the paper and some background
material related to the Generalized Principal Component
Analysis (GPCA) method and Christoffel functions. In Sec-
tion III-A, we formally state the error-in-variables switched
auto-regressive exogenous (EIV-SARX) problem. Section
III-B, presents the proposed subspace clustering based ap-
proach and discusses its connection to algebraic methods
and iterative application of [27]. Section IV illustrates the
effectiveness of the proposed method compared to existing
approaches. Finally, Section V concludes the paper with
some remarks and possible directions for future research.
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II. PRELIMINARIES

A. Notation

(A)i ith row of A.
A� 0 matrix A is positive semidefinite.
Pn

d,h subspace of nth degree homogeneous
multivariate polynomials in d variables.

sn,d
.
=
(n+d−1

d

)
number of monomials of degree n in d
variables.

vn(x) Veronese map of degree n:
vn
(
x1 . . . xd

) .
=
[
xn

1 xn−1
1 x2 . . . xn

d

]T
Eµ(x) Expected value of x with respect to the

probability density function µ .
Hr,c

x Hankel matrix with c columns and r
rows associated with a vector sequence
x, with elements (Hx)i, j = xi+ j−1

B. Moment Matrices and Sum-of-Squares (SoS) Polynomials

Given a probability measure µ supported on Rd , its
associated moments sequence is given by

mα = Eµ(xα) =
∫
Rd

xα dµ (1)

where x .
=
[
x1 x2 . . . xd

]T , α is shorthand for the multi-
index

[
α1 α2 . . . αd

]
and xα .

= xα1
1 xα2

2 · · ·x
αd
d . In the

sequel we will denote by M(m) the moments matrix with
elements M(α,β ) = mα+β (where we have assumed that the
sequence m has been ordered in a graded reverse lexico-
graphic order) and by Mn its truncated version containing
moments of order up to 2n. For instance, in the case of 2
variables, x1 and x2, there are

(4
2

)
= 6 monomials of degree

up to 2n = 2 and the corresponding moment matrix is

M1 =

 1 m(1,0) m(0,1)
m(1,0) m(2,0) m(1,1)
m(0,1) m(1,1) m(0,2)

 (2)

A homogeneous polynomial P(x) = ∑α pα xα ∈Pn
d,h can

be written in terms of the coefficients vector cT as P(x) =
cT vn(x). Using this notation, the expected value (w.r.t µ) of
the product of two polynomials P1,P2 is given by

〈P1(.),P2(.)〉µ =
∫
Rd

cT
1 vn(x)vT

n (x)c2dµ = cT
1 Lnc2 (3)

where we have defined

Ln =
∫
Rd

vn(x)vT
n (x)dµ (4)

(note that Ln is the bottom right submatrix of Mn, composed
of moments of order 2n). Since Ln � 0, it follows that (3)
defines an inner product (induced by the measure µ) in Pn

d,h.
In the sequel, with a slight abuse of notation, we will refer
sometimes to Ln as the truncated moment matrix.

C. Christoffel Polynomials

In this section we recall some results showing the re-
lationship between a sum of squares polynomial that ap-
proximates the support set of a given distribution µ and
the empirical moment matrix formed using points sampled

from this distribution. Given a set of samples xi, i = 1, . . . ,N
drawn from a distribution µ let Ln

.
= 1

N ∑vn(xi)vT
n (xi) denote

the (truncated) empirical moment matrix of order n, with
corresponding singular vectors and values ui,σi. From (3) it
can be easily shown that the polynomials having coefficient
vectors ci

.
= 1√

σi
ui. form an orthonormal basis, with respect

to µ , of Pn
d,h. Further, [29] these orthonormal polynomials

define a reproducing Kernel:

Kn(x,y)
.
=

sn,d

∑
i=1

(cT
i vn(x))(cT

i vn(y)) (5)

Define now the SoS polynomial

Qn(x)
.
= Kn(x,x) =

sn,d

∑
i=1

(cT
i vn(x))2 = vT

n (x)L
−1
n vn(x) (6)

The function Q−1
n (x)is known as the Christoffel function.

The following result, taken from [28] and [29] relates this
function to the probability measure µ1

Q−1
n (ξ ) = min

P∈Pn
d,h

∫
Rp

P2(x)dµ s. t. P(ξ ) = 1 (7)

Further, it can be shown [27] that an explicit expression for
the coefficients of the minimizing polynomial is given by:

c∗(ξ ) =
1

∑
sn,d
i=1(

1√
σ i

uT
i vn(ξ ))2

sn,d

∑
i=1

1
σi

uT
i vn(ξ )ui (8)

Note in passing that finding c∗ involves a single SVD of
a matrix Ln whose size is independent of the number of
data points. In the sequel, we will refer to the polynomial
P(x,ξ ) = vT (x)c∗(ξ ) as the “Christoffel support polynomial
at ξ ”, since it provides (locally) an approximation to the
support of µ . To see this, note that if µ(ξ ) ≈ 0, the
polynomial P can be selected so that P(ξ ) ≈ 0 at points
where µ is not small, leading to a small objective in (7).
On the other hand, if µ(ξ ) 6≈ 0, since by continuity, any
polynomial satisfying P(ξ ) = 1 will have values close to 1 in
a neighborhood of ξ , the corresponding values of Q−1

n will be
large (e.g. Qn(ξ ) is small). As noted in [28], this observation,
combined with the fact that Eµ(Qn) =

(n+d−1
d

)
and Markov’s

inequality, allows for using Qn(x) to approximate the overall
level sets of the distribution, in the sense that points where
Qn(x)�

(n+d−1
d

)
have low probability of belonging to the

distribution. These results will play a key role in segmenting
the given data into subspaces, one subspace at a time.

D. Subspace Arrangements

In this section we briefly recall some definitions connect-
ing the problem of subspace clustering with the properties of
certain polynomials. These results form the basis of algebraic
methods such as GPCA and its variants [30]–[32].

1Note that [28] considers polynomials of degree up to 2n and the
associated moment matrix Mn while here we consider only homogeneous
polynomials and the submatrix Ln. This choice reflects the fact that in this
paper we are interested in distributions supported on subspace arrangements,
rather than general ones.
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Definition 2.1: The arrangement A (S) of a set of sub-
spaces S = {Si}n

i=1 ⊆ Rn is defined as:

A (S) .
= S1∪S2∪ . . .∪Sn (9)

Definition 2.2: The vanishing ideal I(A ) of a subspace
arrangement A ⊆ Rd is the set of all multivariate polynomi-
als in d variables that vanish on all points in A , that is:

I(A )
.
=
{

P ∈Pd : P(z) = 0 ∀z ∈A
}

(10)

The subset In(A )⊆ I(A ) formed by homogeneous polyno-
mials of degree n is known as the homogeneous component
of degree n of I(A ).

Definition 2.3: Given a set I of polynomials, Z (I), the
zero set of I is the set of all common roots, that is

Z (I) .
= {x ∈ Rd : P(x) = 0 for all P ∈ I} (11)

The following result shows that the arrangement A is com-
pletely characterized by its associated homogeneous ideal:

Lemma 2.4 (Lemma 2.8, [30]): The subspace arrange-
ment A is the zero set of In(A ), e.g. A = Z [In(A )]

These results form the basis of algebraic based approaches,
which, rather than directly estimating the parameters of Si,
seek to estimate first In from the data. Under mild conditions,
In has dimension 1 (e.g. it is a principal ideal) and the
parameters of each subspace can then be estimated from its
generator, for instance via polynomial differentiation.

III. CHRISTOFFEL FUNCTION BASED IDENTIFICATION OF
EIV SARX SYSTEMS

Next we state the problem of interest and propose a
solution that scales linearly with the number of data points.

A. Problem Statement

Consider an error-in-variables switched auto-regressive
exogenous (SARX) linear model

ŷt =
na

∑
i=1

ai(γt)ŷt−i +
nb

∑
i=0

bi(γt)ût−i

yt = ŷt +ζt , ut = ût +ηt

(12)

where ŷt and ût denote the actual output/input signals re-
spectively corrupted by additive bounded noise ‖ζt‖∞ ≤ εζ

and ‖ηt‖∞ ≤ εη where εζ , εη are bounds on the output and
input noise respectively and γt is the mode variable indicating
which subsystem is active at time t. Our goal is to identify
the parameters {ana

k=1( j),bnb
k=1( j)} that characterize each of

the subsystems in (12) from the input/output experimental
data (uk, yk) and the a-priori information {s,na,nb}, where
s is number of the subsystems, na and nb are the input and
output order of the subsystems.

B. Algebraic Reformulation With a Stochastic Perspective

Consider a trajectory of (12) corresponding to a given
input and switching sequences, and, for ease of notation,
define

rt = [−yt ,yt−1, ...,yt−na ,ut−1, ...,ut−nb ]
T

b(γt) = [1,a1(γt), ...,ana(γt),b1(γt), ...,bnb(γt)]
T (13)

Note that bT (γt)rt = 0 holds for all time instants where
γt = γ . Thus, the corresponding regressors rt,γ live in a
subspace normal to b(γ). We will use this fact to recast
the systems identification problem into a (noisy) subspace
clustering form. The proposed method is based on the
observation that, in the noise free case, the vanishing ideal
of the arrangement of subspaces defined by the collection of
vectors bi, i = 1, . . . ,s is generated by the polynomial [19]

ps(r) =
s

∏
i=1

(bT
i rt) = cT

s vs(rt) = 0 (14)

where bi ∈ Rna+nb+1 is the vector corresponding to param-
eters of the ith subsystem, vs(.) denotes the Veronese map
of degree s, and where the entries of the vector cs are only
functions of the entries of the vectors bi. Evaluating this
polynomial at each data point and collecting the results in a
matrix leads to

Vscs
.
= [vs(rt0) · · · vs(rT )]

T cs = 0 (15)

In the noise free case, the identification problem can be
solved by using the GPCA algorithm proposed in [19], [32],
simply by finding a vector cs in the null space of Vs

2 and then
recovering the parameters of each subsystem via polynomial
differentiation. Unfortunately, as shown for instance in [13],
this approach is fragile, and even small amount of noise can
lead to large errors in the identified parameters. Next, we
indicate how to circumvent this difficulty by exploiting the
properties of the Christoffel functions.

Consider an arrangement of subspaces A (S) .
= S1 ∪ S2 ∪

. . .∪ Ss, Si ⊂ Rd , where the normal to each subspace is bi
and let µ denote a probability measure supported in this
arrangement. Given a point xo 6∈A (S), define the following
polynomial optimization problem

P∗xo(x) =

{
argmin
P∈Ps

d,h

∫
µ

P2(ξ )dµ subject to P(xo) = 1

}
(16)

that is, P∗xo(.) is the minimum variance (w.r.t µ) homogeneous
polynomial of degree s, whose value at xo is fixed. Note
that this is precisely the Christoffel support polynomial at xo
defined in Section II-C. If the support of µ is the arrangement
A (S), then it is easy to see that a solution to the problem
above is given by

P∗xo(x) =
∏

s
i=1(bT

i x)
∏

s
i=1(bT

i xo)
(17)

Further, if the arrangement is transversal [30], then this
solution is unique, since there exists only one homogeneous
polynomial of degree s that vanishes on A and has a fixed
value at a given point xo 6∈ A . In the systems identifica-
tion scenario of interest to this paper, the measure µ is
unknown. Rather, the experimental data consists of points
xi, i = 1, . . . ,Np drawn from these subspaces and corrupted
by noise. In this case, an approximation to the problem above
can be obtained by replacing the probability measure µ by

2Under mild conditions this vector is unique, since the vanishing ideal of
the arrangement is a principal ideal [30].
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the empirical distribution µemp, and an approximation to (16)
using the empirical distribution is given by:

c∗xo = argmin
c

1
Np

cT Ls,empc

subject to cT vs(xo) = 1
(18)

where

Ls,emp
.
=

1
Np

Np

∑
i=1

vs(xi)vT
s (xi) =

1
Np

VT
s Vs (19)

and Vs is a matrix having as its kth row (Vs)k = vT
s (xk).

The solution to the problem above is given by (8), using the
singular vectors/values of Ls,emp instead of Ls.

Remark 1: Intuitively, the Christoffel support polynomial
Pxo(x) = c∗xo

T vs(x) provides an approximation to the support
set of A in the sense that it is expected to be close to zero
for points in the subspace arrangement, and, by continuity,
close to one for points outside the arrangement and close to
x∗o. We will exploit this property in the next section.

C. Proposed Algorithm

The proposed algorithm is based on iteratively using the
Christoffel support polynomial with coefficients given by (8)
using Ls,emp instead of Ls to find points generated by a single
subsystem. A high level description is given in Algorithm 1.
Step 1: Finding reliable data for the first s-1 subspaces

As indicated above, we propose to find points generated
by each subsystem proceeding in a “one-at-a-time” fashion.
Let Xa,k denote the set of available points at the kth stage of
the algorithm (that is points that have not yet been assigned
to a given subsystem). The goal here is to find a set of
points Xk ⊆Xa,k that, with high probability, were generated
by the same subsystem, or equivalently, belong to the same
subspace. Motivated by the discussion above, we propose to
accomplish this by selecting a point xo,k ∈Xa,k, computing
the corresponding Christoffel support polynomial Pxo,k(x) of
degree s− k (since at this stage only s− k + 1 subspaces
remain for which data has not been assigned) and defining

Xk
.
= {x ∈Xa,k : P2

xo,k
(x)≥ t} (20)

where t is a given threshold. Implementation of this idea
requires addressing the issues of how to select the point xo,k
and the threshold t.
Selecting xo,k: At the kth stage of the algorithm, the remain-
ing points belong to an arrangement Ak consisting of s−k+1
subspaces. For a given point xo, consider the Christoffel
support polynomial Pxo,nk

(.) of degree nk = s− k. From (7)
and Markov’s inequality (chapter 8 in [33]) it follows that,
for any point x drawn from an arrangement formed by nk of
the remaining subspaces

Probµ

[
P2

xo,nk
(x)> t

]
≤ 1

tQnk(xo)
(21)

The inequality above suggests selecting x∗o =
argminx∈Xa,k Qnk(xo), since this choice maximizes the
number of points where P2

x∗o,nk
(.) is large. By construction

Algorithm 1 Subspace identification using SOS polynomial

1: Inputs: Xy ← Hna+1,N−na−1
yt Hankelized output data,

Xu←Hnb,N−na−1
ut Hankelized input data where N is the

horizon length, s← number of subsystems, k← 1

2: Xa←
[

Xy
Xu

]
3: for k := 1 to s do
4: if k < s−1 then . Find a group of points outside of

the union of s− k of the remaining s− k+1 subspaces
5: Step 1: Finding reliable data for the first s−1

subspaces
6: Selecting xo,k:Find the best “anchor” point x∗o

using the SoS Polynomial Qk−1(x) representing a union
of s− k of the s− k+1 available clusters

7: Compute Px∗o,k(x), the Christoffel support poly-
nomial, for the union of s− k clusters treating the point
x∗o as an outlier.

8: Compute an optimal threshold t and assign points
where P2

xo,k
(x)≥ t to the set Xk. This set approximates

a subset of So,k the subspace that contains x∗o,k.
9: else if k = s−1 then . Last subspace case

10: Step 2:Handling the last subspace
11: Generate a set containing reliable data drawn

from the first s−1 subspaces: Xrel
.
= ∪s−1

i=1 Xi,rel
12: Compute and threshold | P2

s−1,Xrel
(x) | for x∈Xa

to find a set Xs ⊂ Ss, the last subspace
13: end if
14: Finding a reliable set Xk,rel ⊂ Xk via outlier

rejection on Xk
15: Update available data: Xa←Xa \Xk,rel
16: end for
17: Step 3: Labeling the entire data set . using the SoS

polynomial computed with the sets X j,rel
18: for j := 1 to s do
19: Compute Q1,X j,rel (x) for each subspace
20: end for
21: Assign each point x to the cluster j which gives the

smallest normalized (Q1,X j,rel (x)/norm(Q1,X j,rel(x))

degree[Px∗o,nk(.)] = nk, and thus Px∗o,nk
(.) can’t be identically

zero in Ak−{x∗o}. Further, since Px∗o,nk(x
∗
o)= 1, by continuity

Px∗o,nk(.) will be close to 1 on points close to x∗o. Thus,
intuitively, most of the points where Px∗o,nk(.) is large belong
to the same subspace as x∗o. Once x∗o is selected, t can be
chosen from (21) to obtain a suitable upper bound 1

tQnk (x
∗
o)

on the probability of miss-classification. However, extensive
experimental results show that this bound is typically
conservative and better results are obtained selecting t using
Otsu’s algorithm [34].
Step 2: Handling the last subspace

After the (s− 1)th iteration of the algorithm, since each
iteration is not guaranteed to remove all points in a given
subspace, the set Xa,s−1 can potentially include points from
each subspace in the arrangement. As we show next, points
in the last subspace Ss can also be extracted from Xa,s−1
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by finding a suitable Christoffel support polynomial. To this
effect, consider the set Xrel

.
= ∪s−1

i=1 Xi,rel and the associ-
ated moments submatrix Lrel

.
= 1
|Xrel | ∑xi∈Xrel

v(xi)vT (xi). As
discussed in section II-C, the Christoffel function Q(x) .

=
vT (x)L−1

rel v(x) should be (with high probability) smaller
for points that belong to the arrangement ∪s−1

i=1 Si than for
those outside it. Thus, if the switching sequence visited all
subsystems (and hence the experimental data comes from
s subspaces), it follows (from Markov’s inequality) that the
point

x∗s = argmax
x∈Xa,s−1

[vT (x)L−1
rel v(x)]

is, with high probability, an outlier to the set ∪s−1
i=1 Si, or,

equivalently, an inlier to the last subspace Ss. Thus, a set of
points in this subspace can be obtained by computing Px∗s ,s−1,
the Christoffel support polynomial of Xrel with respect to x∗s
and setting

Xs
.
= {x ∈Xa,s−1 : Px∗s ,s−1 ≥ t} (22)

Finding a reliable set Xk,rel : At the end of each iteration,
after the subset Xk of candidate points in the kth subspace
has been found, a “reliable” subset of these, Xk,rel ⊂ Xk
can be found using the outlier rejection method proposed
in [27]. These points are then removed from the pool of
available data, e.g. Xa,k \Xk →Xa,k+1, k→ k+ 1 and the
process is repeated until k = s.
Step 3: Labeling the entire data set

The sets Xi,rel can be used as “seeds” to reliably assign
points to subsystems as follows. Under the assumption that
the switching sequence and inputs are sufficiently rich to
generate enough data in each set Xi,rel , the corresponding
moment matrices Li,rel provide a good characterization of
the support of each subspace. That is, given a point xi the
Christoffel function vT (xi)L−1

j,relv(xi) is (with high proba-
bility) small if xi ∈ S j and large otherwise. Thus, points
can be assigned to subspaces by simply selecting the one
corresponding to the smallest Q, that is, computing

j∗ = argmin
j∈[1,s]

[vT (xi)L−1
j,relv(xi)]

and assigning xi to S j∗ .
Step 4: Finding the parameters of each subsystem

Once the data has been segmented into subspaces Si,
the identification process is completed by computing the
parameters of each subsystem. In principle, in relatively low
noise scenarios, the data matrix Xi whose columns are the
coordinates of the points in Si should be close to rank na+nb.
Hence the parameters bi are given by the null vector of XiXT

i ,
normalized so that bi(1) = 1.

It is worth emphasizing that the proposed method requires
performing singular value decompositions of the moment
matrices Li whose size depends only on the dimension of
the data (system order) and number of subsystems, together
with point evaluations of the polynomial P2

xo,k
(x) for all

data points. Hence computational time grows only linearly
with the number of data points, but combinatorially with the
number of subsystems and their order.

IV. ILLUSTRATIVE EXAMPLE

In this section we illustrate the advantages of the proposed
approach using the following system, used in [10]:

ŷt = a1(γt)ŷt−1 +a2(γt)ŷt−2 +b1(γt)ût−1

yt = ŷt +ζt , ut = ût +ηt
(23)

and switches between

ŷt = 0.2ŷt−1 +0.24ŷt−2 +2ût−1(Subsystem 1)
ŷt =−1.4ŷt−1 +−0.53ŷt−2 +1ût−1(Subsystem 2)

(24)

We considered a scenario with 7 switches, occurring at
time instances t = k×N

8 where k = 1,2 . . . ,7 such that γt =
1 for odd k and γt = 2 for even k. Data was generated from
20 random runs for various combinations of noise levels
ε ∈ {0.05,0.15,0.25} and horizon length N ∈ [96,192,396].
The results of applying several different approaches to this
data (manifold embedding [26], algebraic methods [18], [19])
are summarized in Table I. There, the column PE shows the
parameter estimation error defined as,

PE = max‖ρ− ρ̂‖2 (25)

where ρ and ρ̂ are the normalized true and estimated
parameters of the subsystems. As shown in the table, the
proposed method is at least one order of magnitude faster
than competing methods (except GPCA) while achieving
a comparable (or better) identification error, and the effect
gets more pronounced as the number of points increases.
Regarding GPCA, it runs an order of magnitude faster than
the proposed SoS based method, but as expected, the identi-
fication error becomes far worse (an order of magnitude) as
the noise level increases.

V. CONCLUSIONS

The problem of EIV identification of switched ARX
models (and the related problem of subspace clustering)
arises in many domains ranging from control to machine
learning and computer vision. For instance, in the context
of control, solving this problem is a prerequisite to design
controllers for switched systems in cases where models
of the system are a-priori unavailable. Unfortunately, this
problem is known to be NP-hard, which has prompted a
large research effort seeking to develop computationally
tractable relaxations. As a result, a number of techniques
are currently available that have been shown to work well in
practice (and, under certain conditions exact). Nevertheless,
virtually all of these techniques scale polynomially with the
number of data points and their dimension3, which limits
their applicability to moderately large data sets (typically no
more than a few thousands). To circumvent this difficulty,
in this paper we proposed a method that scales linearly
with the number of data points and only requires performing
order of s singular value decompositions of matrices whose
size is independent of the number of data points. This is
accomplished by recasting the problem as that of finding an

3An exception is [26], that scales linearly with the number of points but
polynomially with the number of switches.
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TABLE I
NUMERICAL EXAMPLES: COMPARISON OF PROPOSED METHOD WITH OTHER METHODS

N ε
GPCA [19] Hojjatinia et. al. [18]

- unknown parameters JBLD-Based [26] SOS-Based (Proposed)

PE time (secs) PE time (secs) PE time (secs) PE time (secs)

96 0.05 0.0539 0.0027 0.0571 6.5201 0.0099 0.0384 0.0527 0.0503
0.15 0.0603 0.0005 0.3053 6.4554 0.0496 0.0306 0.0628 0.0056
0.25 0.1764 0.0005 0.1224 6.3717 0.2090 0.0393 0.0731 0.0056

192 0.05 0.0577 0.0005 0.0247 6.3217 0.0061 0.0995 0.0079 0.0051
0.15 0.1576 0.0006 0.1018 6.2882 0.0262 0.1572 0.0182 0.0064
0.25 0.2342 0.0006 0.1398 6.3510 0.0692 0.1273 0.0334 0.0054

396 0.05 0.0109 0.0006 0.0106 6.3165 0.0270 0.4213 0.0935 0.0057
0.15 0.1626 0.0005 0.0786 6.3753 0.0850 0.4129 0.0123 0.0056
0.25 0.1274 0.0005 0.1022 6.5183 0.1124 0.4337 0.0223 0.0053

SoS polynomial that approximates the support of each sub-
space, one at a time. As shown in the paper this polynomial
can be directly constructed from the aforementioned SVDs.
The effectiveness of the proposed approach was illustrated
with an example used in the literature to compared SARX
identification methods, where it was shown to outperform
existing methods, specially as the number of data points
increases. Note that as stated, the proposed method scales
badly with the order and number of subsystems, since the
size of the corresponding matrix depends combinatorially on
s and na. On going research seeks to address this problem
by using tools from randomized linear algebra.
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