
The Annals of Statistics
2020, Vol. 48, No. 3, 1815–1847
https://doi.org/10.1214/19-AOS1869
© Institute of Mathematical Statistics, 2020

AN ADAPTABLE GENERALIZATION OF HOTELLING’S T 2 TEST
IN HIGH DIMENSION

BY HAORAN LI1,*, ALEXANDER AUE1,**, DEBASHIS PAUL1,†, JIE PENG1,‡ AND

PEI WANG2

1Department of Statistics, University of California, Davis, *hrli@ucdavis.edu; **aaue@ucdavis.edu; †debpaul@ucdavis.edu;
‡jiepeng@ucdavis.edu

2Icahn Institute, Department of Genetics and Genomic Sciences, School of Medicine at Mount Sinai, pei.wang@mssm.edu

We propose a two-sample test for detecting the difference between mean
vectors in a high-dimensional regime based on a ridge-regularized Hotelling’s
T 2. To choose the regularization parameter, a method is derived that aims at
maximizing power within a class of local alternatives. We also propose a
composite test that combines the optimal tests corresponding to a specific
collection of local alternatives. Weak convergence of the stochastic process
corresponding to the ridge-regularized Hotelling’s T 2 is established and used
to derive the cut-off values of the proposed test. Large sample properties are
verified for a class of sub-Gaussian distributions. Through an extensive simu-
lation study, the composite test is shown to compare favorably against a host
of existing two-sample test procedures in a wide range of settings. The perfor-
mance of the proposed test procedures is illustrated through an application to
a breast cancer data set where the goal is to detect the pathways with different
DNA copy number alterations across breast cancer subtypes.

1. Introduction. The focus of this paper is on the classical problem of testing for equal-
ity of means of two populations having an unknown but equal covariance matrix, when di-
mension is comparable to sample size. The standard solution to the two-sample testing prob-
lem is the well-known Hotelling’s T 2 test (Anderson (1984), Muirhead (1982)). In spite of its
central role in classical multivariate statistics, Hotelling’s T 2 test has several limitations when
dealing with data whose dimension p is comparable to, or larger than, the sum n = n1 + n2
of the two sample sizes n1 and n2. The test statistic is not defined for p > n because of the
singularity of the sample covariance matrix, but the test is also known to perform poorly
in cases for which p < n with p/n close to unity. For example, Bai and Saranadasa (1996)
showed that the test is inconsistent in the asymptotic regime p/n → γ ∈ (0,1).

Many approaches have been proposed in the literature to correct for the inconsistency of
Hotelling’s T 2 in high dimensions. One approach seeks to construct modified test statistics
based on replacing the quadratic form involving the inverse sample covariance matrix with
appropriate estimators of the squared distance between (rescaled) population means (Bai and
Saranadasa (1996), Srivastava and Du (2008), Srivastava (2009), Dong et al. (2016), Chen
and Qin (2010)). A different approach involves considering random projections of the data
into a certain low-dimensional space and then using the Hotelling’s T 2 statistics computed
from the projected data (Lopes, Jacob and Wainwright (2011), Srivastava, Li and Ruppert
(2016)).

Among other approaches to the problem under the “dense alternative” setting, Biswas and
Ghosh (2014) considered nonparametric, graph-based two-sample tests and Chakraborty and
Chaudhuri (2017) robust testing procedures. A different line of research involves assuming
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certain forms of sparsity for the difference of mean vectors. Cai, Liu and Xia (2014) used this
framework, in addition assuming that a “good” estimate of the precision matrix is available,
and constructed tests based on the maximum componentwise mean difference of suitably
transformed observations. Xu et al. (2016) proposed an adaptive two-sample test based on
the class of �q -norms of the difference between sample means. Other recent contributions ex-
ploiting sparsity assumptions in high dimensions include Wang, Peng and Li (2015), Gregory
et al. (2015), Chen, Li and Zhong (2014), Chang, Zhou and Zhou (2014) and Guo and Chen
(2016). A different approach, exemplified by Gretton et al. (2012), formulates the test of
equality of two populations in terms of a kernel-based discrepancy measure, with the kernel
chosen adaptively from a collection of kernels. Despite similarities in terms of the use of
power maximization as the principle behind selecting the regularization scheme, their work
differs considerably from ours, in that here focus is on developing a data-driven procedure for
selection of the regularization parameter for a regularized version of Hotelling’s T 2 test for
testing equality of the mean vectors for two populations of high-dimensional observations, as
detailed in the next paragraph.

In this paper, we work under the scenario p/n → γ ∈ (0,∞), assuming that the two sam-
ple sizes are asymptotically proportional. The proposed test statistic is built upon the Reg-
ularized Hotelling’s T 2 (RHT) statistic introduced in Chen et al. (2011) for the one-sample
case, but significantly extends its scope. The first major contribution of this work is to provide
a Bayesian framework to analyze the power of the RHT, using a class of priors that captures
the interaction between mean difference μ and population covariance �. This allows for
the analytic study of power under local alternatives even without knowledge of �, in turn en-
abling the construction of a data-driven selection mechanism for the regularization parameter.
Within this framework, it is also shown that the test of Bai and Saranadasa (1996) is the limit
of a minimax RHT test. The second main contribution is the construction of a new composite
test by combining the RHT statistics corresponding to a set of optimally chosen regularization
parameters. This data-adaptive selection of λ allows the proposed test to have excellent power
characteristics under various scenarios, such as different levels of decay of eigenvalues of �,
and various types of structure of μ. We validate this property through extensive simulations
involving a host of alternatives covering a wide range of mean and covariance structures. The
proposed method has excellent empirical performance even when p is significantly larger
than n. Because of these properties, and since the prefixes “robust” and “adaptive” are al-
ready part of the statistical nomenclature tied to specific contexts, the new composite testing
procedure is termed “adaptable RHT,” abbreviated as ARHT. We also establish the weak con-
vergence of a normalized version of the stochastic process (RHT(λ) : λ ∈ C) to a Gaussian
limit, where C ⊂ R+ is a compact interval. This result facilitates computation of the cut-off
values for the ARHT test.

As a final key contribution, we establish the asymptotic behavior of the test by relaxing the
assumption of Gaussianity to sub-Gaussianity. Establishing this result is nontrivial due to the
lack of independence between sample mean and covariance matrix in non-Gaussian settings.
Moreover, it is shown that a simple monotone transformation of the test statistic, or a χ2

approximation, can significantly enhance the finite-sample behavior of the proposed tests.
The rest of the paper is organized as follows. Section 2 introduces the RHT statistic and

studies a class of local alternatives. The adaptable RHT (ARHT) test statistic is considered
in Section 3. Section 4 discusses finite-sample adjustments. Asymptotic analysis in the non-
Gaussian case is given in Section 5. A simulation study is reported in Section 6 and an ap-
plication to breast cancer data is described in Section 7. Section 8 has additional discussions.
Proofs of the main theorems are presented in Section 9, and some auxiliary results are stated
in the Appendix. Further technical details and additional simulation results are collected in
the Supplementary Material (Li et al. (2019)). The tests provided in this paper have been
implemented in the R package ARHT, which may be downloaded from the CRAN website.
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2. Regularized Hotelling’s T 2 test.

2.1. Two-sample RHT. This section introduces the two-sample regularized Hotelling’s
T 2 statistic. It is first assumed that Xij∼N (μi,�), j = 1, . . . , ni , i = 1,2, are two inde-
pendent samples with common p × p nonnegative population covariance � ≡ �p . More
general sub-Gaussian observations will be treated in Section 5. The matrix � can be es-
timated by its empirical counterpart, the “pooled” sample covariance matrix Sn = (n −
2)−1 ∑2

i=1
∑ni

j=1(Xij − X̄i)(Xij − X̄i)
T , where n = n1 + n2, X̄i is the sample mean of the

ith sample, and T is used to denote transposition of matrices and vectors. This framework
has been assumed in much of the work on high-dimensional mean testing problems (Bai and
Saranadasa (1996), Cai, Liu and Xia (2014)). The proposed test procedure is applicable even
when the assumption of common population covariance is violated, although implications for
the power characteristics of the test will be context-specific.

Due to the singularity of Sn when p > n, it is proposed to test H0 : μ1 = μ2 based on the
family of ridge-regularized Hotelling’s T 2 statistics

(1) RHT(λ) = n1n2

n1 + n2
(X̄1 − X̄2)

T (Sn + λIp)−1(X̄1 − X̄2),

indexed by a tuning parameter λ > 0 controlling the regularization strength.
The limiting behavior of RHT(λ) is tied to the spectral properties of �. Let τ1,p ≥ · · · ≥

τp,p ≥ 0 be the eigenvalues of � and Hp(τ) = p−1 ∑p
�=1 1[τ�,p,∞)(τ ) its Empirical Spectral

Distribution (ESD). The following assumptions are made.

C1 �p is nonnegative definite and lim supp τ1,p < ∞;
C2 High-dimensional setting: p,n → ∞ such that n1/n → κ ∈ (0,1), γn = p/n → γ ∈

(0,∞) and
√

n|p/n − γ | → 0;
C3 Asymptotic stability of PSD: Hp(τ) converges as p → ∞ to a probability distribution

function H(τ) at every point of continuity of H , and H is nondegenerate at 0. Moreover,√
n‖Hp − H‖∞ → 0.

Since λ > 0 and in view of (1), it suffices in C1 to require nonnegative definiteness of
�p rather than positive definiteness. The condition lim supp τ1,p < ∞ is necessary to obtain
eigenvalue bounds. Condition C2 ensures a well-balanced sampling design and defines the
asymptotic regime in a way that dimensionality p and sample sizes n1 and n2 grow propor-
tionately. Condition C3 restricts the variability allowed in Hp as p increases, the

√
n-rate of

convergence being a technical requirement needed to represent the asymptotic distribution of
the normalized RHT statistics in terms of functionals of the Population Spectral Distribution
(PSD) H .

Let Ip be the p × p identity matrix and, for z ∈ C, denote by Rn(z) = (Sn − zIp)−1 and
mFn,p (z) = p−1 tr{Rn(z)} the resolvent and Stieltjes transform of the ESD of Sn (see, e.g., Bai
and Silverstein (2010) for more details). It is well known that mFn,p (z) converges pointwise
almost surely on C+ = {z = u + ıv : v > 0} to a nonrandom limiting distribution with Stielt-
jes transform mF (z) given as solution to the equation mF (z) = ∫ [τ {1 − γ − γ zmF (z)} −
z]−1 dH(τ). This convergence holds even when z ∈ R− and mF has a smooth extension to
the negative reals. Following the same calculations as in Chen et al. (2011), under C1–C3,
asymptotic mean and variance of the two-sample RHT(λ) under Gaussianity, are (up to mul-
tiplicative constants), given by

	1(λ, γ ) = 1 − λmF (−λ)

1 − γ {1 − λmF (−λ)} ,(2)

	2(λ, γ ) = 1 − λmF (−λ)

[1 − γ {1 − λmF (−λ)}]3 − λ
{mF (−λ) − λm′

F (−λ)}
[1 − γ {1 − λmF (−λ)}]4 .(3)

Moreover, the asymptotic normality of RHT(λ) can be established.
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These expressions are derived by making use of the following key fact: for every fixed
λ > 0, the random matrix Rn(−λ) = (Sn + λI)−1 has a deterministic equivalent (Bai and
Silverstein (2010), Liu, Aue and Paul (2015), Paul and Aue (2014)) given by

(4) Dp(−λ) =
(

1

1 + γ	1(λ, γ )
�p + λIp

)−1

in the sense that, for symmetric matrices A bounded in operator norm,

(5)
1

p
tr
{
Rn(−λ)A

} − 1

p
tr
{
Dp(−λ)A

} → 0 with probability 1, as n → ∞.

These results hold more generally under the sub-Gaussian model described in Section 5.
Suppose 	j(λ, γ ) is replaced with its empirical version 	̂j (λ, γn) by substituting

mF (−λ) with mFn,p (−λ) and m′
F (−λ) with m′

Fn,p
(−λ) = p−1 tr{R2

n(−λ)}. Since 	̂j (λ, γn)

are
√

p-consistent estimators for 	j(λ, γ ), j = 1,2, the RHT test rejects the null hypothesis
of equal means at asymptotic level α ∈ (0,1) if

(6) Tn,p(λ) = √
p

{p−1 RHT(λ) − 	̂1(λ, γn)}
{2	̂2(λ, γn)}1/2

> ξα,

where ξα is the 1 − α quantile of the standard normal distribution N (0,1).

REMARK 2.1. The test statistic by Bai and Saranadasa (1996) can be viewed as a limiting
case of RHT(λ) as λ → ∞. Specifically, observe that

Tn,p(λ) = √
p

p−1λRHT(λ) − λ	̂1(λ, γn)

{2λ2	̂2(λ, γn)}1/2
,

while for any given observations Xij , j = 1, . . . , ni , i = 1,2, as λ → ∞,

λ(X̄1 − X̄2)
T (Sn + λIp)−1(X̄1 − X̄2) −→ (X̄1 − X̄2)

T (X̄1 − X̄2),

λ	̂1(λ, γn) −→ 1

p
tr(Sn),

λ2	̂2(λ, γn) −→ 1

p
tr
(
S2

n

) − γn

[
1

p
tr(Sn)

]2
.

This implies that, as λ → ∞, λRHT(λ), λ	̂1(λ, γn), and λ2	̂2(λ, γn) converge pointwise to
the corresponding counterparts in the test of Bai and Saranadasa (1996) as given in display
(4.5) of their paper, applying a rescaling of RHT(λ) to match their notation.

2.2. Asymptotic power. This subsection deals with the behavior of RHT(λ) under local
alternatives, which is critical for the determination of an optimal regularization parameter λ.
Defining μ = μ1 − μ2, consider first a sequence of alternatives satisfying

(7)
√

nμT Dp(−λ)μ → q(λ, γ )

as n → ∞ for some q(λ, γ ) > 0, where Dp(−λ) is the deterministic equivalent defined in
(4). The following result determines the limit of the power function

(8) βn(μ,λ) = Pμ

{
Tn,p(λ) > ξα

}
of the RHT(λ) test with asymptotic level α, where Pμ denotes the distribution under μ.
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THEOREM 2.1. Suppose that C1–C3 and (7) hold. Then, for any λ > 0,

(9) βn(μ,λ) → 


(
−ξα + κ(1 − κ)

q(λ, γ )

{2γ	2(λ, γ )}1/2

)
(n → ∞),

where 
 denotes the standard normal CDF and 	2(λ, γ ) is defined in (3).

REMARK 2.2. (a) Let Ej denote the eigenprojection matrix associated with the j th
largest eigenvalue τj,p of �p . Suppose that there exists a sequence of functions fp : R+ ∪
{0} → R

+ ∪ {0} satisfying fp(τj,p) = √
np‖Ejμ‖2, j = 1, . . . , p, and a function f∞ con-

tinuous on R
+ ∪ {0} such that

∫ |fp(τ) − f∞(τ )|dHp(τ) → 0 as p → ∞. (A sufficient
condition for the latter is that ‖fp − f∞‖∞ → 0 as p → ∞.) Then it follows from C3 that
(7) holds with

(10)

q(λ, γ ) = {
1 + γ	1(λ, γ )

} ∫ f∞(τ ) dH(τ)

τ + λ{1 + γ	1(λ, γ )}
=

∫
f∞(τ ) dH(τ)

τ {1 − γ (1 − λmF (−λ))} + λ
.

The second line in (10) follows from the relationship {1 + γ	1(λ, γ )}−1 = 1 − γ +
λγmF (−λ), for λ > 0.

(b) If �p = Ip , then (7) is satisfied if
√

n‖μ‖2 → c2 > 0. In this case, q(λ, γ ) =
c2	1(λ, γ ).

While deterministic local alternatives like (10) provide useful information, in the follow-
ing, we focus on probabilistic alternatives that provide a convenient framework for incorpo-
rating structure. Focus is on the following class of priors for μ under the alternative hypoth-
esis.

PA Assume that, under the alternative, μ = n−1/4p−1/2Bν where B is a p × p matrix,
and ν is random vector with independent coordinates such that E[νi] = 0, E[|νi |2] = 1 and
maxi E[|νi |4] ≤ pcν for some cν ∈ (0,1). Moreover, let B = BBT with ‖B‖ ≤ C1 < ∞, and,
as n,p → ∞,

(11) p−1 tr
{
Dp(−λ)B

} → q(λ, γ ),

for some finite, positive constant q(λ, γ ).

REMARK 2.3. To better understand PA, first observe that μ has zero mean and co-
variance matrix n−1/2p−1B. The factor n−1/2p−1 provides the scaling for the RHT test
to have nontrivial local power. To check the meaning of (11), similar to the analysis in
Remark 2.2, postulate the existence of functions f̃p satisfying f̃p(τj,p) = tr{EjB} and∫ |f̃p(τ ) − f∞(τ )|dHp(τ) → 0 for some function f∞ continuous on R

+ ∪ {0}. Then the
limit in (11) exists and the corresponding q(λ, γ ) has the form given in (10). Thus, f∞ can
be viewed as a distribution of the total spectral mass of B (measured as tr{B}) across the
eigensubspaces of �p .

The framework PA encompasses both dense and sparse alternatives, as illustrated in the
following special cases:

(I) Dense alternative: νi
i.i.d.∼ N (0,1).

(II) Sparse alternative: νi
i.i.d.∼ Gη, for some η ∈ (0,1), where Gη is the discrete probabil-

ity distribution which assigns mass 1 − p−η on 0 and mass (1/2)p−η on the points ±pη/2.
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If B = Ip under (II), then μ is sparse, with the degree of sparsity determined by η.

THEOREM 2.2. Suppose that C1–C3 hold and that, under the alternative Ha : μ �= 0, μ

has prior given by PA. Then, for any λ > 0,

(12) βn(μ,λ) − 


(
−ξα + κ(1 − κ)

p−1 tr{Dp(−λ)B}
{2γ	2(λ, γ )}1/2

)
→ 0 (n → ∞),

where the convergence in (12) holds in the L1-sense. Note that the convergence in (11) is
assumed to increase readability and interpretability. The asymptotic result of this theorem
holds also if p−1 tr{Dp(−λ)B} is replaced by q(λ, γ ).

Theorem 2.2 notably shows that, even for alternatives that are sparse in the sense of (II),
the proposed test has the same asymptotic power as for the dense alternatives (I), as long
as the covariance structure is the same. The local power of the RHT test can be compared
to a test based on maximizing coordinatewise t-statistics (as in Cai, Liu and Xia (2014))
under the sparse alternatives (II). For simplicity, let B = Ip and � = Ip . If η ∈ (0,1/2),
then the size of each spike of the vector μ is of order n−1/4p−1/2+η/2 = o(n−1/2), while the
maximum of the t-statistics is at least of the order OP (n−1/2) under the null hypothesis. This
renders procedures based on maxima of t-statistics ineffective, while RHT still possesses
nontrivial power. However, if η > 1/2, corresponding to a high degree of sparsity, tests based
on maxima of t-statistics will outperform RHT. The RHT test shares this characteristic with
the test of Chen and Qin (2010).

2.3. Power under polynomial alternatives. Computation of local power of the RHT test,
as given in Theorem 2.2, involves the computation of q(λ, γ ) using (10), if PA holds and
f∞ is specified. However, this task remains challenging since the integral in (10) involves
the unknown population spectral distribution H . In order to estimate q(λ, γ ), without having
to estimate H (which is a difficult task in itself), it is convenient to have it in a closed form.
Below, we formulate a scheme that allows us to compute q(λ, γ ) when f∞ is a polynomial.
The latter is true if B is a matrix polynomial in �. Since any arbitrary smooth function can be
approximated by polynomials, this formulation is quite useful. Moreover, the choice of B as
a matrix polynomial in � also allows for an easier interpretation of the structure of μ under
the alternative.

It should be noted that the structural assumptions imply that the covariance of mean-
difference μ diagonalizes in the eigenbasis of �, which is restrictive. However, this restriction
enables us to make principled and data-adaptive choices of the regularization parameter λ. We
specifically focus on the setting where B is quadratic in �, which elucidates many interesting
phenomena in terms of the choice of optimal λ. Finally, the ARHT procedure described later
is obtained by combining a small collection of simple probabilistic alternatives within this
framework, and is seen to have robust performance characteristics.

Before proceeding further, we give a brief summary of how we utilize the expression
for local power under this class of alternatives. First, in Section 2.4, they are utilized to
compare the power characteristics of the RHT test with its “natural” competitors, namely, the
Hotelling’s T 2 test, the tests by Bai and Saranadasa (1996) and Chen and Qin (2010), and
the random projection-based test by Lopes, Jacob and Wainwright (2011). In Section 2.5,
we use them to devise a data-driven procedure for selecting the regularization parameter λ.
In Section 2.6, we formulate and analyze a decision theoretic approach to selecting λ, an
exercise which enhances our theoretical understanding of the RHT procedure in comparison
with existing procedures. Finally, in Section 3, these expressions also enable us to propose
the ARHT test by combining several optimally chosen regularization parameters.
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By polynomial alternative, we refer to the following model: μ satisfies PA with B =∑r
m=0 πm�m, for pre-specified π0, π1, . . . , πr such that B is positive semidefinite. Then

(13) Var(μ) = 1

p
√

n

r∑
m=0

πm�m.

We denote the prior μ ∼ N(0,B) with B as in (13) by Pπ̃ . Note that, in order for B to be
positive semi-definite, it suffices that the real-valued polynomial

∑r
m=0 πmxm is nonnegative

on [0,‖�‖]. Unless � = Ip or π0 = 1, such a prior implies a certain distribution of the
coefficients of μ in the spectral coordinate system. Specifically, larger values of πm for higher
powers m imply that μ has larger contribution from the leading eigenvectors of �.

Under model (13), (11) is satisfied and the limit equals

(14) q(λ, γ ) =
r∑

m=0

πmρm(−λ,γ ),

with ρm(−λ,γ ) satisfying the recursive formula

ρm+1(−λ,γ ) = {
1 + γ	1(λ, γ )

}{∫
τm dH(τ) − λρm(−λ,γ )

}
,

and ρ0(−λ,γ ) = mF (−λ). This formula, which can be deduced from Lemma 3 of Ledoit and
Péché (2011) and the derivations given in the Supplementary Material, involves the popula-
tion spectral moments

∫
τm dH(τ). The latter can be estimated, since equations connecting

the moments of H with the limits of the tracial moments p−1 tr{Sm
n }, m ≥ 1, are known (Bai,

Chen and Yao (2010), Lemma 1).

2.4. Power comparison. We now use the probabilistic alternative framework determined
by PA and (13) to analytically compare the power characteristics of the RHT procedure in
comparison with some of the methods that are natural candidates in the sense of sharing the
orthogonal invariance property enjoyed by RHT. As a first step, we derived the expressions
for the power functions of these tests.

It can be checked that, under C1–C3 and PA, together with sub-Gaussianity of the ob-
servations, the conditions imposed to derive asymptotics in Bai and Saranadasa (1996) and
Chen and Qin (2010) are satisfied. Therefore, by making use of supporting results in their
papers and the techniques used in this paper, the power βBS of the test by Bai and Saranadasa
(1996) (referred to as BS), and the power βCQ of the test by Chen and Qin (2010) (referred
to as CQ), can be shown to satisfy

βBS(μ) − 


(
−ξα + κ(1 − κ)

p−1 tr(B)

{2γ
∫

τ 2 dH(τ)}1/2

)
L1−→ 0,(15)

βCQ(μ) − 


(
−ξα + κ(1 − κ)

p−1 tr(B)

{2γ
∫

τ 2 dH(τ)}1/2

)
L1−→ 0.(16)

If we further assume that the observations are Gaussian, then we can also provide an ex-
pression for the asymptotic power of the random projection based test (referred to as RP)
proposed by Lopes, Jacob and Wainwright (2011). Let βRP (μ,P T

k ) be the power of the RP
test, given a realization Pk of the rank-k random projection. The suggested k value is p/2.
Then, it can be shown that for almost all sequences of projections Pk , as n → ∞,

(17) βRP

(
μ,P T

k

)− 


(
−ξα + κ(1 − κ)√

2
p−1 tr

[(
P T

k BPk

)(
P T

k �pPk

)−1]) L1−→ 0.



1822 H. LI ET AL.

The asymptotic power βHT (μ) of Hotelling’s T2 (referred to as HT) when p/n → γ is also
derived in Bai and Saranadasa (1996). Making use of their results, under PA, we have, when
γ < 1,

(18) βHT (μ) − 


(
−ξα + κ(1 − κ)

√
1 − γ

2γ
p−1 tr

(
�−1

p B
)) L1−→ 0.

Equations (12) and (14) together provide the corresponding expression for the local power of
the RHT test under (13), that is, when B= ∑r

m=0 πm�m.
At this point, a practical difficulty in analytically comparing power characteristics of these

different methods presents itself. Notice that even though we have an analytical expression for
the power of the RHT procedure, it still involves the functions ρm(−λ,γ ). These functions
are available in closed form only if � = Ip . While � = Ip is not the most compelling of
cases, it is also a situation where the benefit of the ridge-type regularization is expected
to be significantly reduced. Indeed, in such cases, choosing λ = ∞, which corresponds to
replacing the normalizer (Sn +λIp) by the identity matrix and, therefore, effectively reducing
the RHT test to the BS test, at least intuitively appears to be the most reasonable option.
On the other hand, the effect of appropriate normalization of the coordinates of X̄1 − X̄2
in the expression for the RHT statistic is expected to be much more significant when there
is a degree of nondegeneracy in the spectral distribution of �. Keeping this in mind, and
considering that a simple and interpretable model for the population spectral distribution H

is useful for carrying out a meaningful comparison, we focus on the following example for
H :

1. Assume a two-point mixture model for the spectral distribution H of �p , namely,

aδx + (1 − a)δy,

with y = (1 − ax)/(1 − a), so that p−1tr(�p) = 1. In other words, �p has two distinct
eigenvalues x and y with ratio a and (1 − a), respectively.

2. Suppose that the model PA together with (13) and assumptions C1–C3 hold. In order
to highlight the key features of the power characteristics of these tests, consider the three
canonical settings for B, namely, Ip , � and �2.

In this model, the Marčenko–Pastur equation is cubic in mF (z) and given by

mF (z) = a

x{1 − γ − γ zmF (z)} − z
+ 1 − a

y{1 − γ − γ zmF (z)} − z
.

An lengthy yet explicit solution to mF (z) is available, but not displayed here. This solution
in turn yields explicit solutions to 	1(λ, γ ), 	2(λ, γ ) and q(λ, γ ).

Figure 1 gives the power function βn(μ,λ), approximated using the asymptotic results,
against γ for different choices of a, x and B at selected values of λ. Specifically, we se-
lected HT (λ = 0), λ = 0.1, λ = 1 and BS (λ = ∞). Additionally, for each γ the optimal λγ

that maximizes βn(μ,λ) was computed, whose power is then the best possible one among
the ridge-regularized family of tests under probabilistic local alternatives. Other implemen-
tation details were α = 0.05, κ = 0.5 and Var(μ) = 10n−1/2p−1B (chosen for visualization
purposes).

Figures 2 and 3 display the power function βn(μ,λ) against λ for γ = 0.5,0.9 and 2. For
comparison, the power of HT (γ < 1 only), BS/CQ and RP are given as horizontal lines.

Figure 2 and Figure 3 show clearly that when Var(μ) is proportional to either Ip or �p , the
power gain of RHT with the optimal λ over either BS/CQ test or RP test is quite prominent
when a relatively small fraction of eigenvalues is significantly bigger than the smaller eigen-
values. Figure 1 shows ridge-regularization can remarkably rescue the performance of HT
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FIG. 1. βn(μ,λ) against γ . HT (λ = 0) (green), λ = 0.1 (yellow), λ = 1 (red), BS/CQ (λ = ∞) (blue), λγ

(black, dashed). Columns (left to right): B = Ip,�p,�2
p ; First Row: a = 0.5 and x = 0.4; Second Row: a = 0.9

and x = 0.6.

when γ is close to 1. The rightmost panels of Figures 2 and 3, corresponding to the setting
where Var(μ) is proportional to �2, represent a case for which maximum power is attained
for the largest λ. Here, the power of RHT is no better than the BS/CQ test under this class of
alternatives and in all settings. In Section 2.6, we provide a mathematical result verifying this
aspect that also forms the basis for a decision-theoretic framework to choose λ.

2.5. Data-driven selection of λ. Given a sequence of local probabilistic alternatives, the
strategy is to choose λ by maximizing the “local power” function βn(μ,λ). Theorems 2.1 and
2.2 suggest that λ should be chosen such that the ratio Q(λ,γ ) = q(λ, γ ){γ	2(λ, γ )}−1/2 is
maximized, with q(λ, γ ) given by (11).

In the following, we recall two possible settings under PA where q(λ, γ ) can be computed
explicitly: (i) Suppose that B is specified. In this case, q(λ, γ ) is estimated by p−1 tr((Sn +
λIp)−1B), the latter being a consistent estimator of the LHS of (11). (ii) Only the spectral
mass distribution of B in the form of f∞ (described in Remark 2.3) is specified. Then, as
explained in Section 2.3, for polynomial f∞, we obtain the expression (14) for q(λ, γ ), and
this can be estimated consistently.

In order to effectively utilize the expression (14) for q(λ, γ ), we restrict to the case r = 2.
There are several considerations that guide this choice of r . First, for r = 2, all quantities
involved in estimating q(λ, γ ) can be computed explicitly without requiring knowledge of
higher-order moments of the observations. Also, the corresponding estimating equations are
more stable as they do not involve higher-order spectral moments. Second, the choice of r = 2
yields a significant, yet nontrivial, concentration of the prior covariance of μ (equivalently,
B) in the directions of the leading eigenvectors of �. Finally, the choice r = 2 allows for both
convex and concave shapes for the spectral mass distribution f∞ since the latter becomes a
quadratic function.
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FIG. 2. βn(μ,λ) against λ when a = 0.5, x = 0.4. RHT (red), BS/CQ (λ = ∞) (blue), RP (dashed, purple), HT
(λ = 0) (green), (locally) optimal lambda (vertical dash). Columns (left to right): B = Ip , �p , �2

p ; Rows (top to
bottom): γ = 0.5,0.9,2.

With r = 2, in order to estimate q(λ, γ ), it suffices to estimate

ρ0(−λ,γ ) = mF (−λ),

ρ1(−λ,γ ) = 	1(λ, γ ),

ρ2(−λ,γ ) = {
1 + γ	1(λ, γ )

}{
φ1 − λρ1(−λ,γ )

}
,

(19)

where φ1 = ∫
τ dH(τ). The latter can be estimated accurately by φ̂1 = p−1 tr{Sn} (see Propo-

sition A.2).
We state below the algorithm for data-driven selection of the regularization parameter λ.

ALGORITHM 2.1 (Empirical selection of λ). Perform the following steps:

1. Specify prior weights π̃ = (π0, π1, π2);
2. For each λ, compute the estimates

ρ̂0(−λ,γn) = mFn,p (−λ),

ρ̂1(−λ,γn) = 	̂1(λ, γn),

ρ̂2(−λ,γn) = {
1 + γn	̂1(λ, γn)

}{
φ̂1 − λρ̂1(−λ,γn)

};
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FIG. 3. Same as Figure 2 but with a = 0.9, x = 0.6.

3. For each λ, compute the estimate

Q̂n(λ, γn; π̃) =
2∑

m=0

πmρ̂m(−λ,γn)/
{
γn	̂2(λ, γn)

}1/2;

4. Select λπ̃ ≡ λπ̃,n = arg maxλ Q̂n(λ, γn; π̃ ) through a grid search.

Although in theory arbitrarily small positive λ are allowed in the test procedure, in practice,
meaningful lower and upper bounds λ and λ are needed to ensure stability of the test statistic
when p ≈ n or p > n. The recommended choices are λ = p−1 tr{Sn}/100 and λ = 20‖Sn‖.

The behavior of the test with the data-driven tuning parameter is described in the next
theorem.

THEOREM 2.3. Let [λ,λ] (with λ > λ > 0) be a nonempty interval. Let λ∞ be any local
maximizer of Q(λ,γ ; π̃) on [λ,λ]. If conditions C1–C3 are satisfied and if there is a C >

0 such that ∂2Q(λ∞, γ ; π̃)/∂λ2 < −C, then there exists a sequence (λn : n ∈ N) of local
maximizers of (Q̂n(λ, γn; π̃) : n ∈ N), satisfying

(20) n1/4|λn − λ∞| = Op(1) (n → ∞).
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Further, under the null hypothesis,

(21) Tn,p(λn) = p1/2{p−1 RHT(λn) − 	̂1(λn, γn)}
{2	̂2(λn, γn)}1/2

=⇒N (0,1) (n → ∞),

where =⇒ denotes convergence in distribution. The procedure is adaptive in the sense that
the asymptotic power of the test based on Tn,p(λn) is the same as that of Tn,p(λ∞) under the
sequence of priors specified by π̃ .

REMARK 2.4. In Theorem 2.3, if λ∞ is a boundary point and ∂Q(λ∞, γ ; π̃)/∂λ �= 0,
then the assumption on ∂2Q(λ∞, γ ; π̃)/∂λ2 can be dropped.

2.6. Minimax selection of λ. In Section 2.5, it is assumed that a specific prior π̃ is avail-
able. However, in practice, rather than a particular choice of π̃ , we may have to consider a
collection of such priors. In this subsection, a procedure for selecting the regularization pa-
rameter for the RHT test Tn,p(λ) is presented that is based on the principle of minimaxity.
Throughout this subsection, minimax refers to minimaxity within the class of all RHT tests.

Let D = {Tn,p(λ) : λ ∈ [λ,λ]}, for 0 < λ < λ < ∞ denote a class of normalized RHT test
statistics. Also, let P be a family of local priors for μ under the alternative. Notice that, for
any α ∈ (0,1) the test δα(λ) = 1(Tn,p(λ) > ξα) has asymptotically level α. For any given
prior P for μ under the alternative, define the asymptotic Bayes risk of the test δα(λ) with
respect to prior P as

(22) R
(
δα(λ);P) = lim sup

n,p→∞
(
1 −EP

[
βn(μ,λ)

]) = 1 − lim inf
n,p→∞EP

[
βn(μ,λ)

]
with βn(μ,λ) as in (8). We say that Tn,p(λ∗) is a locally asymptotically minimax (LAM)
test within the class D and with respect to P, if for each α ∈ (0,1), the minimum value of
supP∈P R(δα(λ);P) over λ ∈ [λ,λ] is attained at λ∗.

Consider now a family of priors Pr (C) defined in the following way. For a constant C > 0,
define

�r(C) =
{
π̃ = (π0, . . . , πr) :

r∑
m=0

πmxm ≥ 0 for x ∈ [0,∞),

r∑
m=0

πmφm = C

}
,

where φm = ∫
τm dH(τ). Let Pπ̃ denote the prior for μ satisfying PA and (13). Finally, let

Pr (C) = {
Pπ̃ : π̃ ∈ �r(C)

}
.

The condition
∑r

m=0 πmxm ≥ 0 for all x ≥ 0 ensures that the matrix
∑r

m=0 πm�m is nonneg-
ative definite, while the condition

∑r
m=0 πmφm = C means that as p → ∞,

√
n tr{Var(μ)} →

C. Observe that, for π̃ ∈ �r(C), the asymptotic Bayes risk R(δα(λ);Pπ̃ ) equals 1−
(−ξα +
κ(1 − κ)Q(λ, γ ; π̃)) where q(λ, γ ) ≡ q(λ, γ ; π̃) is given by (14), implying that Pπ̃ actually
constitutes an equivalence class of priors.

Restricting to r = 2, note that finding a LAM test within the class D and with respect
to the family P2(C), means finding a λ ∈ [λ,λ] that minimizes supπ̃∈�2(C) R(δ(λ);Pπ̃ ).
Without loss of generality, take C = 1 since the risk function is monotonically decreasing in
Q(λ,γ ; π̃), and the latter is a linear function of π̃ . This leads to the following result.

PROPOSITION 2.1. Under the conditions of Theorem 2.2, the LAM test within the class
D, with respect to the family P2(C) is Tn,p(λ̄).
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The proof of this proposition is given in Section 9.6.
It can be verified that as λ → ∞, the test statistic RHT(λ) converges pointwise to the

corresponding test statistic by Bai and Saranadasa (1996), and the local asymptotic power
of RHT(λ) under the class of alternatives P2(C) also converges to the corresponding power
for the test by Bai and Saranadasa (1996). Thus, Proposition 2.1 shows that the test by Bai
and Saranadasa (1996) is the limit of a locally asymptotically minimax test, namely the test
Tn,p(λ̄), as λ̄ → ∞.

3. Adaptable RHT. Section 2.5 describes a data-driven procedure for selecting the opti-
mal regularization parameter λ for prespecified prior weights π̃ , whereas Section 2.6 derives
an asymptotically minimax RHT test with respect to a class of priors. An extensive simula-
tion analysis reveals that there is a considerable variation in the shape of the power function
and the value of the corresponding Bayes rule, especially when the condition number of � is
relatively large.

As an alternative to the minimax approach, which can be overly pessimistic, instead of
considering a broad collection of priors, one might consider a convenient collection of priors
that are representative of certain structural scenarios. Thus adopting a mildly conservative
approach, define a new test statistic as the maximum of the RHT statistics corresponding to a
set of regularization parameters that are optimal with respect to a specific collection of priors.
Specifically, we propose the following test statistic, referred to as Adaptable RHT (ARHT):

(23) ARHTn,p(�) = max
π̃∈�

Tn,p(λπ̃ ),

where Tn,p(λ) is defined in (6), λπ̃ in Algorithm 2.1, and � = {π̃1, . . . , π̃k}, k ≥ 1, is a pre-
specified finite class of weights. A simple but effective choice of � consists of the three
canonical weights π̃ = (1,0,0), (0,1,0) and (0,0,1). We focus on this particular specifi-
cation of �, since a convex combination of these three weights cover a wide range of local
alternatives, and this choice leads to very satisfactory empirical performance as is illustrated
through simulations in Section 6. In particular, the ARHT procedure is shown to outperform
the test by Bai and Saranadasa (1996) (the limiting LAM procedure) in most circumstances.

Determining the cut-off values of ARHTn,p(�) requires knowing the asymptotic distri-
bution of the process Tn,p = (Tn,p(λ) : λ ∈ [λ,λ]) under the null hypothesis of equal means.
From this, the case where � = {λπ̃1, . . . , λπ̃k

} is a collection of finitely many regularization
parameters can be easily derived.

THEOREM 3.1. If C1–C3 are satisfied, then, under H0,

Tn,p
d−→ Z (n → ∞),

where
d−→ denotes weak convergence in the Skorohod space D[λ,λ] and Z = (Z(λ) : λ ∈

[λ,λ]) a centered Gaussian process with covariance function

(24)

�
(
λ,λ′)
= {

1 + γ	1(λ, γ )
}{

1 + γ	1
(
λ′, γ

)} λ′	1(λ
′, γ ) − λ	1(λ, γ )

(λ′ − λ){	2(λ, γ )	2(λ′, γ )}1/2 ,

for λ �= λ′, and �(λ,λ) ≡ 1. In particular, for every k ≥ 1 and every collection � =
{λ1, . . . , λk} ⊂ [λ,λ], it holds that(

Tn,p(λ1), . . . , Tn,p(λk)
)T =⇒ Nk

(
0,�(�)

)
(n → ∞),

where the limit on the right-hand side is a k-dimensional centered normal distribution with
k × k covariance matrix �(�) with entries �(λi, λj ), i, j = 1, . . . , k.
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Theorem 3.1 shows that ARHTn,p(�) has a nondegenerate limiting distribution under
H0. Theorem 3.1 can be used to determine the cut-off values of the test by deriving ana-
lytical formulae for the quantiles of the limiting distribution. Aiming to avoid complex cal-
culations, a parametric bootstrap procedure is applied to approximate the cut-off values.
Specifically, �(�) is first estimated by �̂n(�), and then bootstrap replicates are generated by
simulating from Nk(0, �̂(�)), thereby leading to an approximation of the null distribution of
ARHTn,p(�). A natural candidate for the covariance estimator is

(25)

�̂n

(
λ,λ′)
= {

1 + γn	̂1(λ, γn)
}{

1 + γn	̂1
(
λ′, γn

)}
× λ′	̂1(λ

′, γn) − λ	̂1(λ, γn)

(λ′ − λ){	̂2(λ, γn)	̂2(λ′, γn)}1/2
,

for λ �= λ′ and �̂n(λ,λ) ≡ 1.

REMARK 3.1. It should be noticed that �̂n(�) defined through (25) may not be nonneg-
ative definite even though it is symmetric. If such a case occurs, the resulting estimator can be
projected to its closest nonnegative definite matrix simply by setting the negative eigenvalues
to zero. This covariance matrix estimator is denoted by �̂+

n (�) and is used for generating the
bootstraps samples.

4. Calibration of type I error probability. Simulation studies reveal that the size of
RHT tends to be slightly inflated. This is because a normal approximation is used to describe
a quadratic form statistic, leading to skewed distributions in finite samples. Two remedies
are proposed. The first is based on a power transformation of RHT, reducing skewness by
calibrating higher-order terms in the test statistics. The second on choosing cut-off values
of RHT based on quantiles of a normalized χ2 distribution whose first two moments match
those of RHT.

4.1. Cube-root transformation. In principle, any power transformation may be consid-
ered, but empirically, a near-symmetry of the null distribution is obtained by a cube-root
transformation of the RHT statistic. Therefore, restricting to this case only, an application of
the δ-method yields

(26) T̃1/3(λ) = p1/2[{p−1 RHT(λ)}1/3 − 	̂
1/3
1 (λ, γn)]

(21/2/3)	̂
1/2
2 (λ, γn)/	̂

2/3
1 (λ, γn)

=⇒ N(0,1).

This gives rise to the cube-root transformed ARHT test statistic

ARHT1/3(�) = max
π̃∈�

T̃1/3(λπ̃ ).

A test based on ARHT1/3(�) for a finite set � of weight vectors can be performed by making
use of the covariance kernel � given in (24). ARHT1/3 is recommended for most practical
applications since it nearly symmetrizes the null distribution of the test statistic even for mod-
erate sample sizes. Algorithm 4.1 details the composite test procedure with the recommended
ARHT1/3 statistic.

ALGORITHM 4.1 (Cube-root transformed ARHT).

1. Diagonalization: Compute the spectral decomposition of Sn = Pn�nP
T
n , apply the

transformation Ȳ1 = P T
n X̄1, Ȳ1 = P T

n X̄1; and run the rest with X̄1, X̄2, Sn replaced by Ȳ1, Ȳ2
and �n;
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2. For each π̃ in �, run Algorithm 2.1 and obtain � = {λπ̃ : π̃ ∈ �};
3. Compute �̂+

n (�);
4. Generate ε1, . . . , εB with εb = max1≤i≤k Z

(b)
i with Z(b) ∼ N (0, �̂+

n (�));
5. Compute ARHT1/3(�);
6. Compute p-value as B−1 ∑B

b=1 I {εb > ARHT1/3(�)}.

4.2. χ2-Approximation of cut-off values. While the cube-root transformation is shown to
be quite effective, a weighted chi-square approximation can also be used to calibrate the size
of ARHT. This involves setting the cut-off values as quantiles of the maximum of a set of
scaled χ2 distributions, that is, random variables of the form aχ2(�), where a is a normalizing
constant and � is the degree of freedom. For each pair (a, �), the aχ2(�) distribution is used
to mimic the distribution of RHT in (1) for a given regularization parameter λ. The scale
multipliers a and the degrees of freedom � are selected so that the first two moments and
the covariances of the χ2 variables match with those of the corresponding RHT test. Details
are given in the Supplementary Material. Unlike the cube-root transform of Section 4.1, this
method only modifies cut-off values. Based on our simulations, both methods perform similar
in terms of power curves.

5. Extension to sub-Gaussian distributions. The results presented thus far are now ex-
tended to a general class of sub-Gaussian distributions (see Chatterjee (2009)). The extension
is achieved for the independent samples model

(27) Xij = μi + �1/2
p Zij , j = 1, . . . , ni, i = 1,2,

where Zij = (zij1, . . . , zijp)T are p-dimensional independent random vectors with i.i.d. en-
tries satisfying E[zijk] = 0, E[z2

ijk] = 1 and E[z3
ijk] = 0. To specify the distribution of zijk ,

introduce the following class of probability measures.

DEFINITION 5.1. For each c1, c2 > 0, let L(c1, c2) be the class of probability measures
on the real line R that arises as laws of random variables u(Z), where Z is a standard normal
random variable and u is a twice continuously differentiable function such that, for all x ∈ R,

(28)
∣∣u′(x)

∣∣ ≤ c1 and
∣∣u′′(x)

∣∣ ≤ c2.

Note that random variables in L(c1, c2) are sub-Gaussian and have continuous distribution,
since u is a Lipschitz function with bounded Lipschitz constant. The first condition in (28) is
used to control the magnitude of the variance of u(Z), while the second condition is primarily
for controlling the tail behavior of the statistic. This approach is particularly attractive as it
only requires establishing appropriate upper bounds for the operator norms of the gradient
and Hessian matrices of the statistic (with respect to the variables), and matching the first
two asymptotic moments. However, the calculations in our setting are nontrivial since they
require a detailed analysis of the resolvent of the sample covariance matrix.

THEOREM 5.1. All previously stated results hold if the observations Xij are as in (27)
with the zijk satisfying Definition 5.1 together with E[zijk] = 0, E[z2

ijk] = 1, E[z3
ijk] = 0, and

�p satisfying conditions C1–C3.

Key to the proof of Theorem 5.1 is the consideration of a modified version of RHT, re-
placing Sn with the noncentered matrix S̃n = n−1 ∑2

i=1
∑ni

j=1 XijX
T
ij . Defining Ukl(λ) =

X̄T
k (S̃n + λIp)−1X̄l , k, l = 1,2, the joint asymptotic normality of (U11(λ),U12(λ),U22(λ))

can first be established. Then a suitable transformation of variables and an appropriate use of
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the δ-method prove the asymptotic normality of RHT(λ). The proof details for Theorem 5.1
are provided in the Supplementary Material. The derivation of the power function of the RHT
test under local alternatives follows analogously.

Theorem 5.1 is expected to hold under even more general conditions than stated above.
Indeed, in the one-sample testing problem, making use of the analytical framework adopted
by Pan and Zhou (2011), asymptotic normality of RHT can be proved when Definition 5.1 is
replaced by a bounded fourth moment assumption that is standard in spectral analysis of large
covariance matrices. However, this derivation is rather technical and not readily extended to
the two-sample setting due to certain structural differences between one- and two-sample set-
tings under non-Gaussianity. Whether such generalizations are feasible in the present context
is a topic for future research.

6. Simulations.

6.1. Competing methods. In this section, the proposed ARHT is compared by means of
a simulation study to a host of popular competing methods, including the tests introduced by
Bai and Saranadasa (1996) (BS), Chen and Qin (2010) (CQ), Lopes, Jacob and Wainwright
(2011) (RP), and Cai, Liu and Xia (2014) (CLX.�1/2 and CLX.�, corresponding to the two
different transformation matrices �1/2 and � = �−1). In the following, ARHT, ARHT1/3
and ARHTχ2 denote the original, cubic-root transformed and χ2-approximated ARHT pro-
cedure introduced in Sections 3, 4.1 and 4.2, respectively.

6.2. Settings and results. In the simulations, the observations Xij are as in (27), while
two different distributions for zijk are considered, namely the N(0,1) distribution and the t-
distribution with four degrees of freedom, t(4), rescaled to unit variance. For the normal case,
the sample sizes are chosen as n1 = n2 = 50. For the t(4) case, the sample sizes are chosen to
be n1 = 30 and n2 = 70. The dimension p is 50, 200 or 1000, so that γ = p/(n1 +n2) = 0.5,
2 or 10. Results are here reported mainly for p = 200 and 1000, while the case p = 50 is
reported in the Supplementary Material. The range of regularization parameters is chosen
as [λ,λ] = [0.01,100], using a grid with progressively coarser spacings for determining the
optimal λn ≡ λπ,n.

The following three models for the covariance matrix � = �p are considered:

(i) The identity matrix (ID): Here, � = Ip;
(ii) The sparse case �s : Here, � = (p−1 tr{D})−1D with a diagonal matrix D whose

eigenvalues are given by τj = 0.01 + (0.1 + j)6, j = 1, . . . , p;
(iii) The dense case �d : Here, � = P T �sP with a unitary matrix P randomly generated

from the Haar measure and resampled for each different setting. Note that, for both �s and
�d , the eigenvalues decay slowly to 0, so that no dominating leading eigenvalue exists.

Under the alternative, for each p, � and each replicate, the mean difference vector μ =
μ1 − μ2 is randomly generated from one of the four models: (1) μ ∼ N(0, cIp); (2) μ ∼
N(0, c�); (3) μ ∼ N(0, c�2); and (4) μ is sparse with 5% randomly selected nonzero entries
being either −c or c with probability 1/2 each. The parameter c is used to control the signal
size. The choices in (1)–(4), respectively, represent the cases where μ is uniform; is slightly
tilted toward the eigenvectors corresponding to large eigenvalues of �; is heavily tilted toward
the eigenvectors corresponding to large eigenvalues of �; and is sparse, respectively.

All tests are conducted at significance level α = 0.05. There are two versions for each test:
(a) utilizing (approximate) asymptotic cut-off values; and (b) utilizing the size-adjusted cut-
off values based on the actual null distribution computed by simulations. Only results for the
latter case are reported here; the former is in the Supplementary Material. Also, power graphs
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TABLE 1
Empirical sizes of the various tests at the α = 0.05 level

� p ARHT ARHT1/3 ARHTχ2 BS CQ RP CLX.�1/2 CLX.�

N(0,1) ID 50 0.0612 0.0447 0.0472 0.0609 0.0481 0.0520 0.0633 0.0637
N(0,1) ID 200 0.0568 0.0473 0.0493 0.0561 0.0508 0.0490 0.0754 0.0757
N(0,1) ID 1000 0.0539 0.0491 0.0510 0.0527 0.0517 0.0498 0.1004 0.1004

N(0,1) �d 50 0.0854 0.0489 0.0606 0.0695 0.0470 0.0485 0.0970 0.1101
N(0,1) �d 200 0.0917 0.0601 0.0705 0.0622 0.0486 0.0503 0.0833 0.0971
N(0,1) �d 1000 0.0626 0.0520 0.0347 0.0555 0.0484 0.0510 0.0991 0.0996

N(0,1) �s 50 0.0877 0.0492 0.0603 0.0688 0.0468 0.0508 0.0613 0.0615
N(0,1) �s 200 0.0938 0.0596 0.0707 0.0645 0.0487 0.0503 0.0773 0.0773
N(0,1) �s 1000 0.0642 0.0539 0.0347 0.0580 0.0510 0.0486 0.0991 0.0992

t(4) ID 50 0.0572 0.0395 0.0414 0.0516 0.0450 0.0477 0.0562 0.0563
t(4) ID 200 0.0541 0.0447 0.0456 0.0518 0.0505 0.0504 0.0611 0.0611
t(4) ID 1000 0.0502 0.0460 0.0443 0.0487 0.0527 0.0493 0.0735 0.0735

t(4) �d 50 0.0836 0.0473 0.0582 0.0659 0.0468 0.0485 0.0815 0.0906
t(4) �d 200 0.0912 0.0582 0.0692 0.0590 0.0484 0.0507 0.0759 0.0838
t(4) �d 1000 0.0606 0.0503 0.0313 0.0541 0.0500 0.0494 0.0905 0.0906

t(4) �s 50 0.0812 0.0451 0.0559 0.0634 0.0449 0.0481 0.0512 0.0512
t(4) �s 200 0.0872 0.0551 0.0656 0.0565 0.0469 0.0474 0.0638 0.0638
t(4) �s 1000 0.0584 0.0481 0.0246 0.0516 0.0502 0.0495 0.0730 0.0730

are given for the Gaussian case only, since power curves for the t(4) case are similar (see
Supplementary Material). All empirical cut-off values, powers and sizes are calculated based
on 10,000 replications. Empirical sizes for the various tests are shown in Table 1. Empirical
power curves versus expected signal strength (

√
nE[‖μ‖2

2])1/2 are shown in Figures 4–7.
Note that, in some of the settings, several of the power curves nearly overlap, creating an
occlusion effect. For example, CLX.�1/2 is very similar to CLX.�, therefore, only the latter
is displayed. For the ease of illustration, power curves corresponding to the recommended
ARHT1/3 are plotted as the top layer.

6.3. Summary of simulation results. For each simulation configuration considered in this
study, ARHT or its calibrated versions are as powerful as the procedure(s) with the best
performance, except for the cases of sparse or uniform μ with sparse � and relatively large
p (panels (a) and (d) of Figures 7 and 8). This serves as evidence for the robustness of ARHT
procedures with respect to the structures of means under alternatives. The adaptable behavior
also sets the proposed methodology apart from its competitors. The following observations
are made based on the simulation outcomes:

FIG. 4. Size-adjusted empirical power with Xij ∼ N(·,�) and � = ID. ARHT1/3 (solid, red), χ2 approxima-
tion (circle), BS (solid, blue), CQ (+), RP (dashed, purple) and CLX.� (dashed).
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FIG. 5. Size-adjusted empirical power with Xij ∼ N(·,�), � = �d and p = 200. ARHT1/3 (solid, red), χ2

approximation (circle), BS (solid, blue), CQ (+), RP (dashed, purple) and CLX.� (dashed).

(1) When the dimension is high and there is no specific structure of μ and � that could
be exploited, ARHT tends to outperform the other tests. Tilted alternatives are expected to be
detrimental to the performance of both ARHT and RP. However, ARHT can be seen as only
slightly less powerful than BS and CQ, which yield the best results for this case.

(2) In the case that � is equal to the identity matrix, the BS procedure is expected to give
the best performance, since the test statistic is based on the true covariance matrix. Recalling
that BS can be treated as RHT(∞), ARHT is shown to perform as well as BS in correspond-
ing simulations (see Figure 4). This may be viewed as evidence of the effectiveness of the
data-driven tuning parameter selection strategy detailed in Section 2.5.

(3) If both mean difference vector μ and covariance matrix � are sparse, the three CLX
procedures are expected to perform the best. Specifically, the simulations reveal that the spar-
sity of μ alone does not guarantee superiority of CLX. This can be seen in the panel (d) of
Figures 4–5. However, as evidenced in Figures 7 and 8, if � is sparse, then the performance
of the CLX procedures is the best when μ is either uniform or sparse. The ARHT proce-
dures are less sensitive to the structure imposed on the covariance matrix � than the CLX
procedures, although they are less powerful in sparse settings.

The reason for the excellent performance of CLX for uniform μ (which is even better than
for sparse μ) is that significant signals occur, with high probability due to uniform distribution
of signal, at coordinates with very small variance due to their high signal-to-noise ratios.
Consequently, l∞-norm based methods, such as the CLX tests, are able to efficiently detect
such signals. In contrast, all l2-norm based methods, including ARHT, combine the signals
over all coordinates and thus tend to miss such signals since the l2 norm of μ is relatively
small. When μ is sparse, such a phenomenon also happens but with smaller probability. When
μ is tilted, on the other hand, this phenomenon is unlikely to occur. Therefore, what is at play
is not only sparsity of μ, but also the matching of significant signals with small variances.

The results of this simulation study highlight the robustness or adaptivity of the proposed
ARHT test to various different alternative scenarios and, therefore, demonstrate its potential
usefulness for real world applications.

FIG. 6. Same as in Figure 5 but with p = 1000.
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FIG. 7. Size-adjusted empirical power with Xij ∼ N(·,�), � = �s and p = 200. ARHT1/3 (solid, red), χ2

approximation (circle), BS (solid, blue), CQ (+), RP (dashed, purple) and CLX.� (dashed).

7. Application. Breast cancer is one of the most common cancers with more than
1,300,000 cases and 450,000 deaths worldwide each year. Breast cancer is also a heteroge-
neous disease, consisting of several subtypes with distinct pathological and clinical charac-
teristics. To better understand the disease mechanisms underlying different breast cancer sub-
types, it is of great interest to characterize subtype-specific somatic copy number alteration
(CNA) patterns, that have been shown to play critical roles in activating oncogenes and in
inactivating tumor suppressors during the breast tumor development; see (Bergamaschi et al.
(2006)). In this section, the proposed ARHT is applied to a TCGA (The Cancer Genome
Atlas) breast cancer data set (Cancer Genome Atlas Network (2012)) to detect pathways
showing distinct CNA patterns between different breast cancer subtypes.

Level-three segmented DNA copy number (CN) data of breast cancer tumor samples were
obtained from the TCGA website. Focus is on a subset of 80 breast tumor samples, which
are also subjected to deep protein-profiling by CPTAC (Clinical Proteomic Tumor Analysis
Consortium) (Paulovich et al. (2010), Ellis et al. (2013), Mertins et al. (2016)). Thus findings
from our analysis may lead to further investigations and knowledge generation through the
corresponding protein profiles in the future. Specifically, among these 80 samples, 18, 29 and
33 samples belong to the Her2-enriched (Her2), Luminal A (Lum A) and Luminal B (Lum
B) subtypes, respectively.

For the selected samples, first gene-level copy number estimates are derived based on the
segmented CN profiles. Q-Q plots, provided in the Supplementary Material, suggest that the
observations have heavier tails than normal distributions. To better illustrate the comparative
performance of the proposed methods under high dimensions, consider the 36 largest KEGG
pathways. The number of genes in these pathways ranging from 66 to 252, so that p/n varies
between 0.75 and 3.5. For each pathway, interest is in testing whether genes in the pathway
showed different copy number alterations between Lum (Lum A plus Lum B) vs. Her2, or
Lum A vs. Lum B. These led to a total of 72 two-sample tests.

All testing methods discussed in the simulation studies were applied to this data set, except
for ARHTχ2 . The null distribution and the p-value for each method, were generated based

FIG. 8. Same as in Figure 7 but with p = 1000.
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on 100,000 permutations, instead of applying the asymptotic theory, though the asymptotic
and permutation-based cut-offs are similar for ARHT1/3. Also, to control the familywise
error rate, the p-values are further adjusted by FDR (Benjamini and Hochberg (1995)), and
FDR-adjusted p-values below 0.01 indicate departure from null.

For the Lum vs. Her2 comparison, ARHT yielded the largest number of significant path-
ways followed by RP, while all other methods have similar behaviors with about half the
detection rate of ARHT and RP. For the Lum A vs. Lum B comparison, the ARHT results
are similar to those of BS and CQ, giving the largest number of significant pathways. On the
other hand, in this case, RP only detected two while the three CLX methods did not detect
any significant pathway.

One unique characteristic of Her2 subtype tumors is the amplification of gene ERBB2 and
its neighboring genes in cytoband 17q12, including MED1, STARD3 and others. There are
7 pathways containing at least one of these genes. These pathways, whose annotations were
colored in red in Figure 9, can serve as positive controls in the Her2 vs Lum comparison
(Lamy et al. (2011)). Moreover, it has been shown that gene MAP3K1 and MAP2K4 have
different CN loss activities in Lum A and Lum B tumors (Creighton (2012)). In addition,
proliferation genes such as CCNB1, MKI67 and MYBL2 are more highly expressed in Lum
B compared to Lum A, as shown in Tran and Bedard (2011). Thus, the pathways containing
these genes can be viewed as positive controls in the Lum A vs. Lum B comparison analysis.
As an illustrative reference, in Table 2, the performance of different procedures is summa-
rized in terms of detecting the pathways known to have different CN alterations between
subtypes, when FDR is controlled at 0.01. Interestingly, only the three ARHT procedures
successfully detected all these pathways of positive controls, suggesting a superior power of
ARHT procedures over the competitors. BS and CQ appeared to be the second best methods.

In summary, for this data, only ARHT consistently makes correct decisions on pathways
known to be significant, while the other methods perform adequately for at most one of the
comparisons—either Lum vs. Her2 or Lum A vs. Lum B. This provides further evidence in
support of the power and robustness of ARHT.

8. Discussion. In this paper, a powerful and computationally tractable procedure for test-
ing equality of mean vectors between two populations was presented that is based on a com-
posite ridge-type regularization of Hotelling’s T 2 statistics. Techniques from random matrix
theory were used to derive the asymptotic null distribution under a regime where the dimen-
sion is comparable to the sample sizes. Extensive simulations were conducted to show that
the proposed test has excellent power for a wide class of alternatives and is fairly robust to
the structure of the covariance matrix as well as the distribution of the observations. Practical
advantages of the proposed test were illustrated in the context of a breast cancer data analysis
where the goal was to detect pathways with different DNA copy number alteration patterns
between cancer subtypes.

There are several future research directions to pursue. On the technical side, aim could
be on relaxing the distributional assumptions on the observations further, only requiring the
existence of a certain number of moments. On the methodological front, aim could be on the
extension of the framework to tests for mean difference under possibly unequal variances,
and to deal with the MANOVA problem in high-dimensional settings. Another potentially in-
teresting direction is to combine the proposed methodology with a variable screening strategy
so that the test can be adapted to ultrahigh-dimensional settings.

9. Proofs of the main results. In this section, we provide the necessary technical sup-
port for the proposed methodology under the class of sub-Gaussian distributions L(c1, c2)

introduced in Section 5. The technical details consist of the following four parts: (i) proof of
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FIG. 9. Lum vs. Her2 (left panel) and Lum A vs. Lum B (right panel). Row labels show pathway names and size (p), with those known to be significant highlighted in red.
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TABLE 2
Comparative performance on known significant

pathways (at FDR level 0.01)

Lum vs Her2 Lum A vs Lum B

ARHT 7/7 5/5
ARHT1/3 7/7 5/5
BS 6/7 5/5
CQ 6/7 5/5
RP 7/7 1/5
CLX.�1/2 6/7 1/5
CLX.� 6/7 1/5

asymptotic normality; (ii) proof of Theorem 2.1 and Theorem 2.2; (iii) proof of Theorem 2.3
and (iv) proof of Theorem 3.1.

The crucial difference between Gaussianity and non-Gaussianity is that in the Gaus-
sian case, the sample covariance matrix Sn is independent of the sample means and can
be written as sum of independent random elements. Indeed, under Gaussianity, Sn =∑n−2

i=1 �
1/2
p YiY

T
i �

1/2
p with Yj ∼ N (0, (n − 2)−1Ip) is independent of the X̄i’s, with the lat-

ter normally distributed. However, in non-Gaussian settings, due to lack of independence
between Sn and X̄i’s, their mutual correlation has to be disentangled carefully.

For this analysis, following common practice in random matrix theory, we use an uncen-
tered version of the sample covariance, defined as

S̃n = n−1
2∑

i=1

n∑
j=1

XijX
T
ij .

Note that

Sn = n

n − 2
S̃n − n1

n − 2
X̄1X̄

T
1 − n2

n − 2
X̄2X̄

T
2 .

The statistic (X̄1 − X̄2)
T (Sn + λIp)−1(X̄1 − X̄2) changes nontrivially if Sn is replaced with

S̃n. It will be shown in the following proofs how to manipulate their difference. Recall the
following definitions:

Rn(z) = (Sn − zIp)−1, φ̂1 = p−1 tr(Sn),

mFn,p (−λ) = p−1 tr
{
Rn(−λ)

}
,

	̂1(λ, γn) = 1 − λmFn,p (−λ)

1 − γn{1 − λmFn,p (−λ)} ,

	̂2(λ, γn) = 1 − λmFn,p (−λ)

[1 − γn{1 − λmFn,p (−λ)}]3 − λ
{mFn,p (−λ) − λm′

Fn,p
(−λ)}

[1 − γn{1 − λmFn,p (−λ)}]4 .

For the sake of brevity, Sn is replaced with S̃n in all these quantities and proofs are provided,
even in the Gaussian case, using the thus modified versions. Because∣∣p−1 tr(Sn) − p−1 tr(S̃n)

∣∣ = Op(1/p),∣∣p−1 tr
{
(Sn + λIp)−k}− p−1 tr

{
(S̃n + λIp)−k}∣∣ ≤ 2kλ−kp−1,
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all the derivations all results put forward in the rest of this section will also hold for the
original quantities. The argument for the first relation is straightforward and the second argu-
ment is deduced from Proposition A.1. To lighten notation, φ̂1, Rn(z), mFn,p (−λ), 	̂1(λ, γn),

	̂2(λ, γn), etc., are used to denote their counterparts after the replacement of Sn by S̃n.
As mentioned above, the proposed statistic and other quadratic terms involving Sn will

change significantly after the redefinition of Sn. Define

(29) Uii′(λ) = X̄T
i (S̃n + λIp)−1X̄i′, i, i ′ = 1,2.

The Woodbury matrix identity gives

(30)

n

n − 2

(
Sn + n

n − 2
λIp

)−1

= (S̃n + λIp)−1 + (S̃n + λIp)−1(X̄1, X̄2)H
−1

(
X̄T

1

X̄T
2

)
(S̃n + λIp)−1,

where

H =
(
nn−1

1 0

0 nn−1
2

)
−

(
U11(λ) U12(λ)

U21(λ) U22(λ)

)
.

Therefore,

(31)

n

n − 2
RHT

(
n

n − 2
λ

)

= n1n2

n1 + n2

⎡⎣(U11(λ) + U22(λ) − 2U12(λ)
)

+
(
U11(λ) − U12(λ)

U12(λ) − U22(λ)

)T

H
−1

(
U11(λ) − U12(λ)

U12(λ) − U22(λ)

)⎤⎦ .

9.1. Proof of asymptotic normality under sub-Gaussianity. It follows from (31) that
RHT(n(n − 2)−1λ) can be expressed as a differentiable function of U11(λ), U12(λ) and
U22(λ). Hence, the joint asymptotic normality of the latter implies the asymptotic normal-
ity of the former. Therefore, define an arbitrary linear combination,

R̄(λ) = n1/2[l11U11(λ) + l12U12(λ) + l22U22(λ)
]

for any l11, l12, l22 ∈ R. It suffices to show that R̄(λ) is asymptotically normal.
To this end, we use Theorem A.1. A key component of the proof is to establish the asymp-

totic orders of �0(R̄), �1(R̄) and �2(R̄) and also Var(R̄). Since the gradient and Hessian of
R̄(λ) are linear functions of those of n1/2U11(λ), n1/2U12(λ) and n1/2U22(λ), it suffices to
derive asymptotic orders of the functions �0, �1 and �2 with n1/2U11, n1/2U12 and n1/2U22 as
arguments, then combining them through the Cauchy–Schwarz inequality. In the rest of the
proof, only the asymptotic order of �0(p

1/2U11), �1(p
1/2U11) and �2(p

1/2U11) is derived as
similar arguments also work for U12 and U22.

PROPOSITION 9.1. Under the assumptions of Theorem 5.1, �0(
√

nU11) = o(1).

PROPOSITION 9.2. Under the assumptions of Theorem 5.1, �1(
√

nU11) = o(n1/2).

PROPOSITION 9.3. Under the assumptions of Theorem 5.1, �2(
√

nU11) = O(n−1/2).
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PROPOSITION 9.4. Under the assumptions of Theorem 5.1,

ER̄(λ) = (l11/k + l22/(1 − κ))γ	1(λ, γ )

1 + γ	1(λ, γ )
+ o(1),

Var
(
R̄(λ)

) = [2l2
11/κ

2 + l2
12/(κ − κ2) + 2l2

22/(1 − κ)2]γ 2	2(λ, γ )

(1 + γ	1(λ, γ ))4

+ o(1),

Cov
(
R̄(λ), R̄

(
λ′)) = [2l2

11/κ
2 + l2

12/(κ − κ2) + 2l2
22/(1 − κ)2]γ 2	3(λ,λ′, γ )

(1 + γ	1(λ, γ ))2(1 + γ	1(λ′, γ ))2

+ o(1),

where for λ �= λ′,

	3
(
λ,λ′, γ

) = (
1 + γ	1(λ, γ )

)(
1 + γ	1

(
λ′, γ

))(λ′	1(λ
′, γ ) − λ	1(λ, γ ))

(λ′ − λ)
.

The proofs of these propositions are given in Section S.2. Since R̄ has finite fourth mo-
ment, it follows immediately from Propositions 9.1 and 9.4 that

dTV(R̄,U) ≤ 2
√

5
(
Var(R̄)

)−1{
c1c2�0(R̄) + c3

1�1(R̄)�2(R̄)
} → 0,

where U is a normal random variable with the same mean and variance as R̄. The asymptotic
normality of R̄ now follows. From this, the asymptotic mean and variance of RHT(λ) follow
from basic calculus, making use of the δ-method and the relation shown in (31). Details are
omitted. Finally, we are able to conclude

√
p

{p−1 RHT(λ) − 	1(λ, γ )}
{2	2(λ, γ )}1/2 =⇒N (0,1).

9.2. Proof of Theorem 2.1. Under the deterministic local alternative, we denote Yij =
Xij − μi . Then

Sn = 1

n − 2

2∑
i=1

ni∑
j=1

YijY
T
ij − n1

n − 2
Ȳ1Ȳ

T
1 − n2

n − 2
Ȳ2Ȳ

T
2 .

Furthermore, redefine

S̃n = 1

n

2∑
i=1

ni∑
j=1

YijY
T
ij .

With gn = κn(1 − κn){2γn	̂2(λ, γn)}−1/2, the statistic under the local alternative can be writ-
ten as

(32)
Tn,p(λ) = T 0

n,p(λ) + gnn
1/2μT (Sn + λIp)−1μ

− 2gnn
1/2μT (Sn + λIp)−1Ȳ1 + 2gnn

1/2μT (Sn + λIp)−1Ȳ2,

where T 0
n,p(λ) is the standardized statistic with {Yij } as observations. We already proved

T 0
n,p(λ) converges to N (0,1) in distribution. To this end, it is enough to show that, under the

stability condition (7),

n1/2μT (Sn + λIp)−1μ − q(λ, γ ) = op(1),

n1/2μT (Sn + λIp)−1Ȳi = op(1), i = 1,2.
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Using the relation shown in (30), we can write

n1/2μT (Sn + λIp)−1μ

= n1/2μT (S̃n + λIp)−1μ + n1/2(Uμ,1,Uμ,2)H
−1

(
Uμ,1
Uμ,2

)
,

n1/2μT (Sn + λIp)−1Ȳ1

= n1/2Uμ,1 + n1/2(Uμ,1,Uμ,2)H
−1

(
U11
U12

)
,

n1/2μT (Sn + λIp)−1Ȳ2

= n1/2Uμ,2 + n1/2(Uμ,1,Uμ,2)H
−1

(
U12
U22

)
,

where Uii′ and H are defined in the same way as in (29) and (30), but with Xij replaced by
Yij , and Uμ,i = μT (S̃n + λIp)−1Ȳi , i = 1,2.

Proposition 9.4 implies that U11, U12, U22 converge in probability to deterministic quanti-
ties and H converges in probability to a nonsingular matrix. Therefore, it suffices to show

n1/2μT (S̃n + λIp)−1μ − q(λ, γ ) = op(1),(33)

n1/2μT (S̃n + λIp)−1Ȳi = op(1), i = 1,2.(34)

Equation (33) is a special case of the limiting behavior of quadratic forms considered by El
Karoui and Kösters (2011), and its proof follows along the material in Section 2 and Section 3
of their paper. The proof of (34) is given in Section S.3.5 of the Supplementary Material.

9.3. Proof of Theorem 2.2. We simply prove the result with p−1 tr{Dp(−λ)B} replaced
by q(λ, γ ). Under the prior distribution given by PA, decompose Tn,p(λ) as

Tn,p(λ) = T 0
n,p(λ) + gq(λ, γ ) + σn(μ) +

2∑
i=1

η(i)
n (Y ) +

4∑
j=1

δ(j)
n (μ,Y ),

where, with g = κ(1 − κ){2γ	2(λ, γ )}−1/2 and gn = κ(1 − κ){2γn	̂2(λ, γn)}−1/2,

σn(μ) = g
[
n1/2μT D(−λ)μ − p−1 tr

(
D(−λ)B

)]
,

η(1)
n (Y ) = (gn − g)q(λ, γ ),

η(2)
n (Y ) = gn

[
p−1 tr

(
D(−λ)B

) − q(λ, γ )
]
,

δ(1)
n (μ,Y ) = (gn − g)

[
n1/2μT D(−λ)μ − p−1 tr

(
D(−λ)B

)]
,

δ(2)
n (μ,Y ) = gn

[
n1/2μT (Sn + λIp)−1μ − n1/2μT D(−λ)μ

]
,

δ(3)
n (μ,Y ) = gnn

1/2μT (Sn + λIp)−1Ȳ1,

δ(4)
n (μ,Y ) = gnn

1/2μT (Sn + λIp)−1Ȳ2.

Through this subsection, we use P∗ to mean the prior probability measure of μ and use Pμ

to mean the probability of Xij conditional on μ. The power under the alternative μ is then

βn(μ,λ) = Pμ

{
Tn,p(λ) > ξα

}
.

To show (12), it suffices to show that for any ε > 0 and any ζ > 0, there exists a sufficiently
large N , such that when n > N ,

P∗
(∣∣βn(μ,λ) − 


(−ξα + gq(λ, γ )
)∣∣ > ε

)
< ζ.
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Due to Lemma 2.7 of Bai and Silverstein (1998) and the assumption μ = n−1/4p−1/2Bν,

n1/2μT D(−λ)μ − p−1 tr
(
D(−λ)BBT ) P∗−→ 0.

Therefore, there exist a constant Cε and a sufficiently large N1 such that when n > N1,

P∗
(
K(1)

ε

) ≥ 1 − ζ,

where

K(1)
ε = {

μ : n1/2‖μ‖2 ≤ Cε

}∩ {
μ : ∣∣σn(μ)

∣∣ ≤ ε
}
.

Next, gn is independent with μ and as introduced in Section 2.1,

gn

Pμ−→ g as n,p → ∞.

Therefore, when μ ∈ K
(1)
ε , as n,p → ∞, with a tail bound not depending on μ,

max
i=1,2

∣∣η(i)
n (Y )

∣∣ Pμ−→ 0 and
∣∣δ(1)

n (μ,Y )
∣∣ Pμ−→ 0.

As for δ
(j)
n (μ,Y ), j = 2,3,4, arguments analogous to those in Theorem 3.1 and Proposi-

tion 3.1 of El Karoui and Kösters (2011) show that, as n,p → ∞,

n1/2μT (S̃n + λIp)−1μ − n1/2μT D(−λ)μ
Pμ−→ 0,

with a tail bound only depending on n1/2‖μ‖2. Moreover, the proof of Theorem 2.2 shows

n1/2μT (S̃n + λIp)−1Ȳi

Pμ−→ 0, i = 1,2,

also with a tail bound only depending on n1/2‖μ‖2 (see Section S.3.5 of the Supplementary
Material). Together with the relation shown in (30), we conclude that on μ ∈ K

(1)
ε , with an

uniform tail bound, as n,p → ∞,

max
j=2,3,4

∣∣δ(j)
n (μ,Y )

∣∣ Pμ−→ 0.

The analysis up to now implies that we can find a sufficiently large N2 such that when n > N2,

Pμ

(
K(2)

ε

)
> 1 − ε,

for any μ ∈ K
(1)
ε , where

K(2)
ε = K(1)

ε ∩
{
Yij : max

i=1,2

∣∣η(i)
n (Y )

∣∣ ≤ ε and max
i=1,2,3,4

∣∣δ(i)
n (μ,Y )

∣∣ ≤ ε
}
.

Since

Pμ

(
Tn,p(λ) > ξα

) = Pμ

({
Tn,p(λ) > ξα

} ∩ K(2)
ε

) + Pμ

({
Tn,p(λ) > ξα

}∩ {
K(2)

ε

}c)
,

it follows that

Pμ

(
Tn,p(λ) > ξα

) ≤ ε + Pμ

(
T 0

n,p(λ) > ξα − gq(λ, γ ) − 7ε
)
,

Pμ

(
Tn,p(λ) > ξα

) ≥ −ε + Pμ

(
T 0

n,p(λ) > ξα − gq(λ, γ ) + 7ε
)
.

On the other hand, since T 0
n,p(λ) is free of μ and converges in distribution to standard normal

distribution, we can find a sufficiently large N3 such that when n > N3, for any μ ∈ K
(1)
ε ,

Pμ

(
T 0

n,p(λ) > ξα − gq(λ, γ ) − 7ε
)
< 


(−ξα + gq(λ, γ ) − 7ε
) + ε,

Pμ

(
T 0

n,p(λ) > ξα − gq(λ, γ ) + 7ε
)
> 


(−ξα + gq(λ, γ ) + 7ε
) − ε.
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In summary, on μ ∈ K
(1)
ε , when n > maxi=1,2,3 Ni ,

Pμ

(
Tn,p(λ) > ξα

) ≤ 2ε + 

(−ξα + gq(λ, γ ) − 7ε

)
,

Pμ

(
Tn,p(λ) > ξα

) ≥ −2ε + 

(−ξα + gq(λ, γ ) + 7ε

)
.

This completes the proof, since P∗(K(1)
ε ) ≥ 1 − ζ .

9.4. Proof of Theorem 2.3.

9.4.1. Proof of (20). To show the existence of a sequence of local maximizers of
Q̂n(λ, γn) as stated, it suffices to show that for any ε ∈ (0,1), there exists a constant K > 0,
and an integer nε , such that, for t = Kn−1/4,

P
{
Q̂n(λ∞ ± t, γn) − Q̂n(λ∞, γn) ≤ 0

} ≥ ε

for all n ≥ nε . If we use a stochastic term δ(t) to measure the difference between Q̂n(λ, γn)

and Q(λ,γ ) at λ = λ∞ ± t and λ∞, considering λ∞ to be in the interior of [λ,λ], a second-
order Taylor expansion yields

Q̂n(λ∞ ± t, γn) − Q̂n(λ∞, γn) = Q(λ∞ ± t, γ ) − Q(λ∞, γ ) + δ(±t)

= t2

2

∂2

∂λ2 Q(λ∞, γ ) + O
(
t3)+ δ(±t).

Since O(t3) is a smaller order term as n → ∞ and ∂2Q(λ∞, γ )/∂λ2 < 0, it suffices to show
that n1/2|δ(±t)| = Op(1) with an uniform tail bound in t . Again by Taylor expansion,

n1/2δ(±t) = n1/2t

[
∂

∂λ
Q̂n(λ∞, γn) − ∂

∂λ
Q(λ∞, γ )

]

+ n1/2t2

2

[
∂2

∂λ2 Q̂n(λ∞, γn) − ∂2

∂λ2 Q(λ∞, γ )

]

+ n1/2t3

6

∂3

∂λ3 Q̂(λ∞ + αt, γn) − n1/2t3

6

∂3

∂λ3 Q(λ∞ + αt, γ )

for some α ∈ [0,1].
Now expressing Q(λ,γ ) Q̂n(λ, γ ) and their partial derivatives as continuous functions of

mF (−λ∞), m′
F (−λ∞), m

(3)
F (−λ∞), m

(4)
F (−λ∞), φ, γ , and their empirical counterparts, we

use Proposition A.2–A.3 to deduce that

n1/4
∣∣∣∣ ∂

∂λ
Q̂n(λ∞, γ ) − ∂

∂λ
Q(λ∞, γ )

∣∣∣∣ P−→ 0,

∣∣∣∣ ∂2

∂λ2 Q̂n(λ∞, γ ) − ∂2

∂λ2 Q(λ∞, γ )

∣∣∣∣ P−→ 0,

sup
λ∈[λ,λ]

∣∣∣∣ ∂3

∂λ3 Q̂n(λ, γ )

∣∣∣∣+ ∣∣∣∣ ∂3

∂λ3 Q(λ,γ )

∣∣∣∣ = Op(1),

which completes the proof. If λ∞ is on the boundary and ∂Q(λ∞, γ )/∂λ < 0, similar results
follow from a first-order Taylor expansion.



1842 H. LI ET AL.

9.4.2. Proof of (21). It remains to verify (21). To this end, note that it suffices to prove
that

p1/2
∣∣∣∣ 1

p
RHT(λn) − 	̂1(λn, γn) − 1

p
RHT(λ∞) + 	̂1(λ∞, γn)

∣∣∣∣
≤ p1/2

∣∣∣∣ 1

p

∂

∂λ
RHT(λ∞) − ∂

∂λ
	̂1(λ∞, γn)

∣∣∣∣|λn − λ∞|

+ p1/2

2

∣∣∣∣ 1

p

∂2

∂λ2 RHT(λ∞) − ∂2

∂λ2 	̂1(λ∞, γn)

∣∣∣∣|λn − λ∞|2

+ p1/2

6

∣∣∣∣ 1

p

∂3

∂λ3 RHT
(
λ∗)− ∂3

∂λ3 	̂1
(
λ∗, γn

)∣∣∣∣|λn − λ∞|3 P−→ 0,

where λ∗ is in between λ∞ and λn. So it is enough to show that

p1/4
∣∣∣∣ 1

p

∂

∂λ
RHT(λ∞) − ∂

∂λ
	̂1(λ∞, γn)

∣∣∣∣ P−→ 0,(35)

∣∣∣∣ 1

p

∂2

∂λ2 RHT(λ∞) − ∂2

∂λ2 	̂1(λ∞, γn)

∣∣∣∣ P−→ 0,(36)

sup
λ∈[λ,λ]

∣∣∣∣ 1

p

∂3

∂λ3 RHT(λ) − ∂3

∂λ3 	̂1(λ, γn)

∣∣∣∣ = Op(1).(37)

Next,

E

∣∣∣∣p−1 ∂3

∂λ3 RHT(λ)

∣∣∣∣ ≤ n1n2

λ−4p(n1 + n2)
E
∣∣(X̄1 − X̄2)

T (X̄1 − X̄2)
∣∣ = O(1)

for all λ ∈ [λ,λ]. And Proposition A.3 shows the convergence of ∂3	̂1(λ, γn)/∂λ3 to
∂3	1(λ, γ )/∂λ3 uniformly on λ ∈ [λ,λ], so that (37) holds.

For proving (35) and (36), note that Propositions A.4 and A.5 showed the convergence
of ∂	̂1(λ, γn)/∂λ to −p−1 tr[{Rn(−λ)}2�p], and the convergence of ∂2	̂1(λ, γn)/∂λ2 to
2p−1 tr[{Rn(−λ)}3�p]. So the proof will be complete if we can show

p1/4
∣∣∣∣ 1

p

∂

∂λ
RHT(λ∞) + 1

p
tr
[{

Rn(−λ∞)
}2

�p

]∣∣∣∣ P−→ 0,(38)

∣∣∣∣ 1

p

∂2

∂λ3 RHT(λ∞) − 2

p
tr
[{

Rn(−λ∞)
}3

�p

]∣∣∣∣ P−→ 0.(39)

We move the proofs of (38) and (39) to Sections S.3.6 and S.3.7 of the Supplementary Mate-
rial, which are lengthy.

9.5. Proof of Theorem 3.1. To prove the process convergence stated in Theorem 3.1, we
need to verify the convergence of finite-dimensional distributions and the tightness of the
process.

(a) To show the distributional convergence of {RHT(λ1), . . . ,RHT(λk)} for arbitrary inte-
ger k and fixed λ1, . . . , λk > 0, it suffices to show the joint normality of {Uii′(λj ),1 ≤ i, i ′ ≤
2,1 ≤ j ≤ k}. Therefore, define an arbitrary linear combination

Tn =
2∑

i=1

2∑
i′=1

k∑
j=1

lii′jUii′(λj ).
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It suffices to show that Tn is asymptotically normal. We can derive asymptotic orders of
the functions �0, �1 and �2 with each Uii′(λj ) as arguments and combine them through
the Cauchy–Schwarz inequality to get the asymptotic orders of �0, �1, �2 with Tn as the
argument. The proof is essentially a repetition of the arguments in Section 9.1, and is hence
omitted.

(b) To show tightness, note first that Proposition A.3 yields 	̂2(λ, γn) →p 	2(λ, γ )

uniformly on [λ, λ̄]. This implies tightness of (	̂2(λ, γn) : λ ∈ [λ, λ̄]). The sequence
n1/2(p−1 RHT(λ) − 	̂1(λ, γn)) is shown to be tight in Pan and Zhou ((2011), Section 4)
for observations with finite fourth moments but with � = Ip . Although their arguments are
in a one-sample testing framework, they can easily be generalized to the two-sample testing
case and for � satisfying C1–C3. Together with infλ∈[λ,λ̄] 	2(λ, γ ) > 0, the convergence of
the process follows.

(c) The covariance kernel can be computed via basic calculus, making use of Proposi-
tion 9.4 and the relation between R̄(λ) and RHT(λ) shown in (31).

9.6. Proof of Proposition 2.1. In order to find the minimax rule within D, we first find
π̃λ which minimizes Q(λ,γ ; π̃) for π̃ ∈ �2(1), for every fixed λ. At this point, we make two
important observations:

(i) �2(1) is convex.
(ii) (0,0,1/φ2) is an extremal point of the simplex �2(1), while π0 ≥ 0 and π2 ≥ 0 for

all π̃ = (π0, π1, π2) ∈ �2(1).

Because of (i), and the fact that Q(λ,γ ; π̃) is linear in π̃ , the minimum occurs at the boundary
of the set �2(1).

The following proposition establishes that π̃λ = φ−1
2 e2, where e2 = (0,0,1).

PROPOSITION 9.5. For j = 0,1, . . . , and φj = ∫
τ j dH(τ),

(40) φ−1
j ρj (−λ,γ ) ≥ φ−1

j+1ρj+1(−λ,γ ) for all λ > 0.

To verify the claim that π̃λ = φ−1
2 e2, observe that minimization of Q(λ,γ ; π̃) is equivalent

to minimization of
∑2

j=0 πjρj (−λ,γ ) over π̃ ∈ �2(1). Using the fact that φ0 = 1, for any
π̃ ∈ �2(1),

2∑
j=0

πjρj (−λ,γ ) − φ−1
2 ρ2(−λ,γ )

= π0
(
φ−1

0 ρ0(−λ,γ ) − φ−1
1 ρ1(−λ,γ )

)
+ (1 − φ2π2)

(
φ−1

1 ρ1(−λ,γ ) − φ−1
2 ρ2(−λ,γ )

)
,

which follows from substituting φ1π1 = 1 − π0 − φ2π2. Now by (ii) and Proposition 9.5, the
right-hand side is nonnegative, and equals zero only if π̃ = φ−1

2 e2, which verifies the claim.
The next step is therefore to find λ ∈ [λ,λ] that maximizes Q(λ,γ ;φ−1

2 e2) = φ−1
2 Q(λ,

γ ; e2). Due to Proposition 9.6, stated below, the maximum occurs at λ = λ, which shows that
Tn,p(λ) is LAM with respect the class P2(C) for any C > 0.

PROPOSITION 9.6. The function Q(λ,γ ; e2) is nondecreasing on [λ,∞) for any λ > 0,
where e2 = (0,0,1).

Proof of Propositions 9.5 and 9.6 are given in the Supplementary Material.
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APPENDIX

Key propositions used in the proofs. In the following, c1, c2 and c3 denote some uni-
versal positive constants, independent of λ. To lighten notation, some fixed parameters are
ignored in the following expressions when it does not cause ambiguity; for example, weights
π̃ in Q(λ,γ ; π̃) may be dropped. The following propositions show the concentration of some
quantities.

PROPOSITION A.1. Suppose we have two matrices A and B with A symmetric and pos-
itive definite. For any vector Y and any integer k ≥ 1,∣∣tr{(A + YYT )−k

B
}− tr

(
A−kB

)∣∣ ≤ k‖B‖
τ k
A

,

where τA is the smallest eigenvalue of A.

Recall that φ̂1 = p−1 tr(Sn) and φ1 = ∫
τ dH(τ).

PROPOSITION A.2. If conditions C1–C3 are satisfied, then for any t > 0,

P
{|φ̂1 −Eφ̂1| > t

} ≤ c1 exp
{−min

(
c2nt2, c3nt

)}
.

Moreover,
√

n|Eφ̂1 − φ1| → 0, as n → ∞, since Eφ̂1 = ∫
τ dHp(τ).

PROPOSITION A.3. Define m
(k)
Fn,p

(−λ) to be the kth order derivative of mFn,p (−λ) and

m
(k)
F (−λ) to be the kth order derivative of mF (−λ). If conditions C1–C3 are satisfied, then

for any t > 0, integer k and λ ∈ [λ,λ],
P
(∣∣m(k)

Fn,p
(−λ) −Em

(k)
Fn,p

(−λ)
∣∣ > t

) ≤ c1 exp
(−c2nt2).

Moreover,

n1/2∣∣Em
(k)
Fn,p

(−λ) − m
(k)
F (−λ)

∣∣ → 0.

It follows, as continuous and monotone functions in λ,

sup
λ∈[λ,λ]

∣∣m(k)
Fn,p

(−λ) − m
(k)
F (−λ)

∣∣ P−→ 0.

PROPOSITION A.4. If conditions C1–C3 are satisfied, then for any λ ∈ [λ,λ],
∂

∂λ
	̂1(λ, γn) = − 1

p
tr
[{

Rn(−λ)
}2

�p

]+ op

(
n−1/4).

PROPOSITION A.5. If conditions C1–C3 are satisfied, then for any λ ∈ [λ,λ],
∂2

∂λ2 	̂1(λ, γn) = 2

p
tr
[{

Rn(−λ)
}3

�p

]+ op(1).

PROPOSITION A.6. If conditionsC1–C3 are satisfied, then for any λ,λ′ ∈ [λ,λ], λ �= λ′,
1

p
tr
[
Rn(−λ)�pRn

(−λ′)�p

]
= {

1 + γ	1(λ, γ )
}{

1 + γ	1
(
λ′, γ

)}{λ′	1(λ
′, γ ) − λ	1(λ, γ )

λ′ − λ

}
+ op(1).
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THEOREM A.1 (Theorem 2.2 of Chatterjee (2009)). Let Z = (z1, . . . , zn) be a vector of
independent random variables in L(c1, c2) for some finite c1, c2. Take any g ∈ C2(Rn) and
let ∇g and ∇2g denote the gradient and Hessian of g. Let

�0(g) =
(
E

n∑
i=1

∣∣∣∣ ∂g

∂zi

(Z)

∣∣∣∣4
)1/2

,

�1(g) = (
E
∥∥∇g(Z)

∥∥4)1/4
, �2(g) = (

E
∥∥∇2g(Z)

∥∥4)1/4
,

where ‖ · ‖ is the operator norm. Suppose W = g(Z) has a finite fourth moment and let
σ 2 = Var(W). Let U be a normal random variable having the same mean and variance as
W . Then

(A.1) dTV(W,U) ≤ σ−22
√

5
{
c1c2�0(g) + c3

1�1(g)�2(g)
}
,

where dTV is the total variation distance between two distributions.
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SUPPLEMENTARY MATERIAL

Supplement to “An adaptable generalization of Hotelling’s T 2 test in high dimen-
sion” (DOI: 10.1214/19-AOS1869SUPP; .pdf). It contains additional simulation results and
detailed proofs of the main theoretical results.
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