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Abstract: Singular value decomposition (SVD) based principal compo-
nent analysis (PCA) breaks down in the high-dimensional and limited sam-
ple size regime below a certain critical eigen-SNR that depends on the di-
mensionality of the system and the number of samples. Below this critical
eigen-SNR, the estimates returned by the SVD are asymptotically uncor-
related with the latent principal components. We consider a setting where
the left singular vector of the underlying rank one signal matrix is assumed
to be sparse and the right singular vector is assumed to be equisigned,
that is, having either only nonnegative or only nonpositive entries. We con-
sider six different algorithms for estimating the sparse principal component
based on different statistical criteria and prove that by exploiting sparsity,
we recover consistent estimates in the low eigen-SNR regime where the
SVD fails. Our analysis reveals conditions under which a coordinate selec-
tion scheme based on a sum-type decision statistic outperforms schemes
that utilize the £; and f2 norm-based statistics. We derive lower bounds
on the size of detectable coordinates of the principal left singular vector
and utilize these lower bounds to derive lower bounds on the worst-case
risk. Finally, we verify our findings with numerical simulations and a illus-
trate the performance with a video data where the interest is in identifying
objects.
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1. Introduction

It is well-understood that singular value decomposition (SVD) based principal
component analysis (PCA) breaks down in the high-dimensional and limited
sample size regime below a certain critical eigen-SNR (eigenvalue signal-to-
noise ratio) that depends on the dimensionality of the system and the number
of samples [21, 5]. Several sparse PCA algorithms have been proposed in the
literature (see [21, 5, 11, 25, 41, 4]) and have been shown to successfully es-
timate the principal components in the low eigen-SNR regime where the SVD
fails.

Prior work in this area primarily considers the Gaussian signal-plus-noise
model with random effects, where the signal matrix is assumed to have sparse
left singular vectors, normally distributed right singular vectors, and the noise
matrix is assumed to have normally distributed i.i.d. entries. Here, we con-
sider the setting where the left singular vector of the rank one signal matrix
is sparse and the right singular vector is assumed to be equisigned. We say
that a vector is equisigned if its entries are all non-negative or all non-positive.
This is motivated by applications such as diffusion imaging in MRI where the
right singular vector represents a physical quantity (e.g. intensity as the diffu-
sion agent is absorbed by a tissue) that is non-negative, by imaging problems
such as foreground-background separation in video data [32, 39] and object de-
tection in astronomy [35], where the data are naturally non-negative, and by
problems in bioinformatics where the data are (non-negative) counts of genes
[38]. When analyzing data that are non-negative, it is logical to take advantage
of this property, and investigate how we may use this knowledge to do better
than the (generic) alternatives. Alternatively, a practitioner may seek to use
techniques that constrain or impose non-negativity to preserve interpretability
of the results, e.g., non-negative matrix factorization. Additionally, we motivate
the rank-1 assumption by noting that for a video with a static background,
the foreground is a perturbation of a rank-1 background [27, 16]. Finally, even
though we do not pursue this angle here, our framework can be extended to deal
with the scenario where the signal can be viewed of a rank 1 tensor with all but
one of the representors in the Kroneker product representation of the tensor is
an equisigned vector.

There is precedent for and prior work on non-negative PCA, including the
sparse biased PCA in [9], the sparse PCA with non-negativity priors in [31],
and the work in [26]. These works differ from our work in that they impose
non-negativity on the factors or the left singular vectors. In this work, we study
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sparse factors with non-negative loadings; i.e., we are solving a different problem
in this work.

A natural question at this juncture is the following: how does our problem
differ from that solved by Non-Negative Matriz Factorization (NNMF)? NNMF
takes a given matrix X and looks for non-negative matrices F and G such that
X = FGT [19, 40]. Ordinary NNMF has no sparsity constraints. We might
impose such constraints, as is done in [18] and [24], but except in special cases,
these solutions have no known theoretical guarantee of statistical performance.
This problem partly stems from the fact that solutions to the corresponding
optimization problems may not be unique. In contrast, our problem only con-
strains the right singular vectors, while the left singular vectors are free to take
any sign. The work in [12] extends the NNMF framework to one wherein only
one of the factors is non-negative; nevertheless, the rest of the constraints we
impose are not included. The work in [42] seeks factors (left singular vectors)
with disjoint supports and non-negative loadings, but this definition of sparsity
does not match that from the sparse PCA literature. Hence, NNMF is not an
answer to the problem we consider herein.

The main contribution of this paper is a rigorous sparsistency analysis of
the various algorithms that brings into focus the various very-low eigen-SNR
regimes where the new algorithms work and the SVD based methods prov-
ably fail. Additionally, a major novelty of this work is the integration of FDR-
controlling (False Discovery Rate) hypothesis testing to the Sparse PCA prob-
lem.

Our analysis illustrates the situations where the sum based coordinate selec-
tion scheme dramatically outperforms the ¢; and ¢y [21, 5] based sparse PCA
schemes. Additionally, our proposed algorithms are non-iterative, do not require
the computation of the sample covariance matrix, and do not require knowledge
of the sparsity level. We separate our algorithms into two groups: one where the
Family-Wise Error Rate (FWER) is controlled, and another where the False
Discovery Rate (FDR) is controlled. We utilize sharp tail probability bounds
for relevent statistics to derive our FWER-controlling estimators [7]. For the
FDR controlling estimators, we relate the problem at hand to that of the sparse
normal means problem [13].

This paper is organized as follows. In Section 3, we describe three algorithms
for estimating the sparse principal component that utilize a coordinate selection
scheme based on the sum, ¢;, and ¢ norm-based statistics respectively. We
call our family of algorithms SEPCA, an abbreviation for Sparse Equisigned
PCA. Section 4 proposes three FDR-controlling refinements of the sum- and
{5-based algorithms in Section 3 by relating coordinate detection to the sparse
normal means estimation problem. In Section 5 we show how the estimation
performance is governed by the size of the smallest detectable coordinate, which
we analyze in Section 6 and validate using numerical simulations in Section 7. In
Section 8, we provide some geometric intuitions about the relative performance
of three of our algorithms. We show that the sum statistic is potentially the
most powerful, while the ¢; is the least powerful. We provide some concluding
remarks in Section 9.
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2. Problem formulation

Let X € RP*™ be a real-valued signal-plus-noise data matrix of the form
X =0uv! +0G. (2.1)

The columns of the p x n data matrix X represent p-dimensional observations.
In (2.1), u and v are the left and right singular vectors of the rank-one latent
signal matrix, and have entries u; and v;, respectively. The entries of G, the
noise matrix, are assumed to be ¢.i.d. Gaussian random variables with mean 0
and variance 1/n. We assume that u € R? has unit norm and is sparse in the
sense of small ¢, norm, with s < p non-zero entries, where s/n — 0. That is,
for a set I = {iy,---,is} C {1,---,p},

u; 0 foriel,
u; =0 forielIC, (2.2)
where I¢ denotes the complement of 1. We further assume v € R” to be of unit
norm, deterministic, and equisigned. Given X, our goal is to recover u and v.

Note that the (i, k) entry of X, X;, is a Gaussian random variable with mean
[0u;]vx, and variance o2 /n. Moreover, it follows that

E(XXT) =¢*uu’ +527,,

where Z,, denotes the p X p identity matrix. The quantity (0/0)? is, for this
model, the eigen-SNR (signal-to-noise ratio).

2.1. Motivation: Breakdown of PCA/SVD

From [3], we have the following result: let U be the estimate of u given by the
Singular Value Decomposition (SVD) of X, and let p(n)/n have limit ¢ € [0, o0]
as n grows, with 6 fixed and o = 1. Then, with probability 1,

o(146%) . 1/4
(@ -] 1~ wee 02/ (2.3)
0 otherwise.

For general o, we replace 6 by 6/c in (2.3). Hence, SVD based PCA leads to
inconsistent estimates of u (and also for v, which can be deduced from (2.3))
when the dimension p is comparable to or larger than the sample size n. More-
over, in the low eigen-SNR regime, the estimates break down completely. SVD
does not exploit any assumed structure in u and v. Consequently, (2.3) holds
for arbitrary u and v, including our setting where u is sparse and/or v is eq-
uisigned. Our goal, in what follows, is to derive consistent estimators for u and
v that outperform the SVD by exploiting the sparsity of u and the equisigned
nature of v.
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2.2. Problem statement

Note that we have assumed that u is sparse and that the sparsity s is such that
s/n has limit zero. Hence, if we had oracle knowledge of the sparsity pattern I
(the indices of u that have non-zero coordinates), restricting the matrix X to
those rows indexed by I and performing the SVD on the smaller matrix would
yield a consistent estimator for the non-zero elements of u and the vector v.
This conclusion follows from (2.3), since the value c¢ is replaced with s/n, which
has limit zero. Thus, if we derived consistent estimators of the support of u, we
have a consistent two-stage estimation procedure of the vectors u and v.

Formally, we are interested in finding a procedure that estimates I by I such
that in the limit n — oo,

P(iel)—1 ifiel,

R (2.4)
Plicl)—0 ifig¢l

Equivalently, noting that the Hamming distance of I and f, denoted by d g (I , D,
is given by the cardinality of their symmetric set difference,

dy (I,T) - ’(qu)\(mf)

we want the expected Hamming distance E dg (I ,D to have limit 0, which
is stronger than requiring consistency in recovering the support (or sparsity
pattern) of u. However, as the work in [10, 34] indicates, this limit will not in
general be zero, and will depend on the noise level, signal strength, and sparsity.

)

3. Proposed algorithms

We propose six different two-stage algorithms for estimating u. The first three
algorithms are designed to control the family-wise error rate (FWER), or, the
probability of obtaining a false positive in the coordinate selection. The last
three algorithms aim to control the false discovery rate (FDR), or, the propor-
tion of false discoveries (coordinate detections) among all discoveries. We defer
discussion of the FDR~based algorithms to Section 4.

All of the algorithms have the same basic form given in Algorithm 1. Given
X, we associate a test statistic T; to each row of X. The sparsity of u implies
that the majority of the rows of X are purely noise, so that the majority of the
T; come from the null, noise-only distribution. Hence, based on the statistics
{T;}, we perform a form of multiple hypotheses testing procedure, and select
the set I of indices that are non-null. In this way, we can estimate the support
of u, thereby isolating the the rows of X that contain the signal. Then, taking
the SVD of this submatrix (comprised of only the selected rows of X) yields a
better estimate of the non-zero coordinates in u, as well as v.

We begin by discussing the FWER-controlling algorithms. The work in [21]
proposed a covariance thresholding method for Sparse PCA called DT-SPCA;
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Algorithm 1 Variable Selection and Estimation Algorithm
Require: Threshold 7, , and form of Test Statistic T3 from Table 1
Let I be an empty list
for all Rows i of X, 1 <7 <pdo
Form test statistic T; from row ¢ of X
if T; > m,p then
Addito T
end if
end for N
Let [u,0,V] = SVD(X; ) be the rank-1 SVD of X restricted to rows in I = [i1, - ,im]

5

For iy, € f, let @;, = y; the other entries of U are set to 0.

this is equivalent to a coordinate selection scheme based on the ¢ norm-based
statistic. In our terminology and with our choice of thresholds, we label it as ¢5-
SEPCA. We label the coordinate selection scheme based on the ¢; norm-based
statistic £1-SEPCA. Finally, the sum-SEPCA algorithm utilizes row sums of the
data matrix.

3.1. Computational complexity

Note that the variable selection part of our procedures has a computational com-
plexity that is O (pn): the formation of the test statistic is linear in the number
of columns, and the formation is repeated once per row. Noting that for a p x n
matrix, the complexity of the rank-1 SVD is O (1 x pn), we find that if |ﬂ coor-
dinates are selected, we have an overall complexity of O (pn+ |f In) = O (pn) [1].

Computation of the covariance matrix has a (naive) complexity of O (p?n),
and in practice is somewhere between O (p2) and O (ps) [15]. Immediately, our
methods here are faster than those requiring explicit formation of the covariance
matrix [5, 21, 25, 41, 4]. Additionally, there is no iteration or convergence of any
optimization problems required. Note that a semi-definite programming-based
formulation is at least polynomial in the problem size: O (p*) [11] or O (p?) [4].
The ITSPCA method applied to our rank-1 setting would have a cost of O (ps)
per iteration [25, Sec. 4]. TPower has a similar complexity of O (sp + p) per
iteration [41].

3.2. The DT-SPCA algorithm and two-stage procedures

The DT-SPCA algorithm was proposed in [21] and later used as the first stage
of the ASPCA algorithm given in [5]. The algorithm thresholds the diagonals of
the matrix X X7 to perform variable selection: note that in our setting, these
values are .
0%u? + o Z G?j,
j=1
with expectation (QQU? + 02). The DT-SPCA algorithm thresholds these diag-

n

onal values at 02(1 + loﬂ), where v > 0, and then performs PCA on the
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reduced matrix formed from the selected variables. Noting that the diagonals
of XXT are the same as the row sum-of-squares of X, we see that fo-SEPCA
is essentially the same (up to choice of threshold) as DT-SPCA.

However, the innovation of [21, 5] that we carry forward is the two-stage
procedure. That is, we perform some sort of testing to estimate the support of
the sparse singular vector u, and then perform an SVD on the reduced matrix.
As we will see in what follows, there is flexibility in the choice of testing or
support estimation method.

3.3. Statement of thresholds

We shall choose the thresholds 7, , for the coordinate selection scheme so that
in the noise-only case,

P (max T; > Tn’p> < 1 — 0, (3.1)
1<i<p ep
where e is Euler’s number, or the base of the natural logarithm. This choice
ensures that the probability of a false positive tends to zero as p — oo. That
is, the FWER is asymptotically zero and is bounded by 1/ep in the finite-
dimensional case. Note that the constraint used to control the FWER is simply
that the distribution of the noise is log-concave. In the Gaussian case, we obtain
the specific expressions given summarized in Table 1; however, with knowledge
of the moments ET; and Var T;, we can repeat our analysis and find thresholds
for the ¢; and ¢5-SEPCA algorithms with any log-concave noise distribution.
The thresholds are summarized in Table 1.

TABLE 1
Test Statistics and Thresholds for Algorithm (1)
Algorithm Statistic T; Threshold 7,p
2 1
(-SEPCA | LS00 Xiul | o (\/2 +01leee)
0,-SEPCA YR, X2, o2 (1+ Cal5er)
sum-SEPCA | —=| 37, X il oCy \/ log p

See (3.2) and (3.6) for definitions of the constants C2, C1, and Cyp.

Remark Note that we impose strong control over the FWER and seek to reject
individual null hypotheses, instead of weak control and considering the global
null hypothesis as in [4].

3.4. FWER thresholds
341 62- and fl—SEPCA

In the noise-only cases, the statistics for fo- and ¢1-SEPCA are distributed as
scaled x2 and sums of half-normal, respectively. Both of these quantities are
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log-concave random variables, so we may apply the result in [23] to set the
threshold 7, , in both cases.

Defining K to be some absolute constant (we may use K = e, as in [6]), we
define the constants

Cy = V2K and C, = K+\/(1 - 2/7). (3.2)
3.4.2. sum-SEPCA

From Proposition 4.4 of [8], we obtain that the threshold for sum-SEPCA is
given by

1 1
Tnp = % (\/210gp+ — (glogep—i— \/logep) + 6p> . (3.3)

U(p)
In (3.3), we have that

1 2 -
Up) = V2 Erf! (1 _ 5) and 4, =< % (logp) 3/27 (3.4)

where Erf denotes the error function, or alternatively, the cumulative distribu-
tion function of a standard Gaussian random variable is given by

B(z) = % <1+Erf<%>). (3.5)

Moreover, 7,, < oCy k’% for some constant Cpy. For a fixed value of p,
choosing

V2 KU
HUZ—(3+ logp)>1andC'U:\/§+— 3.6
oG * Y a0
is sufficient. The choice of 1/ep is the largest bound justified by Proposition 4.4
of [8], so we have calibrated all of our algorithms to the same constant factor
times 1/p. The thresholds are summarized in Table 1.

3.5. Estimation of the noise variance, o?

In this work, we assume that the noise variance o2 is known; however, in general,
estimation of o2 may not be straightforward [29]. Recently proposed procedures
such as those proposed in [29, 30, 37] could be employed to estimate the noise
variance, and we point the interested reader to these references for more theo-
retical background on the problem. We note that in most applications, including
the video example we consider, one can obtain a relatively sparse representation
of the object in a multiscale basis such as a wavelet basis [20, Sec. 7.5]. Under
such circumstances, under the assumed additive, isotropic noise model, we can
easily obtain a consistent estimate of o2 by utilizing the inherent sparsity of the
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signal, especially in finer scales. This can be done, for example, by computing
the variance of the wavelet coefficients in the finest scale [20, Sec. 7.5]. One can
obtain a more robust estimate by taking the median absolute deviation of the
coefficients about their median and then by multiplying its square with a known
scale factor (assuming normality) [30, 20].

4. Controlling the false discovery rate

So far, we have controlled the probability of a false alarms when detecting coor-
dinates. However, there are two relevant observations to make. First, under the
Gaussian noise, rank-1, and equisigned assumptions, the vector of test statis-
tics {T;} in the sum-SEPCA algorithm looks like a sparse vector plus Gaussian
noise (or a vector of x2-variates with varying non-centralities, in the £5-SEPCA
algorithm). Secondly, controlling the false discovery rate, that is, the proportion
of rejected nulls that are false positives, can lead to increased detection power
relative to controlling the false positive rate. We hence look at FDR~controlling
tests for the Sparse Normal Means problem.

That is, given a vector of test statistics (as before), we replace the threshold-
ing and selection in Algorithm 1 with an FDR-controlling selection procedure.
We summarize this change in Algorithm 2. There are three procedures we con-
sider. The first two are known as Higher Criticism, and directly extend the
sum- and ¢-SEPCA algorithms [13, 14]. The third is a method for detection
in the sparse normal means problem that comes out of complexity-penalized
estimation theory for linear inverse problems [22].

Algorithm 2 FDR-Controlling Variable Selection and Estimation Algorithm

Require: Test Statistic T; from Table 1 and Selection Procedure
Let I be an empty list
for all Rows i of X, 1 <7 <pdo
Form test statistic T; from row i of X
end for R
Perform an FDR-Controlling selection procedure, and add the selected indices to I
Let [u,0,V] = SVD(X; ) be the rank-1 SVD of X restricted to rows in [ = [i1, - ,im]

For iy, € f, let @;, = y; the other entries of U are set to 0.

4.1. Higher criticism
4.1.1. Formulation

Assume we have p independent tests of the form

Ho,i: WZ
Hl’ii Wz

N(0,1),
N(Nz, 1) )

~
~
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and assume that at most p'~? of the p hypotheses are truly non-null, for some
B € (1/2,1). Further assume that the non-null means have magnitude

pi = pp =/ 2rlogp,

for r € (0,1). Here, the means will correspond to the coordinate size. Note
that the expected maximum of p standard Gaussian random variables is upper
bounded by /2 log p, with the bound being asymptotically sharp.

If we let p1) < p2) < -+ < p(p) be the sorted p-values of the individual tests,
we may define the Higher Criticism statistic:

HC, = max M (4.2)
i:1/p<p(;)<1/2 \/p(i)(l — p(i))
Rejecting the global null hypothesis (that there are no non-null coordinates)

when HC,, > v/2loglog p(1+ 0(1)) leads to asymptotically full power when 7 is
greater than some decision boundary p, and that under the global null,

HC,
v2loglogp

in probability as n,p — oco. The function p depends on the sparsity index £,
and as [14] indicate:

—1 (4.3)

B—1/2 when 5 € (1/2,3/4),

(1—yT=5)> when 8 € (3/4,1). (44)

p(B) = {

If we replace the normal distribution with a x?2 distribution, the same results
hold for tests of the form

Ho,i : Wi ~ X%v

Hyi: Wi~ x5 (0), (45)
where 0 is a non-centrality parameter and we consider r € (0,1) such that
0 = 2rlogp.

Remark While Higher Criticism is typically formulated for the case of iden-
tical non-null means or parameters (all of the non-zero p; are identical), this
constraint is not mandatory [2, 17]. Indeed, the results hold without modifica-
tion for the Gaussian model with non-null means of size u; = a;+/2log p, where
«; is a non-negative random variable with the property that P(a; < /1) =1
and P(a; > /7 —¢€) > 0 for all € > 0 [17]. The case of a x2 distribution is
similar.

As a point of interest, the test in (4.1) can be extended to (and potentially
strengthened in) the case where the p tests are correlated, i.e., when the additive
Gaussian noise has a non-identity covariance [17].
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4.1.2. Application to our problem

Recall that for the sum-SEPCA algorithm, we formed a vector of row-sums.
That is, in the equisigned setting, taking sums across the rows of X, we obtain
a vector y where y; = u; + 0z;, with p; = (6u;)|| v ||1: this situation is exactly
that of a sparse mean vector embedded in Gaussian noise. Similarly, taking sums
of squares across the rows of X (as in the fo-SEPCA algorithm) yields scaled x?2
distributed random variables, of which only a few have non-zero non-centrality
parameters.

With knowledge of the noise distribution, we may compute the p-values of
each row statistic: these p-values are used to form the Higher Criticism statistic
(4.2). As in [14], we may adapt the original global testing problem to a selection
problem. For each p-value p(;), we have a value HC), ; of the higher criticism
statistic (the value that is maximized in (4.2)). Rejecting each null hypothesis
(that the coordinate of the corresponding row is zero) when HC, ; is larger
than the threshold /2loglogp is a variable selection procedure. We refer to the
procedure based on the sum statistic as HC-sum-SEPCA and that based on the
sum of squares statistic as HC-¢5-SEPCA. Importantly, we note that the form of
the decision boundary p is identical to the global testing case, and that applying
Higher Criticism to our row statistics is a viable global testing procedure [14].

4.2. FDR-SEPCA

In this section, we give an summary of the algorithm for uncorrelated noise and
defer the general case and details to Appendix D. We continue in the same vein
as in the previous section on Higher Criticism.

We note that in the equisigned, rank-1 setting, coordinate selection is equiv-
alent to the estimation of a sparse mean vector. Let y; = u; + oz;, where
i € {1,---,p} and the vector z of the z; is normally distributed with mean 0
and covariance Z,. The mean vector p of the p; is assumed to be sparse; the
goal is to estimate p. Taking sums across the rows of X, we obtain a vector y
where y; = u; + 0z;, with u; = (Qu;)|| v ||1. Hence, we are in the same setting as
in the previous section.

The following penalized least squares formulation, taken from [22], yields an
estimator for p:

= axgmin |y — 3 + o*pen (11 o). (46)
where pen(k) is defined as
2
pen(k) = Ck (1 + \/210g(1/p/k:)) : (4.7)

with ¢ > 1; we may take ( = 1 + o(1). The parameter v is no smaller than e.
We define || £ ]|o to be the number of non-zero coordinates of y.



Sparse equisigned PCA 357

The solution to (4.6) is given by hard-thresholding. Let |y|(;) be the i*" order
statistic of |y;|, namely [y|1) > -+ > |y|(p). Then if

o . 2 2
k = arg rknzlgz Yl + o~ pen(k), (4.8)
i>k
defining
t7 = pen(k) — pen(k — 1), (4.9)

the solution is to hard threshold at tr.
In this set-up, we have that

tr = /C(1+ \/2log(vp/k)).

We provide a precise quantification of ¢; in Appendix D.

Hence, by computing t; and performing hard thresholding of the row sums,
we can perform coordinate selection. Once again, this procedure replaces the
test statistic/thresholding in Algorithm 1.

5. Estimation error and smallest detectable coordinate

As we will see, our theorems discuss the “detectability” of the coordinates u; of
u. However, it is common in the sparse PCA literature to discuss lower bounds
for the risk (estimation error) [21, 5, 25]. In what follows, we will show that
these two notions are equivalent.

We define the L? estimation error for a principal component estimator as

L(G,u) = [[u—sign({u, )2 (5.1)

The quantity in (5.1) is upper bounded by 2; this bound is attained when u and
U are unit norm and mutually orthogonal. Following [5], we want to compute a
lower bound for the maximum expected loss for the s-sparse vectors u (in the
sense of £y sparsity) defined as

sup EL (u,u), (5.2)

uesr—1:|[uo<s

where SP~! denotes the unit sphere in R?. Let T be some index set of coordinates
selected by an algorithm of the form given in Algorithm (1). We may take (u, u)
to be non-negative, and decompose the loss as

=112 =112 2 2
[u—ul;= [ u; —ulz +  fug > [[uz 13- (5.3)
N———’ ——
Estimation Error from Error from
detected coordinates missed coordinates

Equation (5.3) shows that the loss is lower-bounded by the squared sum of the
missed coordinates. Indeed, it is a natural consequence of the result in [3] that
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if the sparsity s grows slower than does n, and we have a consistent estimate of
the support of u, the estimation error will asymptotically be small. Essentially,
we are estimating the singular vectors of an s x n matrix instead of a p x n
matrix, so that if the ratio s/n has limit zero, our estimates will be consistent
(see (2.3) and [3]). This suggests the following strategy for lower-bounding (5.2):
we want to construct a non-trivial ‘worst-case’ sparse vector. That is, we want
a vector u that has a non-trivial loss (less than 2), is sparse (fewer than s non-
zero coordinates), and has maximal error from missed coordinates. To ensure a
non-trivial loss, we set the first coordinate u; to be large, i.e., u; = V1 — 12,
where r = o(1). To ensure sparsity, we set ua, - , Um+1 t0 be non-zero for some
m < s — 1, with the subsequent coordinates of u set to 0. Then, the expected
loss has the lower bound

p
EL(u,u) > Z |ug |*P (Not Selecting Coordinate k)
k=1
m+1
> Z |u|*P (Not Selecting Coordinate k),
k=2

since u; is detected with probability approaching 1 and uy, is zero for £ > m+1.
Now, let us through u,, 1 all have value r/y/m, so that we may simplify the
lower bound to

EL(u,d) > r?P (Not Selecting Coordinate k) . (5.5)

If coordinates of size r/y/m are not detected with a probability approaching
1, 72 is a lower-bound on the risk. This construction shows that specifying
the sizes of coordinates that are not detected with probability approaching 1
is equivalent to specifying a worst-case risk lower bound. Note that the value
of 72 depends on the specific algorithm and estimator, and that this is not a
general or universal bound. Rather, the purpose of this construction is to show
the equivalence between the two perspectives (a lower bound and detectable
coordinate size).

Consequently, in what follows we focus on the smallest detectable and largest
undetectable coordinates because they directly shed light on the attainable esti-
mation error. The details of the risk calculations and extensions to approximate
sparsity are deferred to Appendix C, where we summarize our findings in The-
orem 3.

6. Main results

The following theorem characterizes consistent support recovery conditions.
These results are the analogue of the ‘sparsistency’ guarantees found in the
LASSO and ¢;-norm minimization literature [33]. Throughout, I denotes the
set of coordinates selected by the coordinate selection scheme.
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Theorem 1. For the model specified in (2.1) and (2.2) and the algorithms
specified in Table 1, assume that p(n),n — oo, s(n)/n — 0, and logp(n) = o(n).
Let e € (0,1). We have that
a. Fori e I°

max ]P’(ief) — 0,

icle
b. Fori eI,

min P (z e f) -1,
€1 ¢ |Ou;|>Berit(14€)

max P (z € f) — 0.
i€l |Qu;|<Berit(1—e)

Here

oCy |E_v10gp| for sum-SEPCA,
K Uk

Berit = 0/ Cay/ logﬁ for £5-SEPCA, (6.1)
oty, for £1-SEPCA,

and ty, satisfies the relation

(\/g+0110\g/;§p> _ % %[Zexp (— (ﬁ%)j +

A (At ()

We defer the proof to Appendix A.

Theorem 1 identifies a phase transition in the ability of the algorithms to
accurately estimate the support of u. Note that the analysis brings into sharp
focus the dependence of B..;; on v for the ¢1- and sum-SEPCA algorithms,
but not the ¢5-SEPCA algorithm. Consequently, we can expect the algorithms
to perform differently depending on the structure of the underlying v. It is
important to note that the sparsity s of u is not a parameter in the thresholds
and results.

It is also important to note that ¢,-SEPCA and ¢;-SEPCA do not rely on the
equisigned character of v. However, it is clear that the sum-SEPCA algorithm
explicitly depends on the equisigned assumption.

6.1. Hamming loss

It is also possible to state the above results in terms of the Hamming loss for
the support of u, and prove consistency of the coordinate selection scheme by
assuming that all the nonzero coordinates of u lie above a critical threshold.
A detailed decision-theoretic analysis of variable selection under a sequence
model with i.7.d. noise and with respect to the Hamming loss has recently been
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carried out by [10]. Recall that the Hamming loss measures the number of
elements in two sets that are different, so that here the loss between the true
support I and the estimated support I would be the size of the symmetric set
difference of I and I. Let dy (I ,I) denote the Hamming loss and assume that
whatever algorithm we are using has a threshold S..;+. Then, for any € € (0, 1),
we may write

EdH(Lf) - 3 PQ¢?>+ 3 PQ¢?)
€T |0u;|>Berit(1+€) 1€1:|0u; | <Berit(1—€)
+ 3 P@¢ﬂ+2ﬁ@eﬂ.mm
1€l:(1—€)<|0u;i|/Berit <(1+€) gl

We can then restate the results on coordinate selection in terms of the Hamming
loss under a more restricted setting that assumes an exact form of sparsity of
the vector u.

Corollary 1. For the model specified in (2.1) and (2.2), and an algorithm
specified in Table 1, assume that the conditions of Theorem 1 hold. Let the
support I of u be estimated by I. Moreover, assume that the algorithm has a
threshold Berit (given in (6.1)) such that for a small, fived ey > 0, the set

Io :=={j : 10uj] > Berit(1 +€0)} (6.3)

equals the set I. Then the expected Hamming loss satisfies
E@%Lﬂﬂﬂ%& (6.4)

The proof of the corollary, given in Appendix A.l, follows from applying
Theorem 1, with a more detailed enumeration of the sets and the inclusion
probabilities, to each term of (6.2).

6.2. FDR-based algorithms

We may summarize the coordinate selection properties of the FDR refinements
as follows:

Theorem 2. For the model specified in (2.1) and (2.2) and the three FDR-
controlling algorithms summarized in Algorithm 2, assume that p(n),n — oo,
s(n)/n — 0, and logp(n) = o(n). Let € € (0,1). We have that

a. For all three algorithms and i € 1€,
mMP@e@ 0,
iele
b. For the Higher Criticism-based algorithms and i € I,
min P@eﬂ S,
i€1 @ |0ui|>Berit(1+€)

max P (z € :f) — 0.
i€l @ |Qui|<Berit(1—e)
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c. For the FDR-SEPCA algorithm, uniformly over i € I,
if [0u;| > Berit(1 4 €), coordinate i is selected;
if [0u;| < Berit(1 — €), coordinate i is not selected
with probability tending to 1.

Here
o\/p(B) Yt for HC-sum-SEPCA,
Berit = Gp(/@)mo% for HC-l5-SEPCA, (6.5)
o (1-o(1)) \E%\/W for FDR-SEPCA,

where ¢ > 1, v > e, and the FDR-SEPCA algorithm detects % coordinates.

We defer the proof to Appendix B.

Once again, we see that the structure of the underlying v plays a role in
the performance of the sum-based algorithms, but not for the ¢3-based HC-
£5-SEPCA algorithm. Unlike in the FWER-controlling cases, the sparsity of u
plays a (small) role here, via the constant p (3) for the Higher Criticism-based
methods and via & for FDR-SEPCA. Moreover, £o-HC-SEPCA, like ¢5-SEPCA,
does not make use of the equisigned nature of v.

6.3. Higher ranks

In this work, we restrict our focus to the rank-1, equisigned setting. A natural
question is are our results extensible to the higher rank setting?

The first point is concerned with the right singular vectors. To preserve or-
thogonality, we would need equisigned right-singular vectors v; with disjoint
supports. The second point is concerned with the left singular vectors. Our al-
gorithms are based on thresholding row-statistics: it is possible that the union of
supports of several sparse vectors is a relatively large set. The FWER-controlling
algorithms (by design) are not sensitive to the increased supports, but the
FDR-controlling algorithms are sensitive to this. Indeed, the decision bound-
aries for the FDR algorithms explicitly depend on the sparsity levels. Third
point, once again, is concerned with the left singular vectors. It is possible that
a sum-based statistic suffers from cancellations that decrease the size of the

row-statistic. For example, in a rank-2 setting, if u; = % [1 1 0 --- 0]
and up = % 1 -1 0 - O]T and ||vi]|; and |vz|; have similar values

and are both non-negative, the row-sum of the second row will be small. Note,
however, that the />-norm based methods do not suffer from this issue.

7. Simulations

To illustrate the relative powers of the six algorithms, we compute the theoretical
limits on the sizes of detectable coordinates as a function of n. We use a unit-
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F1c 1. This plot shows Berit for all siz algorithms for the v described in (7.1).

norm, equisigned v such that

k
UV X eXp (—5—)
n

This choice of v has a ‘rise and fall’ sort of behavior, and is motivated by
physical signals, e.g., chemical reactions or nerve signals in the brain. The value
of Berit is shown in Figure 1; for this choice of v, it is clear that the sum-
SEPCA dramaticaly outperforms the other SEPCA variants in terms of size
of the smallest detectable component. The FDR-SEPCA algorithm has simi-
lar performance to sum-SEPCA, and the HC-sum-SEPCA algorithm has the
strongest performance.

In Figure 2, we plot the estimation error as a function of n and € for all
six algorithms. We also include results for the SVD and competing algorithms
TPower [41] and ITSPCA [25]. In the simulations, we fix p = 1000 and vary
n, since the dependence in p in the thresholds is logarithmic, whereas that in
n is not. The left singular vector u is chosen to be the vector with 1 in the
first coordinate and 0 elsewhere. We fix the noise variance o2 at 1, so that 62 is
the eigen-SNR. The results should be interpreted as follows. For the particular
v chosen here, we expect HC-sum-SEPCA to have the lowest detectable limit,
and ¢;-SEPCA to have the largest. This behavior is confirmed. Moreover, the
sum-based algorithms offer a slight strengthening of both ITSPCA and TPower.
Importantly, note that the sum-based algorithms explicitly take advantage of
the equisigned nature of v: that is, algorithms that explicitly use the equisigned
property outperform algorithms that do not (the ¢3 and ¢; algorithms, as well
as ITSPCA and TPower).

We repeat our simulations for a u € R” with ,/p non-zero coordinates (of
equal size) and the same v, as seen in Figure 3. We find similar conclusions as in

sin <4E)‘ for1 <k <n. (7.1)
n
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Fic 2. The plots show the empirical estimation error for all siz algorithms for the u with one
non-zero coordinate and the v described in (7.1). We include results from TPower, ITSPCA

and the SVD for comparison.

Figure 2, where the sum-based algorithms offer a strengthening over ITSPCA
and TPower; the fo-norm based algorithms do not perform well. Note that a
sparsity of \/p is at the limit/valid edge for the higher criticism-based methods,
but that these methods still perform well.

7.1. Comments on the FDR-controlling procedures

The Higher Criticism for the x2-variates ‘pushes back’ the phase transition be-
tween detecting nothing and something to a lower value of 6 relative to the
{5-SEPCA algorithm, but is still less powerful than any of the sum-based al-
gorithms. Moreover, even above the phase transition, the /o-SEPCA algorithm
may be preferable, as the error is increased by unacceptably many false positives.

The Higher Criticism procedure for the sum statistic has the lowest phase
transition point and hence the highest power. Its transition is more gradual
than the penalized FDR thresholding procedure and sum-SEPCA, which have
roughly the same performance in this simulation.

7.2. An example where £5-based algorithms outperform sum-based
algorithms

Sum-SEPCA has a .+ that depends on v. Looking at the form in (6.1), if || v ||1
is smaller than n'/%, we would expect £5-SEPCA to detect a smaller coordinate
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F1G 3. The plots show the empirical estimation error for all siz algorithms for the u with /p
non-zero coordinates and the v described in (7.1). We include results from TPower, ITSPCA
and the SVD for comparison.

size. Vectors with smaller coordinates have a smaller ¢1-norm, i.e., one that is
closer to their ¢3-norm. Hence, if we choose

Ukocéforlgkgn, (7.2)
we expect sum-SEPCA to have worse performance relative to £o-SEPCA. Fig-
ures 4 and 5 confirm this expectation. The FDR refinements perform poorly. It
should be noted, however, that TPower and ITSPCA retain their performance.
This choice of v effectively corresponds to a very small value of n: the majority
of coordinates are tiny in size and buried beneath noise regardless of the value
of 6. If we ‘corrected’ the scenario and used a smaller n and a subset of v, we
would be in a situation closer to that given in (7.1).

7.3. A video data example

We conclude our sequence of examples with a real data study. This example
is motivated by the problem of foreground-background separation in videos.
Consider a grayscale video of stars twinkling against a black background [36].
Our goal is to estimate the locations of the stars: by reshaping the video, we
may treat each frame as a vector and hence treat the video as a sparse matrix.
Only a few locations have a star and are hence non-zero. The scale of the video
pixels is between 0 and 255. We examine the top-left 72 x 64 pixels for 89 frames,
as shown in Figure 6a. In Figure 6b, we plot the singular values of the video
matrix. The first singular value stands out strongly against the rest, and at
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Fic 5. The plots show the empirical estimation error for all sixz algorithms for the u and v
described in (7.2). We include results from TPower, ITSPCA and the SVD for comparison.

most two more singular values are well-separated from the bulk. This structure
suggests that our rank-1 based approach is well suited to this problem.

We add Gaussian noise of variance o2 and study the True Positive Rates
(TPR) and False Discovery Rates (FDR) across all algorithms and across dif-
ferent values of o. In Figure 7, we show the results of our simulations. In terms
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F1G 6. Video Example Figures.

of the TPR, everything other than the SVD has a similar performance, while the
test-statistic SEPCA-based algorithms enjoy the best performance in terms of
the FDR. In Figure 8 we zoom in on the top-right three stars and show how the
algorithms perform as noise increases. Here, we see that the behavior alluded to
in the TPR/FDR results actually occurs in the video.

8. A geometric view: Which algorithm to use?

We have stated detectability results for each algorithm in Section 6 and provided
a numerical verification and comparison in Section 7. In this section, we wish to
analytically compare the algorithms. In particular, we have seen that the right
singular vector v plays a critical role in the detectability and estimability of u,
and we will characterize this behavior carefully.

In this section, will use the following notational convenience: we absorb (6u;)
into v € R", and write the detectability of coordinates in terms of v. That is, if
v is a row of X, we specify when that row is selected. Moreover, we take o = 1
for simplicity.

There are two ‘classes’ of detectability: in terms of || v ||; and in terms of
||v]l2. The sum-, HC-sum, and FDR-SEPCA algorithms select a coordinate if
>k vk| = || v]1 is large enough for a v in the orthant with all non-negative
or all non-positive coordinates. Geometrically, the vector v is selected if it is
‘outside’ a hyperplane with a normal vector proportional to the vector of all 1s.
The ¢;-SEPCA algorithm is similar, as it selects a coordinate when || v ||; is large
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Fic 7. The left plot shows the True Positive Rate of the various algorithms as a function of
the noise level 0. The right plot shows the False Discovery Rates.

enough, or if v lies outside an #1-ball of some radius. The connection between
the previous three algorithms and ¢;-SEPCA comes from noting that the faces
of an ¢1-ball are sections of hyperplanes with normal vectors proportional to a
vector of +1s. Finally, the £5- and HC-¢5-SEPCA algorithms select a coordinate
when || v |2 is large enough. L.e., when v lies outside some ¢3-ball.

Our goal in this section is to derive comparisons between the six algorithms.
Specifically, for a given vector v, which algorithm will have the greatest detection
ability (we are, for the moment, only concerned with maximizing power)? Note
that when v has a large norm, it does not matter which algorithm is used.
Questions only arise when || v |1 or || v |2 are relatively small and are close to
the thresholds.

8.1. Intersection of a hyperplane and a hypersphere

We may think of the ¢; ball as a hyperplane when restricted to a single orthant.
If a hypersphere of radius r intersects a hyperplane with a normal vector pro-
portional to the vector of all £1s and minimum distance to the origin of r — h, a
hyperspherical cap of height h is formed: see Figure 9 for a simple illustration.
Geometrically, a right triangle is formed, with hypotenuse r and leg r—h. Hence,
the angle between the center of the cap and the edge is:

—h
Opim = cos ! TT (8.1)
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F1a 8. A zoomed-in view of the three top-right stars in the video example. White indicates a
false negative (missed star), Red a false positive (a guessed pizel where there was nothing),
and Blue a true positive (correctly identified pizel).

Fic 9. A spherical cap in R2.
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TABLE 2

A summary of the six algorithms.

Algorithm | Threshold Geometric Quantity

sum [v|1 > Cuy+logp T—h:CU\/lo%

HC-sum | [[v]1 > 20(B)logp | r—h=/2p(8) 52
N RGO

FDR — p
(14 rslio)) | 2 2eer)

Vn

4 ||V||12t21 T—hztgl

153 ||V||2Z\/CQ\/IC’E';% r= /CQ\/IOgﬁ

HC-£2 Ivie >2p(8) 2582 | r = 2p(8) ZEZ
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It is sufficient to guarantee that

for the hyperspherical cap to exist. Moreover, a vector v has a direction con-
tained inside the cap when the angle between v and the vector of 1 in the
orthant containing v is smaller than 6;;,,. In other words, defining the angle for
a vector v as
1 vl
0(v) = cos™* H77 (8.2)
1V [l2v/n

we need 0(v) < i,

8.2. Comparison: 2-based versus sum-based statistics

We begin with a summary of the performance of each individual algorithm
in Table 2. We first compare £,-SEPCA and then compare HC-¢>-SEPCA with
sum-, HC-sum, FDR-SEPCA in Tables 3 and 4. In our comparisons, we consider
when the hyperspherical cap exists and give the angle of the cap. These are
routine calculations, so we omit the details. We also omit ¢/;-SEPCA from our
comparisons, as we lack a closed-form expression for ¢, .

Note that the existence of this cap is a proxy for the equivalent statement
that there exist vectors for which the sum-based algorithms are more powerful
than the ¢5-based algorithm. While this existence is not the same as attributing
uniformly greater power to the sum-based algorithms relative to the ¢2-based
algorithm, the cap not existing is equivalent to the f5-based algorithm having
uniformly greater power.

Essentially, we observe that for n and p sufficiently large, the cap will exist.
Moreover, for v that is sufficiently dense (|| v ||; is sufficiently large), 0;;,, will lie
inside the cap. Hence, in these situations we would prefer a sum-based algorithm
over an fo-based algorithm.
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TABLE 3
The relative performance of £2-SEPCA.

Algorithm | cos8;m, Cap exists if
1 4 72
sum CU/\/CQ\/% n>Cp/C3,p>1
HC-sum V2p(B)/C2 (1_‘_11;% n>1,p>1
FDRsum | “HY2losve/k p>11,n>1
Cav/nlogvp
TABLE 4

The relative performance of HC-5-SEPCA.

Algorithm | cos 0, Cap exists if
__Cu _Ch
sum 2p(B)V1ogp p 2 exp <4P(ﬁ)2>
HC-sum [20(8)logp] " | p > exp (2 p}m)
logp >
FDR 1+\/2logup/ﬁ 1 (1+2P(5)
-sum 2p(B) log p 4p(8)*
+\/80(8) + 40(8) + 1)

8.3. HC-£53-SEPCA versus £2-SEPCA

Now, we consider when HC-f5-SEPCA is more powerful than ¢5-SEPCA. The

ratio of the radii is given by

2p(B)

logp

. 8.3
VCant/t /T +1logp (8:3)

If this ratio is smaller than 1, HC-¢5-SEPCA is more powerful than ¢o-SEPCA.

Note that the quantity

2v/2
NS

is an upper bound for (8.3), so that if

logp

vn

log p
Jn

e

< —0=,
42

the original ratio is smaller than 1 and HC-£5-SEPCA is preferable to £o-SEPCA.

8.4. Comparing the sum-based algorithms

Finally, we compare sum-, HC-sum-, and FDR-SEPCA. First, the ratio of the
thresholds for HC-sum- and sum-SEPCA is

2p(B)
Oy

(8.4)
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Noting that p(8) < 1 and that Cy > v/2 4+ 1/3v/2, it is clear that this ratio
is always smaller than 1 so that HC-sum-SEPCA is a strict improvement on
sum-SEPCA.

Next, we compute the ratio of the thresholds for FDR- and sum-SEPCA:

14+ 4/2logvp 0
/ (8.5)

Cy+vlogp

Using the lower bound on Cy, we find that if k> 11 (and p > %, naturally),
FDR-SEPCA is always more powerful than sum-SEPCA. For smaller values of
k, for sufficiently large values of p, the ratio will be smaller than 1.

Lastly, we compare FDR-SEPCA to HC-sum-SEPCA, wherein the ratio of
the thresholds is (FDR to HC-sum):

1+ +4/2lo Vp/l;
L+ y2logvp/k (8.6)

V2p(B)VIogp

Because of involvement of p(3), this quantity is hard to analyze. If in an oracle
manner, FDR-SEPCA obtained k correctly as pl_ﬁA, we would find that this
ratio is always larger than 1 for p > 1. That is if k£ assumes the the correct
value, HC-sum-SEPCA is more powerful than FDR-SEPCA. Alternatively, we
can note that p(8) € (0,1] and ask when the ratio is larger than 1. Based on
the ratio above, we can see that in the following scenarios

k=1 and p>1,
2<k<18 and p > k(always), (8.7)
k> 19 and logp > & (4(logg)2 — 4logk + 1) ,

HC-sum-SEPCA is more powerful than FDR-SEPCA.

To summarize, we prefer the FDR~controlling alternatives to sum-SEPCA,
but depending on the output of FDR-SEPCA, HC-sum-SEPCA may be more
powerful. However, as the simulations in Section 7 revealed (see Figure 2), the
number of false positives with HC-sum-SEPCA may be higher than with FDR-
SEPCA.

8.5. Owverall message

We have seen that for n and p sufficiently large and v that is sufficiently dense (in
the sense of || v ||; being large), a sum-based statistic and algorithm leads to bet-
ter performance. This is expected behavior, as by using a sum-based method,
we are taking advantage of the equisigned nature of v. Moreover, within the
class of sum-based algorithms, controlling the FDR leads to greater power, as
expected. It is difficult to clearly identity which of HC-sum- and FDR-SEPCA
will have the greatest power, and the end result may come down to a practi-
tioner’s tolerance for false discoveries.
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9. Conclusions

We have considered the setting where the left singular vector of the underlying
rank one signal matrix plus noise data matrix is assumed to be sparse and the
right singular vector is assumed to be equisigned. We have proposed six differ-
ent SEPCA algorithms for estimating the sparse principal component based on
different decision statistics and provided sparsistency conditions for the same.
Our analysis reveals conditions where a coordinate selection scheme based on a
sum-based decision statistic outperforms schemes that utilize the ¢; and /5 de-
cision statistics. Thereby, the proposed algorithm outperforms known schemes
such as diagonal thresholded PCA [21] in terms of estimation of the singular
vectors associated with the rank-1 component. We have derived lower bounds
on the size of detectable coordinates of the principal left singular vector, utilized
these lower bounds to derive lower bounds on the worst-case risk and verified
our findings with numerical simulations. Finally, we have discussed the results
of our simulations analytically, by providing a geometric interpretation of the
differences in power among the algorithms.

We note that while we have stated our results for Gaussian noise with identity
covariance, we can extend the FWER-controlling results to any log-concave
noise distribution, and the FDR~controlling procedures to Gaussian noise with
certain non-identity covariances. Additionally, another way to view this work is
that it proposes a two-stage procedure/framework for sparse PCA based around
hypothesis testing of statistics associated to each row. Some natural extensions
would be the inclusion or consideration of other testing frameworks, e.g., that
in [28], where knowledge of the size of coordinates is taken into account.

Appendix A: Proof of Theorem 1

a. Note that

P(T;, >7)<P (maij > 7‘>
jele
for ¢ € I°. Taking the maximum over the left-hand side and noting that the
right-hand side has limit zero yields the result. This follows from (3.1). O
b. We consider when true positives occur with probability approaching 1. We
want to find the smallest coordinate (Au;) such that the following probability
approaches 1:

(A1)

T, — ET; np — EL;
IP’(T1>7'n7p)IP’( Tnp )

>
V/Var T; v/ Var T

Note that if (7, , —ET;) is negative and not tending to zero as n grows, and
if the variance of T; decays to zero as n grows, the quantity

Tn,p — ETZ

N T (A.2)
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tends toward negative infinity. Hence, we will specify conditions so that
Var T; decays to zero as n grows and then compute when a coordinate is
detectable by considering when 7, ,, is strictly less than ET;. For brevity, we
omit the computations in solving 7, , < ET; for |#u;| and present verifica-
tions that the variance of T; has limit 0. These results show that above the
decision boundary, we have uniform detection.

In sum-SEPCA, T; is a Gaussian random variable with mean (?}%) >k Uk

and variance %2 Since o does not grow with n, Var T; always decays to
Zero.
In ¢,-SEPCA, T; has

ETZ = (0’1“)2 + 0'2

and 02
_ 20 (2 )2
Var T; - (0’ + 2 (Ouy) ) .

Since ¢ and 6 are fixed, the variance always decays to 0.
Let 2, = (\/ﬁ%"")) In £,-SEPCA, T; has

0’2 Tk 2
_ 2 i,
Var i =27 2 vl (1(“ (%)) )
o? 2
- 1__§ —x2
+ " ( nr 2 exp( Izyk)>

2\/502 Zw o 7y B ( Tk
—24/=— ik€xXp | — )
7w n? p ok EXD 2 V2

which is less than or equal to

Gui 2 2 o2 2 o
%Xk:vk+;+2\/;ml(9ui)zk:lvk|~ (A-3)

Since || v ||z = 1, the variance of T; has limit 0. Because we cannot solve
the inequality 7, , < ET; analytically, we leave the bound in the form given
previously. O
In the proof above, note that if (7, , — ET;) is positive and not tending to
zero as n grows, the quantity in (A.2) tends to positive infinity when the
variance decays to zero. Hence, modifying the proof by solving 7, , > ET; for
|#u;| yields when a coordinate is not detectable with probability approaching
1: i.e., when |fu;| is smaller than the values given in (6.1). |

A.1. Proof of Corollary 1

The first three terms of (6.2) are characterized by Theorem 1(b) and by noting
that Iy = I in the corollary. The last term can be characterized as follows. In
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particular, for an algorithm with row test statistics 7; and a threshold 7 from
Table 1, we may write

ZP(z‘ef):ZP(ﬂzr). (A.4)

igT il
For the ¢5- and ¢;-SEPCA algorithms, we may reindex the T; according to
their order statistics T(;), where

Ty 2 [Ty = 2 |Tip-s)]

and write
p—s
S P(iel)=> PTy=1). (A.5)
il i=1
Note that there are p — s null entries. For the ¢5- and ¢;-SEPCA algorithms, we
have that (as a consequence of [23, Thm. 3])

NV
P(T@)ZT)S<—> v

ep
so that
. p=s P=s s\ Vi
Zp(zef)—ZP(T(i)zTKZ(@) . (A.6)
¢l i=1
The right-hand side of (A.6) has limit zero, as needed.

For the sum-SEPCA algorithm, from (3.6), it follows that there exists a non-
zero constant € > 0 such that the threshold 7 satisfies

T:a(\/§+e) \/@.

In particular, from (3.6), we have that

. L1+VIogp/3
COVRES T (1—1/p)]

where for p > 1,

1
— <e<2.

3v2

Hence, for any T; such that i ¢ I,

2
24
P(E Z T) S exp <—(\/—T€) logp> — p7(1+\/§€+62/2)7
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where we have used a Gaussian tail bound [7, Sec. 2.3]. Then,

Z}P’(i c f) =3 P(Ti>7)

gl igl
< (p—s)p (FVEFE)
< p—(\/i€+62/2).

(A7)

Since € is larger than 1/3+/2, the right-hand side of (A.7) is upper bounded by
p~13/36 which has limit zero, as desired.

Appendix B: Proof of Theorem 2
B.1. Size of detectable coordinates
B.1.1. Sum: HC-SEPCA

If v is equisigned, summing across the rows of X yields a normally distributed
quantity with mean (fu;)|| v ||; and variance o2. Dividing by o and adopting the
notation of HC', we have that under the alternative hypothesis, u; = v/2rlog p,
so that

. euz|v||1>
v2logp

Rearranging the inequality r > p(3) yields

0wi] > o/p(B) LA 108P (B.1)

[V
Note that sum-SEPCA can detect coordinates of size

Viogp
v il

However, Cy is strictly larger than /2 + 1/(3v/2). Thus, using HC yields a
threshold of the same order, but with a strictly smaller scaling.

|0u;| > oCy~—— (B.2)

B.1.2. Sum of squares: HC-{3-SEPCA

If we sum the squares of the entries of rows of X, abusing notation slightly
and using N'(u,0?) to indicate a Gaussian random variable with mean p and
variance o2, the statistic for the i*"* coordinate is of the form

Zn: (%N (9“%;@\/— 1))2.

k=1
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Assuming oracular knowledge of o, the statistic
n 2
=2 X
k

places us in the setting of (4.5). The non-centrality parameter ¢ is given by

"L [ Qu; 2 Ou;
0= : =|— .
Z( . vk\/ﬁ> VT
k=1
Setting 6 = 2rlog p and solving r > p(3) yields
2logp

|Oui| > op(B) T (B.3)

We have that £5-SEPCA can detect coordinates with

|6u;| > a\/e\/i”L\/l%gp. (B.4)

Using HC offers a significant improvement over ¢o-SEPCA. However, we also
expect HC with the x?2 statistic to have a smaller detectable coordinate: || v ||; <
/1, so that for fixed 8 and p, the threshold in (B.1) is asymptotically larger
than that in (B.3) (but potentially of the same order). This result is strange in
context of the non-FDR results. In any case, HC improves on ¢>-SEPCA.

B.1.8. FDR-SEPCA

Recall that taking sums across the rows of X, we obtain a vector y where
yi = i + 0z, with p; = (Qu;)|| v ||1. Moreover, we have noted that

ti ~ \/C(1 + \/2log(vp/k)),

where t, is the level at which y is thresholded. It follows that, entries of y that
are of size at least

> (1= o(0)Go 1+ y/2108(/D)

are selected, or, since y; = (Qu;)|| v |1 (when v is equisigned), if we select k
coordinates, we expect to detect

(1 + 21og(up/E)>

[vll

6us] > (1 - o(1))y/Co

2log (Vp/iﬁ\) (B:5)
v

Relative to HC and sum-SEPCA, the gain here is found when there are many
smaller coordinates of u and k is large.
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B.2. Proofs for the higher criticism-based methods

a. From (2.8) in [17],

P(T;>7)<P (maij > 7'>
jele

has limit zero. O
b. Let I; C I be the set of coordinates with signal larger than the detection

limit (¢ € I such that |6u;| > Berit(1+€)), and let Iy C I contain the rest of

the coordinates (¢ € I such that |0u;| < Berit(1 — €)). By Theorem 1 in [2],

the asymptotic power for detecting signals below the detection limit is one,

and that for signals below the limit is zero. Hence, for i € Iy,

min P (i selected) — 1,
i€ ¢ |Oui|>Berit(1+€)
and for i € Iy,
max PP (i selected) — 0.
€1 ¢ |0u;|<Berit(1—€)
As with Theorem 1, we omit the computation of 5.4, as it follows from the
discussion in Section 4.1. O

B.3. FDR-SEPCA

The details of these computations are in Appendix D.1, so we will summarize
the properties here.

a. The choice of v = 2/% controls the FDR at level w [22]. Choosing w =
w(p) — 0 as p — oo leads to an asymptotic FDR of zero. Le., for ¢ € I¢,

max P (i selected) — 0. O
i€lc
b. Noting that the consistency of estimating the mean vector pu = (8]|v||1)u
encompasses the estimation of the support of u, risk bounds for the estima-
tion of p yield the result. To be precise, if the expected risk E|| u —p||3 < B
for some bound B, we expect to detect coordinates of size larger than B and
to not detect those smaller than B. O

Appendix C: Risk bounds under £, sparsity

In this section, we simultaneously generalize our setting to approximate spar-
sity, and specify the risk lower-bounds. We omit the ¢;-SEPCA algorithm from
consideration.

Let u € R? have unit ¢,-norm and belong to an ¢, ball with radius C for
q € (0,2]. Le.,

p
> ful? < €. (C.1)
1=1
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When ¢ = 0, we replace C'? with s, the level of ‘hard’ sparsity. We have the
following result:

Theorem 3. Let
L(u,u) = ||u—sign(<u7ﬁ>)ﬁ|\§ (C.2)

be the risk of the estimator U of u, where u is as specified in (2.1) and the
estimators are the siz algorithms that we have previously described. Then,

a. sum-, HC-sum, and FDR-SEPCA have expected risks lower-bounded by

EL(G,u) > O ([cq —1||v ||;<H>) . (C.3)
b. £5-SEPCA has a risk lower-bounded by

EL(@,u) > O ([oq - 1]n*%<1*q/2>) . (C.4)
c¢. HC-l5-SEPCA has a risk lower-bounded by

EL(G,u) > O ([C7 — 1Jn~0-/2)) (C.5)

The rest of this section contains the proof of Theorem 3.

C.1. Proof of Theorem 3

We construct a ‘worst-case’ sparse u. Note that C? > 1 necessarily, and that
if C > p'~%/2 every unit norm vector is in the ¢, ball. Hence, we take C €
[1,p'=7/2).

Let 6 and o be fixed. We want a sparse vector with several coordinates guar-
anteed to be missed (the probability of not detecting them is asymptotically 1).
For this vector u to be sparse and for the loss to not be 1, set u; to be /1 — 12,
where 72 = 0(1), and take ug, - ,Um, +1 to be r,/\/m,. The other coordinates
of u are 0, so that u has unit £5-norm.

We assume that u; is detected with probability 1 as n — oo, and want to set
U2, ,Um, +1 5O that the expected loss is lower bounded by:

P
EL(u,u) > Z |ug |*P(Not Selecting Coordinate k)
k=1
mp+1
> Z |ug|*P(Not Selecting Coordinate k).
k=2

(C.6)

If coordinates of size \/TTTL are not detected, the expected loss is lower bounded
by 72.
Let m,, = |m] where
m = on®r?|v|".



Sparse equisigned PCA 379

Note that we have not specified the norm used in ||v||: we will choose the norm
at the very end of the calculation. Let

= (€7 = 1 o]

so that,

Tn_ o o L ey emni2gi-vr2,

VMn  /m

We will choose 6, ¢, 7, o, 8,7, k, ¢ so that the ¢, sparsity constraint is met and
the lower bound 72 is maximized. The sparsity constraint requires:

P
Z luil? = (1 — 7)Y+ ml=92p9 <14 m!=9/2p8 < 9, (C.7)
i=1

First, we will assume (for now) that r,, = o(1) and that via other parameters
we may control the scaling of the coordinate sizes; hence, we set ¢ = 2. Then,

rdml=1/2 = §1=0/2p 2Bty +(=a/2)9[0a _ g2 ||y||2etn(i=a/2), (C.8)

We need this quantity to be smaller than C'?—1. To eliminate the n dependence,
we set 3 = _T¢ and v = % We choose o = % to match powers of [C'?—1] on both
sides of the inequality. Defining another parameter p, let § = p| v | ~". Then,
the inequality is

p' IR v |Pler —1] < [0 - 1].
Choosing p < || v||=2%/(1=4/2) is enough.
With these choices of parameters,

ra = V[CT = Tjn= 202 v |,

and
m = pn¢ri,
so that )
r
N 92,

NI

Noting that

1 > H‘,.||H/(1ﬂ1/2)7
N
choosing p = || v || 72%/(1=4/2) Jeads to the smallest possible choice of coordinate.

In summary:
rn = /[0 —1n" 20092y ||%, (C.9)
r2 = [0 — 1?19/ || v |25, (C.10)
m = | v]| /=12 pep2 (C.11)
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and ,
7% = || v ||*/A-1/Dp =22, (C.12)
So, for a given algorithm, it remains to choose ¢ and k so that the worst-case
risk is lower-bounded by 72. Sum-SEPCA misses coordinates of size O ( /08 p )

vl

and £o-SEPCA misses coordinates of size O (—Vlogp). For sum-SEPCA, k =

nt/A vl
%, and for ¢5-SEPCA, k is irrelevant, as || v || = 1. Sum-SEPCA uses ¢ = 0
and lo-SEPCA uses ¢ = % Hence, sum-SEPCA has a risk lower-bounded by

o (lcr=1IvI;* ). (C.13)
Noting that || v ||z = 1, ¢2-SEPCA has
0 ([Cq n 3092y ”2*(1*(1/2)) _
1 (C.14)
9 ([Cq - 1]n*§<1*q/2>) .

In the £; case, i.e., when u has no more than s non-zero entries, the preceding
analysis goes through with C'? replaced by s and ¢ set to zero.

C.1.1. FDR algorithms

For HC-sum-SEPCA, the .. is of the same order as that for sum-SEPCA.
Similarly, for FDR-SEPCA, if k is much smaller than p, 8. is of roughly the
same order. Hence, these two algorithms have the same risk bound as sum-
SEPCA. For HC-¢;-SEPCA, k = 0 and ¢ = 1. The risk is therefore lower-
bounded by

0 ([cq - 1}n*<1*q/2>) . (C.15)

Appendix D: FDR-SEPCA: Further details

Let y; = p; + 0z, where i € {1,---,p}, the vector z of the z; is normally
distributed with mean 0 and covariance ¥, and ¥ satisfies

&I, <X < 4T,

Here, & is the smallest eigenvalue of ¥ and &; is the largest. The mean vector
p of the p; is assumed to be sparse; the goal is to estimate . The following
penalized least squares formulation yields an estimator for w:

p =argmin ||y — 3+ o*pen (|| o). (D.1)

where pen(k) is defined as
2
pen(k) = &1¢k (1+v/2L,x)

(D.2)
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with ¢ > 1 and
Ly = (1+28)log(vp/k). (D-3)
The parameter 8 may be set to 0 here, and v is chosen to be no smaller than
et/ (1+28) We define || ||o to be number of non-zero coordinates of p.
The solution to (D.1) is given by hard-thresholding. Let |y|(;) be the i’ order
statistic of |y;|, namely [y|q) > --- > |y|(p). Then if

T _ . 2 2
k = arg Iglzlglz yl(iy + o~ pen(k), (D.4)
i>k
defining
t2 = pen(k) — pen(k — 1), (D.5)

the solution is to hard threshold at tr.
In this set-up, we have that

te Ak = VEC(L + /2Lp k),
with [ty — Ap k| < ¢/Ag. More precisely, Lemma 11.7 of [20] says that
4¢b
>\p1c—i <tk < Ap-
ki Ap’k El

When v > €2, we may take b = (1+20). In any case, if k = o(n), A\, x < vIogp.
Hence, entries of y that are of size at least

vi > (1— (1)) V/arco (1 n \/mog(up/E))

are selected, or, since p; = (Bu;)|| v ||y (when v is equisigned), if we select k
coordinates, we expect to detect

|0u;| > (1 —o(1))\/&1Co
(D.6)

D.1. Risk behavior

Recalling that (D.1) solves a penalized least squares problem for ¥ close to y, we
may discuss the statistical behavior of this estimator. The following discussion
follows and reproduces that in [22]

First, note that for § = 0, the parameter v directly controls the FDR, (where
a false positive corresponds to selecting a zero coordinate in y): a choice of
v = 2Y¢ for w € (0,1) bounds the FDR at a level w.
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Second, the expected risk, E||y —¥||2, is bounded as follows. By Proposition
4.1 in [22],
Elly =¥l3 < D [2M&10% + R(y,0)] (D.7)

where D is a constant 2¢(¢ + 1)3(¢ — 1)72 = ©(1), we assume that & = 1, and
0 < M), < Cgp~2Pv=t, for some Cg > 0. Since § =0, M) = O(1/v) = O(w), if
we control the FDR at level w.

The second term in (D.7) is the ideal risk, or, the infimum of the penalized
least squares objective. If y belongs to an ¢, ball with radius C' and 0 < ¢ < 2,
and we define

C? if C < /1 +1ogp,
rp.q(C) = CL+1log(p/C9)]' 92 if yT+logp < C <p'/9,  (DB)
p if C > p'/a,

the ideal risk is bounded as

sup R(y,0) < c(logv)o?r, ,(C/a), (D.9)
yeRP:Zi ‘yi‘qfcq

for some ¢ > 0. The supplementary results in [22] yield that R(y, o) is bounded
by C?logv, and by C? when C < /1 + log p.

As in Appendix C, we may replace ¢ with 0 and C? with s in the case of hard
sparsity with s non-zero coordinates. Doing so leads to the bound:

~ 2
E|ly —¥|3 < sologvlog ELLa 0% =, (D.10)
s v

Note that we have recovered the factor of logvp/s in Bepiz-
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