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Abstract—This letter considers the problem of design-
ing state feedback data-driven controllers for nonlinear
continuous-time systems. Specifically, we consider a sce-
nario where the unknown dynamics can be parametrized in
terms of known basis functions and the available measure-
ments are corrupted by unknown-but-bounded noise. The
goal is to use this noisy experimental data to directly design
a rational state-feedback control law guaranteed to stabi-
lize all plants compatible with the available information. The
main result of this letter shows that, by using Rantzer’s Dual
Lyapunov approach, combined with elements from con-
vex analysis, the problem can be recast as an optimization
over positive polynomials, which can be relaxed to a semi-
definite program through the use of Sum-of-Squares and
semi-algebraic optimization arguments. Three academic
examples are considered to illustrate the effectiveness of
the proposed method.

Index Terms—Robust control, uncertain systems.

I. INTRODUCTION

DATA-DRIVEN control (DDC), that is the design of
controllers directly from observed data, has attracted sub-

stantial attention in recent years due to its advantages over
model-based control (MBC). In general, DDC is less con-
servative, since by avoiding the model identification step,
it bypasses practically difficult questions such as model
order/class selection and potential inaccuracy of the identi-
fication. Earlier work on nonlinear DDC can be roughly split
into three categories: a) Reference model-based method. The
idea is to assume a reference model that gives the desired
closed-loop performance and the goal of the algorithm is to
find a controller that minimizes the error between the true
and reference signal. Some pioneering work along these lines
includes the virtual reference feedback tuning (VRFT) [1], [2]
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and iterative feedback tuning (IFT) [3]. These methods work
well for the tracking problem, however, issues like guarantee-
ing stability when only data collected over a finite horizon is
used to design the controller, and an automatic way of select-
ing the reference model and the candidate controller are still
open. b) Linearization-based methods. The main idea behind
these approaches is to assume that the dynamics of the system
are locally represented by a linearized model. Estimation of the
Jacobian of the system leads to controllers that locally stabilize
the system. This idea is used for instance in model-free adap-
tive control (MFAC) [4] and lazy learning (LL) [5]. The main
drawback of this approach is that global behavior is in gen-
eral not guaranteed. c) Eigenfunction-based methods. Interest
in these methods has recently surged due to the connection
with Neural Nets. The basic idea is to pre-define a basis
of eigenfunctions that span the trajectories of the nonlinear
system and to expand the dynamics in terms of these functions.
Typically these eigenfunctions are chosen to optimize the fit of
the collected data. Prior work of this type includes Koopman
eigenfunction [6], [7] and data-driven inversion-based control
(D2-IBC) [8]. These ideas are very appealing since, in this con-
text, it is possible to handle the different types of nonlinearities
once a suitable basis is selected. However, the issue of select-
ing a dictionary that avoids overfitting is still open. Further,
while eigenfunctions based approaches have been very suc-
cessful in predicting future values of the state, at the present,
they can’t provide stability certificates when used to design a
controller.

The present paper seeks a rapprochement between tradi-
tional Lyapunov based methods and eigenfunction based DDC.
Our goal is, given a nonlinear system parameterized in terms
of a known set of basis functions (dictionary) and experimen-
tal measurements corrupted by unknown-but-bounded noise,
to synthesize a controller guaranteed to stabilize (in a sense to
be precisely defined later) all possible plants compatible with
both the a-priori information and the experimental data. The
main idea is to use the collected (noisy) data, to bound the
set of plants to a polytope in parameter space (the uncertain
set). In principle, ideally, the goal is to find a common con-
trol Lyapunov function (CCLF) and associated controller for
all elements in the set. However, this leads to very challeng-
ing non-convex problems.1 As an alternative, we will consider

1Recall that, even for a known plant, the set of stabilizing controllers may
not even be connected.
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the slightly weaker condition introduced in Rantzer’s dual
Lyapunov theory [9] that only requires all trajectories (except
those starting in a set of measure zero) to converge to the ori-
gin as t → ∞, and can be expressed in terms of the existence
of a positive density ρ(x) satisfying a divergence-type condi-
tion. Our main results, motivated by the approach proposed
in [10], [11] to solve a DDC problem for LTI systems, shows
that combining this characterization of stability with the Farkas
lemma [12] allows for recasting the DDC problem into a
semi-algebraic feasibility one. In turn, this problem can be
relaxed, proceeding as in [13], to a Sum-of-Squares (SoS)
optimization leading to a convex Semi-Definite program (SDP)
via semi-algebraic optimization arguments.

II. PRELIMINARIES

A. Notation
R, (R+) set of (non-negative) real numbers
1 a vector of 1s
x, X a vector in R

n, a matrix in R
m×n

xi the ith element of the vector x
‖x‖∞ �∞-norm of the vector x ∈ R

n

‖x‖1 �1-norm of the vector x ∈ R
n

‖X‖1 �∞ → �∞ induced norm of the matrix X.
σi(X) ith largest singular value of a matrix
X ≥ 0 X is element-wise non-negative (e.g., Xi,j ≥ 0)
X � 0 X is positive semi-definite
vec(X) matrix vectorizing operation along columns

vec(X) = [
X(:, 1)T , . . . X(:, n)T

]T

⊗ matrix Kronecker product
f ∈ Cd the dth derivative of f exists and is continuous
∇V the gradient of a scalar function: ∇V =

[ ∂V
∂x1

. . . ∂V
∂xn

]
∇ · f the divergence of a vector-valued function: ∇·f =

∂f1
∂x1

+ . . . + ∂fn
∂xn

�[x] cone of SoS polynomials in x.

B. Dual Lyapunov Theorem
The following theorem plays a central role in the formula-

tion of a tractable problem.
Theorem 1: Given a control-affine system ẋ = f (x) +

g(x)u(x), where f , g ∈ C1(Rn,Rn) and f (0) = 0, if there
exists ρ ∈ C1(Rn\{0},R+), u ∈ C1(Rn,R), such that
ρ(f + gu)(x)/‖x‖∞ is integrable on {x ∈ R

n : ‖x‖∞ ≥ 1}
and

[∇ · (ρ(f + gu)](x) > 0 for almost all x �= 0 (1)

then the trajectories x(t) → 0 as t → ∞, except possibly for
those originating in a set of measure 0. Moreover, if x = 0
is a Lyapunov stable equilibrium point, x(t) → 0 for almost
every initial condition, even if ρ takes negative values.

A detailed proof can be found in [9].

C. Farkas Lemma
We will use the following variant of Farkas’ Lemma:
Lemma 1: Given N ∈ R

m×n, d ∈ R
n, e ∈ R

m, assume that
Nx ≤ e is feasible. Then the inequalities:

Ax ≤ b with AT = [
NT −d

]
and bT = [

eT 0
]

(2)

and

NTy = d, eTy < 0, and y ≥ 0, y ∈ R
m (3)

are strong alternatives, that is exactly only one set is feasible.
Proof: Follows from applying Farkas’ Lemma

(e.g., [12, Sec. 5.8]) to (2) with a multiplier of the form
yT

a
.= [

yT
m ym+1

]
. Since feasibility of Nx ≤ e implies that

ym+1 > 0, then, without loss of generality, we can take
yT

a
.= [

yT
m 1

]
.

D. Property of the Kronecker Product

The following property, whose proof can be found in [14],
will be used extensively in this letter.

vec(BTXTAT) = (A ⊗ BT)vec(XT). (4)

E. Polynomial Optimization Problems

The main result of this letter shows that the DDC problem
can be reduced to a (non-convex) polynomial optimization
problem and solved using moments-based techniques. For ease
of reference, the key ideas of this approach are outlined below.
Consider the polynomial optimization problem of the form:

p∗ = min
x∈K

p(x) =
∑

α

pαxα

K = {x ∈ R
n : gk(x) ≥ 0, k = 1, . . . , N} (5)

where α
.= [α1, . . . , αn], xα = ∏n

i=1 xαi
i , pα are the coefficient

of p(x) and K is a semi-algebraic set defined by the polyno-
mial constraints gk(x) = ∑

α gk,αxα ≥ 0. As shown in [15],
problem (5) is equivalent to the following optimization over
the set P(K) of probability measures μ supported on K:

p∗ = min
μ∈P(K)

∫
p(x)μ(dx) = min

μ

∑

α

pαmα (6)

subject to mα
.=

∫

K
xαμ(dx) (7)

where mα denotes the αth moment with respect to μ. If
the quadratic module generated by the constraints gk(x) is
Archimedean (for instance if ∃a | K ⊆ {x ∈ R

n : ‖x‖2
2 ≤

a2}) [16], (7) is equivalent to a set of constraints of the form:

M(mα) � 0, L(gkmα) ≥ 0, k = 1, . . . N (8)

where the entries of the (infinite dimensional) moment M(mα)

and localization matrices L(gkmα), are given by

M(mα)(i, j) = mα(i)+α(j)

L(gkmα)(i, j) =
∑

β

gk,β mβ+α(i)+α(j) , k = 1, . . . , N (9)

where gk,β are the coefficients of the kth polynomial that
defines the set K. Thus, Problem (6)-(7) is convex in mα , albeit
infinite dimensional. Under the Archimedean assumption, a
convergent sequence of finite dimensional convex relaxations
with cost pd

m ↑ p∗ can be obtained by replacing the matri-
ces in (8) by truncated matrices Md(mα), Ld(gkmα) containing
moments of order up to 2d. Further, if for some d the solution
to the problem above satisfies

rank [Md(mα)] = rank
(
Md−max(deg(gk(x))

)
(10)

then the relaxation is exact, that is pd
m = p∗ [15].
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Remark 1: Of particular interest to this letter is the
Quadratically Constrained Quadratic Programming (QCQP)
case where both the objective and constraints are quadratic
polynomials. In this case, the lowest order relaxation of (10)
corresponds to d = 1, with objective and localizing matri-
ces given by Trace(QoM1) and Trace(QkM1) respectively. If
the solution to this relaxation satisfies rank (M1) = 1, it can
be easily shown that it is indeed exact. We will exploit this
property in Section III to obtain a computationally tractable
algorithm to synthesize data-driven controllers.

F. Problem Statement
In this letter we consider continuous-time control-affine

non-linear systems of the form2:

ẋ = f (x) + g(x)u + η

= Fφ(x) + Gγ (x)u + η (11)

where x ∈ R
n, u ∈ R and η ∈ R

n, ‖η‖∞ ≤ ε, represent the
state, input and unknown but bounded noise, respectively. Here
φ(x) ∈ R

sf , γ (x) ∈ R
sg denote vectors of known functions of

the state x (the dictionaries), and F ∈ R
n×sf , G ∈ R

n×sg are
unknown system parameter matrices. For example, in the case
of two states and second order polynomial dynamics, φ(x) =
γ (x) = [

1 x1 x2 x2
1 x1x2 x2

2

]T
, and F, G ∈ R

2×6 are
matrices containing the coefficients of the polynomial vectors
f (x), g(x).

Our goal is to find a rational control action that stabi-
lizes the system in the dual Lyapunov sense discussed in the
introduction. Formally, the problem can be stated as:

Problem 1: Given noisy data ẋ, x, u generated by a system
of the form (11) where φ(x), γ (x) are known, find a ratio-
nal state-feedback control law u(x)

.= p(x)
q(x)

such that for all
F, G compatible with the experimental data and almost all
initial conditions x(0), the closed-loop trajectories x(t) → 0
as t → ∞.

III. MAIN RESULTS

In this section, we present a convex reformulation of the
Problem 1. As mentioned in the introduction, the main idea is
to consider two sets in parameter space: a) an uncertainty set
containing all possible plants compatible with the noisy data,
b) the set of plants where there exists a density ρ and associ-
ated control action satisfying Theorem 1. These two sets will
be related through the Farkas lemma to obtain a condition for
the existence of a data-driven controller guaranteed to stabi-
lize all plants in the uncertainty set. Then, this condition will
be relaxed to a semi-definite optimization subject to SoS con-
straints and reduced to a convex semi-definite program (SDP)
using moments-based techniques.

A. An SoS Reformulation of the Problem

Given the collected data ẋ, x, u and a bound ε on the noise,
define the consistency set P1 as the set of all pairs of F, G
compatible with the noisy data. Using (11) P1 is given by:

P1
.= {F, G : ‖ẋ − Fφ − Gγ u‖∞ ≤ ε, t = 1 . . . T} (12)

2For notational simplicity we consider single input systems but the results
here generalize trivially to the multiple inputs case.

Direct application of (4) to the data collected in [1, T] leads
to the equivalent expression:

P1
.=

{
f, g :

[
A B

−A −B

][
f
g

]
≤

[
ε1 + ξ
ε1 − ξ

]}
(13)

where f = vec(FT), g = vec(GT) and

A .=
⎡

⎢
⎣

I ⊗ φT(1)

...

I ⊗ φT(T)

⎤

⎥
⎦, B .=

⎡

⎢
⎣

I ⊗ u(1)γ T(1)

...

I ⊗ u(T)γ T(T)

⎤

⎥
⎦, ξ

.=
⎡

⎢
⎣

ẋ(1)

...

ẋ(T)

⎤

⎥
⎦ (14)

In the sequel, we will make the following assumption:
Assumption 1: Enough data has been collected so that the

matrix

[
A B

−A − B

]
has full column rank (e.g., the polytope

P1 is compact). Note that if this assumption fails the diam-
eter of the consistency set is infinite and thus the worst case
identification error of any interpolatory identification algorithm
is unbounded. A detailed discussion on this can be found
in [17, Ch. 10].

In order to obtain tractable problems, proceeding as in [13],
in this letter we will consider rational densities ρ(x) and
control actions u(x) of the form

ρ(x) = a(x)

b(x)λ
, u(x)ρ(x) = c(x)

b(x)λ
, b(x) > 0 (15)

where a(x), b(x), c(x) are polynomials and λ is chosen to sat-
isfy the integrability condition in Theorem 1. Note that for
plants of the form (11) and densities of the form (15), (1) is
equivalent to:

b∇ · (Fφa + Gγ c) − λ∇b · (Fφa + Gγ c) > 0 (16)

where we explicitly used the fact that b(x) > 0. Given
(a, b, c), let P2(a, b, c) denote the set of all plants of the
form (11) that can be stabilized by a control action of the
form (15), that is

P2(a, b, c)
.= {F, G : (16) holds for given

polynomials a, b, c } (17)

In this context, Problem 1 reduces to
Problem 2: Find polynomials a(x), b(x), c(x) such that

P1 ⊆ P2(a, b, c).
The first step towards enforcing the inclusion above is to

obtain a representation of P2 in terms of f, g. To this effect,
define a = cT

a m, b = cT
b m, c = cT

c m, where ca, cb, cc are
coefficient vectors and

m .= [
1 x1 . . . (xα1

1 . . . xαn
n ) . . . xm

n

]T (18)

is a vector of monomials ordered in a graded reversed (grevlex)
order of the corresponding size. Substituting these definitions
in (16) leads to:

cT
b m∇ · (cT

a mFφ + cT
c mGγ )

− α∇(cT
b m) (cT

a mFφ + cT
c mGγ ) > 0 (19)

Explicitly computing the first term in (19) yields:

cT
b m[cT

a
∂mφT

∂x1
. . . cT

a
∂mφT

∂xn

cT
c
∂mγ T

∂x1
. . . cT

c
∂mγ T

∂xn
]

[
f
g

]
.= d1(x)

[
f
g

]
(20)
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Similarly, the second term in (19) is given by:

−λ[cT
b

∂m
∂x1

cT
a mφT . . . cT

b
∂m
∂xn

cT
a mφT

cT
b

∂m
∂x1

cT
c mγ T . . . cT

b
∂m
∂xn

cT
c mγ T ]

[
f
g

]
.= d2(x)

[
f
g

]
(21)

Rewriting P2 in terms of these expressions leads to:

P2
.= {f, g : −[

d1(x) + d2(x)
][f

g

]
< 0} (22)

Note that the inequalities above are functional inequalities that
must hold for all x and some coefficient vectors ca, cb, cc.

Theorem 2: Given data collected from trajectories of (11)
in the interval t ∈ [1, T], form the corresponding matrices
A, B, ξ , defined in (14). Then, there exist polynomials a, b >

0, c such that P1 ⊆ P2(a,b,c) if and only if there exists a
vector function Y(x) ∈ R

1×2nT ≥ 0 such that the following
(functional) set of affine constraints is feasible:

Y(x)N = d(x) and Y(x)e < 0 (23)

where for notational simplicity we defined

N .=
[

A B
−A − B

]
, e =

[
ε1 + ξ
ε1 − ξ

]

d .= −[
d1(x) + d2(x)

]
, (24)

Further, (i) if φ(x), γ (x) are continuous functions, then Y(x)

can be chosen to be continuous, and (ii) if the trajectories of
the closed-loop system stay in a compact region D and φ, γ
are polynomial, then Y(x) can be taken to be polynomial.

Proof: Applying Lemma 1 pointwise in x to (23) shows that
existence of Y(x) is necessary and sufficient for P1 ⊆ P2.
Continuity of Y(.) is shown in the Appendix, using the min-
imal selection theorem [18]. To prove (ii), assume that there
exist some continuous vector function Y(x) ≥ 0 such that (23)
holds and that the trajectories of the closed-loop system never
leave a compact domain D ⊂ R

n. Let δ+ .= maxx∈D Y(x)e.
Since Y(.) is continuous and D is compact, δ+ < 0. From
Assumption 1, Y(x) can be written as:

Y(x) = Yo(x) + z(x)U where Yo(x)
.= d(x)(NTN)−1NT

for some continuous z(x), where U is a basis for the (left)
null space of N. Since the trajectories of the closed-loop
system never leave D ⊂ R

n, from Stone-Weierstrass theo-
rem [19], there exist some polynomial vector zp(x) such that
‖zp(x)−z(x)‖∞ ≤ |δ+|

4‖U‖1‖e‖1
, ∀x ∈ D . Define the polynomial

function:

Yp(x)
.= Yo(x) + zp(x)U− δ+

4‖e‖1
1T (25)

By construction Yp(x)N = d(x)3 and satisfies:

(Yp)i = (Y + (zp − z)U)i− δ+

4‖e‖1

≥ Yi − |δ+|‖U‖1

4‖U‖1e‖1
− δ+

4‖e‖1
≥ 0

where we used the fact that ‖zU‖∞ ≤ ‖z‖∞‖U‖1. Further

Ype = Ye + (zp − z)Ue− δ+

4‖e‖1
1Te

≤ −|δ+| + |δ+|‖U‖1‖e‖1

4‖U‖1e‖1
− δ+

4‖e‖1
‖e‖1 < 0

3Note that 1T N = 0.

Algorithm 1 Reweighted ‖.‖∗ Based DDC Design

Initialize: iter = 0, W(0) = I, df , dg, da, db, dc, λ, l, h
repeat

Solve
minmα Trace(W(iter)M)

subject to:
M(mα) � 0 (A.1)

M(1, 1) = 1 (A.2)

kl = kr (A.3)

−Ye ∈ �[x] (A.4)

b ∈ �[x] (A.5)

Yi ∈ �[x] (A.6)

sum(ca) ≥ h (A.7)

sum(cb) ≥ l (A.8)

Update

W(iter+1) = (M(iter) + σ2(M(iter))I)−1

iter = iter + 1

until rank (M) = 1.

Thus, the polynomial vector Yp satisfies (23).
Remark 2: Note that, if the trajectories of the system are

confined to a compact domain D, then from Stone Weierstrass
it follows that the dynamics f (x), g(x), can be uniformly
approximated, arbitrarily close, by polynomials. Thus, in this
case we can always assume that Yp(x) is indeed polynomial,
by increasing the noise bound ε by an arbitrarily small number.

B. A Tractable Convex Relaxation for Polynomial
Dynamics

As indicated above, in the case of polynomial dynam-
ics, Y(x) can be taken to be polynomial. Thus, in this case
Theorem 2 provides a necessary & sufficient condition for the
existence of a rational density and associated control action
that stabilizes the unknown plant, given in terms of existence
of positive polynomials satisfying a set of linear (in)equalities.
However, certifying positivity of a polynomial in more than
2 variables is NP hard4 [16]. Thus, in this section, in order
to obtain tractable problems we will relax Y(x) to a vector
YSoS(x) = [y1(x), . . . , yi(x), . . . , y2nT(x)] where yi(x)

.= cT
yi

m
is SoS. In this scenario (23) reduces to:

kl = kr, and − Ye ∈ �[x] (26)

where kl, kr are the coefficients of the polynomials Y(x)N and
d(x). Since the entries of kl are linear functions of cT

yi
and

the entries of kr are bilinear in cb, cc and cb, ca, the problem
above is a QCQP. A convex relaxation can be obtained using
the ideas outlined in Section II-E as follows. Define the vector
v = [1, cT

a , cT
b , cT

c ]. The moment matrix corresponding to the
first order relaxation of (26) is given by M = vvT , and all
terms bilinear in kr are replaced by the corresponding linear
term in M. Enforcing the constraint rank (M) = 1 intro-
duced in Section II through the use of a re-weighted trace
heuristics [20], leads to the following Algorithm 1.

Here df , dg denote the order of the dynamics, while
da, db, dc indicate the desired order of the controller. λ

should be chosen to satisfy the integrability condition. If
upper bounds on df , dg are not a-priori known, one can start

4Except in the case of quartic polynomials in two variables.
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from df = dg = 0 and increase the values until a fea-
sible solution is found. The constraints (A.1)-(A.2) are the
standard requirements of the moments matrix, (A.3)-(A.4)
correspond to (24), (A.5)-(A.6) correspond to b(x) > 0
and Yi(x) ≥ 0. The additional constraints (A.7)–(A.8) are
used to regularize the problem, avoiding the trivial solution
kr = kl = 0.

Next, we briefly discuss the computational complexity and
scaling properties of Algorithm 1. The semi-definite con-
straint (A.1) involves a matrix M of size q × q where
q

.= (n+da
n

) + (n+db
n

) + (n+dc
n

) + 1. The polynomial vec-
tor −[d1 + d2] ∈ R

1×n(sf +sg), where each entry has degree
p = max(df + da, dg + dc) + db − 1. Therefore the number of
constraints in (A.3), given by the size of kr, is n(sf +sg)

(n+p
n

)
.

(A.4)-(A.6) involve 2nT +2 SoS constraints. The Gram matrix
associated with each Yi has size nY×nY, where nY

.= (n+� p
2 �

n

)
.

Thus (A.4) and (A.6) combined involve a total of 2nT+1 semi-
definite constraints, each on a nY × nY matrix, while (A.5)

involves an additional one of size
(n+� db

2 �
n

)× (n+� db
2 �

n

)
. In con-

clusion, the major computational burden comes from the con-
dition (A.6) that establishes a trade-off between performance
and computational complexity. A larger number of samples T
reduces the size of the consistency set, therefore increasing the
chances of finding a feasible controller (since the controller is
required to stabilize a smaller set of possible plants), but at
the price of an increased computational cost. A potential way
around this trade-off, beyond the scope of the present paper,
is to exploit decomposition based polynomial optimization
methods [21].

C. Extension to Rational Dynamics

The results of the previous section easily extend to ratio-
nal dynamics. When φ(x) and γ (x) are rational, we can
search for a density of the form ρ(x) = p(x)ρr(x) where
p(x) is the minimum common multiple of the denominator
of the entries of φ, γ . Using this ρ(.) leads to a polyno-
mial d(x). From this point on, Algorithm 1 can be directly
applied.

IV. SIMULATION RESULTS

In this section, we illustrate the effectiveness of the proposed
approach with several examples. In all cases the simula-
tions were run using MATLAB [22], the data was gen-
erated with the ode45 [23] function and the optimization
problem was solved with YALMIP [24] and mosek [25].
In all the examples, Algorithm 1 converged in a single
iteration.

Example 1 [13]: The nonlinear plant is given by

ẋ1 = x2 − x3
1 + x2

1 + η1

ẋ2 = u + η2 (27)

The system was excited for 5 seconds with a random sig-
nal uniformly distributed in [−1, 1], starting from the initial
condition [1; −1]. We collected T = 500 samples, cor-
rupted by noise uniformly distributed in [−0.05, 0.05]. As
in [13], we chose λ = 4. We used a quadratic function:
b(x) = xTPx and selected df = 3, dg = 0, da = 0, dc =
3, l = 3, h = 1e−4. Algorithm 1 led, in 112s, to a third-order

Fig. 1. Phase plot of the closed-loop system in Example 1 (da = 0).

Fig. 2. Phase plot of the closed-loop system in Example 2 (da = 0).

controller:

u(x) = −0.0293x3
1 − 0.452x2

1x2 − 0.0614x2
1 − 0.0328x1x2

2

+ 0.11x1x2 − 1.25x1 − 0.378x3
2 − 0.336x2

2 − 0.955x2

The phase plot of the corresponding closed-loop system is
shown in Fig. 1. For comparison purposes, we also searched
for a rational controller with da = 2. In this case, in 334s, we
obtained the following controller:

u(x) = (−0.0751x3
1 − 0.607x2

1x2 − 0.0756x2
1

− 0.137x1x2
2 + 0.0653x1x2 − 1.18x1 − 0.476x3

2

− 0.38x2
2 − 0.923x2)/(5.5e−4x2

1 + 1.03e−4x1x2

+ 0.036x1 + 5.97e−4x2
2 + 0.0303x2 + 0.937).

Example 2: Next we consider the Van der Pol oscillator:

ẋ1 = x2 + η1

ẋ2 = (1 − x2
1)x2 − x1 + u + η2 (28)

In this case, in 133s, Algorithm 1 led to the controller:

u(x) = −0.102x3
1 + 0.821x2

1x2 − 0.283x2
1 − 0.251x1x2

2

− 0.437x1x2 − 0.315x1 − 0.24x3
2 − 0.316x2

2 − 2.61x2

The corresponding phase plot of the closed-loop system is
shown in Fig. 2. Next, setting da = 2, resulted, in 360s, in

u(x) = (−0.207x3
1 + 0.338x2

1x2 − 0.307x2
1 − 0.744x1x2

2

− 0.532x1x2 − 0.162x1 − 0.463x3
2 − 0.303x2

2

− 2.27x2)/(0.0067x2
1 + 0.0208x1x2 + 0.044x1

+ 0.0192x2
2 + 0.0425x2 + 0.869)
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Example 3: A grey-box rational case. Consider the system

ẋ1 = 1

1 + x2
1

(x1 + u) + η1

ẋ2 = x1 + η2 (29)

and assume that it is known that the following basis
[
1, x1, x2, . . . , xm

2 , 1
1+x2

1
, x1

1+x2
1
, x2

1+x2
1
, . . . ,

xm
2

1+x2
1

]
(30)

spans the dynamics. Searching for a density ρ of the form
ρ = (1 + x2

1)ρ̂r(x), where ρ̂r(.) is rational, led, in 131s, to the
following stabilizing controller:

u(x) = −1.59x1 − 0.429x2. (31)

V. CONCLUSION

In this letter, we proposed a framework for designing
state-feedback data-driven controllers for nonlinear systems.
Specifically, given an unknown nonlinear system parameter-
ized in terms of a known set of basis functions and experimental
measurements, we developed an algorithm guaranteed to sta-
bilize (in the sense of [9]) all possible plants compatible with
both the a-priori information and the experimental data. Thus,
this algorithm can be considered as a robust generalization
of the algorithm proposed in [13] to the case of unknown
plants. The main theoretical result leading to this general-
ization established that, by using a combination of Rantzer’s
Dual Lyapunov approach and elements from convex analysis,
the nonlinear data-driven control problem can be recast as an
optimization over continuous positive functions (the Farkas
multipliers). Further, for the case of polynomial dynamics, we
showed that these multipliers can also be taken to be poly-
nomial. Relaxing these polynomials to be sum-of-squares led
to a QCQP that, in turn, can be relaxed to a convex SDP by
exploiting the commonly used nuclear norm relaxation of rank.
The effectiveness of the algorithm was illustrated with three
examples, showing that indeed the proposed approach leads
to stabilizing controllers directly from noisy data. Possible
extensions of the framework presented here include exploiting
the underlying sparse structure of the constraints to reduce
the computational burden and extending the approach to solve
reach-avoid type problems similar to those considered in [26].

APPENDIX

PROOF OF CONTINUITY IN THEOREM 2

For a given x consider the following optimization problem:

J(x)
.= min Ŷ(x)e subject to:

Ŷ(x)N = d(x), Ŷ(x)e ≥ −1, and Ŷ(x) ≥ 0 (32)

(23) is feasible if and only if the problem above is feasible,
and admits a solution set Ŷ(x) such that Ŷ(x)e < 0. Define
the set valued mapping Y(x)

.= {y ∈ Ŷ(x) : ye ≤ J(x)}. Using
[18, Definition 1.4.2] and [27, Th. 2.4] establishing continuity
of the solutions of linear programs with respect to pertur-
bations in the right hand side, it follows that Y(x) is lower
semi-continuous. Consider now the minimum selection

Ym(x)
.= argmin

y∈Y(x)

‖y‖

For any bounded region D, from continuity of d, it fol-
lows that the range of Ym(.) is bounded. Hence, from

[18, Proposition 9.3.2], it follows that the function Ym(x)

is continuous. The proof is completed by noting that, by
construction Ym(x) solves the original problem (23).
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