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Signal estimation and system identification with nonlinear dynamic
sensors

Julian Berberich!, Mario Sznaier? and Frank Allgower

Abstract— We consider the problem of estimating the output
of an unknown discrete-time linear time-invariant system and
identifying a model of the system, where only measurements via
a nonlinear dynamic sensor with known dynamics are available.
The main result of this paper is a rank-constrained semidefinite
program, which provides an equivalent characterization of this
identification and estimation problem. This extends existing
results from Wiener system identification to the more general
case that the nonlinear block exhibits dynamic behavior, which
is a commonly found scenario in practical applications. Notably,
the result can be applied in the presence of nonlinear sensors
with general non-invertible system dynamics. Two examples are
used to illustrate the applicability of our approach.

I. INTRODUCTION

The identification of dynamical systems from measured
data is a central topic in both theory and practice of automatic
control. Once a sufficiently good model of the system is
obtained, there exist various methods for analyzing and con-
trolling these systems and therefore, numerous approaches
for identifying linear time-invariant (LTI) systems have been
developed [1]. These methods, which can be roughly divided
into subspace techniques [2], prediction error methods [3],
and set membership approaches [4], [5], require a set of
input-output tuples sampled from the system of interest. In
practice, however, the output of the system is often not
directly accessible, but can only be measured via a sensor,
which might itself exhibit nonlinear dynamic behavior [6]—
[8]. Thus, to infer the actual output of the dynamical system,
the effect of the sensor needs to be compensated. This
problem, which is often referred to as dynamic sensor
compensation, has been considered, e.g., in [9], [10], where
the authors use neural networks to approximate the inverse of
the (unknown) sensor dynamics, or in [11], where a linear
time-varying filter is designed to smoothen the oscillatory
dynamical behavior of load cell sensors.

We consider the problem of identifying an LTI system
and estimating its output, when the measurements are only
available via a sensor with nonlinear dynamics, i.e., when
a cascade structure such as the one illustrated in Figure 1
is considered. When the sensor possesses a static charac-
teristic, then this problem amounts to solving a Wiener
system identification problem, which has been studied ex-
tensively in the literature (see, e.g., [12]-[15]). Contrary
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to the work from [9], [10], we will in this paper assume
that the sensor’s nonlinear dynamics are known. Notably,
under this assumption, the problem of identifying the LTI
part in Figure 1 is in general np-hard, even for the special
case of Wiener systems [16]. Therefore, various (convex)
relaxations to solve this problem for Wiener systems have
been proposed in the literature [17]-[19]. Our results are
based on the approach from [18], which develops a rank-
constrained semidefinite program (SDP) reformulation for
the Wiener system identification problem.

Fig. 1: Concatenation of an LTI system X;7; and a nonlinear
dynamical system Zy;, including process and measurement
noise denoted by v and w, respectively.

In particular, we propose a rank-constrained feasibility
problem, which characterizes all feasible output signals r and
all feasible impulse responses g of X;7;. This problem is then
solved to obtain estimates of r and g from measured input-
output data. While it is straightforward to obtain a reliable
estimate of r, the impulse response g can only be estimated
accurately if additional information on the system order
is employed, which results in an increasing computational
complexity. Contrary to the methods for dynamic sensor
compensation from [9], [10], our approach can be applied to
non-invertible sensor dynamics, as long as they are rational.
Further, process as well as measurement noise is explicitly
taken into account. As an additional assumption, we only
require that the input to the excited system can be measured
and that this system is linear. Knowledge of a model of this
system is however not required.

The remainder of the paper is structured as follows: In
Section II, we present the setting and recall a relevant result
from LTI system identification. Thereafter, in Section III
we state our main result, which allows for an equivalent
reformulation of the original estimation and identification
problem as a rank-constrained SDP. This result is then
applied in Section IV to solve the signal estimation and
system identification problem for two illustrative examples.
Section V provides a conclusion as well as topics for future
research.
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II. SETTING

We say that a symmetric matrix H is a Hankel matrix if
it is of the form

ai a Qn

a a3 An+1
H =

ap  dptl -1

for some a; € R. Given a vector sequence {xk},’le, we denote
the corresponding Toeplitz matrix by

X1 0 0
N ._|X X1
T' =
0
XN X2 X

Further, for a symmetric real-valued matrix P, P > 0 means
that P is positive semidefinite. Moreover, we write |[x||c =
sup;||xill for the £o-norm of x, with ||x;||. being the standard
co-norm in a Euclidean vector space. We define the following
set of bounded, analytic transfer functions

Hw(p, K) = {G analytic in D, | sup |G(z)| < K},
€D,
where O, = {z € C||z] < p} is an open disk.
In this paper, we consider the cascade system depicted
in Figure 1. X;7; is an unknown LTI system with transfer
function G, i.e.,

(D

where g is the corresponding impulse response, * denotes
convolution, and u; € R"™,r, € R%,k € N. Although (1)
implies that the initial state of X;7; is zero, the results of this
paper can be directly extended to account for non-zero initial
conditions. Xy is a known nonlinear dynamical system of
the form

e = (g * wy,

X1 = fOa, 7), x(0) = xo

Yk = I’Z(Xk, fk)a

for some f : R"™1 — R" h : R"™? — R’ xy € R". The
initial condition xy; of Xy; is not assumed to be known.
Note that for f = 0, h(x;, 7)) = ¥(#) with some static
function ¥, the cascade of the LTI system (1) and the
nonlinearity (2) (cf. Figure 1) is a Wiener system. Further,
we consider process and measurement noise, represented by
vi € V,w, € W, respectively, where V ¢ RYI, W c R” are
described by some ¢, bound, i.e., V= {v € R? | ||v||, < &},
W= {weR?||W|s < &} for some ¢,, &, > 0.

Given some input-output data A = {u, yk}szl, we want to
find a feasible point in the consistency set

2

T (8) = {{rdly Ay | e = (8 % whs Xt = Fx 11+ )
Vi = h(x) +wi, v € V,wp € WL

3)

Many results on Wiener system identification are essentially
extensions of LTT system identification concepts. Similarly,
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the following technical result combines an LTI identification
result from [20, Theorem 2] with the specific dynamics in (2)
in order to arrive at an equivalent characterization of the
consistency set 7 (A).

Lemma 2.1: Given K > 0, p > 1 as well as experimental
data A = {u, )_)k}kN:I’ there exists an LTI system X;7; with
transfer function G € H (p, K) such that the consistency
set 7(A) is non-empty if and only if there exist g, Fi, 7k, Xk
such that

[KR‘Z ()] 0. @
TY  KR?
r=Tlu, Fe—ri €V, (3)
Xt = f (X, i), (6)
Yk — h(xi, 7y) € W, (N
for k= 1,...,N, where R = diag[1,p,p%,...,p"7'].

Proof: Follows directly from combining [20, Theorem
2] with the above cascade structure. [ ]
In Lemma 2.1, the decision variable g is the impulse
response corresponding to the transfer function G, and the
signals r,7 and x are the same as in Figure 1. Hence, the
above result provides a direct equivalent characterization
of all feasible signals 7,r,x and impulse responses g. In
particular, determining the desired quantities is equivalent to
finding a feasible point in (4)-(7). Further, Lemma 2.1 is a
combination of an LTT identification result and the nonlinear
dynamics from (2): The conditions (4) and (5) represent
the LTI identification part, whereas (6) and (7) reflect the
nonlinear dynamic parts in the considered cascade system.
While the former conditions are a combination of a linear
matrix inequality (LMI) with linear equality constraints,
the latter constraints are in general non-convex and thus
the above feasibility problem can usually not be solved
efficiently. In the next section, we show that, when f and
h are rational, then the feasibility problem is equivalent to
a rank-constrained SDP, for which various solution methods
exist.

III. A RANK-CONSTRAINED SDP RELAXATION

In this section, we provide a solution to the above-defined
system identification and signal estimation problem, i.e., to
the problem of finding a feasible point in (4)-(7). In [18],
a rank-constrained convex relaxation for Wiener system
identification is proposed. Transferred to our setting, the
main idea is that, when the system dynamics (2) are rational,
then the constraints (6) and (7) can be replaced by rank-
constraints on suitably defined moment matrices.

Suppose for the following considerations that all signals
in Figure 1 as well as the internal state x are scalar'. Further,

I'This is only assumed for notational simplicity and does not pose a limi-
tation on the presented approach. We will comment on the multidimensional
case after our main result.
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we assume that f and /4 are rational functions, i.e.,

_ o Pr(x )
SO, 1) = m,
o PrCx )
Al Te) = On(xi, 7o)’

where Py, Qy, P, Q) are multivariate polynomials. In this
case, the constraints (6) and (7) can be written equivalently
as

X1 Qs 7)) — Py, 7)) = 0 (3
Yk On(xx, 1) — Pr(x, 7)) = 0 9
1% = yilloo < &ws (10)

for all k = 1,...,N. Note that (8) and (9) are polynomial
constraints and thus, it follows directly from Lemma 2.1 that
the set 7 (A) is semi-algebraic. Hence, convex relaxations
for the original feasibility problem can be found using, e.g.,
moments [21] or tools from semi-algebraic geometry [22].
In [17], for instance, a moments-based approach to find
feasible points in 7 (A) was presented for the special case
of Wiener systems. However, the computational complexity
of such approaches grows quickly with the number of
decision variables and thus with the number of sampled data
points. A slightly different approach was pursued in [18],
where the polynomial constraints in 7 (A) were replaced by
rank constraints. Similarly, we will in the following replace
the nonlinear constraints induced by (8) and (9) by rank-
constraints where the corresponding matrices are linear in
the decision variables. To do this, we introduce the Hankel
matrices

—i+j-2
M = (mfik) € RMmXmr |k = FHI
k ij ij k
X o x.k T, 3 XPy xk _ _i+j-2
Mk.—(mij)eR s M =X

where n,,, and n,, are chosen large enough, such that
the above matrices contain every exponent appearing in (8)
and (9). Note that the conditions mif = 1, my = i,
rank (M,:) < 1, and the fact that M is a Hankel matrix

imply that it is of the above form, i.e., that m'] F;(” ? and
analogously for M;. The polynomlal equatlons (8) and (9)
contain only monomlals of the form xkr’k, xk”xkrk or ykxkrk
In the next step, we replace each of these monomials by a
scalar decision variable. Define

x.k

k ._( ]{ ml(H—l))
i =\, n k
My iy @;;

J

for any monomial of the form xk appearmg in (8) or (9)

and note that rank (Rfj) < 1 implies o/‘ = xkrk Furthermore,

set
- (m

for any occurrence of kaa

o
x,k+1

12 ﬁ{'(j
in (8) and

. 1

ij -

1

.

ko
ij "
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for terms of the form ykafj appearing in (9). The introduction
of the above variables allows us to rewrite the equations (8)
and (9) which are nonlinear in x, 7, yx, as linear equations

1na ,8" , 1.e., as
ak ok k ok _
Z i l]+b/3 =0,
S k k k an
D el +dyf =0,

ij
for k =1,...,N and suitably chosen coefficients a bk
df.‘j. This allows us to state the following theorem wh1ch
provides an equivalent rank-constrained SDP reformulation
of the original feasibility problem.

Theorem 3.1: Given K > 0, p > 1 as well as exper-
imental data A = {u, yk}sz \» there exists an LTI system
¥;7r; with transfer function G € H,, (o, K) such that the
consistency set T(A) is non-empty if and only if there exist

8, rk,mrk ka a ,8" y , Y& such that

|

s = ril|, < v 19k = illso < &0

rank (M,f) <1, rank (Mx) <1,

(1D hold, m}f =m? =1,

rank (Rf]) <1, rank (S ) <1, rank (T,’;) <1,

KR TY
5o

(12)

for k=1,...,N, where R = diag[1,p,p%,...,p"""].

Proof: Follows directly from Lemma 2.1 and the above
discussion. [ ]
Note that (12) is indeed a rank-constrained SDP and can
thus be solved either using a convex relaxation of rank [23]
or directly with LMIRank [24]. Theorem 3.1 is essentially an
extension of [18, Theorem 1], which was stated for Wiener
systems, to more general cascade systems with dynamic
nonlinearities. It is not only a feasibility characterization
for the original problem, but, similarly to Lemma 2.1, it
also yields the desired unknown signals as well as the
impulse response g. Although, for the above derivation, we
considered scalar nonlinear dynamical systems Xy; as well
as scalar signals u,r, and y, the result holds true in the
multidimensional case as well, with obvious modifications:
Any additional monomial term occurring in (6) and (7)
simply needs to be replaced by a scalar variable with a
corresponding rank-constraint, as in the scalar case. Further,
we could also consider more general vector fields f and &
which are linear combinations of rational basis functions with
unknown coefficients.

Remark 3.2: For the special case of Wiener systems, [18]
provides additional analysis results as well as extensions of
the feasibility problem (12), which apply also in the present
setting with dynamic nonlinearities. For instance, knowledge
of an upper bound n, on the order of Z;7; can be exploited
by enforcing an upper bound on the rank of the Hankel
matrix of the impulse response, in addition to the conditions
of Theorem 3.1. This restricts the class of admissible impulse
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responses for the feasibility problem to those belonging to a
system with McMillan degree less than or equal to n,. As will
be discussed in the next section, this might be beneficial if the
main objective is the identification of the LTI system Z;7;. In
practice, however, this extension increases the computational
complexity of the resulting feasibility problem and should
thus only be used if knowledge of an accurate model of
Y7y is indeed desired. Moreover, there might exist multiple
solutions of the feasibility problem (12), due to the noise or
the system Xy, being not invertible. In this case, an upper
bound on the identification error is readily computed by
formulating a related rank-constrained SDP [18, Section V.]

Remark 3.3: In practice, one is often not interested in
identifying the system X;7;, but rather in estimating the
signal r online, i.e., in the dynamic compensation of the
sensor Xyz. In particular in this case, a moving horizon
implementation of the feasibility problem (12) might be a
good alternative. To be more precise, Theorem 3.1 provides
a characterization of the estimation problem over the full
measurement length N. When N additional data is obtained,
the feasibility problem must be solved again, now with
a total of N + N measurements. Alternatively, one could
only take the past T measurements into account, where
T < N + N, thereby reducing the computational complexity
of the problem. When new measurements are obtained, the
horizon is shifted and the estimation process is carried out
again for the past 7 measurements. For this, an additional
constraint that the decision variables align with previous
estimates in the overlapping interval might be beneficial. By
employing this idea, the above result could also be applied
to more general system classes for the unknown system such
as (slowly) time-varying or (mildly) linear parameter-varying
systems.

IV. ILLUSTRATIVE EXAMPLES

In this section, we apply Theorem 3.1 to two practical
examples. First, we consider an unknown LTT system, whose
output is measured via a force sensor with nonlinear elastic
behavior. The nonlinear dynamics of the sensor are adopted
from [10].

Example 4.1: Consider the unknown LTI system with
transfer function

0.16
2-04z+05°

cascaded with the known two-dimensional nonlinear dynam-
ical system Xy,

G() =

xl(k + 1) = xl(k) + h)Cz(k),
h
xolk+ 1) = xo) + o= (70) = exa(h) = kixa k) = koxi )

y(k) = x1(k), 13)

T

with unknown initial condition x(0) (0.005 —0.1)
The dynamics (13) are obtained from the continuous-time
dynamics in [10, Example 1] via a Euler discretization with
sampling rate 4 = 0.005. As in [10], the other parameters
are chosen as m = 1/6084,¢c = 49.6/6084,k; = 1,k =
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304.2/6084. The LTI system is excited with a uniformly
distributed input with values in [—1, 1]. We assume process
and measurement noise levels of &, = 0.02 and &, = 3-107%,
corresponding to roughly 8% and 1.5% of the maximal
simulated values of r and y, respectively.

Solving the rank-constrained SDP feasibility problem (3.1)
with LMIRank [24] yields a trajectory r as well as an impulse
response g, which are displayed in Figures 2 and 3, respec-
tively. It can be seen that, for the signal r, the estimation error
lies roughly within the noise tolerance. On the contrary, the
estimate of the impulse response is inaccurate since we have
not used information on the order of the system and therefore
the order of the approximated impulse response is too large
(cf. Remark 3.2).

0.25

0.2

0.15

0.1

0.05

TR0

-0.05

-0.1

-0.15

-0.2 "

-0.25 ! L L
10
time

20

Fig. 2: Estimated (via Theorem 3.1) and true signal r from
Example 4.1.
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Fig. 3: Estimated (via Theorem 3.1) and true impulse re-
sponse from Example 4.1.

As a second example, we consider the problem of esti-
mating the output of an LTI system, where the sensor mea-
sures only the distance of this output to a certain reference
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point and is additionally perturbed by a PT1-behavior. This
problem can be modelled using a sensor with non-invertible
nonlinear dynamics.

Example 4.2: Consider the unknown LTI system with
transfer function
_ -02z-06
C 2+04z-02

cascaded with the known nonlinear non-invertible dynamical
system Xy

Xk + 1) = 0.2 - x(k) + 0.8 - (F(k) = rrep)?,
y(k) = x(k),

with unknown initial condition x(0) = 0.5. The dynam-
ics (14) can be interpreted as measuring the (squared)
distance of 7 to the reference point r,.r, which is chosen
to be ry = 1.2, where, e.g. due to ageing of the sensor,
past measurements contribute to new measurements with a
factor of 0.2. The noise levels are chosen as &, = 0.05 and
&, = 0.02, corresponding to roughly 5% and 0.5% of the
maximal simulated values of r and y, respectively. Further,
the LTI system is excited with a uniformly distributed input
with values in [-2, 2]. Figures 4 and 5 show the estimates of
and g, respectively, obtained by solving the rank-constrained
SDP (12) with LMIRank [24]. Again, the estimated impulse
response differs from the original one after the first time steps
(cf. Remark 3.2). Nevertheless, a reliable estimate of the
signal r could be obtained, despite Xy; being non-invertible.

G(2)

(14)

T
— % —True r
— © — Estimated r

05t / \\\\ ’\‘ f{;

\
( \
05 | \g “ / 1) lg &
T \
4

0 5 10 15 20
time

Fig. 4: Estimated (via Theorem 3.1) and true signal r from
Example 4.2.

Remark 4.3: As the considered estimation and identifica-
tion problem is in general np-hard [16], it is not surprising
that the feasibility problem (12) does in practice not scale
well for a large number of data tuples. Nevertheless, the
present examples could be handled for more than 100
data points. Furthermore, we note that the approach could
successfully be applied to a realistic example (Example 4.1)
as well as to an example with a non-invertible nonlinearity
(Example 4.2), where in particular the latter problem could

0.2 ‘
%\
01k H\ 8 — © —Estimated g| |
;‘ A & o _@-o0-@a
0 E fon \ N ) y/é A e
\ oy ¥ N ~5
\ f ’ °
\ | \ 9
0.1 1) { o §
R
wo02p & * i
v
(.
03F | i
i
!
041 | i
\[
05 ; ,
0.6 . s ‘
0 5 10 15 20

time

Fig. 5: Estimated (via Theorem 3.1) and true impulse re-
sponse from Example 4.2.

not be solved using existing tools for the problem of dynamic
sensor compensation.

V. CONCLUSION

In this paper, we presented an approach to the problem
of estimating the output of an LTI system and identifying
the system, when the measurements are obtained from a
sensor with known nonlinear dynamics. The main result is an
equivalent reformulation of the original feasibility problem
as a rank-constrained SDP, which can be solved using either
a direct solver such as LMIRank or convex relaxations
of the rank constraints. Contrary to existing approaches,
our approach can handle non-invertible nonlinear sensor
dynamics. The applicability of the result was illustrated with
two practical examples.

Future research will address the development of more
efficient numerical reformulations of the original feasibility
problem. Further, the present approach can only be applied in
the presence of rational nonlinear systems. An extension to
more general nonlinear system dynamics such as e.g. neural
networks seems both promising and interesting. Finally, the
presented examples were only simulation studies and thus the
validation of the method in a practical experiment remains
an open issue.
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