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Deciphering Metabolic Heterogeneity by Single-Cell Analysis

Single-cell analysis provides insights into cellular heterogeneity and dynamics of individual cells.
This Feature highlights recent developments in key analytical techniques suited for single-cell
metabolic analysis with a special focus on mass spectrometry-based analytical platforms and RNA-
seq as well as imaging techniques that reveal stochasticity in metabolism.
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B CELLULAR HETEROGENEITY AND METABOLISM

Metabolism is a key physiological process that is involved in
cellular maintenance, growth, and division and contributes to
cellular heterogeneity.”” Metabolism is an ensemble of
biochemical reactions that sustain life in a cell. These reactions
accomplish three major tasks: the provision of energy for
biological functions, biosynthesis (anabolism) of the cell’s
building blocks (lipids, proteins, and nucleic acids) and
degradation (catabolism) of cellular content. Studies of cellular
metabolism aim to characterize the abundance and activity of
the plethora of enzymes, cofactors, and metabolites which form
large, complex metabolic networks. Metabolic heterogeneity
underpins single-cell phenomena such as immune cell
plasticity, microbial drug tolerance, and growth variability.’
Cellular heterogeneity is a phenomenon that is often
observed in biology but poorly understood. It is caused by
various genetic, epigenetic and environmental factors and is
reflected by differences in morphology, physiology and
pathology.”> This highlights the necessity to study the
biochemical and physiological characteristics of individual
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cells and their environment. However, conventional technol-
ogies often use bulk population-level measurements, ignoring
the unique behavior resulting from cell-to-cell variations,
including cellular metabolism, growth, and proliferation.5 Most
existing studies on metabolism have used population-level
measurements, which implicitly assume that the used cell
populations are homogeneous. Therefore, to understand the
link between the genotype and phenotype of a single cell, a
holistic understanding of cell-heterogeneity at all levels of the
molecular architecture (genome, epigenome, transcriptome,
proteome, and metabolome) is needed.

Only recently advances in bioanalytical technologies have
enabled the study of transcripts,” proteins,”® and metabolites
in single cells,” which in turn empowered the ability to study
cellular heterogeneity and how this heterogeneity is important
to normal and impaired processes. Single-cell transcriptomics
examines gene expression levels of individual cells by
measuring mRNA concentrations and offers a comprehensive
understanding of how transcriptomic cellular states translate
into functional phenotypic states. How the expressed proteome
differs from cell to cell is a question of high interest as proteins
represent the main machinery of cells, performing a vast array
of functions within organisms such as catabolizing metabolic
reactions (enzymes), DNA replication, and providing structure
to the cell and transport. Single-cell metabolomics offers
comprehensive profiling of the full complement of small
molecular weight compounds and thereby provides the most
accurate depiction of the cellular reaction network. Finally,
single-cell phenotypic analysis using imaging-based techniques
even allow the study of metabolism and growth heterogeneity
in live cells.

This Feature article provides vignettes of studies that have
recently used single-cell analytics to study cell heterogeneity.
We apologize to anyone whose important work could not be
included due to size limitations.
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Figure 1. Single-cell transcriptome analyses of tissues and cell types. Reproduced with permission from ref 10. Copyright 2014 Springer Nature.

B SINGLE-CELL TRANSCRIPTOMICS

Single-cell transcriptomics is a rapidly evolving field that will
play a major role in understanding metabolism at the single-
cell level. Currently, the most prevalent method for tran-
scriptomic studies is RNA-sequencing (RNA-seq). This
method is based on reverse transcription of mRNA into
complementary DNA, followed by subsequent polymerase
chain reaction (PCR) amplification and deep sequencing.'’ In
contrast to earlier methods for gene expression analysis, RNA-
seq allows for the sequencing of the entire transcriptome.
Single-cell RNA-seq (scRNA-seq), which has been developed
over the past few years, can obtain gene expression profiles of
individual cells across cell types, states, and subpopulations
(Figure 1). This advance was made possible by the ability to
capture and sequence very low amounts of RNA. Typically,
individual cells are captured in submicroliter droplets using
dedicated microfluidic devices or sorted into regular multiwell
plates. After lysing the cells in these small reaction volumes,
cells are barcoded during reverse transcription using cell-
specific DNA primers. During sequencing, these barcodes are
used to assign sequencing reads to individual cells. While some
methods, such as Smart-seq'’ collect reads from the entire
transcript (full-length coverage), the majority of methods only
capture the 3'- or 5'-ends. For example, Drop-seq'” identifies
transcripts by their 3’-ends. This and other methods
incorporate unique molecular identifiers, random transcript-
specific barcodes, to circumvent PCR bias and thereby improve
quantification of gene expression. The choice of a particular
scRNA-seq method largely depends on the scientific question.

We refer the reader to recent reviews for detailed information
about various methods'>"*

Despite being around for only a few years, scRNA-seq has
already produced a host of valuable insights, for example, on
the dynamics of embryonic developmental and stem cell
differentiation,"® the composition of complex tissues,'® and
expression differences and heterogeneity caused by diseases,
such as cancer."”

Several studies have used scRNA-seq to catalog metabolic
changes during developmental processes. Zeng et al. quantified
gene expression in single mouse f cells during postnatal
development.'® By collecting cells at different time points and
ordering them along a common molecular trajectory, the
transcriptional dynamics of f cell maturation were revealed. In
particular, the authors identified the dynamic expression of
genes related to several important metabolic pathways
(regulation of amino acid uptake and metabolism, production
of reactive oxygen species) as well as a network of nutrient-
responsive transcription factors. Another scRNA-seq study, by
Arris et al, focused on metabolic aspects of eye-disc
development in Drosophila.'” By comparing wild-type eye
disc-cells with Rbf (retinoblastoma family protein) mutant
cells, the authors identified a subpopulation of mutant cells
with higher glycolytic activity. The metabolic state was inferred
from the expression of the pro-apoptotic gene Hid (cell death
protein) in conjunction with an upregulation of Ald (Fructose
biphosphate aldolase), Ldh (lactate dehydrogenase) and Hifla
(Hypoxia-inducible factor 1 alpha). The results were validated
by RNA interference and immunostaining. A paper by Guo et
al. studied the development of human spermatogonial stem
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cells.”® This study discovered four dynamic cellular states
(quiescent, proliferating, metabolically active, and differentiat-
ing), which differ substantially in their metabolism. Adult stem
cells have also been characterized by scRNA-seq Dulken et al.
quantified the heterogeneity and transcriptional dynamics in
the adult neural stem cell lineage (NSC) by scRNA-seq They
reported a continuum of cell states during the differentiation
process and identified rare intermediate states with distinct
molecular profiles.”!

scRNA-seq has also been used extensively to catalog the cell
types in complex tissues. For example, several recent studies
have revealed the cell types in the human developing
kidney'®****. These studies revealed a clear divergence from
mouse kidney development, arguing for caution when using
the mouse as a model system for human development. In
addition, scRNA-seq allowed the identification of several
subtypes of renal progenitor cells which were distinguished by
the expression of metabolism- and stress-related genes.'®
Interestingly, the progenitor subtypes also differed in their
proliferation state. These changes in metabolism and stress
response are likely a consequence of differentiation but they
could potentially also have a causal role.

Metabolic changes in disease are also increasingly studied
with single-cell transcriptomics methods. Segerstolpe et al.
profiled human pancreatic islets from healthy individuals as
well as type 2 diabetes patients with scRNA-seq”* They
identified subpopulations within both endocrine and exocrine
cell types. Clear transcriptional alterations were found in type 2
diabetes patients compared to healthy subjects. The well-
known heterogeneity within or between tumors is another area
of application for scRNA-seq (see, for example, refl7). In a
recent paper, Xiao et al. have shown that mitochondrial activity
is a major driver of the heterogeneity among both malignant
and nonmalignant cells.”® In malignant cells, the authors found
a positive pairwise correlation between glycolysis, oxidative
phosphorylation, and hypoxia. The fact that these cells activate
both glycolytic and oxidative phosphorylation pathways under
hypoxic conditions may be an important factor contributing to
the high proliferation of cancer cells. It will be a major
challenge for the future to integrate a large number of such
studies with the existing knowledge of metabolic networks and
achieve a consistent view of metabolic changes in tumor tissue.
An approach developed by Damiani et al.”® extended the well-
established flux balance analysis (FBA),” to infer the flow of
metabolites in a single-cell. Their method allows the translation
of single-cell transcriptomes to so-called single-cell fluxomes.
Integration of single-cell cancer transcriptomes with bulk
extracellular fluxes of the same samples revealed differences in
growth rates between subpopulation captured cell—cell
interactions.

scRNA-seq further unraveled the effect of obesity on the
quality of oocytes in women undergoing fertility treatment.”®
In this study, single-cell transcriptomics was coupled with lipid
level measurements in serum and follicular fluid. Some genes
related to fat metabolism, proinflammatory conditions, and
oxidative stress were found to be deregulated in oocytes from
obese women compared to normal weight women. This
suggests that obesity might compromise the metabolism and
thereby integrity and competence of oocytes.

A major limitation of current scRNA-seq modalities is that
they provide snapshots of mRNA abundance but cannot
quantify RNA turnover dynamics (i.e., transcription and
degradation rates). This is mainly due to the destruction of

the cells in the process of sequencing library preparation.”” In a
recent study, La Manno et al. partially overcame this limitation
by using the “RNA velocity” of each gene, i.e., the ratio of
unspliced mRNA to spliced mRNA to deduce a probabilistic
description of expression dynamics.30 Moreover, new ap-
proaches based on labeling of newly transcribed RNA and
biochemical nucleoside conversions followed by RNA-seq have
been used to study RNA dynamics in mammalian cells.*'
These methods provide high temporal resolution of short-term
changes in gene expression and are able to reveal kinetics of
RNA processing and even catch the most unstable RNAs.
Another recent method (NASC-seq) simultaneously sequences
pre-existent and newly synthesized RNA.*” This method is
based on the integration of 4-thiouridine (4sU) into newly
synthesized RNA during transcription. 4sU-labeled and
unlabeled RNA can then be distinguished after the reverse
transcription step where alkylated 4sU residues trigger the
misincorporation of guanines instead of adenosines in the
complementary DNA.

Although scRNA-seq cannot measure metabolic state
directly, the highlighted studies revealed the value of the
method for studying metabolism. Major metabolic programs
can often be inferred from the expression of key pathway
components.

B SINGLE-CELL PROTEOMICS

Proteins represent the main machinery of cells, performing a
vast array of functions within organisms such as catabolizing
metabolic reactions (enzymes), DNA replication, providing
structure to the cell, and transport.”> How the expressed
proteome differs from cell to cell is, therefore, a question of
high interest. However, complex correlations between gene
transcription and protein production in developing systems
(see, for example, ref 34) call for careful validation of
transcriptomics results, one gene at a time (e.g, using
antibodies). Only recently has mass spectrometry become
sensitive enough to enable the direct (un)targeted character-
ization of proteins in single cells. The current state of single-
cell mass spectrometry has been the focus of several reviews
lately (see examples in refs 35—46); therefore, the following
discussions are intended to only provide glimpses of
developments that showcase emerging applications and
developmental opportunities in proteomics and metabolomics
of single cells.

Mass cytometry (CyTOF)’ has enabled the screening of
known proteins among single cells in record throughput. This
technology leverages heavy-metal conjugated antibodies to
recognize surface receptors on cells as well as intracellular
signaling molecules, which are then separated by flow
cytometry, atomized and ionized in an inductively coupled
plasma, and the generated heavy-metal ions are detected in a
mass spectrometer with a capability for multiplexing (up to
~40 labels currently). Wang et al. revealed three major clusters
of beta cells within the human endocrine pancreas. From these
three clusters, two consisted of proliferating cells.*” Addition-
ally, the technology was used to obtain a detailed view of
immune system regeneration by measuring overall immune cell
population variation over time in individual patients after
allogeneic stem cell transplantation®® to identify early
reprogramming regulators in induced pluripotent stem cell
reprogramming systems'  and for the high-throughput
quantitation of inorganic nanoparticle biodistribution in
mouse lymph node cells.’” CyTOF presents new directions
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in single-cell proteomics for studies in which known proteins
need analysis and functioning, high-fidelity antibodies are
available for the proteins of interest.

Single-Cell Proteomics by Mass Spectrometry. Label-
free proteomics provides unbiased and quantitative character-
ization of large numbers of proteins in single cells without a
requirement for known proteins or probes (e.g.,, no antibodies
needed). Detection of abundant proteins (a and f globulins)
in individual erythrocytes by capillary electrophoresis (CE)—
MS®' ™% raised the promise of MS-based proteomics for single
cells already in the mid-1990s. However, without molecular
amplification feasible for the whole proteome, label-free
detection of hundreds-to-thousands of proteins required
major leaps in MS sensitivity. To fill these technological
gaps, Nemes et al. have pioneered custom-built microanalytical
CE platforms®>**** for 1dent1fy1ng proteins by high-resolution
MS at ultrahigh sensitivity.”® Lombard et al. has identified
~1 709 different protein groups, including several transcription
factors, in identified cells that were dissected from 16-cell X.
laevis embryos,”’ marking the first example of large-scale
identification of proteins in single cells in MS. The Nemes
group has uncovered previously unknown proteomic differ-
ences between cells that occupy the dorsal-ventral and animal-
vegetal axes of the 16-cell X. laevis embryo,”” which were
undetectable at the level of transcription and even found
evidence for proteomic differences between cells fated to give
rise to neural tissue in the frog (intracell type heterogeneity).>*
Choi et al. has develo ed specialized CE- electrospray
ionization (ESI) interfaces™ and microanalytical workflows®
toward detecting proteins from single neurons in the mouse
brain, opening a door to the molecular characterization of cell
types in the mammalian brain (unpublished). These
developmental milestones essentially laid the foundation for
single-cell proteomics using MS.*°

They also spurred the development of other innovative
technologies and methodologies. Sun et al. have demonstrated
that whole-cell dissection of identified cells in X. laevis (recall
ref 57) can be integrated with conventional liquid chromatog-
raphy—MS to identify proteins in frog embryos,’" albeit at

lower sensitivity than CE—MS. To minimize peptide losses, Shi
et al. used abundant (carrier) protems, thus enhancing protein
detection to 200 000 copies per cell.”> Budnik et al. developed
Single Cell ProtEomics by Mass Spectrometry (SCoPE-MS) as
an alternative, in which peptides from single cells as well as a
population of cells (pooled) were individually barcoded and
mixed to boost sequence coverage for peptides while using the
reporter ions for relative quantification of protein levels
between the dissociated single cells.* The technology has
demonstrated a utility in quantifying thousands of proteins in
single differentiating cells, complementing information on gene
expression using single-cell transcriptomics. Zhu et al.
introduced nanoPOTS (nanodroplet processing in one pot
for trace samples), a microfabricated platform, capable of
minimizing peptide losses by miniaturization, enabling the
identification of ~1 500— 3000 protein groups from ~10
cultured mammalian cells.”> Most recently, Lombard et al.
have integrated subcellular capillary microsampling with CE—
ESI-MS to enable, for the first time, proteomics in single
identified cells directly in complex tissues, including live
embryos of X. luews and zebrafish, without necessitating whole-
cell dissection.”* Quantification of ~800 protein groups in
subcellular sampling has revealed previously unknown
reorganization of the single-cell proteome as the midline
dorsal-animal cell gave rise to is neural-tissue fated cell clone in
the live frog embryo.

Next to CE—ESI-MS-based platforms to characterize
proteins in single cells, nano-LC—MS/MS is widely used in
proteome analysis. For instance, a combination of fluores-
cence-activated cell sorting and ultrasensitive nano-LC—MS/
MS was used to identify specific protein markers for ep1thehal
and mesenchymal cells in human lung primary cells.®
Additionally, integrated single HeLa cell proteomic analysis
covered a maximum of 328 proteins by using a recently
developed Orbitrap Fusion Tribrid MS. This integrated
proteomic analysis device (the i-PAD1) clearly demonstrated
cellular heterogeneity of the proteome at the single-cell level.*®
These and ongoing technological developments (see reviews)
are heralding a new era of systems cell biology by enabling the
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label-free quantification of large numbers of proteins and
complementing single-cell transcriptomics.

B SINGLE-CELL METABOLOMICS

In order to achieve a comprehensive characterization of single-
cell metabolic dynamics, analytical techniques are required that
perform quantitative analyses with high sensitivity, accuracy,
and precision. In this context, MS emerged as the eminent
method of choice in single-cell metabolic studies®” (Figure 2).
Recent advances have provided MS with the necessary
sensitivity to detect many metabolites in single cells, thus
providing molecular information to complement data from
single-cell transcriptomics and single-cell proteomics. In this
section, we selected representative single-cell MS technologies
for metabolomics studies.

Matrix-Assisted Laser Desorption/lonization (MALDI).
Matrix-assisted laser desorption/ionization (MALDI) is a soft
ionization method used for biological mass spectrometry. It has
become well-established in -omics studies as it requires low
sample consumption and minimal sample handling and
fragmentation and offers high sensitivity. Fundamentally,
MALDI works by incorporating analytes into organic matrixes,
and upon irradiation of the sample with a pulsed laser, analytes
are ionized and accelerated to a mass spectrometer analyzer.”®
Typically, a time-of-flight-MS (TOF-MS) is used owing to its
exceptional acquisition rates and dynamic range. Moreover,
these spectrometers offer high sensitivity, resolving power, and
mass accuracy, thus facilitating characterization of metabolites.
MALDI-MS has previously been used in single-cell analyses as
well as multidimensional imaégin% of metabolic dynamics in
cellular and subcellular space.”~"* For instance, the utility of
MALDI-MS for tracing intracellular metabolic dynamics was
investigated by Yukihira et al., who observed a time-dependent
(7 min) rapid relief of glucose limitation in Escherichia coli
during environmental carbon source perturbation.”” Further-
more, Duenas et al. were the first to apply MALDI-MS for 3D
chemical imaging of single-cell lipid dynamics during the
embryonic development of zebrafish. They revealed that the
dimensional spatial distribution of phospholipids and ceramide
containing lipids in embryos at the 1-, 2-, 4-, 8-, and 16-cell
stage had heterogeneous localization.”” Moreover, microarrays
for mass spectrometry (MAMS, a type of substrate for
MALDI-MS) were used to automatically isolate single cells
in a spatially organized matrix by using hydrophilic reservoirs.
This approach enabled the successful monitoring of time-
dependent (time scale, 0, S, and 10 min) glycolytic metabolite
change in environmentally (2-deoxy-p-glucose) and genetically
(APFK2) perturbed Saccharomyces cerevisiae (yeast) cells at
the single-cell level.”*

One of the main limitations of MALDI-MS in single-cell
metabolomics is signal suppression by low-mass ions (typically,
m/z < 700) used in matrix preparation such as 2,5-
dihydroxybenzoic acid (DHB) and @-cyano-4-hydroxycinnam-
ic acid (CHCA)), resulting in difficulties to reliably measure
low-molecular-weight metabolites.”> One potent approach
proposed to circumvent this limitation is the use of matrix-
free jonization methods, including laser desorption/ionization,
based on nanophotonic effects. Nanostructures such as silicon
nanopost arrays (NAPAs) substitute conventual matrixes and
act as nanoantennae that harvest light from the laser leading to
subsequent ionization of the sample.”” NAPA-MS has already
been used to detect intra- and interpopulation metabolic
differences between stressed and control microbial cells.”” A

recently developed method that combines fluidic force
microscopy, and MALDI-MS has been shown to be a potent
tool for live analysis of the single-cell metabolome under
physiological conditions.”®

Secondary lon Mass Spectrometry Imaging Techni-
ques. Secondary ion mass spectrometry (SIMS) has become
an increasingly popular technique to measure metabolites at
single-cell and subcellular resolution. In the SIMS modality, a
focused primary pulsed ion beam is used to bombard a sample,
ejecting secondary ions from the sample surface that are
subsequently measured using a mass spectrometer. SIMS
imaging modalities offer micrometer to nanometer scale lateral
spatial resolution and combined with TOF-MS detection make
these techniques highly suitable for measuring metabolic
profiles of endogenous and exogenous species in the
subcellular space. This was demonstrated by Kurczy et al
who followed lipid domain formation in the membrane of the
unicellular organism Tetrahymena thermophile.”” Moreover,
nanoscale SIMS (NanoSIMS), which combines high spatial
resolution with simultaneous detection of both heavy and light
elements, was used by Wedlock et al. to image a new group of
platinum-based chemotherapeutics, triplatin, in MCF7 breast
cancer cells. This approach enabled the successful monitoring
of internalization and nucleolar targeting of the drug in a time
span of 2 h.* Another study used a combination of NanoSIMS
with stable isotope monitoring to track the proliferation of
cardiomyocytes. *N labeling of thymidine and its incorpo-
ration into the DNA of young adult transgenic C57Bl/6 male
mice revealed that genesis of cardiomyocytes occurs at a low
rate (approximately 0.76%/year) and that cell division
originated from pre-existing cardiomyocytes.”'

One of the major drawbacks of SIMS-based techniques lies
in obtaining structural information on analytes. The recently
developed commercial parallel imaging MS/MS instrument, in
which a triple electrostatic sector TOF analyzer for desired
mass range measurements is coupled to an MS/MS analyzer
for target identification, significantly improved the acquirement
of structural information on analytes.*> Moreover, another
recent instrument that has greatly facilitated metabolite
identification is the MALDI/Buckyball TOF-SIMS dual ion
source instrument that combines high spatial imaging and a
capability for intact ion generation with MS/MS cell to image
and identify biomolecules (small and large) in one single
instrument.”> This C60-SIMS/MALDI dual ion source MS
revealed the spatial distribution of intact biomolecules in
mammalian spinal cord samples as well as networks of cultured
neurons from Aplysia californica.

Direct Infusion Mass Spectrometry Analysis. Direct
infusion mass spectrometry (DI-MS) analysis is based on the
direct injection or infusion of sample mixtures into the
ionization source of the mass spectrometer without prior
chromatographic separation. Fundamentally, DI-MS utilizes
the electrospray ionization (ESI) technique to ionize the
sample of interest. The ambient conditions with minimal prior
handling in DI-ESI-MS minimize disruption of the cell and its
metabolome, which is often not the case in other soft
ionization techniques, such as MALDL** An application of DI-
ESI-MS is live single-cell video MS (L-SC-MS), in which
sample analytes are dispersed into charged droplets followed
by subsequent ionization. Recently, this method has been used
to localize terpenoid indole alkaloids in specific cell types from
Catharanthus roseus stem tissues”” and for the qguantiﬁcation of
amino acids and phospholipids in cheek cells.”® Additionally,
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this method enabled successful detection of heterogeneity in
tafluprost (drug used for glaucoma) metabolite profiles in
primary human hepatocytes at the single-cell level.”’

Pan et al. recently developed the Single-probe, a
minijaturized multifunctional sampling and ionization device
coupled to a MS. This device is based on a continuous sample
extraction system through a finely pulled theta-capillary pipette
and has successfully been used for the absolute, dynamic
quantification of lipids, metabolites, and anticancer drugs in
HeLa cells.”® Another interesting platform involves the
integration of microfluidic surface sampling with ESI-MS by
a dual probe microchip. This platform, which is based on
combining a sample probe for providing a sample extraction
buffer with an emitter probe to ionize the sample, has
substantially improved the analytical performance of ambient
MS methods.*”

Separation-Based MS Approaches. Separation aids
single-cell metabolomics by improving sensitivity, removing
spectral interferences, and providing compound-dependent
information to aid molecular identifications using MS. For
instance, El Azzouny et al. used HPLC—TOEF-MS to probe the
effects of S-aminoimidazole-4-carboxamide ribonucleotide
(AICAR) on the synthesis of glycerolipids, ceramides, and
nucleotides in INS-1 cells (f-cells). They were able to measure
the change in 66 metabolites in the presence or absence of
AICAR using different stable isotopic labeled nutrients to
probe selected pathways.”” Moreover, a recent study identified
VOC profiles from single cells that were isolated from lung
cancer cell lines using GC/MS.”' The study revealed that
single cells of lung cancer have unique (volatile) molecular
prints, of which 18 VOCs showed significant changes in their
concentration levels in tumor cells versus control.

Capillary electrophoresis (CE) has achieved considerable
success in profiling metabolites in single cells.”” The Sweedler
and Nemes laboratories have custom-built microanalytical
CE—ESI platforms capable of detecting hundreds of
metabolites with low tens of attomoles of sensitivity (reviewed
in refs 54, 93, and 94) in single identified neurons dissected
from the sea slug (Aplysia californica)®”> rat ganglion,”* and
electrophysiologically identified neurons in the rat brain’™ as
well as single identified embryonic cells isolated from 8-~
and 16-cell”® embryos of the South African clawed frog. The
metabolic profiles quantified during these studies allowed the

13319

researchers to uncover metabolic changes as neurons were
exposed to culture'” and even discover metabolites capable of
altering the normal tissue fates of embryonic cells.”> Moreover,
a more recent study, for the first time, demonstrated the in situ
characterization of metabolic cell heterogeneity directly in 8- to
32-cell live Xenopus laevis embryos."'"

B SINGLE-CELL PHENOTYPIC ANALYSIS

Until recently, stochastic variability was considered to have
negligible effects due to averaging of the myriad biochemical
events involved in cellular metabolism. However, a recent
study by Kiviet et al. showed that fluctuations in the expression
of flux-limiting catabolic enzymes propagate into fluxes
through metabolic pathways/networks, eventually inducing
changes in a cell’s growth rate'®* (Figure 3a). These changes in
cellular growth rate, in turn, affect the expression of other
genes, many being unrelated. Indeed, the expression of genes
requires many building blocks such as amino acids and ATP,
which are produced by the metabolic machinery (Figure 3b).
These results indicate that molecular noise propagated by
single metabolic enzymes can affect the entire cellular
metabolism and expression of genes, suggesting that cellular
metabolism is inherently stochastic. Such metabolic stochas-
ticity can affect many cellular properties such as cell size and
the cell cycle and, for instance, require compensatory
mechanisms to maintain homeostasis."*>'**

Thomas et al. developed a stochastic cell model of bacterial
dynamics, based on biochemical kinetics, to identify the
potential sources of fluctuations in cell growth and to
understand how these fluctuations eventually lead to
phenotypic heterogeneity. Their model allowed statistical
characterization of the macromolecular composition, growth
rate, and mass of single bacterial cells. The model revealed that
dynamics of mRNAs coding for nutrient transporters and
enzymes is a major source of fluctuations occurring in the
growth rate. Fluctuations in growth rate, in turn, propagated
noise to other processes such as nutrient uptake and
catabolism.'*

Detection of fluctuations in metabolic dynamics due to
stochastic influences requires following single-cell metabolic
dynamics in real-time. One of the most common approaches to
follow single-cell dynamics in real-time is the use of techniques
based on the measurement of single-cell fluorescent protein

DOI: 10.1021/acs.analchem.9b02410
Anal. Chem. 2019, 91, 13314-13323


http://dx.doi.org/10.1021/acs.analchem.9b02410

Analytical Chemistry

markers. For instance, in the Kiviet et al. study, expression
fluctuations of metabolic enzymes were measured by
fluorescent labeling, while the growth fluctuations were
quantified by image analysis of time-lapse movies. Zhang et
al. developed a method to measure NAD(P)H levels
dynamically in single live E. coli cells using the autofluor-
escence of NAD(P)H. The method consists of a microfluidic
device for culturing E. coli combined with UVA-optimized
microscopy equipment, allowing the determination of NAD(P)
H levels in single E. coli cells at a 10 min resolution for more
than 20 h. Using this method, they revealed that intracellular
NAD(P)H levels oscillate along the bacterial cell division cycle,
suggesting fluctuations in metabolic activity during E. coli
proliferation.' % Besides, advances in genetically encoded ATP
biosensors have allowed researchers to follow fluctuations in
ATP levels in real-time at the single-cell level and characterize
corresponding effects at the cellular, tissue, and organismal
level. Among others, Arai et al. developed a multicolor palette
of ATP single fluorescent proteins, which enabled them to
simultaneously visualize subcellular ATP dynamics in the
cytoplasm and mitochondria of mammalian, plant, and worm
single-cells.'”” Depoali et al. utilized Forster resonance energy
transfer (FRET)-based ATP probes targeted to mitochondria,
endoplasmic reticulum (ER), and cytosol of cancer cells in
order to investigate the dynamics of intracellular ATP pools in
response to acute glucose depletion, glucose substitution, as
well as mitochondrial toxins.'”® Another example of an
advanced fluorescent biosensor, PercevalHR, was reported by
Tantama et al. which was utilized for real-time measurements
of the ATP/ADP ratios in neurons and astrocytes. They
observed activity-dependent changes in neuronal ATP/ADP
ratios that could be correlated to potassium ATP single-
channel activity in the cell-attached configuration.'””

Cells can also be cultured on a surface while monitoring
variations in the rate of cellular growth and gene expression
using quantitative fluorescent time-lapse microscopy (QFTM)
to follow single-cell metabolic dynamics in time. This
technique is based on the measurement of fluorescent protein
markers of gene expression while recording microscopic image
sequences of cell growth. For instance, a recent study showed
significant cell-to-cell heterogeneity in the three major
processes of metabolism (catabolism, anabolism, nutrient
uptake) by measuring metabolic activities and growth kinetics
of starved E. coli cells subject to nutrient upshift at single-cell
resolution.' "’

Jing et al. developed a microfluidic cell volume sensor to
measure single-cell phenotypic growth heterogeneity in
Saccharomyces cerevisiae. This strain of budding yeast that can
exhibit a high or a low expression state of the PDFRS gene
(coding for a transmembrane pump) was used to measure the
fitness of individual cells in normal and cytotoxic conditions.
Their microfluidic platform revealed an inhibited growth
response of low PDFRS expressing yeasts in a cytotoxic
environment, whereas the high PDRFS expressing yeasts
showed a higher fitness. Therefore, their microfluidic cell
volume sensor was successfully used for characterizing the
growth response and fitness of single cells in different
environments.' '

A label-free approach was developed by Lombard et al.,, who
did single-cell proteomics on live cells in Xenopus embryos to
uncover proteomic reorganization as an identified embryonic
cell gave rise to the neural tissue fated cell clone.”*

At last, metabolite abundance can be tracked in time by

. 112
spectroscopic methods such as Raman spectroscopy. ~ For
instance, Kang et al. used a combination of Raman spectros-
copy with fluorescent microscopy to track efficient and
localized drug transportation in squamous carcinoma cells.'"”

H OUTLOOK

Over the past decade, the interdisciplinary integration of
analytical chemistry and biology has spurred the development
of several technologies to identify heterogeneities in cell
populations. This Feature provides just a few select examples
for such developments in bioanalytical NMR, MS, and optical
spectroscopy that have enabled the characterization of
transcripts, proteins, peptides, metabolites, and elements in
single cells in important models of basic biological and
translational investigations. Among other developments, we
would like to point to single-cell metallomics, the studies that
determine the trace metals and the metal complexes within a
cell that are critically important in biological processes
including metabolic signaling (see, e.g., refs 114 and 115 and
energy-dispersive X-ray analysis-electron microscopy (EDX-
EM)), which allows interpretation of macromolecular
functionality by analyzing endogenous elements, labels (gold
and cadmium-based nanoparticles), as well as stains at
nanometer resolution.'® Other recent developments include
NanoString gene expression profiling, which provides a highly
sensitive alternative to scRNA-seq for quantitative transcri?—
tional profiling for a predefined set of genes of interest,"'”""*
and cryoelectron microscopy (cryoEM), which has the
potential to uncover the dynamics of macromolecular
machines at the single-cell level.''”'*" The data resulting
from the above-mentioned studies have already begun to
uncover previously unavailable molecular information on cell-
to-cell differences during states of health and disease, which in
turn can now be used to design hypothesis-driven studies to
test for the functional significance of the observed molecular
differences between cells. Moreover, we antici?ate that
automation and commercialization (e.g., CyTOF12 ) as well
as development of specialized software packages to recognize
minuscule signals (e.g, TRACE'**) will bring these bio-
analytical technologies from select laboratories to many
investigators, thus promoting a new era of interdisciplinary
research to understand the basic building block of life: the cell.
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