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Abstract. Reservoir storage helps manage hydrological variability, increasing predictability and 9 

productivity of water supply. However, there are inevitable tradeoffs, with control of high 10 

frequency variability coming at the expense of robustness to low frequency variability.  Tightly 11 

controlling variability can reduce incentives to maintain adaptive capacity needed during events 12 

that exceed design thresholds. With multiple dimensions of change projected for many water 13 

supply systems globally, increased knowledge on the role of design and operational choices in 14 

balancing short-term control and long-term adaptability is needed. Here we investigated how the 15 

scale of reservoir storage (relative to demands and streamflow variability) and reservoir operating 16 

rules interact to mitigate shortage risk under changing supplies and/or demands. To address these 17 

questions, we examined three water supply systems that have faced changing conditions: the 18 

Colorado River in the Western United States, the Melbourne Water Supply System in Southeastern 19 

Australia, and the Western Cape Water Supply System in South Africa. Moreover, we 20 

parameterize a sociohydrological model of reservoir dynamics using time series from the three 21 

case studies above. We then used the model to explore the impacts of storage and operational rules. 22 

We found that larger storage volumes lead to a greater time before the shortage is observed, but 23 

that this time is not consistently used for adaptation. Additionally, our modeling results show that 24 

operating rules that trigger withdrawal decreases sooner tend to increase the probability of an 25 
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adaptive response; the findings from this model are bolstered by the three case studies. While there 26 

are many factors influencing the response to water stress, our results demonstrate the importance 27 

of: i) evaluating design and operational choices in concert, and ii) examining the role of 28 

information salience in adapting water supply systems to changing conditions. 29 

 30 
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 32 

1.0 Introduction 33 

A prolonged drought affected the Western Cape region (South Africa) region from 2014 to 2017 34 

and the city of Cape Town experienced an extreme water crisis approaching “Day Zero”, i.e. when 35 

there would be no stored water to deliver (Otto et al., 2018). A couple of years before, between 36 

2014 and 2015, extended areas of Sao Paolo (Brazil) received water only two days per week during 37 

a severe, but not unprecedented, drought (Muller, 2018; Otto et al., 2015). In both cases, extensive 38 

systems of reservoirs, aqueducts, canals and pumps, engineered to reliably supply water, along 39 

with the organizations responsible for management and operation, were unable to meet water 40 

demands during extreme drought conditions (Otto et al., 2018, 2015).  41 

Increasing variability of streamflow and growing water consumption intensify the risk of water 42 

stress and shortage (K. P. Georgakakos et al., 2012; Rodell et al., 2018; Vorosmarty et al., 2000). 43 

Since reservoirs are typically designed based on historic conditions, their ability to buffer 44 

streamflow variability is expected to decline in the coming decades (A. P. Georgakakos et al., 45 

2012). In addition to reducing the impacts of streamflow variability, the buffer provided by 46 

reservoirs can maintain stability in water supply as conditions change. For example, as demands 47 
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increase, stored water mitigates the risk of water shortage and allows time for adaptive actions 48 

such as demand management or acquisition of new supplies. Similarly, they can provide a buffer 49 

as changes in climate or upstream developments increase the variability of streamflow or reduce 50 

average streamflow. The performance of reservoir systems is influenced not only by the designed 51 

characteristics of the physical infrastructure, but also by the reservoir operating rules that guide 52 

reservoir managers in balancing multiple objectives, including maximizing present benefits while 53 

minimizing future risks (You and Cai, 2008a). 54 

Under conditions of low streamflow or high demand, reservoir operators must determine how to 55 

balance present and future impacts of water shortage. There are multiple ways of formulating this 56 

decision problem. Bower et al. (1962) developed one approach known as standard operating policy 57 

(SOP). Under SOP the releases are made as close to the quantity demanded as feasible (You and 58 

Cai, 2008a). SOP is the optimal policy to minimize the expected cost of water shortages when the 59 

cost function is linear. However, the cost of water shortage often increases non-linearly (Draper 60 

and Lund, 2004; Gal, 1979). Hedging policy responds to the fact that large shortages have 61 

disproportionate impacts by accepting a small reduction in releases to reduce the risk of a severe 62 

shortage later (Bower et al., 1962). SOP results in lower shortage frequency while hedging results 63 

in a lower maximum shortage magnitude (Cancelliere et al., 1998). There are many forms of 64 

hedging which vary in both complexity and goals including policies developed for multi-reservoir 65 

systems and to meet ecosystem goals (Adams et al., 2017; Zeng et al., 2014). Simply put, both 66 

SOP and hedging identify conditions which trigger a reduction in releases and specify the degree 67 

of reduction as a function of the system state, serving as a feedback controller for the system.  68 

[Figure 1] 69 
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Controlling variability aims to increase predictability and productivity (Anderies, 2015). 70 

Reservoirs combine two approaches for controlling variability: a modification of system structure 71 

(i.e. the addition of storage) and feedback control which acts to reduce variability (i.e. the 72 

operational rules) ([Figure 1). In particular, the combination of structural and feedback approaches, 73 

such as those applied in reservoir systems, is very effective at reducing high frequency variability. 74 

However, there are inevitable tradeoffs, with control of high frequency variability coming at the 75 

expense of robustness to low frequency variability (Bode, 1945; Csete and Doyle, 2002). Examples 76 

of tradeoffs that have been identified in water systems are the levee effects and other safe 77 

development paradoxes (Burton et al., 1968; Di Baldassarre et al., 2018; Viglione et al., 2014). 78 

Research in social-ecological systems suggests that tightly controlling short-term variability 79 

generates fragilities in the long-term by suppressing information needed for adaptation (Carpenter 80 

et al., 2015). Ecological systems are not a perfect analogy for heavily engineered-human 81 

dominated systems. In contrast to ecological systems, in engineered systems information can be 82 

deliberately collected and directed to key decision makers or archived for later use.  83 

Information on the state of the system is necessary, but insufficient, to inform response to changing 84 

conditions. Just as a thermostat senses the temperature and compares it to the goal temperature to 85 

determine when to heat or cool a space, operators use information on the state of water supply 86 

system (e.g. current demands, volume of stored water, forecasted inflows) to inform actions such 87 

as water withdrawals and opening spillways. However, when it comes to changing the rules (e.g. 88 

enacting new demand management policies, altering reservoir operating rules) the availability of 89 

information is insufficient as rule change requires aligning attention and resources in a policy 90 

making environment with competing priorities and limited resources. Adaptive action can be both 91 

financially and politically costly, creating incentives to delay response to changing conditions. 92 
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Even in cases where the need for change is acknowledged (e.g. Tenney, 2018), it can be 93 

challenging to act because substantial policy change requires political and financial support as well 94 

as a technical motivation (Garcia et al., 2019; Treuer et al., 2017). In other words, to overcome 95 

policy making inertia the information must be both available and salient (Eshbaugh-Soha, 2006).  96 

Salience refers to the observation that when attention is directed to one part of the environment, 97 

that part is given disproportionate weight in decision making (Kahneman and Tversky, 1979). The 98 

concept of salience is valuable in understanding the link between a change in water demand or 99 

supply and policy action because increasing the salience of an issue can change policy makers’ 100 

and consumers’ cost benefit calculation under risk (Bordalo et al., 2012). Research on stochastic 101 

environmental processes, such as flooding or wildfire, shows that the occurrence of extreme events 102 

redirects attention, increasing the weigh these risks are given in decision making (Dessaint and 103 

Matray, 2015; Hand et al., 2015). In the water supply sector, increased water issue salience is 104 

positively correlated with the implementation of demand management policies and lower per 105 

capita water demand (Garcia and Islam, 2019; Quesnel and Ajami, 2017).   106 

Water supply systems are multi-level systems within a nested, hierarchical structure with multiple 107 

subsystems operating at a range of scales (Ostrom and Janssen, 2005; Pahl-Wostl, 2009). 108 

Intervention at one level in the system to control the variability of key flows reduces the incentives 109 

for investment in adaptive capacity elsewhere in the system (Burton et al., 1968; White, 1945), 110 

though information related rules and norms influence these decisions. Adaptive capacity in the 111 

water supply systems takes many forms across system levels, from household storage tanks and 112 

farm grain stores to regional levee and reservoir systems. Large-scale reservoirs decrease the 113 

variability of streamflow enabling lower variability in agriculture, industrial production, and 114 

domestic water service, altering the incentives to invest in and maintain adaptive capacity at other 115 
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levels (Di Baldassarre et al., 2018). In other words, reservoirs are embedded in ecological and 116 

social systems that become fine-tuned for efficiency at a low level of variability (Carlson and 117 

Doyle, 2002). Under changing conditions, many reservoir systems will reach a threshold beyond 118 

which they can no longer attenuate as much variability, and will pass along greater variability to 119 

other levels of the system.  120 

Reservoirs, as intended, decrease the frequency of drought impacts on water usage and can 121 

temporarily mask reductions in reliability by providing a buffer as the ratio of demands-to-supplies 122 

rises, or variability increases, by delaying impact. Even when information on supply and/or 123 

demand change is available to decision makers, it may have lower salience as impacts are differed 124 

and delay adaptive action. This delay increases the scale of corrective action needed. Further, both 125 

infrastructure expansion and demand management policy can generate substantial opposition 126 

(Feldman, 2009; Muller, 2018), slowing and sometimes halting action. Delays are fundamental 127 

features of dynamical systems with storage and can have either positive or negative effects on 128 

system dynamics. Delays can cause oscillation (overshooting of system capacity and subsequent 129 

overcorrection) and instability, or moderate variability and allow decision makers time to respond 130 

to change (Sterman, 2000). In sum, reservoirs both buffer variability and postpone response by 131 

delaying information and impact (Garcia et al., 2016). Importantly, the rules and norms on 132 

information collection, information processing and decision making shape these tradeoffs, and 133 

how environmental variability shapes policy change (Anderies et al., 2018). Reservoir operating 134 

rules are one example of the set of rules and norms shaping this relationship. The tradeoffs in 135 

tightly controlling hydrological variability with reservoirs combined with the role of rules in 136 

shaping those tradeoffs, motivates this analysis and raises questions about how decisions made in 137 

designing the reservoir and its operating rules influence this phenomenon. In this paper, we address 138 
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two specific questions: 1) How does the scale of reservoir storage (relative to demands and 139 

streamflow variability) affect long-term reliability? 2) How do reservoir operating rules in place 140 

mitigate shortage risk under changing supplies and/or demands? We address these questions by 141 

applying a sociohydrological model to three cases of reservoir operation under change. After 142 

evaluating model adequacy through case application, we explore the model state space through a 143 

sensitivity analysis in order to address both questions in more general terms.  144 

This paper is organized as follows. First, we describe three cases to illustrate delay effects 145 

associated with reservoirs: the Colorado River Reservoir System, the Western Cape Water Supply 146 

System, and the Melbourne Water Supply Reservoir System. Second, we present a simple model 147 

of reservoir operations, which is applied to each case to analyze the effects of reservoir capacity 148 

and operation on long-term performance patterns. Then, we use the model to explore the state 149 

space through a sensitivity analysis. Lastly, we discuss the results and limitations of the study and 150 

summarize our conclusions.  151 

2.0 Case studies 152 

We address the research questions in the context of three cases: the Colorado River Reservoir 153 

System in the Western United States, Western Cape Water Supply System in Cape Town, South 154 

Africa, and the Melbourne Water Supply Reservoir System in Southeastern Australia. We have 155 

selected these cases to explore how infrastructure design (i.e. capacity) and policy choices (i.e. 156 

operational rules) interact in a range of scales, hydro-climatic regimes, and governance contexts 157 

using a sociohydrological model.  158 

2.1 Colorado River Reservoir System, Western United States  159 
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The Colorado River watershed spans 630,000 km2, including seven U.S. states and Mexico, and 160 

supplies water to more than 40 million people, irrigates 22,000 km2, and provides 4,200 megawatts 161 

of electricity generation capacity (USBR 2012). The watershed is predominately semi-arid, 162 

receiving an average precipitation around 400 mm/year (Christensen and Lettenmaier, 2007). 163 

There are numerous reservoirs on the main stem of the Colorado River with an approximate total 164 

capacity of 74,000 GL (60 Million acre-foot; MAF) or four times the average annual flow 165 

(Rajagopalan et al., 2009). Lake Mead (34,000 GL; 27.6 MAF) and Lake Powell (32,000 GL; 26.2 166 

MAF) are multipurpose reservoirs providing water supply, flood control and hydropower that 167 

together account for ~89% of the main stem storage capacity. The maximum surface area of these 168 

two reservoirs (Ares) is 1298 km2. 169 

The partitioning, use, and management of the Colorado River is governed by a collection of federal 170 

and state statutes, interstate compacts, international treaties, court decisions and contracts with the 171 

federal government known as the “Law of the River” (Morris et al., 1997). Water allocations to 172 

each of the basin states were set by the 1922 Colorado River Compact (USBR 1922) and the 1928 173 

Boulder Canyon Project Act, and Mexico’s allocation was set by the 1944 Mexican Water Treaty. 174 

These allocations, totaling 20,300 GL (16.5 MAF), were based average annual flow at Lees Ferry, 175 

Arizona of around 21,000 GL (17.0 MAF), which was computing using the early 20th century 176 

streamflow data available at the time and ignoring inconvenient evidence of historic droughts 177 

(Kuhn and Fleck, 2019; MacDonald, 2010).  178 

In the years since, it has become clear that the estimation of the long-term average flow was based 179 

on a historically wet period. The long-term average flow is currently estimated around 20,200 GL 180 

(16.4 MAF), which is less than the allocated quantity (USBR, 2012). For many years, this 181 

structural deficit was not obvious as some states were not using their full allocation. Growing 182 
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demand brought the structural deficit to light, especially during drought. Note water use in Figure 183 

1c does include Mexico’s water use as the population data was not available. Between 2000 and 184 

2014, river flows have been 19% below the 1906-1999 average ([Figure 2a) (Udall and Overpeck, 185 

2017). In response, the basin states negotiated the 2007 Interim Guidelines for Lower Basin 186 

Shortages which allocated shortages among the basin states and incentivized conservation (Grant, 187 

2008). The shortage guidelines effectively reduced water use, but reservoir levels continued to fall 188 

as the drought persisted. By the beginning of 2018, Lakes Mead and Powell were collectively 35% 189 

full, compared to 70% full in 2000 (Figure 2b). The U.S. Bureau of Reclamation responsible for 190 

operating the river’s water supply reservoirs has warned that without action the Lake Mead could 191 

drop to dead storage by the mid-2020’s (James, 2018). The basin states negotiated a temporary 192 

drought contingency plan in 2019 (Sullivan et al., 2019). However, an estimated 1/6 to 1/2 of the 193 

decrease in streamflow during the 2000’s drought is due to above average temperatures and 194 

projections of a continued rise in temperature increase the possibility of long-term streamflow 195 

decline or aridification in the basin (Udall and Overpeck, 2017). Given this potential, and the 196 

structural deficit, more than a temporary drought plan is needed to restore stability to the basin in 197 

the long-term.  198 

[Figure 2 (Maupin et al., 2018; US Bureau of Reclamation, 2019, 2016, 2012)] 199 

2.2 Melbourne Water Supply Reservoir System, Southeastern Australia 200 

Melbourne is the capital of the State of Victoria in south-eastern Australia. The city is located 201 

beside the large Port Philip Bay approximately 60 km from the sea. It extends toward the 202 

Dandenong and the Macedon Ranges, the Mornington Peninsula and the Yarra Valleyrise. The 203 

annual rainfall is about 660 mm evenly distributed through the year, with a slight maximum in 204 

October (Zhou et al., 2000). 205 
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Water for consumption in Victoria is withdrawn from reservoirs, streams and aquifers under 206 

entitlements issued by the Victorian Government and authorized under the Water Act 1989 207 

(Victoria State Government, 1989) ([Figure 3a,b). The water supply system for Melbourne relies 208 

on 10 storage reservoirs with a total capacity of 1,812 GL. The maximum surface area of these 209 

reservoirs (Ares) is 241 km2. There are two types of storage reservoir: i) on-stream reservoirs and 210 

ii) off-stream reservoirs, which receive water transferred from on-stream reservoirs or other 211 

sources.  212 

Melbourne is the second most populous city of Australia and its water supply history is an example 213 

of how reservoir expansions can enable increased water consumptions (Di Baldassarre et al., 214 

2018), ([Figure 3d). The Thomson Reservoir is the most recent and was built to “drought-proof” 215 

Melbourne, after a period of drought occurred in the years 1982-1983, by increasing storage 216 

capacity of 250%.  217 

The Millennium Drought occurred in the period 2001-2009, [Figure 3a, and it was the worst 218 

drought on record for southeast Australia (Van Dijk et al., 2013). The river ecosystems and 219 

irrigated dryland agriculture in Victoria and the Murray-Darling were especially hard hit (Leblanc 220 

et al., 2012). The drought contributed to compulsory water restrictions, increased electricity prices 221 

and major bushfires. The Australian Bureau of Agricultural and Resource Economics and Science 222 

estimated that annual drought losses exceeded A$5 billion from 2006 to 2007 in terms of the gross 223 

value of agricultural production (Australian Bureau of Agricultural Resource Economics, 2008). 224 

The drought also had a social cost, e.g. 6000 jobs were lost, and farmers were increasingly 225 

suffering from depression and exhaustion (Sherval et al., 2014). In the Melbourne metropolitan 226 

area, different strategies to decrease demand and increase the supply were pursued. For instance, 227 

desalination and water recycling plants were built ([Figure 3c). Water use restrictions included 228 
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banning consumptive activities (e.g., car washing) and promoting more efficient water use (e.g., 229 

requirements for shutoff valves on hoses). Besides these temporary restrictions the Victoria 230 

Uniform Drought Water Restrictions Guidelines outlined permanent restrictions (Low et al., 231 

2015).  232 

[Figure 3 (Melbourne Water, 2020)] 233 

2.3 Western Cape Water Supply System, South Africa 234 

The metropolitan area of Cape Town is located on the Cape Peninsula within the Cape Floristic 235 

Region of South Africa. Most of Cape Town's suburbs are within the large flat plain that joins the 236 

Cape Peninsula with the mainland, i.e. the Cape Flats neighborhood. The geology of the region 237 

consists of a rising marine plain. The climate is Mediterranean, characterized by warm dry 238 

summers and cool, wet winters with strong winds. The nearby Table Mountain creates multiple 239 

local microclimates, with average annual rainfall ranging from about 400 mm in the wind‐swept 240 

Cape Flats to up to 1,000 mm in the nearby mountain slopes in and around Constantia (Brown and 241 

Magoba, 2009).  242 

The metropolitan area of Cape Town includes over 40 towns in South Africa. The population 243 

increased by approximately 64% since 1996 (Koopman and de Buys, 2018). It is estimated that 244 

about 14% of the total population lives in informal settlements either integrated in high-income 245 

suburbs or on the periphery of the city (Currie et al., 2017). The city’s water is supplied by the 246 

Western Cape Water Supply System, which includes six major reservoirs with a total storage 247 

capacity of 898 GL (99.6% of the total). The largest one is the Theewaterskloof Dam on the 248 

Sonderend River, with a storage capacity of 480 GL, equal to 41% of the total storage. The Berg 249 

River Dam, the most recent addition, completed in 2009, increased storage from 768 GL to the 250 
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present capacity. The maximum surface area of these reservoirs (Ares) is 67 km2. Some dams are 251 

managed by the National Department of Water and Sanitation (DWS) and some by the City of 252 

Cape Town (CCT).    253 

The 2015-2017 drought was the worst on record ([Figure 4a), Otto et al. (2018). The drought 254 

threatened to cut off tap water to around 4 million people (Figure 4c) as the water stress prompted 255 

the dramatic Day Zero narrative, attracting the attention at the national and international level. The 256 

drought was caused by the lowest rainfall since the 1880s (Wolski, 2018). The lack of rainfall 257 

caused a sharp drop of reservoir storage ([Figure 4b). To get through the drought, the DWS 258 

introduced restrictions to maintain dam levels above 15%, though water can be extracted to 10%. 259 

In 2016, the DWS initially imposed a 20% restriction on domestic and agriculture water use. 260 

Domestic water restriction was increased to 40% in October 2017 and then to 45% in December 261 

2017. Day Zero was estimated to be in April 2018, and the campaign to avoid it began in January 262 

2018. In February 2018, the water supply was limited to 50 liters per capita per day, leading people 263 

to queue to get water from sources, drill private boreholes, and buy bottled water. In March 2018, 264 

the mayor declared the CCT a disaster area. The reduction in water consumption, Figure 3c, 265 

prevented reservoir depletion. Then, the occurrence of rainfall replenished the dams, allowing to 266 

cancel the Day Zero campaign. The economic impact was estimated around US$200 million 267 

(Muller, 2018).  268 

[Figure 4 (City of Cape Town, 2019; Climate Systems Analysis Group, 2020; Department of 269 

Water and Sanitation City of Cape Town, n.d.; Koopman and de Buys, 2018)] 270 

3.0 Methodology 271 

The methodology is presented in three steps: model development, model scaling and model 272 

application.  273 
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 274 

3.1 Model Description  275 

The model described here is adapted from Garcia et al. (2016). Minor modifications are made to 276 

the withdrawal and population modules. The model can be applied with a range of time steps and 277 

is here applied with an annual time step. Streamflow, Q (L3T-1), is modeled using a first order 278 

autoregressive model (AR1), parameterized by mean (μH, L
3T-1), standard deviation (σH, L

3T-1), 279 

and lag one autocorrelation (ρH, unitless), Eq. 1. The final term, at (unitless) is a normally 280 

distributed random variable with a mean zero and a standard deviation of one. For three cases 281 

studies observed streamflow is used in place of modeled streamflow and the streamflow model 282 

would be adapted and adjusted as needed to reflect local streamflow patterns to explore projections 283 

or counterfactuals.  284 

𝑄𝑡 = 𝜌𝐻(𝑄𝑡−1 − 𝜇𝐻) + 𝜎𝐻(1 − 𝜌𝐻
2 )0.5𝑎𝑡 + 𝜇𝐻         (1) 285 

 286 

At each time step, the amount of water in storage, V (L3), in the reservoir is specified by a water 287 

balance equation where W is water withdrawal (L3T-1), Eq. 2. Dam reservoir evaporation in volume 288 

is given multiplying the evaporation in depth (LT-1) which is specific for each dam and the 289 

maximum area of the corresponding reservoirs, Ares (L2)  (Kohli and Frenken, 2015). For 290 

simplicity, the use of water for irrigation purposes is not considered separately (i.e. all water uses 291 

are lumped) and there is a single water user on the river (i.e. no competition or interaction amongst 292 

users).  293 

𝑑𝑉

𝑑𝑡
= 𝑄𝑡 − 𝑊𝑡 − 𝐸𝑡 𝐴𝑟𝑒𝑠         (2) 294 

The evaporation in depth E is estimated as:  295 
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𝐸𝑡 = 𝑓 𝑃𝐸𝑇           (3) 296 

Where f is a weighting factor (unitless) which is 1 for open water surfaces and PET (L T-1) is the 297 

monthly average potential evapotranspiration (L T-1), in turn estimated from the saturated water 298 

pressure esat (L
-1 M T-2, mbar for this empirical equation) (Dingman, 2015): 299 

𝑃𝐸𝑇𝑡 = 0.00409 𝑒𝑠𝑎𝑡,𝑡 = 0.00409 ∗ 6.11 exp [
17.3 𝑇𝑡

237.3+𝑇𝑡
]      (4) 300 

T is the monthly average air temperature (°C for this empirical equation) estimated for each site, 301 

applying the inverse distance weighted approach to all temperature stations in the proximity of the 302 

site.  303 

A modified logistic growth model is used to simulate population change. In absence of significant 304 

demand change, the population, P (persons), nears the carrying capacity as growth occurs, Eq. 5. 305 

However, the impact of this approach to carrying capacity (per capita demand, D (L3T-1), 306 

multiplied by P, and divided by μH) does not have a continuous influence on growth rates. Rather, 307 

the proximity to carrying capacity is not reflected in population time series during wet periods or 308 

when stored water is available for use. However, when shortages are occurring or have recently 309 

occurred this effect is hypothesized to be significant. To capture the effect, the carrying capacity 310 

term is multiplied by the shortage awareness, Mt. NG (T-1) is the average population growth rate.   311 

𝑑𝑃

𝑑𝑡
= 𝛿𝑁𝐺[1 − 𝑀𝑡𝑃𝑡𝐷𝑡/𝜇𝐻]𝑃𝑡          (5) 312 

 313 

Water withdrawals, W, are determined by the reservoir operating policy in use, Eq. 6. As there is 314 

only one source, water withdrawn is equivalent to the quantity supplied. We determine the 315 

withdrawal by employing linear hedging, where Kp is the slope of the release function (for further 316 
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background and illustrations see (Shih and Revelle, 1994; You and Cai, 2008a)). While simple, 317 

linear hedging is found to be effective under realistic approximations of the utility function (Draper 318 

and Lund, 2004). When the hedging slope, Kp (unitless), is 1 (equivalent to standard operating 319 

policy), water withdrawals are equivalent to demands except if the available water is insufficient 320 

to meet demands, in the latter case, all water available is withdrawn. When Kp > 1, reductions in 321 

withdrawals begin when available water is less than KpDP. If streamflow plus stored water 322 

exceeds reservoir capacity, excess water is discharged. T (T) is the reference time (here 1-year). 323 

𝑊𝑡 = {

𝑉𝑡/𝑇 + 𝑄𝑡−1 − 𝑉𝑀𝑎𝑥 /𝑇           𝑓𝑜𝑟 𝑉𝑡/𝑇 + 𝑄𝑡−1 ≥ 𝐷𝑡𝑃𝑡 + 𝑉𝑀𝑎𝑥/𝑇
𝐷𝑡𝑃𝑡                                         𝑓𝑜𝑟 𝐷𝑡𝑃𝑡 + 𝑉𝑀𝑎𝑥 >  𝑉𝑡 + 𝑄𝑡−1 ≥ 𝐾𝑃𝐷𝑡𝑃𝑡

𝑉𝑡/𝑇+𝑄𝑡−1

𝐾𝑃
                                                      𝑓𝑜𝑟 𝐾𝑃𝐷𝑡𝑃𝑡 > 𝑉𝑡/𝑇 + 𝑄𝑡−1

  (6) 324 

 325 

When the water withdrawal is less than the quantity demanded by the users, a shortage, S [L3 T-1], 326 

occurs.  327 

𝑆𝑡 = {
𝐷𝑡𝑃𝑡 − 𝑊𝑡   𝑓𝑜𝑟 𝐷𝑡𝑃𝑡 > 𝑊𝑡

0                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

         (7) 328 

 329 

There are three terms in the shortage salience, M (unitless), equation, Eq. 8. The first term is the 330 

shortage impact which is a convex function of the shortage volume. This term assumes that the 331 

least costly options to manage demand will be undertaken first and that the contribution of an event 332 

to shortage salience is proportional to the shortage cost. This portion of the equation includes D 333 

[L3T-1 person-1], per capita demand. At high levels of shortage salience only a large shortage will 334 

lead to a significant increase. The adaptation cost is multiplied by one minus the current shortage 335 

awareness to account for this effect. The third term in the equation incorporates the decay of 336 
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shortage salience, μS (T
-1), i.e. the decrease in attention to water shortage risk and its relevance to 337 

decision making that occurs over time (Di Baldassarre et al., 2013). M has a range from 0 to 1.  338 

𝑑𝑀

𝑑𝑡
= (

𝑆𝑡

𝐷𝑡𝑃𝑡
)

2
(1 − 𝑀𝑡) − 𝜇𝑆𝑀𝑡         (8) 339 

 340 

The last equation is the change in per capita water demand, Eq. 9. Here per capita water demand 341 

is the total demand in the reservoir system service area divided by population. It is inclusive of 342 

residential, industrial, and agricultural water usage. There are two parts to the per capita equation 343 

demand change equation: shock stimulated logistic decay with a maximum rate of α (T-1) and a 344 

background decay rate, β (T-1). The decrease of per capita water demand accelerates in a time 345 

interval if water users are motivated by recent personal experience with water shortage (i.e. M > 346 

0). As a certain amount of water is required for basic health and hygiene, there is ultimately a floor 347 

to water efficiencies, specified here as Dmin (L
3T-1). Reductions in per capita water usage become 348 

more challenging as this floor is approached; a logistic decay function is used to capture this effect. 349 

The background decay rate captures the increasing water efficiency observed in both urban and 350 

agricultural settings (Coomes et al., 2010; International Water Management Institute, 2007). Note 351 

that the background decay is context specific and in some cases it would not be relevant (such as 352 

a developing region with expanding per capita water use).  353 

𝑑𝐷

𝑑𝑡
= −𝐷𝑡 [𝑀𝑡𝛼 (1 −  

𝐷𝑚𝑖𝑛

𝐷𝑡
) + 𝛽]        (9) 354 

 355 

3.2 Model Scaling 356 
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Scaling is a technique to express a model in an equivalent dimensionless form (Anderies et al., 357 

2002). The key advantage of scaling analysis is that it reveals where combinations or ratios of 358 

parameters rather than single parameters control model behavior. Socio-hydrological systems of 359 

the same class vary widely. For example, reservoir-based water supply systems are present around 360 

the world, but vary significantly in scale (e.g. reservoir capacity, population size, total demand) 361 

and variability (e.g. streamflow and demand temporal variation). Scaled or dimensionless models 362 

of these systems can help to highlight the drivers of common or divergent dynamics. Additionally, 363 

this technique decreases the amount of model input as a reduced number of parameter ratios, rather 364 

than individual parameters, must be specified.  365 

The model presented above is scaled using the following relationships where “𝑥̂” is used to indicate 366 

the non-dimensional version of “𝑥”:  367 

𝜎𝐻̂ =
𝜎𝐻

𝜇𝐻
           (10) 368 

𝑉𝑚𝑎𝑥̂ =
𝑉𝑚𝑎𝑥

𝜎𝐻𝑇
           (11) 369 

𝐷𝑚𝑖𝑛̂ =
𝐷𝑚𝑖𝑛

𝜇𝐻
           (12) 370 

𝐸𝑣̂ =
𝐸∗𝐴𝑟𝑒𝑠

𝜇𝐻𝑇
           (13) 371 

The first relationship normalizes streamflow standard deviation by mean streamflow (Eq. 10), the 372 

second normalizes reservoir capacity by the streamflow standard deviation and the reference time 373 

(Eq. 11), the third normalizes the minimum demand by the mean streamflow (Eq. 12), and the 374 

forth relationship normalizes the reservoir evaporation by the streamflow mean and the reference 375 

time (Eq. 13). Note that 𝐷𝑚𝑖𝑛̂/μH is also equal to one over the carrying capacity of the system.  376 
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Initial conditions can also be specified in non-dimensional terms: 377 

𝑃0̂ =
𝑃0𝐷𝑚𝑖𝑛

𝜇𝐻
           (14) 378 

𝑉0̂ =
𝑉0

𝑉𝑚𝑎𝑥
           (15) 379 

𝐷0̂ =
𝐷0

𝐷𝑚𝑖𝑛
           (16) 380 

3.3 Model Application 381 

The scaled model was applied to each of the three cases. Initial conditions were set based on the 382 

time series data and simulation start date. Historic streamflow was used for these cases in place of 383 

the autoregressive streamflow model. Parameters were informed by both quantitative and 384 

qualitative case data. Sensitivity analysis was conducted to assess the impact of parameter values 385 

selected on model output and interpretation.  386 

Lastly, the scaled model was used to simulate a generic system to directly explore the influence of 387 

reservoir volume and operating rule choice on water supply reliability and the interactions between 388 

these two choices. The hedging parameter Kp was varied between 1 (SOP) and 3 (conservative 389 

hedging) and the scaled reservoir volume (storage volume relative to streamflow standard 390 

deviation) was varied between 2 and 12. Five hundred streamflow traces were generated using the 391 

lag-1 autoregressive model and the same five hundred traces were used with each parameter set to 392 

ensure comparability across the sensitivity analysis.  393 

Normalized values of parameters are reported in Table 1. 394 
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Table 1: Normalized parameters values and initial conditions used in each case study model run and the sensitivity analysis.  395 

Parameter Sensitivity Analysis Colorado Melbourne Cape Town 

H/H 0.25 0.31 0.32 0.33 

Vmax/ HΔt {2, 4, …, 12} 11.08 10.42 4. 34 

H/Dmin 5000000 77981681 8784629 10697075 

D0/ Dmin 2 3.30 3 2 

P0/Pc 0.25 0.18 0.31 0.24 

V0/Vmax 0.5 0.55 0.33 0.70 

H 0.60 0.29 0.35 0.95 

S 0.05 0.05 0.05 0.05 

 0.15 0.001 0.1 0.1 

 0.001 0.001 0.005 0.001 

NG 0.05 0.03 0.008 0.03 

Kp {1, 1.5, …, 3} 3 3 1.5 

 396 

4.0 Results 397 

4.1 Case Results 398 

The socio-hydrological model was run for the three case studies of the Colorado River Basin, 399 

Melbourne and the City of Cape Town. The modeled water use, reservoir storage, issue salience 400 

and shortage volume are described below and compared to case data. As the model is highly 401 

stylized, the aim is not to fit observations precisely. Rather the aim is to assess the model’s ability 402 

to qualitatively reproduce patterns (Sterman, 2000) in three distinct hydrological and operational 403 

environments.  404 
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In the Colorado River case, multi-years droughts occurred in the late 1970’s, late 1980’s, and the 405 

2000’s (Figure 5a). The impact of drought on stored water is clear in both the reservoir storage 406 

observations ([Figure 2b) and the modeled storage (Figure 5b). The model reproduced key features 407 

including the period of high storage from mid-1970’s to mid-1980’s, a decline in the late 1980’s, 408 

recovery in the late 1990’s, and decline followed by stabilization in the 2000’s. The model is 409 

parameterized for conservative hedging policy (Kp = 3). This triggers water conservation well in 410 

anticipation of physical limits and is consistent with the case history. Over the study period, basin-411 

wide water use increases before reaching a peak in 2001 ([Figure 2c). The increase in water use is 412 

driven by an increasing population ([Figure 2d), with higher water efficiency working against this 413 

trend (Coomes et al., 2010). Weather driven variation in demand as well as the ability of water 414 

users to substitute groundwater or alternative surface water sources increases the variability of 415 

water use (e.g. Porse et al., 2017). While this simple stylized model cannot reproduce all observed 416 

variability in water use, it does simulate increasing water use until the early 2000’s followed by a 417 

period of decrease and stabilization (Figure 5e). Further, the model captures the trend in decreased 418 

demand per capita (Figure 5c). We have no observational data on salience at the basin scale. 419 

However, since the early 2000’s there has been increased interest in demand management and 420 

development of alternate sources at the local level (e.g. Garcia & Islam, 2018; Porse et al., 2017) 421 

and increased inter-state policy developed addressing shortage allocation (Department of the 422 

Interior, 2007; US Bureau of Reclamation, 2018). The modeled salience shows a small increase in 423 

response to the late 1980’s drought and a sharp rise in the early 2000’s at the onset of intense 424 

drought (Figure 5d), consistent with these local and regional patterns. The shortage volume is 425 

representative of the variability in water availability (Figure 5f). 426 

[Figure 5] 427 
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The model was then used to simulate reservoir management in Melbourne in response to droughts 428 

([Figure 6). The streamflow shows two drought events occurring at the beginning of the 1980’s 429 

and in the late 1990’s into the 2000’s (Figure 3a). The drought beginning in the late 1990’s, known 430 

as the Millennium drought, stressed the water supply system leading to falling reservoir storage 431 

and decreased water use ([Figure 3a, b). The model reproduced the key features including a period 432 

of above average storage from late 1980’s to mid-1990’s, followed by rapidly falling storage from 433 

the late 1990’s into the first decade of the 2000’s (Figure 6b). The hedging parameter (Kp=3) 434 

simulates a conservative policy and thus water conservation is employed in advance to reduce the 435 

risk of severe shortage. This parameterization is consistent with the case history. However, the 436 

model simulation shows the minimum storage value at years 2005-2006 (Figure 6b), three years 437 

before the actual minimum was observed ([Figure 3b). After a drop due to the first drought, the 438 

water usage increases as the population increases, before decreasing during the Millennium 439 

drought (Figure 3d,c). The model captures the declining water use during the Millennium drought 440 

but cannot reproduce water use patterns prior to the drought (Figure 6e). As in the Colorado River 441 

case, salience is modeled but is not directly observed. The first drought triggers a small increase 442 

in salience, which fades as memory of the drought weakens. Then, the more severe Millennium 443 

drought prompts a larger increase in salience (Figure 6d). High levels of salience persist throughout 444 

the drought though, consistent with empirical studies of long drought, peak levels are not 445 

maintained (Garcia et al., 2019). The modeled pattern of salience is consistent with the case 446 

history, including the implementation of water use restrictions. During the early 1980’s drought, 447 

only Stage 1 water restriction were used. The second drought was longer and more severe, 448 

requiring a series of water restrictions. First, in 2002, the Stage 1 water restriction was imposed, 449 

then, in January 2007 and in April 2007 water Stage 3 and 3a restrictions were launched, reflecting 450 
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the rising interest in demand management. The shortage volume represents the gap between supply 451 

and demand (Figure 6f). 452 

[Figure 6] 453 

In the City of Cape Town, two drought events occurred: a minor one in 2002-2003 and a major 454 

one in 2015-2017 ([Figure 4a). The impact in terms of water storage is evident for these droughts 455 

in both observations (Figure 4b) and model results (Figure 7b). The model reproduces the observed 456 

reductions in storage in 2002-2003, 2010, and 2015-2017, while it does not capture the moderate 457 

drop in 2005 (Figure 4b, Figure 7b). The model is parameterized for a moderate hedging policy 458 

(Kp=1.5). This implies that water conservation is triggered in advance, but not far in advance, of 459 

physical limits. This is confirmed by observed data as the reservoirs were nearly drained before 460 

water restrictions were issued. Observed water use follows an increasing trend until 2015 which 461 

tracks population growth. However, this trend is interrupted by periods of temporarily high use, 462 

likely driven by climatic and economic variability (Figure 4c,d). While the model is not able to 463 

reproduce all features of the observed water use, simulation results do reproduce the temporary 464 

decrease seen around 2005 and peak water use in 2015, followed by a decrease (Figure 7e). There 465 

are no direct observations of salience in the area. However, the case history includes events likely 466 

to be correlated with increased salience of water issues (Treuer et al., 2017). Level 2 water 467 

restrictions were implemented in January 1, 2005. Later in the 2015-2017 drought, the first 468 

restriction (20%) was launched in 2016. Then, in October 2017, a 40% reduction was further 469 

launched, up to the dramatic day in January 2018, when the day Zero was estimated to occur in 470 

April of the same year. The model simulates an increase in salience at around 2002 driven by the 471 

first drought. Salience from this event fades over time with moderate increase from subsequent 472 

droughts until rising sharply in 2014 with severe drought (Figure 7d).  473 
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[Figure 7] 474 

4.2 Sensitivity Analysis 475 

Having gained confidence about the ability of the model to qualitatively simulate patterns in 476 

various (hydrological and operational) environments, , we apply the model to further address our 477 

research questions: 1) How does the scale of reservoir storage affect long-term reliability? 2) How 478 

do reservoir operating rules in place mitigate shortage risk under changing supplies and/or 479 

demands?  480 

To explore the interaction of ratio between Vmax and H and the hedging factor Kp, we performed 481 

a sensitivity analysis running simulations of all combinations of these two parameters. Five 482 

hundred traces of stochastic streamflow, generated by a lag 1 autoregressive model, are used to 483 

understand performance across a range of streamflow patterns. [Figure 8 shows the ratio of t 484 

shortage volume to total demand over time across these simulations. Moving from left to right we 485 

can see the effect of increasing reservoir volume, relative to the variability of streamflow. [Figure 486 

8 shows that the larger the reservoir the more shortage is delayed and the higher the maximum 487 

shortage. Moving from top to bottom we can examine the effects of changing operations from 488 

reactive (SOP or Kp =1) to proactive (Kp = 3). [Figure 8 shows that at higher values of Kp, 489 

shortages, relative to total demand, occur earlier but are lower in magnitude. Examining the full 490 

set of plots, we can see an interesting phenomenon as we move diagonally from top left to bottom 491 

right. Along the diagonals in [Figure 8, the period of time before shortage occurs is constant but 492 

the magnitude increases. Additionally, we see decreasing variability across the simulations as we 493 

move diagonally from top left to bottom right. 494 
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[Figure 9a,b summarizes the relationships between the two parameters, Kp and the ratio between 495 

Vmax and H, and the mean and maximum shortage volumes over the simulation period. First, Kp 496 

was sampled at 0.05 intervals and the ratio was sampled at 0.25 intervals to better assess changes 497 

across the range. Second, mean and maximum shortage were computed for each simulation run. 498 

Finally, local regression (LOESS) was applied to describe the relationship. [Figure 9a shows a 499 

decrease in maximum shortage with a slight increase in mean shortage as Kp increases. This is 500 

consistent with the evidence that Kp = 1 is most effective at reducing average shortage volumes in 501 

the short term (Cancelliere et al., 1998; Garcia et al., 2015). [Figure 9b shows that maximum 502 

shortage increases substantially, and mean shortage slightly increases, as the ratio between Vmax 503 

and H increases. [Figure 9c,d illustrate the relationship between Kp and ratio between Vmax and 504 

H, and the lag between demand surpassing average supply and the first occurrence of shortage. 505 

Note that in some cases the first shortage occurs before demand surpassing average supply when 506 

low flows coincide with low storage, resulting in a negative lag. A negative lag is evidence of 507 

reduced demand in anticipation of demand overshooting average supply, or a proactive response. 508 

A positive lag implies a demand reduction after overshoot or a reactive response. [Figure 9c shows 509 

that as Kp increases the lag decreases with negative lags occurring with Kp > 1.75. [Figure 9d 510 

illustrates an increasing lag with a higher Vmax and H ratio. Examined together [Figure 8 and 511 

[Figure 9 demonstrate that the choice of more conservative hedging policy for reservoir operation 512 

can mitigate the unintended consequences of larger reservoir storage volumes.  513 

[Figure 8]  514 

[Figure 9]  515 

5.0 Discussion and Conclusions 516 
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Reservoir storage is intended to protect water users from the variability inherent in streamflow. In 517 

each of the three cases, we see that the ability of reservoir systems to buffer drought effects 518 

decreases as demand increases and/or streamflow patterns shift. This is, of course, to be expected. 519 

However, the impact is not felt immediately as the stored water intended to meet demands during 520 

drought can be used to fill the gap between supply and demand temporarily. When Kp is equal to 521 

one, reductions in water use are not made until physically necessary (i.e. insufficient water in 522 

inflow and storage to meet the full demand) (Eq. 6). When Kp is increased, reductions in 523 

withdrawals are triggered sooner raising salience and subsequently leading to reductions in per 524 

capita demand (Figures 8 & 9). The magnitude of both reductions in withdrawals and increases in 525 

salience are lower when Kp is higher. Therefore, the rate of change in demand is slower, but, 526 

importantly, it starts sooner. Reducing demand sooner both slows the decline in (and eventually 527 

stabilizes) the volume of stored water, making future abrupt reductions in water use less likely to 528 

be needed. Additionally, the rate of demand change is important. A rapid shift in water available 529 

for use would be a significant shock to economic and public health, which water managers and 530 

reservoir operators would seek to avoid.  531 

Reservoir storage provides a buffer of time to adapt to changing conditions. The sensitivity 532 

analysis illustrates this, as larger storage volumes lead to a greater time before the shortage is 533 

observed (Figures 8 & 9). Decision makers do not always use this time for adaptation, as illustrated 534 

in the three cases. In Melbourne, the response to intense drought and growing demand was fast 535 

and effective (Low et al., 2015) and was accomplished via strict water restrictions which were 536 

launched during the Millennium drought to avoid Day Zero, while in Cape Town the response to 537 

growing demands only occurred late into a historic drought leading to water delivery reductions 538 

(Muller, 2018). In the Colorado River Basin, the story is more nuanced and not yet complete. As 539 
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stored water declined in the 2000’s Lower Basin States developed a collaborative agreement to 540 

reduce use as reservoir levels declined (Department of the Interior, 2007). While this agreement 541 

reduced the risk of draining the reservoir, it proved to be insufficient, prompting an addendum in 542 

2018, the Drought Contingency Plan (Sullivan et al., 2019). Further renegotiations to set 543 

operational rules beyond this are in process.  544 

Reservoir storage can help manage hydrological variability (e.g. coping; Wamsler and Brink, 545 

2014), as it dampens its effects, but if not paired with appropriate operating rules and water 546 

management policy, it has the potential to delay the actions and the countermeasures necessary to 547 

adapt to changing conditions. We hypothesize that the ability of stored water to delay impacts 548 

reduces the salience of the problem, increasing the challenge of major infrastructure or policy 549 

change and leading to delays in adaptation. This delay is particularly problematic when external 550 

forces drive increases in demand or population, increased streamflow variability, or decreased 551 

streamflow (Di Baldassarre et al., 2018). Additionally, the salience of water stress information, 552 

rather than just the presence of such information, is important in understanding response (Garcia 553 

et al., 2019; Quesnel and Ajami, 2017). The absence of salient information on the limits of water 554 

supply means that the potential negative feedback loops that could drive corrective action remains 555 

un-activated.  556 

However, water supply management consists of more than just physical infrastructure. The rules 557 

used to operate reservoirs, sometimes referred to as soft infrastructure (Anderies et al., 2016), 558 

shape their performance. By testing alternate values of the operating parameter, Kp, we observe 559 

the effects of operational rules. The relationship between increases in Kp and decreasing shortage 560 

magnitude and increased frequency of shortages shown in [Figure 8 and [Figure 9, is the expected 561 

result of hedging policy (You and Cai, 2008b, 2008a). What is novel here is how the storage 562 
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volume and operating rules interact with each other and the broader system of water supply and 563 

use. Under hedging policy (Kp >1) water managers decrease withdrawals before it is physically 564 

required thus increasing the salience of water shortage risk at higher volumes of stored water. This 565 

increases the probability of a timely adaptive response. Further, [Figure 8 and [Figure 9 illustrate 566 

that the choice of operating rule can either exacerbate or alleviate the tendency to delay response 567 

with increased reservoir capacity. In other words, the advantages of large supply reservoirs, such 568 

as the ability to buffer variability and thus alleviate the effects of drought, can be achieved while 569 

minimizing the risk of delayed response to change by pairing large reservoirs with conservative 570 

hedging to create salience and prompt adaptive action. While this is not the only way to drive 571 

increases in problem saliency through policy, these results can inspire further investigation of 572 

policy design aimed at reducing delays in response to changing conditions, particularly in contexts 573 

where changing environmental conditions significantly impacts the ability to meet societal goals.  574 

While these analyses demonstrated the importance of storage volume and operating rules in 575 

explaining long-term reservoir performance under changing conditions, it is clear from the 576 

diversity of three cases that storage and operating rules alone do not determine the response. A 577 

variety of other factors including institutional arrangements (Garcia et al., 2019), financial 578 

resources (Hughes et al., 2013), leadership skill (Pahl-Wostl et al., 2007), the presence of 579 

motivated actors (Porter et al., 2015), and risk perception (Dobbie and Brown, 2014; Ridolfi et al., 580 

2019) all influence the nature and speed of policy response to changing conditions.  581 

The three cases demonstrate the model’s ability to reproduce key features, though not all patterns, 582 

in water use and storage. The model presented here is unavoidably simplified, leaving several 583 

opportunities for future improvements. It does not account for the large number of options for 584 

water management from more sophisticated and time varying operating rules to source 585 
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substitution. Further data collection, covering both a broader range of variables and cases, could 586 

inform such model refinements. Additionally, the operational strategies of the reservoir are 587 

considered constant across time, while in practice they often change in response to new knowledge, 588 

performance, and changing conditions. Though the operational strategy modeled here, linear 589 

hedging policy, is only an approximation, it does offer insights into the effect of storage capacity 590 

and operational choices under changing conditions. Further, this analysis highlights when a change 591 

in operation policies would be advantageous. In sum, the case applications and sensitivity analysis 592 

presented here illustrate how infrastructure and policy design choices combine, in some cases non-593 

linearly, to impact system performance.  594 
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