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Abstract. We consider a linearized inverse boundary value problem for the
elasticity system. From the linearized Dirichlet-to-Neumann map at zero fre-

quency, we show that a transversely isotropic perturbation of a homogeneous

isotropic elastic tensor can be uniquely determined. From the linearized Dirichlet-
to-Neumann map at two distinct positive frequencies, we show that a trans-

versely isotropic perturbation of a homogeneous isotropic density can be iden-

tified at the same time.

1. Introduction and main result. In this paper, we investigate the problem
of determining interior material property of an elastic body from boundary mea-
surements. We will consider the linearized inverse boundary value problem for the
equation

div(C∇u) + ω2ρu = 0,

which reads in components as

(1) ∂jCijkl(x)∂kul(x) + ω2ρik(x)uk(x) = 0, i = 1, 2, 3.

Here ω ≥ 0 is the frequency, u is the displacement vector, ρ = (ρik) is a symmetric
matrix representing the density of mass; C = (Cijkl) is the elastic tensor whose
components obey the symmetry conditions

(2) Cijkl = Cjikl = Cklij .

We have used Einstein’s summation convention in (1) such that repeated indices are
summed up over {1, 2, 3}. Note that C with the above symmetry has a total number
of 21 linearly independent components. For a fixed ω, the case ω = 0 corresponds
to the governing equations for linear elasticity in equilibrium, while the case ω > 0
represents the time-harmonic elastic wave with frequency ω.
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Let Ω be an open bounded domain in R3 with C1,1 boundary ∂Ω. Suppose the
density of mass ρ and the elastic tensor C are both bounded, in the sense that
ρik, Cijkl ∈ L∞(Ω) for all i, j, k, l ∈ {1, 2, 3}. We further assume that the density of
mass ρ and the elasticity tensor C satisfy the following positivity conditions: there
exists δ > 0 such that for any real-valued 3-vector σ = (σ1, σ2, σ3),

3∑
i,k=1

ρikσiσk ≥ δ
3∑
i=1

σ2
i ;

and for any 3× 3 real-valued symmetric matrix (εij),

3∑
i,j,k,l=1

Cijklεijεkl ≥ δ
3∑

i,j=1

ε2
ij .

If ω2 is not a Dirichlet eigenvalue of the operator −ρ−1div(C∇·), then for any
f ∈ H1/2(∂Ω), standard elliptic theory ensures a unique solution uf ∈ H1(Ω) to
the boundary value problem{

∂jCijkl(x)∂ku
f
l (x) + ω2ρik(x)ufk(x) = 0 in Ω, i = 1, 2, 3

uf |∂Ω = f.

We define the Dirichlet-to-Neumann map (DN map) ΛC,ρ,ω by

ΛC,ρ,ω : f 7→ Cijklνj∂ku
f
l |∂Ω

where ν = (ν1, ν2, ν3) denotes the outer unit normal vector to ∂Ω. It follows that
ΛC,ρ,ω : H1/2(∂Ω) → H−1/2(∂Ω) is a bounded linear operator, and the equivalent
weak formulation is

〈ΛC,ρ,ωf, g〉 =

∫
Ω

Cijkl∂iu
f
j ∂ku

g
l − ω

2ρiku
f
i u

g
k dx

for any f, g ∈ H1/2(∂Ω). We are interested in determining C, ρ from ΛC,ρ,ω This is
related to the invertibility of the non-linear map (C, ρ) 7→ ΛC,ρ,ω. The question is
difficult in the general setting, so it is commonly studied under additional a-priori
information.

The case ω = 0. Note that when ω = 0, the density ρ does not appear in the
equation (1), thus one can only expect to recover information on C. We henceforth
write ΛC,ρ,0 as ΛC for the ease of notation.

We say the elastic tensor C (or the medium) is homogeneous if it is a constant
tensor (that is, independent of x); it is isotropic if it can be written as

Cijkl(x) = λ(x)δijδkl + µ(x)(δikδjl + δilδjk)

where the two functions λ(x) and µ(x) are known as Lamé parameters; and it is
fully anisotropic if the components Cijkl are subject to no other relations other than
(2). For isotropic C, a global uniqueness result can be found [20] in dimension two.
The problem remains open in dimension three, yet some special cases have been
tackled. Among them, Nakamura and Uhlmann [27] proved uniqueness when the
Lamé parameters are smooth and µ(x) is close to a positive constant, see [13] for
a similar result by Eskin and Ralston and [19] for a partial data result; uniqueness
for recovering piecewise constant Lamé parameters was proved in [6, 7]; and some
boundary determination results were shown in [22, 25, 26]. For fully anisotropic C,
uniqueness was proved in [10] for piecewise homogeneous medium.
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It is widely believed that a fully anisotropic C without additional assumption
cannot be uniquely recovered. For the inverse conductivity problem, that is the
problem to determine the coefficients γ = (γij(x)) in the equation

∂i(γij(x)∂ju(x)) = 0

from the associated Dirichlet-to-Neumann map, it is known that an anisotropic
γ(x) can at best be determined up to boundary-fixing diffeomorphisms [14]. In
contrast, many anisotropic elastic materials have extra structural symmetries which
cannot be preserved under diffeomorphisms. It is therefore important to study the
uniqueness of elasticity parameters with extra symmetries in anisotropy. We list
some frequently considered anisotropies with symmetries in the table below, see
[4, Chapter 2.6] [30, Chapter 3.4] for detailed description. It is worth mentioning
that these concepts of anisotropy are purely Cartesian (in a prescribed coordinate
system (x1, x2, x3)).

Type of anisotropy
Symmetry

Number of inde-
pendent compo-
nents

isotropic radial symmetry 2

cubic

three mutually orthogonal planes
of reflection symmetry plus π

2
ro-

tation symmetry with respect to
those planes

3

transversely isotropic

three mutually orthogonal planes of
reflection symmetry and one sym-
metry axis perpendicular to one
symmetry plane

5

orthotropic (orthorhombic)
three mutually orthogonal planes of
reflection symmetry

9

monoclinic one plane of reflection symmetry 13

fully anisotropic no symmetry 21

In this article, we investigate the linearization of the map C 7→ ΛC at a homo-
geneous isotropic elastic tensor. More specifically, suppose

C(x) = C0 + δC(x)

where C0 = λ0δijδkl + µ0(δikδjl + δilδjk) is a homogeneous, isotropic background
tensor with Lamé parameters (λ0, µ0) satisfying

(3) µ0 > 0, 3λ0 + 2µ0 > 0,

and δC(x) is viewed as a perturbation term with components δCijkl(x). It is routine
to verify that the map C 7→ ΛC is Frechét differentiable at C0 (we refer to [15] for
more details), and the Frechét derivative

Λ̇C0 : L∞(Ω) 3 δC 7→ Λ̇C0(δC) ∈ L(H1/2(∂Ω), H−1/2(∂Ω))

is characterized by

(4) 〈Λ̇C0(δC)f, g〉 =

∫
Ω

δCijkl(x) ∂iuj(x) ∂kvl(x) dx

where u (resp. v) solves{
µ0∆u+ (λ0 + µ0)∇∇ · u = 0 in Ω

u|∂Ω = f.
(5)
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resp.

{
µ0∆v + (λ0 + µ0)∇∇ · v = 0 in Ω

v|∂Ω = g.

)
The question we are interested in is whether the linearized map Λ̇C0 is injective
on anisotropic perturbations with certain symmetry. It was proved in [15] that the

linearization Λ̇C0 is injective on isotropic perturbations. Our main theorem (see
Theorem 1 below) generalizes this injectivity result from isotropic perturbtions to
transversely isotropic perturbations.

A transversely isotropic material is one with physical properties that are sym-
metric about an axis that is normal to a plane of isotropy. It is also known as “polar
anisotropic” since the material properties are the same in all directions within the
transverse plane. Examples of transversely isotropic materials include some piezo-
electric materials and fiber-reinforced composites where all fibers are in parallel.
Geological layers of rocks are often interpreted as being transversely isotropic as
well in terms of their effective properties. Transversely isotropic materials have
been extensively studied in geophysical literature, see [1, 2, 21, 23] and the refer-
ences therein. For mathematical treatment, unique determination of transversely
isotropic parameters from boundary measurements is studied in [11, 12].

As is indicated in the above table, a transverse isotropic material has three mu-
tually orthogonal planes of micro-structural reflection symmetry and one symmetry
axis perpendicular to one of the three symmetry planes. Assume the symmetry axis
is x3, then a transversely isotropic δC obeys the invariance

QipQjqQkrQlsδCpqrs = δCijkl,

where Q can take any of the following reflection and rotation matrices. −1 0 0
0 1 0
0 0 1

 ,

 1 0 0
0 −1 0
0 0 1

 ,

 1 0 0
0 1 0
0 0 −1

 ,

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 , 0 ≤ θ ≤ 2π.

(6)

Writing the above invariance component-wisely results in 9 non-zero components in
δC

δC1111, δC2222, δC3333, δC1122, δC1133, δC2233, δC1212, δC1313, δC2323

subject to 4 linear relations

δC1111 = δC2222, δC1133 = δC2233,

δC1313 = δC2323, δC1212 =
1

2
(δC1111 − δC1122).

(7)

Hence a traversally isotropic δC has only 5 linearly independent components. We
will prove that these independent components are uniquely determined by the lin-
earized map Λ̇C0 . More precisely, we show

Theorem 1. Let C0 = λ0δijδkl + µ0(δikδjl + δilδjk) be homogeneous and isotropic

with Lamé parameters (λ0, µ0) satisfying (3). If Λ̇C0(δC) = 0 and δC ∈ L∞(Ω) is
transversely isotropic with known axis of symmetry, then δC = 0.

The 5 linearly independent components of δC we will determine are δC1111,
δC1122, δC1133, δC1313, and δC3333.

Inverse Problems and Imaging Volume 13, No. 6 (2019), 1309–1325



Uniqueness of a transversely isotropic perturbation 1313

Injectivity of the linearized map Λ̇C0 has been studied in previous literature. In
dimension two or higher, it is known that Λ̇C0 is injective on isotropic δC [15].
Theorem 1 can be viewed as generalization of such injectivity result from isotropic
perturbations to transversely isotropic perturbations in dimension three. Note that
Theorem 1 has greatly increased the number of independent parameters that can
be simultaneously identified by Λ̇C0

– from 2 Lamé parameters in the isotropic case
[15] to 5 independent parameters in the transversely isotropic case. In dimension
two, Ikehata [16, 18, 17] characterized the injectivity with general anisotropic C0.

The case ω > 0. The time-harmonic case has important application in (reflec-
tion) seismology, where one hopes to recover the material parameters of the Earth’s
subsurface areas from vibroseis data. Unique determination of piecewise homoge-
neous isotropic parameters from ΛC,ρ,ω was established in [5]; unique determination
of an anisotropic density with homogeneous isotropic elastic tensor was proved in
[3]. On the other hand, inverse boundary value problems for the dynamic elasticity
system has been considered in [28, 29, 31, 8, 11].

We still consider the linearization of the map (C, ρ) 7→ ΛC,ρ,ω at a homogeneous
and isotropic (C0, ρ0). Assume ω2 is not a Dirichlet eigenvalue of−(ρ0)−1div(C0∇·).
Then ω2 is also not a Dirichlet eigenvalue of −(ρ)−1div(C∇·) for (C, ρ) close enough
to (C0, ρ0), and thus the Frechét derivative

Λ̇C0,ρ0,ω : L∞(Ω) 3 (δC, δρ) 7→ Λ̇C0,ρ0,ω(δC, δρ) ∈ L(H1/2(∂Ω), H−1/2(∂Ω))

is well defined and given by

(8) 〈Λ̇C0,ρ0,ω(δC, δρ)f, g〉 =

∫
Ω

δCijkl(x) ∂iuj(x) ∂kvl(x)− ω2δρikuivk dx,

where u and v solve respectively{
µ0∆u+ (λ0 + µ0)∇∇ · u+ ω2ρ0u = 0 in Ω

u|∂Ω = f,

{
µ0∆v + (λ0 + µ0)∇∇ · v + ω2ρ0v = 0 in Ω

v|∂Ω = g.

(9)

By definition, a transversely isotropic δρ with symmetry axis x3 has the property

QipQjqδρpq = δρij

for any Q of the forms (6). Then it can be written as

δρ =

 δρ11

δρ11

δρ33

 .

For the inverse boundary value problem for time-harmonic acoustic wave equation

∇ · γ∇u+ ω2qu = 0,

it is known that the simultaneous recovery of γ and q requires two frequency data
Λγ,q,ω1

, Λγ,q,ω2
[24]. Therefore it is also natural to conjecture that we also need two

frequency data for our problem. More precisely, we will prove

Theorem 2. Let C0 = λ0δijδkl + µ0(δikδjl + δilδjk) be homogeneous and isotropic
with Lamé parameters (λ0, µ0) satisfying (3), and ρ0

ik = ρ0δik be a homogeneous

isotropic density. If Λ̇C0,ρ0,ωi
(δC, δρ) = 0 for two distinct positive frequencies ω1, ω2
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and (δC, δρ) ∈ L∞(Ω) are transversely isotropic with known axis of symmetry, then
(δC, δρ) = 0.

Although single frequency data is enough for recovering piecewise homogeneous
parameters [5], we do believe a second frequency is necessary without piecewise
homogeneity assumptions.

The proofs of Theorem 1 and Theorem 2 are based on construction of the Complex
Geometric Optics (CGO) solutions for the system (1) and (9), respectively. CGO
solutions were initiated by Sylvester and Uhlmann [32] in their solving Calderón’s
inverse conductivity problem [9]. Solutions of this type with ω = 0 were introduced
in [15] for the elasticity system with constant coefficients, and in [13, 27] for variable
coefficients. Solutions with ω > 0 were utilized in [3].

We remark here that one can follow the steps in the proofs of Theorem 1 and
Theorem 2 to obtain an explicit reconstruction procedure as in [15] , using identities
(4) and (8).

There are notable differences in the construction of CGO solutions for ω = 0 and
ω > 0. To see this, consider the solution ψ to the scalar wave equation

(λ0 + 2µ0)∆ψ + ρ0ω2ψ = 0.

For ω = 0, a CGO solution can be taken as ψ = eζ·x with ζ ∈ C3, ζ · ζ = 0, then
u := ∇ψ is a solution to the elasticity equation (1) that is divergence free, which
is a property for S -wave. For ω > 0, a similar CGO solution can be constructed

as ψ = eζ
′·x but with ζ ′ ∈ C3, ζ ′ · ζ ′ = ω2ρ0

λ0+2µ0 . Then u := ∇ψ remains a solution

to the elasticity equation in (9), but is not divergence free any more. In fact, this
solution u corresponds to a P -wave. Of course, this argument is just heuristic as
the equation with ω = 0 does not really describe waves; but it demonstrates the
difference between the cases ω = 0 and ω > 0. The proofs of Theorem 1 and
Theorem 2 are therefore presented separately due to some essential differences in
the construction of CGO solutions. The rest of the paper is devoted to these proofs.

2. Zero frequency case: Proof of Theorem 1. We prove Theorem 1 in this
section. In view of (4), Λ̇C0(δC) = 0 implies

(10)

∫
Ω

δCijkl∂iuj∂kvl dx = 0,

for any u, v satisfying (1). The key ingredient of our proof is constructing CGO
solutions to (1) and inserting them into (10) to obtain sufficiently many linearly
independent equations in the 5 independent components of δC. For the ease of
notation, we abbreviate C for δC(x) and Cijkl for δCijkl(x) from now on. We
reserve the letter i for an index and write the bold face i for the imaginary unit.

Step 1. Set

(11) ζ(1) := i(s, 0, t) + (−t, 0, s), ζ(2) := i(s, 0, t)− (−t, 0, s),

and

a(1) = a(2) = a = (0, 1, 0).

We take

u = a(1)eζ
(1)·x, v = a(2)eζ

(2)·x.
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The choice of ζ(i) ∈ C3 ensures ζ(1) · ζ(1) = ζ(2) · ζ(2) = 0, hence ∆u = ∆v = 0. The
choice of a ensures a ⊥ <ζ(i), a ⊥ =ζ(i) for i = 1, 2, hence ∇ · u = ∇ · v = 0. This
verifies that u, v defined in this manner satisfy the equations (1).

Substituting u and v into (10), we have

0 =

∫
Ω

Cijklaiζ
(1)
j akζ

(2)
l e(ζ(1)+ζ(2))·x dx

=

∫
Ω

[C1212(is− t)(is+ t) + C2323(it+ s)(it− s)]e2i(s,0,t)·x dx

=

∫
Ω

(s2 + t2)(−C1212 − C1313)e2i(s,0,t)·x dx.

This implies the Fourier transform F [χΩ(C1212 +C1313)](−2(s, 0, t)) = 0 for any s, t
with s2 + t2 6= 0. Here χΩ is the characteristic function of the domain Ω. Since s, t
can be any real number, this Fourier transform vanishes on the punctured x1x3-
plane. The axial symmetry with respect to x3-axis in the definition of transversal
isotropy allows one to obtain similar vanishing result in any plane containing x3-
axis. We conclude F [χΩ(C1212 + C1313)](ξ) = 0 for any ξ 6= 0. This forces

C1212 + C1313 = 0 in Ω.

Using the relation C1212 = 1
2 (C1111 − C1122) in (7) we have

(12) C1111 − C1122 + 2C1313 = 0 in Ω.

Step 2. Take

u = ζ(1)eζ
(1)·x, v = ζ(2)eζ

(2)·x,

with ζ(1), ζ(2) defined in (11). One still has ∆u = ∆v = 0 as before. On the other

hand, the i-th component of u (resp. v) is ui = ζ
(1)
i eζ

(1)·x (resp. vi = ζ
(2)
i eζ

(2)·x),
i = 1, 2, 3. The derivatives of these components are

∂iuj = ζ
(1)
i ζ

(1)
j eζ

(1)·x, ∂kvl = ζ
(2)
k ζ

(2)
l eζ

(2)·x.

Then ∇ · u = ζ(1) · ζ(1)eζ
(1)·x = 0 and likewise ∇ · v = 0. We see that u, v solve (1).

Inserting u, v into the integral identity (10), we obtain

0 =

∫
Ω

Cijklζ
(1)
i ζ

(1)
j eζ

(1)·x ζ
(2)
k ζ

(2)
l eζ

(2)·x dx

=

∫
Ω

[
C1111(is− t)2(is+ t)2 + C1133(is− t)2(it− s)2

+C1313(is− t)(it+ s)(is+ t)(it− s) + C1331(is− t)(it+ s)(it− s)(is+ t)

+C3113(it+ s)(is− t)(is+ t)(it− s) + C3131(it+ s)(is− t)(it− s)(is+ t)

+C3311(it+ s)2(is+ t)2 + C3333(it+ s)2(it− s)2
]
e2i(s,0,t)·x dx

Combining the terms, one has

0 =

∫
Ω

(t− is)2(t+ is)2[C1111 − 2C1133 + 4C1313 + C3333]e2i(s,0,t)·x dx.

This means F [χΩ(C1111 − 2C1133 + 4C1313 + C3333)] (−2(s, 0, t))(t2 + s2)2 = 0. A
similar argument as in Step 1 shows F [χΩ(C1111 − 2C1133 + 4C1313 + C3333)] (ξ) =
0 for any ξ 6= 0, hence

(13) C1111 − 2C1133 + 4C1313 + C3333 = 0, in Ω.
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Step 3. We still take u, v of the form

u = ζ(1)eζ
(1)·x, v = ζ(2)eζ

(2)·x,

but with different phases ζ(1), ζ(2). Set d :=
√
s2 + t2 and β :=

√
r2

d2 − 1. The new

phases to be used are

ζ(1) = i(s, 0, t) + iβ(−t, 0, s) + r(0, 1, 0) = (is− iβt, r, it+ iβs),

ζ(2) = i(s, 0, t)− iβ(−t, 0, s)− r(0, 1, 0) = (is+ iβt,−r, it− iβs).

It is easy to verify ζ(1)·ζ(1) = ζ(2)·ζ(2) = 0. This property again makes ∆u = ∆v = 0
and ∇·u = ∇·v = 0. Note that these new phases include the old ones: they coincide
with (11) if one takes r = 0 and β = −i.

Using such u, v in (10), we have

0 =

∫
Ω

Cijklζ
(1)
i ζ

(1)
j eζ

(1)·x ζ
(2)
k ζ

(2)
l eζ

(2)·x dx =: G1 +G2 +G3,

where

G1 :=

∫
Ω

[
C1111(is− iβt)2(is+ iβt)2 + C2222(r)2(−r)2

+ C3333(it+ iβs)2(it− iβs)2
]
e2i(s,0,t)·x dx

=

∫
Ω

[
C1111(s− βt)2(s+ βt)2 + C2222r

4

+ C3333(t+ βs)2(t− βs)2
]
e2i(s,0,t)·x dx,

G2 :=

∫
Ω

[
C1122(is− iβt)2(−r)2 + C2211(r)2(is+ iβt)2

+ C1133(is− iβt)2(it− iβs)2 + C3311(it+ iβs)2(is+ iβt)2

+C2233(r)2(it− iβs)2 + C3322(it+ iβs)2(−r)2
]
e2i(s,0,t)·x dx

=

∫
Ω

[
−2C1122(s2 + β2t2)r2

+ C1133(s− βt)2(t− βs)2 + C3311(t+ βs)2(s+ βt)2

−2C2233(t2 + β2s2)r2
]
e2i(s,0,t)·x dx,

G3 :=

∫
Ω

[
4C1212(is− iβt)(r)(is+ iβt)(−r)

+ 4C1313(is− iβt)(it+ iβs)(is+ iβt)(it− iβs)

+ 4C2323(r)(it+ iβs)(−r)(it− iβs)
]
e2i(s,0,t)·x dx

=

∫
Ω

[
4C1212(s2 − β2t2)r2 + 4C1313(s2 − β2t2)(t2 − β2s2)

+ 4C2323(t2 − β2s2)r2
]
e2i(s,0,t)·x dx.

We will analyze the asymptotic behavior as r → ∞. Direct calculation (though
tedious) shows

G1 =

∫
Ω

(
C1111

t4

d4
+ C2222 + C3333

s4

d4

)
r4e2i(s,0,t)·x dx+O(r3),

Inverse Problems and Imaging Volume 13, No. 6 (2019), 1309–1325
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G2 =

∫
Ω

(
−2C1122

t2

d2
+ 2C1133

t2s2

d4
− 2C2233

s2

d2

)
r4e2i(s,0,t)·x dx+O(r3),

G3 =

∫
Ω

(
−4C1212

t2

d2
+ 4C1313

t2s2

d4
− 4C2323

s2

d2

)
r4e2i(s,0,t)·x dx+O(r3).

Equating the terms of order O(r4) yields∫
Ω

[ t4
d4
C1111 + C2222 +

s4

d4
C3333 −

2t2

d2
C1122 +

2t2s2

d4
C1133

− 2s2

d2
C2233 −

4t2

d2
C1212 +

4t2s2

d4
C1313 −

4s2

d2
C2323

]
e2i(s,0,t)·x dx = 0.

Using the linear relations in (7) and d2 = t2 + s2, one can eliminate C2222, C2233,
C1212, C2323 and get∫

Ω

[ s4

d4
C1111 −

2s4

d4
C1133 −

4s4

d4
C1313 +

s4

d4
C3333

]
e2i(s,0,t)·x dx = 0.

In other words, F [χΩ(C1111−2C1133−4C1313 +C3333)](−2(s, 0, t)) = 0 when s 6= 0.
Using the definition of transverse isotropy, one sees that the Fourier transform
vanishes in the entire R3 except on the x3 axis. Moreover, the Fourier transform is
actually an analytic function since χΩ(C1111−2C1133−4C1313 +C3333) is compactly
supported. This forces

(14) C1111 − 2C1133 − 4C1313 + C3333 = 0 in Ω.

Let us put the three pieces of information (12)(13)(14) together

C1111 − C1122 + 0 · C1133 + 2C1313 + 0 · C3333 = 0;

C1111 + 0 · C1122 − 2C1133 + 4C1313 + C3333 = 0;

C1111 + 0 · C1122 − 2C1133 − 4C1313 + C3333 = 0.

We observe that these combinations are linearly independent and thus can be used
to eliminate 3 independent components of C. In fact, solving this linear system
yields

C1313 =C1212 =
1

2
(C1111 − C1122) = 0;(15)

2C1133 =C1122 + C3333.(16)

We are therefore left with only 2 independent components, say C1111 and C1133.
The need for different solutions. The previous CGOs are not enough to de-
termine the remaining independent components. To see this, we employ the known
relations (15)(16) to simplify the integral identity (10), then

0 =

∫
Ω

C1111(∂1u1∂1v1 + ∂1u1∂2v2 + ∂2u2∂1v1 + ∂2u2∂2v2)

+C1133(∂1u1∂3v3 + ∂3u3∂1v1 + ∂2u2∂3v3 + ∂3u3∂2v2)

+C3333∂3u3∂3v3 dx

=

∫
Ω

C1111∇ · u∇ · v

+(C1133 − C1111)(∂1u1∂3v3 + ∂3u3∂1v1 + ∂2u2∂3v3 + ∂3u3∂2v2)

+(C3333 − C1111)∂3u3∂3v3 dx.
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=

∫
Ω

C1111∇ · u∇ · v

+(C1133 − C1111)(∂1u1∂3v3 + ∂3u3∂1v1 + ∂2u2∂3v3 + ∂3u3∂2v2)

+2(C1133 − C1111)∂3u3∂3v3 dx

=

∫
Ω

C1111∇ · u∇ · v

+(C1133 − C1111)(∂1u1∂3v3 + ∂3u3∂1v1

+ ∂2u2∂3v3 + ∂3u3∂2v2 + 2∂3u3∂3v3) dx

=

∫
Ω

C1111∇ · u∇ · v + (C1133 − C1111)(∇ · u∂3v3 + ∂3u3∇ · v) dx.

(17)

All the solutions we have constructed have divergence zero, so they cannot give new
information about the tensor C.

Remark 1. With only CGO solutions of divergence zero, one cannot even deter-
mine an isotropic perturbation from Λ̇C0 (cf. [15]). To see this, suppose Cijkl =
λδijδkl + µ(δikδjl + δilδjk), then (10) reduces (with δCijkl abbreviated as Cijkl) to

(18)

∫
Ω

2µSym(∇u) : Sym(∇v) + λ(∇ · u)(∇ · v)dx = 0.

Here Sym(∇u) := 1
2 (∇u+(∇u)T ) and A : B =

∑3
i,j=1AijBij for any 3×3 matrices

A,B. It is obvious that solutions with divergence zero cannot provide information
about λ.

Different type of solutions. This above analysis suggests the necessity to con-
struct solutions with non-vanishing divergence. We proceed to construct different
CGO-type solutions with this property. They are of the form

u = [(b · x)ζ̂ + c]eζ·x

where ζ ∈ C3 satisfies ζ · ζ = 0, ζ̂ denotes ζ
|ζ| , and b, c are constant vectors to be

determined. This type of solutions can be constructed as in [15]. The divergence of
u is

∇ · u = ∇ ·
(

[(b · x)ζ̂ + c]eζ·x
)

= [(b · x)ζ̂ · ζ + b · ζ̂ + c · ζ]eζ·x = (b · ζ̂ + c · ζ)eζ·x,

hence

∇∇ · u = (b · ζ̂ + c · ζ)ζeζ·x.

On the other hand, the gradient of u is

∇u = (b⊗ ζ̂ + ζ ⊗ c+ (b · x)ζ ⊗ ζ̂)eζ·x

so ∆u can be computed:

∆u = ∇ · ∇u = [(ζ̂ · b)ζ + (ζ · ζ)c+ (b · x)(ζ · ζ)ζ̂ + (b · ζ̂)ζ]eζ·x = 2(ζ̂ · b)ζeζ·x.
We then have

µ0∆u+ (λ0 + µ0)∇∇ · u =[2µ0(ζ̂ · b)ζ + (λ0 + µ0)(b · ζ̂ + c · ζ)ζ]eζ·x

=[(λ0 + µ0)c · ζ + (λ0 + 3µ0)b · ζ̂]ζeζ·x.

Taking b = (λ0 +µ0)<ζ̂ and c = −λ
0+3µ0

|ζ| <ζ̂ guarantees the right hand side is zero,

making u a solution to (1). Notice that with such b, c, the divergence of u is

∇ · u = (b · ζ̂ + c · ζ)eζ·x = −2µ0<ζ̂ · ζ̂ eζ·x = −µ0 eζ·x,
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which is non-vanishing since µ0 > 0.

Step 4. We take

u = ζ(1)eζ
(1)·x, v = [(b · x)ζ̂(2) + c]eζ

(2)·x,

with

ζ(1) := i(s, 0, t) + iβ(−t, 0, s) + r(0, 1, 0) = (is− iβt, r, it+ iβs),

ζ(2) := i(s, 0, t)− iβ(−t, 0, s)− r(0, 1, 0) = (is+ iβt,−r, it− iβs).

It has been verified that ζ(1) · ζ(1) = ζ(2) · ζ(2) = 0; moreover, |ζ(1)| = |ζ(2)| =
√

2r.
Correspondingly, we take

b = (λ0 + µ0)<ζ̂(2) = (0,−λ
0 + µ0

√
2

, 0), c =
λ0 + 3µ0

√
2r

(0,
1√
2
, 0).

Substitute u, v into (17) and notice ∇ · v = −µ0 eζ
(2)·x, ∇ · u = 0. we have

0 =−
∫

Ω

(C1133 − C1111)µ0ζ
(1)
3 ζ

(1)
3 e(ζ(1)+ζ(2))·x dx

=µ0

∫
Ω

(C1133 − C1111)(t+ βs)2e2i(s,0,t)·x dx

=µ0

[∫
Ω

(C1133 − C1111)
s2

d2
e2i(s,0,t)·x dx

]
r2 +O(r)

where the asymptotics is again when r →∞. This implies

(19)
s2

t2 + s2

∫
Ω

(C1133 − C1111)e2i(s,0,t)·x dx = 0.

Therfore C1133 = C1111 in Ω.

Step 5. Now we have C1111 = C1133 = C3333, and (17) becomes

(20)

∫
Ω

C1111∇ · u∇ · v dx = 0.

Take

u = [(b(1) · x)ζ̂(1) + c(1)]eζ
(1)·x, v = [(b(2) · x)ζ̂(2) + c(2)]eζ

(2)·x,

with

ζ(1) := i(s, 0, t) + (−t, 0, s),

ζ(2) := i(s, 0, t)− (−t, 0, s),

b(1) = −b(2) =

(
− t(λ

0 + µ0)√
2d

, 0,
s(λ0 + µ0)√

2d

)
,

c(1) = −c(2) = (λ0 + 3µ0)

(
t

2d2
, 0,− s

2d2

)
.

Substitue u and v into (20)∫
Ω

C1111

(
µ0
)2
e2i(s,0,t)·x dx = 0.

Then we get C1111 = 0. This completes the proof of the uniqueness of all parameters
in C.
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3. Non-zero frequency case: Proof of Theorem 2. We present the proof of
Theorem 2 in this section. Notice that Λ̇C0,ρ0,ω(δC, δρ) = 0 implies

(21)

∫
Ω

δCijkl(x) ∂iuj(x) ∂kvl(x)− ω2δρikuivk dx = 0,

where u, v satisfies (9).

Step 1. For any s2 + t2 > k2
s := ω2c−2

s , set
(22)

ζ(1) := i(s, 0, t)+(−t, 0, s)
√

1− k2
s

s2 + t2
, ζ(2) := i(s, 0, t)−(−t, 0, s)

√
1− k2

s

s2 + t2
,

where c2s := µ0

ρ0 is the speed of S -wave, and

a(1) = a(2) = a = (0, 1, 0).

Take
u = a(1)eζ

(1)·x, v = a(2)eζ
(2)·x.

It is easy to verify that ζ(1) · ζ(1) = ζ(2) · ζ(2) = −k2
s , a · ζ(j) = 0, j = 1, 2 and u, v

solve the equations (9). Denote K :=
√

1− k2s
s2+t2 , substitute u, v into (21), we have

0 =

∫
Ω

(Cijklaiζ
(1)
j akζ

(2)
l − ω

2ρikaiak)e(ζ(1)+ζ(2))·x dx

=

∫
Ω

[C1212(is− Kt)(is+ Kt) + C1313(it+ Ks)(it− Ks)]e2i(s,0,t)·x

− ω2ρ11e
2i(s,0,t)·x dx

=

∫
Ω

[(s2 + t2)(−C1212 − C1313)

+
ω2c−2

s

s2 + t2
(
t2C1212 + s2C1313

)
− ω2ρ11]e2i(s,0,t)·x dx.

(23)

If we have above identity at two different frequencies ω = ω1, ω2, we can separate
the two parts to obtain

(24) F [χΩ(C1212 + C1313)](2s, 0, 2t) = 0

and
(25)
c−2
s

s2 + t2
(
t2F [χΩC1212](2s, 0, 2t) + s2F [χΩC1313](2s, 0, 2t)

)
−F [χΩρ11](2s, 0, 2t) = 0.

By the transverse isotropy assumption, (24) implies F [χΩ(C1212 +C1313)](ξ) = 0 for

any |ξ| ≥
√

2ks. Then we use the analyticity of the Fourier transform of compactly
supported functions to obtain

(26) C1212 + C1313 = 0 in Ω.

Alternatively, we can allow complex square root in (22) to include the situation
s2 + t2 < k2

s . Notice this is exactly the same identity as what we got in Step 1 for
the zero-frequency case.

Step 2. The proof will be quite different from the zero-freqeuncy case from now

on. Denote k2
p := ω2c−2

p , where c2p = λ0+2µ0

ρ0 , take u, v of the form

u = ζ(1)eζ
(1)·x, v = ζ(2)eζ

(2)·x,
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with

ζ(1) = i(s, 0, t) + iβ(−t, 0, s) + r(0, 1, 0) = (is− iβt, r, it+ iβs),

ζ(2) = i(s, 0, t)− iβ(−t, 0, s)− r(0, 1, 0) = (is+ iβt,−r, it− iβs),
(27)

where d :=
√
s2 + t2 and β :=

√
r2

d2 − 1 +
k2p
d2 . It is easy to verify ζ(1) · ζ(1) =

ζ(2) · ζ(2) = −k2
p. Therefore the solutions u, v constructed here is not divergence

free. Substitute u, v into (21), we have
(28)

0 =

∫
Ω

Cijklζ
(1)
i ζ

(1)
j eζ

(1)·x ζ
(2)
k ζ

(2)
l eζ

(2)·x dx =:

∫
Ω

(

9∑
j=1

Ij + ω2
3∑
k=1

Jk)e2i(s,0,t)·x dx.

Here

I1 = C1111(s− βt)2(s+ βt)2,

I2 = C2222r
4,

I3 = C3333(t+ βs)2(t− βs)2,

I4 = −2C1122(s2 + β2t2)r2,

I5 = C1133(s− βt)2(t− βs)2 + C3311(t+ βs)2(s+ βt)2,

I6 = −2C2233(t2 + β2s2)r2,

I7 = 4C1212(s2 − β2t2)r2,

I8 = 4C1313(s2 − β2t2)(t2 − β2s2),

I9 = 4C2323(t2 − β2s2)r2,

and

J1 = ρ11(s− βt)(s+ βt),

J2 = ρ11r
2,

J3 = ρ33(t− βs)(t+ βs).

We use the following asymptotics of β and its powers in large r:

β =
r

d
+

(k2
p − d2)r−1

2d
+O(r−3),

β2 =
r2

d2
+
k2
p − d2

d2
+O(r−2),

β4 =
r4

d4
+

2r2(k2
p − d2)

d4
+

(k2
p − d2)2

d4
+O(r−2),

and do some tedious calculation to obtain

I1 ∼ r4C1111
t4

d4
+ r2C1111

(
2(k2

p − d2)t4

d4
− 2

d2
t2s2

)

+ C1111

(
2
d2 − k2

p

d2
t2s2 +

(d2 − k2
p)2

d4
t4 + s4

)
I2 ∼ r4C1111

I3 ∼ r4C3333
s4

d4
+ r2C3333

(
2(k2

p − d2)s4

d4
− 2

d2
t2s2

)
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+ C3333

(
2
d2 − k2

p

d2
t2s2 +

(d2 − k2
p)2

d4
s4 + t4

)

I4 ∼ r4(−2C1122
t2

d2
) + r22C1122

(
d2 − k2

p

d2
t2 − s2

)

I5 ∼ r4(2C1133
t2s2

d4
) + r2 2C1133

d2

(
s4 + t4 + 2t2s2 + 2t2s2

k2
p

d2

)

+ 2C1133

(
t2s2

(d2 − k2
p)2

d4
− (s4 + t4 + 4t2s2)

d2 − k2
p

d2
+ t2s2

)

I6 ∼ r4

(
−2C2233

s2

d2

)
+ r22C2233

(
d2 − k2

p

d2
s2 − t2

)

I7 ∼ r4

(
−4C1212

t2

d2

)
+ r24C1212

(
d2 − k2

p

d2
t2 + s2

)
;

I8 ∼ r44C1313
t2s2

d4
+ r24C1313

(
−2t2s2

d2 − k2
p

d4
− t4 + s4

d2

)

+ 4C1313

(
t2s2

(d2 − k2
p)2

d4
+
d2 − k2

p

d2
(t4 + s4) + s2t2

)
;

I9 ∼ r4

(
−4C2323

s2

d2

)
+ r24C2323

(
d2 − k2

p

d2
s2 + t2

)
.

We also have

J1 ∼ r2(−ρ11)
t2

d2
+ ρ11

(
s2 +

d2 − k2
p

d2
t2

)
;

J2 ∼ r2ρ11;

J3 ∼ r2(−ρ33)
s2

d2
+ ρ33

(
t2 +

d2 − k2
p

d2
s2

)
.

The O(r4) terms in (28) are exactly the same as in Step 3 for the zero-frequency
case, which give

(29) C1111 − 2C1133 − 4C1313 + C3333 = 0 in Ω.

The coefficient of r2 in the integrand is

ω2

[
c−2
p

(
2C1111t

4

d4
+

2C3333s
4

d4
− 2C1122

t2

d2
+ 4

C1133

d2
t2s2 − 2C2233

s2

d2

− 4C1212
t2

d2
+ 8C1313

t2s2

d4
− 4C2323

s2

d2

)
− ρ11

t2

d2
+ ρ11 − ρ33

s2

d2

]

+

[
− C1111

2t4

d2
− C1111

2t2s2

d2
− 2C3333

s4

d2
− C3333

2t2s2

d2

+ 2C1122(t2 − s2) + 2C1133
(s2 + t2)2

d2
+ 2C2233(s2 − t2) + 4C1212(t2 + s2)
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+ 4C1313(−2t2s2

d2
− t4 + s4

d2
) + 4C2323(s2 + t2)

]
Write this expression as ω2A(x, s, t) +B(x, s, t), then∫

Ω

(
ω2A(x, s, t) +B(x, s, t)

)
e2i(s,0,t)·x dx = 0.

Evaluating above identity at two different frequencies gives

(30)

∫
Ω

A(x, s, t)e2i(s,0,t)·x dx =

∫
Ω

B(x, s, t)e2i(s,0,t)·x dx = 0.

Using the relation (7), we get

B(x, s, t) =
(
2s2C1111 − 4s2C1122 + 4s2C1133 − 2s2C3333

)
.

Then (30) implies

(31) C1111 − 2C1122 + 2C1133 − C3333 = 0 in Ω.

We summarize identities (26)(29)(31) as

1 · C1212 + 0 · (C1122 − 2C1133 + C3333) + 1 · C1313 = 0,

2 · C1212 + 1 · (C1122 − 2C1133 + C3333)− 4 · C1313 = 0,

2 · C1212 − 1 · (C1122 − 2C1133 + C3333) + 0 · C1313 = 0.

By solving the above linear equations, we have C1212 = C1313 = 0 and 2C1133 =
C1122 + C3333. Then (23) becomes F [χΩρ11](2s, 0, 2t) = 0. Then we can get

ρ11 = 0 in Ω.

Step 3. Take

u = ϑ(1)eζ
(1)·x, v = ϑ(2)eζ

(2)·x,

with ζ(j) defined in (22) and
(32)

ϑ(1) := i(s, 0, t)

√
1− k2

s

s2 + t2
+(−t, 0, s), ϑ(2) := i(s, 0, t)

√
1− k2

s

s2 + t2
−(−t, 0, s).

Notice that ϑ(1) · ζ(1) = ϑ(2) · ζ(2) = 0. The solution u, v used here is divergence
free.

Inserting u, v into the integral identity (21) and use the fact C1313 = 0, 2C1133 =
C1122 + C3333 and ρ11 = 0, we obtain

0 =

∫
Ω

Cijklϑ
(1)
i ζ

(1)
j eζ

(1)·x ϑ
(2)
k ζ

(2)
l eζ

(2)·x − ω2ρikϑ
(1)
i eζ

(1)·xϑ
(2)
k eζ

(2)·x, dx

=

∫
Ω

[
C1111(K2s2 + t2)(K2t2 + s2) + C1133(iKs− t)(is− Kt)(iKt− s)(it− Ks)

+C3311(iKt+ s)(it+ Ks)(iKs+ t)(is+ Kt) + C3333(K2s2 + t2)(K2t2 + s2)

+ω2ρ33(K2t2 + s2)
]
e2i(s,0,t)·x dx

=

∫
Ω

[
(C1111 − 2C1133 + C3333)(s2 + K2t2)(t2 + K2s2)

+ ω2ρ33(K2t2 + s2)
]
e2i(s,0,t)·x dx
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=

∫
Ω

ω2[ρ33(K2t2 + s2)]e2i(s,0,t)·x dx

=

∫
Ω

ω2[ρ33(s2 + t2)− ω2c−2
s ρ33

t2

s2 + t2
]e2i(s,0,t)·x dx.

Again using the above identity at two different frequencies, we end up with

ρ33 = 0 in Ω.

At this point we have recovered the density δρ and the same quantities for the
elastic tensor δC as the zero-frequency case. Similar to (17) we have

(33)

∫
Ω

C1111∇ · u∇ · v + (C1133 − C1111)(∇ · u∂3v3 + ∂3u3∇ · v) dx = 0.

Step 4. Take

u = ζ(1)eζ
(1)·x, v = ϑ(2)eζ

(2)·x,

with ζ(1), ζ(2) defined as (27) and

ϑ(2) = (is+ iβt,−
r2 + k2

p

r
, it− iβs).

Substitute into (33), and notice ∇ · u = −k2
pu and ∇ · v = 0. Then we obtain the

following identity similar to (19) from the leading order terms in r:

s2

t2 + s2

∫
Ω

(C1133 − C1111)e2i(s,0,t)·x dx = 0,

from which we get C1133 = C1111.

Step 5. For the last step, simply take

u = ζ(1)eζ
(1)·x, v = ζ(2)eζ

(2)·x,

with ζ(1), ζ(2) defined as (27). Substitute into

(34)

∫
Ω

C1111∇ · u∇ · v dx = 0,

and notice ∇ · u = −k2
pu, ∇ · v = −k2

pv. We can easily obtain C1111 = 0, and
conclude the proof of Theorem 2.
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