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ABSTRACT. We consider a linearized inverse boundary value problem for the
elasticity system. From the linearized Dirichlet-to-Neumann map at zero fre-
quency, we show that a transversely isotropic perturbation of a homogeneous
isotropic elastic tensor can be uniquely determined. From the linearized Dirichlet-
to-Neumann map at two distinct positive frequencies, we show that a trans-
versely isotropic perturbation of a homogeneous isotropic density can be iden-
tified at the same time.

1. Introduction and main result. In this paper, we investigate the problem
of determining interior material property of an elastic body from boundary mea-
surements. We will consider the linearized inverse boundary value problem for the
equation

div(CVu) + w?pu = 0,
which reads in components as
(1) 0;Cijir(x) 0wy () + w?pir(2)ug(z) = 0, 1=1,2,3.

Here w > 0 is the frequency, u is the displacement vector, p = (p;) is a symmetric
matrix representing the density of mass; C = (Cj k) is the elastic tensor whose
components obey the symmetry conditions

(2) Cijrt = Cjint = Chugy-

We have used Einstein’s summation convention in (1) such that repeated indices are
summed up over {1,2,3}. Note that C with the above symmetry has a total number
of 21 linearly independent components. For a fixed w, the case w = 0 corresponds
to the governing equations for linear elasticity in equilibrium, while the case w > 0
represents the time-harmonic elastic wave with frequency w.
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Let © be an open bounded domain in R?* with C*! boundary 9. Suppose the
density of mass p and the elastic tensor C are both bounded, in the sense that
piks Cijin € L= (Q) for all ¢, 7, k, 1 € {1,2,3}. We further assume that the density of
mass p and the elasticity tensor C satisfy the following positivity conditions: there
exists & > 0 such that for any real-valued 3-vector o = (01, 02,03),

3 3
2
PikTi0k > 0 E 05}

i k=1 i—1

and for any 3 x 3 real-valued symmetric matrix (&;;),

3 3
2
E Cijki€ijert > 0 E Eije

04k l=1 ij=1

If w? is not a Dirichlet eigenvalue of the operator —p~!div(CV:), then for any
f € H'Y2(09Q), standard elliptic theory ensures a unique solution u/ € H'(Q) to
the boundary value problem

3jC’ijkl(x)8kulf(x) + prik(:c)ug(z) = 0in Q, i=1,2,3
ullog = f
We define the Dirichlet-to-Neumann map (DN map) Ac , . by
Acpw: | Cojrviopu oo

where v = (v1,2,v3) denotes the outer unit normal vector to 9Q. It follows that
Ac,pw : HY2(0Q) — H=Y/2(99Q) is a bounded linear operator, and the equivalent
weak formulation is

(Acpwlfig) = / Cijklaiujfakulg — wppufuf da
Q

for any f,g € H'/2(09Q). We are interested in determining C, p from Ac,p, This is
related to the invertibility of the non-linear map (C, p) — Ac . The question is
difficult in the general setting, so it is commonly studied under additional a-priori
information.

The case w = 0. Note that when w = 0, the density p does not appear in the
equation (1), thus one can only expect to recover information on C. We henceforth
write Ac,p 0 as Ac for the ease of notation.

We say the elastic tensor C (or the medium) is homogeneous if it is a constant
tensor (that is, independent of x); it is isotropic if it can be written as

Cijri(x) = XN)0i;01 + () (9irdj1 + 0310)

where the two functions A(z) and u(x) are known as Lamé parameters; and it is
fully anisotropic if the components C;;x; are subject to no other relations other than
(2). For isotropic C, a global uniqueness result can be found [20] in dimension two.
The problem remains open in dimension three, yet some special cases have been
tackled. Among them, Nakamura and Uhlmann [27] proved uniqueness when the
Lamé parameters are smooth and u(x) is close to a positive constant, see [13] for
a similar result by Eskin and Ralston and [19] for a partial data result; uniqueness
for recovering piecewise constant Lamé parameters was proved in [6, 7]; and some
boundary determination results were shown in [22, 25, 26]. For fully anisotropic C,
uniqueness was proved in [10] for piecewise homogeneous medium.
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UNIQUENESS OF A TRANSVERSELY ISOTROPIC PERTURBATION 1311

It is widely believed that a fully anisotropic C without additional assumption
cannot be uniquely recovered. For the inverse conductivity problem, that is the
problem to determine the coefficients v = (7;;(z)) in the equation

i (7i3(x)05u(z)) = 0

from the associated Dirichlet-to-Neumann map, it is known that an anisotropic
~v(x) can at best be determined up to boundary-fixing diffeomorphisms [14]. In
contrast, many anisotropic elastic materials have extra structural symmetries which
cannot be preserved under diffeomorphisms. It is therefore important to study the
uniqueness of elasticity parameters with extra symmetries in anisotropy. We list
some frequently considered anisotropies with symmetries in the table below, see
[4, Chapter 2.6] [30, Chapter 3.4] for detailed description. It is worth mentioning
that these concepts of anisotropy are purely Cartesian (in a prescribed coordinate
system (z1, z2,z3)).

Number of inde-
Type of anisotropy pendent compo-
Symmetry
nents
isotropic radial symmetry 2
three mutually orthogonal planes
cubic of .reﬂection symmet.ry plus 5 ro- 3
tation symmetry with respect to
those planes
three mutually orthogonal planes of
. . flecti t d -
transversely isotropic refieclion symmeily anc one sym 5
metry axis perpendicular to one
symmetry plane
. . h 11 h 1 planes of
orthotropic (orthorhombic) three I.nutua y orthogonal planes o 9
reflection symmetry
monoclinic one plane of reflection symmetry 13
fully anisotropic no symmetry 21

In this article, we investigate the linearization of the map C — A¢ at a homo-
geneous isotropic elastic tensor. More specifically, suppose

C(z) = C° +6C(x)

where C? = )\O(Sijékl + Mo(éikéﬂ + 0;10;1) is a homogeneous, isotropic background
tensor with Lamé parameters (\°, u%) satisfying

(3) 10 >0, 30+ 240 >0,

and 0C(z) is viewed as a perturbation term with components 6C; k(). It is routine
to verify that the map C +— Ac is Frechét differentiable at C° (we refer to [15] for
more details), and the Frechét derivative

Ago : L®(9) 3 6C — Aco(6C) € LIHY?(9Q), HY2(9Q))

is characterized by

(4) (Aco (6C) f, g) = / 0Cijki(x) Oyu;(x) Opvy(z) da
Q
where u (resp. v) solves
AU+ (N0 + ) VV-u = 0 inQ
®) upo = f
a0 .
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ros A+ N0+ ) VV v = 0 inQ
P vlpo = g

The question we are interested in is whether the linearized map Aco is injective
on anisotropic perturbations with certain symmetry. It was proved in [15] that the
linearization Aco is injective on isotropic perturbations. Our main theorem (see
Theorem 1 below) generalizes this injectivity result from isotropic perturbtions to
transversely isotropic perturbations.

A transversely isotropic material is one with physical properties that are sym-
metric about an axis that is normal to a plane of isotropy. It is also known as “polar
anisotropic” since the material properties are the same in all directions within the
transverse plane. Examples of transversely isotropic materials include some piezo-
electric materials and fiber-reinforced composites where all fibers are in parallel.
Geological layers of rocks are often interpreted as being transversely isotropic as
well in terms of their effective properties. Transversely isotropic materials have
been extensively studied in geophysical literature, see [1, 2, 21, 23] and the refer-
ences therein. For mathematical treatment, unique determination of transversely
isotropic parameters from boundary measurements is studied in [11, 12].

As is indicated in the above table, a transverse isotropic material has three mu-
tually orthogonal planes of micro-structural reflection symmetry and one symmetry
axis perpendicular to one of the three symmetry planes. Assume the symmetry axis
is x3, then a transversely isotropic dC obeys the invariance

Qinijerls(SOpqrs = 6Cijk,la

where ) can take any of the following reflection and rotation matrices.

-1 0 0 1 0 O 1 0 0
0o 1 0], 0 -1 0 |, 01 0 ,
0 0 1 0 0 1 00 -1
(6) .
cos) —sinf O
sinf cosf 0 |,0<60 <27
0 0 1

Writing the above invariance component-wisely results in 9 non-zero components in

6C
0Ch111, 6Ca222, 0C3333, 60C1122, 0C1133, 0C2233, 6C1212, 6C1313, 0C2323

subject to 4 linear relations

0C1111 = 6Ca202, 0C1133 = 0Ca233,
(7) 1
0C1313 = 6Coas3, 0C212 = 5(501111 —0C1122).

Hence a traversally isotropic 0C has only 5 linearly independent components. We
will prove that these independent components are uniquely determined by the lin-
earized map Ago. More precisely, we show

Theorem 1. Let C° = \3;;6y; + pu°(0ix0;1 + 6:16;x) be homogeneous and isotropic
with Lamé parameters (\°, u°) satisfying (3). If Aco(6C) = 0 and 6C € L>(Q) is
transversely isotropic with known axis of symmetry, then 6C = 0.

The 5 linearly independent components of dC we will determine are 6Ci111,
0C1122, 6C1133, 6C1313, and 0C3333.
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Injectivity of the linearized map Aco has been studied in previous literature. In
dimension two or higher, it is known that Aco is injective on isotropic 6C [15].
Theorem 1 can be viewed as generalization of such injectivity result from isotropic
perturbations to transversely isotropic perturbations in dimension three. Note that
Theorem 1 has greatly increased the number of independent parameters that can
be simultaneously identified by Aco — from 2 Lamé parameters in the isotropic case
[15] to 5 independent parameters in the transversely isotropic case. In dimension
two, Ikehata [16, 18, 17] characterized the injectivity with general anisotropic C°.

The case w > 0. The time-harmonic case has important application in (reflec-
tion) seismology, where one hopes to recover the material parameters of the Earth’s
subsurface areas from vibroseis data. Unique determination of piecewise homoge-
neous isotropic parameters from Ac,, ., was established in [5]; unique determination
of an anisotropic density with homogeneous isotropic elastic tensor was proved in
[3]. On the other hand, inverse boundary value problems for the dynamic elasticity
system has been considered in [28, 29, 31, 8, 11].

We still consider the linearization of the map (C, p) — Ac, . at a homogeneous
and isotropic (C?, p°). Assume w? is not a Dirichlet eigenvalue of —(p°) ~tdiv(C°V-).
Then w? is also not a Dirichlet eigenvalue of —(p)~tdiv(CV-) for (C, p) close enough
to (Co, po), and thus the Frechét derivative

Ao 0.0 L2(Q) 3 (6C,6p) = Ao 0, (6C,dp) € LIHY?(9Q), H/?(9Q))
is well defined and given by
(8) <Acoyp07w((5c, p)f,g) = / 6Cijri () Oiuj(z) Opvi(2) — wW?dpirusvy de,
Q

where v and v solve respectively

{ pOAU+ N0+ O VV - u+w?pPu = 0 inQ
u|89 = fa
(9)
{ plAv + (N0 + ) VV v +w?pPv = 0 inQ
vloa = g

By definition, a transversely isotropic dp with symmetry axis x3 has the property
QipQjq0Ppq = 0pij
for any @ of the forms (6). Then it can be written as
dp11
6[) = 5[)11
dp33
For the inverse boundary value problem for time-harmonic acoustic wave equation
V- yVu + w?qu =0,

it is known that the simultaneous recovery of vy and ¢ requires two frequency data
Ay gwns My.gws [24]. Therefore it is also natural to conjecture that we also need two
frequency data for our problem. More precisely, we will prove

Theorem 2. Let C° = )\Oéijékl + uo(éikéﬂ + 6:16;1,) be homogeneous and isotropic
with Lamé parameters (\°, u¥) satisfying (3), and p, = p°dix be a homogeneous
isotropic density. If Aco po ., (0C,6p) = 0 for two distinct positive frequencies wy,ws
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and (6C, dp) € L (Q) are transversely isotropic with known axis of symmetry, then

(6C,dp) =0.

Although single frequency data is enough for recovering piecewise homogeneous
parameters [5], we do believe a second frequency is necessary without piecewise
homogeneity assumptions.

The proofs of Theorem 1 and Theorem 2 are based on construction of the Complex
Geometric Optics (CGO) solutions for the system (1) and (9), respectively. CGO
solutions were initiated by Sylvester and Uhlmann [32] in their solving Calderén’s
inverse conductivity problem [9]. Solutions of this type with w = 0 were introduced
in [15] for the elasticity system with constant coefficients, and in [13, 27] for variable
coeflicients. Solutions with w > 0 were utilized in [3].

We remark here that one can follow the steps in the proofs of Theorem 1 and
Theorem 2 to obtain an explicit reconstruction procedure as in [15] , using identities
(4) and (8).

There are notable differences in the construction of CGO solutions for w = 0 and
w > 0. To see this, consider the solution v to the scalar wave equation

(A +2u) Arp 4 pw?eh = 0.

For w = 0, a CGO solution can be taken as 1) = ¢¢'* with ¢ € C3, (- ¢ = 0, then
u := V1 is a solution to the elasticity equation (1) that is divergence free, which
is a property for S-wave. For w > 0, a similar CGO solution can be constructed

as ¥ = e$% but with ¢/ € C3, ¢/ - ¢/ = %. Then u := Vi remains a solution
to the elasticity equation in (9), but is not divergence free any more. In fact, this
solution u corresponds to a P-wave. Of course, this argument is just heuristic as
the equation with w = 0 does not really describe waves; but it demonstrates the
difference between the cases w = 0 and w > 0. The proofs of Theorem 1 and
Theorem 2 are therefore presented separately due to some essential differences in

the construction of CGO solutions. The rest of the paper is devoted to these proofs.

2. Zero frequency case: Proof of Theorem 1. We prove Theorem 1 in this
section. In view of (4), Aco(6C) = 0 implies

(10) / 6Cijk18¢uj8kvl dr = 0,
Q

for any w,v satisfying (1). The key ingredient of our proof is constructing CGO
solutions to (1) and inserting them into (10) to obtain sufficiently many linearly
independent equations in the 5 independent components of JC. For the ease of
notation, we abbreviate C for 6C(z) and Cjji for 6C;jk () from now on. We
reserve the letter ¢ for an index and write the bold face i for the imaginary unit.

Step 1. Set
(11) ¢ =1i(s,0,t) + (1,0, ), ¢® =i(s,0,t) — (~,0,5),
and
aM =a® =a=1(0,1,0).
We take

, @),
u=aWes"” e v=a®@e e,
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UNIQUENESS OF A TRANSVERSELY ISOTROPIC PERTURBATION 1315

The choice of () € C? ensures ¢V . ¢ = ¢®?).¢?) =0, hence Au = Av = 0. The
choice of a ensures a L RC@, a L IS¢ for i = 1,2, hence V-u =V -v = 0. This
verifies that u, v defined in this manner satisfy the equations (1).

Substituting v and v into (10), we have

W4 @),
O:/C,-jklaicj(-l) akCl(Q)e(C +EH) dx
Q
_ / [Cioa(is — £)(is + 1) + Casas (it + ) (it — 5)]e2 0D 4y
Q

:/ (52 + tz)(*clglg — 01313)62i(8’0’t)'1 dx.
Q

This implies the Fourier transform F[xq(Ci212 + C1313)](—2(s,0,t)) = 0 for any s, ¢
with s2 4 t2 # 0. Here yq is the characteristic function of the domain 2. Since s, ¢
can be any real number, this Fourier transform vanishes on the punctured x;x3-
plane. The axial symmetry with respect to xs-axis in the definition of transversal
isotropy allows one to obtain similar vanishing result in any plane containing x3-
axis. We conclude Fxq(Ci212 + C1313)](§) = 0 for any £ # 0. This forces

Ci212 + Ci313 =0 in Q.
Using the relation Ch212 = $(Ci111 — Ch122) in (7) we have
(12) Ci111 — Cri22 +2C1313 =0 in Q.
Step 2. Take

w= C(l)ec(l).m V= C(g)ec(m.z,

)

with ¢, ¢(® defined in (11). One still has Au = Av = 0 as before. On the other
hand, the i-th component of u (resp. v) is u; = Ci(l)ec(l)*” (resp. v; = (52)64(2)'“5),
1 =1,2,3. The derivatives of these components are

Oy = (VN G = (PP e

Then V-u = (W . (W™ = 0 and likewise V- v = 0. We see that u, v solve (1).
Inserting u, v into the integral identity (10), we obtain

0= /CijleZ-(l)C](-l)ecm'z C,iz)g‘l@)ei(z"z i
Q

= / [01111(15 —t)%(is + t)* + Criss(is — t)?(it — s)?
iClglg(is —t)(it + s)(is + t) (it — s) + Ci331(is — t) (it + s)(it — s)(is + ¢)
+C3113(it + s)(is — t)(is + t) (it — s) + Cz131 (it + s)(is — ¢)(it — s)(is + 1)
+Cs11 (it + 5)%(is + )% + Caaa (it + 5)*(it — ) [ X507 dg
Combining the terms, one has

0= / (t —is)%(t + 15)2[Cr111 — 201133 + 4C1313 + Cazas)e? 30D gy,
Q

This means ]:[XQ(Cllll — 2C4133 + 4C1313 + 03333)] (—Q(S,O,t))(tQ + 82)2 = 0.
similar argument as in Step 1 shows F [XQ(Cllll — 2C4133 + 4C1313 + C3333 ] (f)
0 for any & # 0, hence

(13) Ci111 — 2Ch133 + 4C1313 + C3333 = 0, in €.

A
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Step 3. We still take u, v of the form
u= (Wt — (@
but with different phases ¢, (). Set d := /52 + 2 and 3 := 1/2—2 — 1. The new

phases to be used are

¢W =i(s,0,t) +iB(~t,0,s) +r(0,1,0) = (is — ift, r, it + iBs),

¢® =i(s,0,t) —iB(~t,0,5) — r(0,1,0) = (is + iBt, —r, it — iBs).
It is easy to verify ¢((1).¢() = ¢().¢(2) = 0. This property again makes Au = Av =0
and V-u = V-v = 0. Note that these new phases include the old ones: they coincide

with (11) if one takes r =0 and § = —i.
Using such u,v in (10), we have

C(2)

0= / Cigm¢i V¢ PGP dw = Gy 4 Ga + G,
where "
Gy ::/Q [Cuu(is —iBt)%(is + iBt)* + Cogoa(1)*(—1)?
+ Cgag it + i85)° (it — i85)*| 200 do
:/Q [01111(5 — Bt)?(s + Bt)* 4 Cazoor®

+03333(t+ﬂ8) ( ﬂs) :| ZISOt)mdx

o ::/Q [Cruza(is = 180)°(=r)* + Coana (r)* (is +151)°
+ Chiss(is — iB)2(it — iBs)? + Caapy (it +1Bs)2(is + i8t)2
+Ca033(r)* (it — iBs)? 4 Cagaa(it +1Bs)*(—1)?] Q25,00 g
:/Q [—2C1102(s* + 51%)r?
+ Ch133(s — Bt)2(t — Bs)* + Csz11(t + Bs)? (s + Bt)?
—2C02033(t* + B%5)r?] A0 gy
G = /Q |4Ch212(is — 1) (r)(is + i8t) (1)
+4C1z13(1s — 151) (it + 165) (is + 16¢) (it — 1)
+ 4Chs03(r) (it + iBs) (—r) (it — iﬁs)} 2(s.0.0)w g,
- /Q [401212(32 — B22)r% 4 4Cha15(s% — B22)(12 — B%s?)

+ 402323(t2 — 5232)7‘2:| e2i(s,0,t) @ g

We will analyze the asymptotic behavior as r — oo. Direct calculation (though
tedious) shows

t4 4
Gy :/Q (01111 it Ca222 + Cs333 d4) e E0DT gy 1 O(r3),
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12 252 52 :
Go =/Q (_201122d2 + 2C'1133? - 202233dQ> rte =00 4o 1 O(r®),

t2 252 52 ;
Gs :/ (_401212d2 +AC13— g — 402323d2> re 00T dr 4 O(r?).
Q
Equating the terms of order O(r*) yields
¢ st 2t2 21252
/ [ﬁcuu + Caz22 + @C?,gsg - ﬁanQ +—51Cuss
Q

d4
252 4¢2 412 52 452 : )
2 Ca233 — ?01212 + 701313 - ﬁczgzg} A0 g = 0.

Using the linear relations in (7) and d? = t? + s2, one can eliminate Ca02, C2233,
Ci212, C2323 and get

st 254 45* st :
/ {@Cuu - Fcnss - FCBB + E03333}€21(5’07t)'$ dx = 0.
Q

In other words, F[xq(C1111 —2C1133 — 4C1313 + Cs333)](—2(5,0,t)) = 0 when s # 0.
Using the definition of transverse isotropy, one sees that the Fourier transform
vanishes in the entire R? except on the x3 axis. Moreover, the Fourier transform is
actually an analytic function since xq(C1111 —2C1133 —4C1313 + C3333) is compactly
supported. This forces

(14) Ci111 — 2Ch1133 — 4C1313 + C3333 = 0 in Q.
Let us put the three pieces of information (12)(13)(14) together
Ci111 — Cri22 + 0 - Cr133 + 2C1313 + 0 - Ciz33 = 0;

Ci111 + 0+ Cii22 — 2C1133 + 4C313 + Cs333 = 0;
Ci111 + 0+ Ci122 — 2C1133 — 4C4313 + Cs333 = 0.

We observe that these combinations are linearly independent and thus can be used
to eliminate 3 independent components of C'. In fact, solving this linear system
yields

1
(15) Ci313 =C1212 = 5(01111 — Chi22) = 0;
(16) 2C1133 =Ch122 + C333s.

We are therefore left with only 2 independent components, say C1111 and Ci133.
The need for different solutions. The previous CGOs are not enough to de-
termine the remaining independent components. To see this, we employ the known
relations (15)(16) to simplify the integral identity (10), then

0= /01111(51U181U1 + 0110202 + O2u201 V1 + Dot 0av2)
Q

+C1133(O1u103v3 + Oguzdrv1 + O2uzd3v3 + J3uzOavz)
+C333303u305v3 dx

= /01111V"LLV"U
Q

+(C1133 — C1111) (01110303 + O3u301v1 + O2usd3v3 + 3u302v2)
+(C3333 — C1111)03u303v3 dz.
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1318 YANG YANG AND JIAN ZHAI

== /Cuuv-uv-v
Q

+(C1133 — C1111) (O1u1 0303 + O3u301v1 + Oauad3v3 + O3uzdavs)
+2(Ch133 — C1111)03u303v3 dx

(17) = /01111V'uv'v
Q

+(C1133 — C1111) (01410303 + O3u301v1
+ Ooug03v3 + O3u309v9 + 283’(1,3631}3) dx

= /01111V -uV v + <01133 — 01111)(V . u83v3 + 83U3V . ’U) dzx.
Q

All the solutions we have constructed have divergence zero, so they cannot give new
information about the tensor C.

Remark 1. With only CGO solutions of divergence zero, one cannot even deter-
mine an isotropic perturbation from Aco (cf. [15]). To see this, suppose Cijp =
X630kt + (03051 + 0i105k), then (10) reduces (with 6C;j,; abbreviated as Cijr) to

(18) /Q 2uSym(Vu) : Sym(Vo) + AV - u)(V - v)dx = 0.

Here Sym(Vu) := 1(Vu+(Vu)T) and A: B = 53 A;;B;j for any 3x3 matrices

ij=1
A, B. It is obvious that solutions with divergence zero cannot provide information
about .

Different type of solutions. This above analysis suggests the necessity to con-
struct solutions with non-vanishing divergence. We proceed to construct different
CGO-type solutions with this property. They are of the form

u=1[(b-z) + et

where ¢ € C? satisfies (- ¢ = 0, é denotes %, and b, ¢ are constant vectors to be
determined. This type of solutions can be constructed as in [15]. The divergence of

u is
V-u=V- ([(b-x)f—i—c]ec'z) =[(b-2)C-C+b-C+ec-CleT=b-C+c-)es®,
hence
VV-u=(b-C+c- )™,
On the other hand, the gradient of u is
Vu=(b@(+(@c+ (b 2)¢®{)et™
so Au can be computed:
Au=V-Vu=[C- )¢+ (¢ Qe+ (b-2)(¢- O+ (b O)¢Je™ = 2(C - b)ges™.
We then have
pOAu+ (A0 + pO)VV - u =[20°(C - B)C + (A0 + p0) (b C+ e+ ¢)(Jet™
=[(\ + 1%)e- ¢+ (A0 +3u0)b - {J¢es.

Taking b = (\° + MO)%QC and ¢ = — )‘OTC‘T“O RC guarantees the right hand side is zero,

making u a solution to (1). Notice that with such b, ¢, the divergence of u is

Vou= (b (e (et = —2uMRE- (et = —pl e,
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which is non-vanishing since u° > 0.
Step 4. We take
u= (e w= (b @)@ + e,
with
¢M :=i(s,0,t) +i8(—t,0, s) + r(0,1,0) = (is — i8¢, r, it + ifs),
(@ =i(s,0,t) — iB(—t,0,s) — r(0,1,0) = (is + iBt, —r, it — ifs).

It has been verified that ¢V . ¢ = ¢®) . ¢ = 0; moreover, [(V| = [¢?)| = v/2r.
Correspondingly, we take

p— )\0+M0 )\0+3N0 1
b=\ + uRCD = (0, - ,0), == (0,—=,0).
(0 + 1R = (0, -0 (0. 5.0)
Substitute u,v into (17) and notice V - v = —pu° e$? ¥ .y =0. we have

0=- / (Chzs — Cra11)pC¢{P (P eV ¢ oy
Q
:MO /(01133 —Crin)(t+ /35)262i(s,0,t).£ da
Q

2
s .
=p’ {/ (Cr133 — C1111)*d2 00T gor | 12 1 O(r)
Q

where the asymptotics is again when r — oco. This implies

52

s [ (O = )00 o — o,

Therfore 01133 = 01111 in Q.
Step 5. Now we have C1111 = C1133 = Css33, and (17) becomes

(19)

(20) / C1111V -uV -vdx = 0.
Q
Take
u = [(b(l) . gj)c/(l\) + C(l)]ec(ﬂ.x’ v = [(b(2) ) x)c/(;) n 0(2)]652)%7
with

¢W :=i(s,0,t) + (~t,0,s),
C(Q) = i(S, Oat) - (7t7 03 5)3

1y _ 2 _ (_t()\o +u°) s\ + MO))
b - b - 707 b
V2d V2d

t S
M = —e® = (A4 3u0) <2d0 _2d2> '

Substitue v and v into (20

)
2 2i(s T
/ Chinr (u°)” 200w gy = 0,
Q

Then we get C1111 = 0. This completes the proof of the uniqueness of all parameters
in C.
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3. Non-zero frequency case: Proof of Theorem 2. We present the proof of
Theorem 2 in this section. Notice that Aco y0,(6C,dp) = 0 implies

(21) / 0C; k() Ojuj(z) Opuy(z) — w2épipuivy dr = 0,
Q

where u, v satisfies (9).

Step 1. For any s? + % > kZ := w?c; 2, set

(22)
¢W = i(s,0,t)+ (~t,0,5)1/1 — ke ¢® :=i(s,0,t)— (—t,0,5)1/1 — ke
] ] 2 +¢2° ] 1 2 +¢2°
where ¢2 := ’;—3 is the speed of S-wave, and
at =a® =a=(0,1,0).
Take

u=aWel T =@,
It is easy to verify that (1) . ¢(1) = ¢® . ¢® = k2 4.¢0) =0, =1,2 and u,v

— %, substitute u, v into (21), we have

solve the equations (9). Denote & :=4/1
W @y
0 :/(C’ijklaigj(l) akCZ(Q) _w2pikaiak)e(c +) e g
Q

= / [Ci212(is — 8t)(is 4+ &) + Ciz13(it + 8s) (it — Rs)]e2i(00-=
Q
(23) . w2p1162i(s,0,t)-z dx

:/ [(s* 4+ t*)(=C1212 — Ci313)
Q

OJQCS_ 2
52+ t2
If we have above identity at two different frequencies w = wi,ws, we can separate
the two parts to obtain

(24) Flxa(Ciai2 + C1313)](2s,0,2t) = 0

and
(25)

C
82 j_ t2 (t2.7:[)(901212](28, 0, 2t) + 52.7[)“201313](25, O7 Qt)) —f[XQpll](QS, 0, Qt) =0.

By the transverse isotropy assumption, (24) implies F|xq(Ci212+Ci313)](§) = 0 for
any |¢| > v/2ks. Then we use the analyticity of the Fourier transform of compactly
supported functions to obtain

(26) Ci212 + Ci313 =0 in Q.

Alternatively, we can allow complex square root in (22) to include the situation
52 4+ 12 < k2. Notice this is exactly the same identity as what we got in Step 1 for
the zero-frequency case.

+

(t*Cr212 + 5°Chz13) — w?pr1]e 0D gy,

Step 2. The proof will be quite different from the zero-freqeuncy case from now

0 0
on. Denote kf) = w2c;2, where cf, = %, take u, v of the form
(1), (2),
u:C(l)eC . U:C(Z)ei @
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¢ =i(s,0,t) +iB(—t,0,5) +r(0,1,0) = (is — iBt, r, it + iBs),
<(2) = i(S, O,t) - iﬂ(_ta 03 S) - T(Ov ]-7 0) = (18 + iﬂta =T, it — iﬂS),

where d := Vs2+t? and 8 = \/2—2 -1+ Z—%. It is easy to verify ¢V . ¢ =

¢ . ¢ = —kf). Therefore the solutions u,v constructed here is not divergence
free. Substitute u, v into (21), we have
(28)
ey @ 2 >
0= / Cijszi(l)Cg(‘l)ec @ (@2 gy /(Z I + w? Z i) A0 go
Q Q = k=1
Here

I = Cini(s — Bt)*(s + Bt)?,
Ir = Cagaar?,
I3 = C3333(t + Bs)*(t — Bs)?,
Iy = —2C1122(s* + B**)r?,
Is = Chizs(s — Bt)*(t — Bs)® + Csar1 (t + Bs)(s + Bt)?,
Ig = —2C533(t" + 7s°)r?,
I = 4C1215(s* — B2,
Is = 4C1313(s> — B°t2)(1* — B°57),
Iy = 4C5303(t* — B2s*)r?,
and
Ji = pii(s = Bt)(s + Bt),
Jy = puir?,
Jz = p33(t — Bs)(t + Bs).
We use the following asymptotics of 5 and its powers in large r:

ro (k2 —d)rt

2 k2_d2
B= gt g T 06,
4 27,2 k2—d2 k2—d22
Bl= o+ (54 )+(pd4 " o),

and do some tedious calculation to obtain

4 2(k2 —d>t* 2
I ~r*Cri1— + r*Cin <(pd4) —ats

dt 2

s <2d2 ;ng 262 4 (d? ;4k12:)2t4 n s4>
Iy ~ 7'401111
I3 ~ 7‘403333(5;L + 1°Cs333 <2(k12);f2)84 - d22t252>
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d2 _ k2 d2 . k’2 2
+ C3333 <2 P 242 + ( p) st + t4>

d? d*

Iy ~ r(=2C ﬁ)+220 & ks’tQ s
a~T 1122775 r 1122 2

t282 201133 k2
4 2 4 2.2 2.2°P
Iy~ (20113374 )+ B 44t 421262 4+ 9t%s y

(d2 _ k,2)2
+2Ch133 <f282d4p -

I 1 o f 290 dQ_ki 2 _ 42
6~ T 2233 75 + 17202233 z° 13

Iy et (—4Cans e - kE’tQ ;
7T 1212 75 +r74C1212 72 +5°);

t2 d2 _ kQ t4 4
Ig ~r 401313 P +r 401313 <2t282 P _ *s

d? — k2
(s* +t' + 4t232)T" + t232>

d* d?

d2 _ ]C2 2 d2 o ]C2
+4C1313 <f252( i v) +— P+ %) + 52t2> ;

Iy~ v~ 40, - kf” t?
9~ 2323 75 + 77402323 7 +

We also have

t2 d2 _kQ
J1 ~ 7"2(_p11)? +p11 <S2 + d2 pt2 :

2
Ja ~1rp1n;

52 d2 _ k2
J3 N?"Q(_p33)ﬁ+p33 <t2+ PSQ .

d2

The O(r*) terms in (28) are exactly the same as in Step 3 for the zero-frequency
case, which give

(29) Chi11 — 2Ch133 — 4C1313 + Cs333 = 0 in Q.
The coefficient of 72 in the integrand is
o[ 201111t 2C53338* 2 C 52
w? [CPQ ( 2411 3;23 —2Ch122— 7 +4 2;233 t?s% — 202233@
t2 t252 2 t2 52
—AC112 5 +8C1313— - —402323d ) Priz P~ P33y
24 2t%s? st 2t%s?
- Cun— 7z Ciini—7p— pz — 203333 pz — Cs333—5— 2
2 2 (52 + t2)2 2 2 2 2
+2C1122(t" — 57) + 2011337 + 2Ca233(s* — t7) + 4C1212(t° + 5°)
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222 tr4 st

+ 401313(—7 T) + 4Ch303(s* + t7)

Write this expression as w?A(z, s,t) + B(x, s,t), then

/Q (w?A(z, s,t) + B(x, s,t)) A0 g7 — 0,
Evaluating above identity at two different frequencies gives
(30) /QA(ac, s, t)eQi(s’O’t)'”c dx = /QB(Q?, s, t)em(s’o’t)'“c dz = 0.

Using the relation (7), we get
B(z,s,t) = (25201111 — 45%C1129 + 45*Ch133 — 28203333) .
Then (30) implies
(31) Cri11 — 2C1122 + 2C1133 — C3333 = 0 in Q.
We summarize identities (26)(29)(31) as

1-Ci212+0- (Cr122 — 2C1133 + Czz3) + 1 - Cizi3 =0,
2-Ci212 + 1 (Cr122 — 2C1133 + Cs333) — 4 - Ci313 = 0,
2-Cr212 — 1+ (Ch122 — 2C1133 + Cs333) + 0 - Ci313 = 0.

By solving the above linear equations, we have C1212 = Ci313 = 0 and 2C4133 =
C1122 + Cs333. Then (23) becomes Flxap11](2s,0,2t) = 0. Then we can get

P11 = 0 in Q.

Step 3. Take
w= ﬁ(l)ec(l)'m7 V= 19(2)64(2).17
with ¢\) defined in (22) and
(32)
W) . kS @) ._; kS
19 = l(S,O,t) 1 — m‘i’(*t,O,S), '19 = I(S,O,t) 1 — m*(*t,o,s).

Notice that 9 . ¢ = 92 . ¢(2) = 0. The solution u,v used here is divergence
free.

Inserting u, v into the integral identity (21) and use the fact Cy315 = 0, 2C1133 =
C1122 + C3333 and p11 = 0, we obtain

0= /Qcijkzﬁz(-l)@(-l)edl)'m ﬂl(cz)cl(z)egmr _ w2pik191(-1)6<(1)'mﬁ;(f)e(@)“, da
_ /Q [Cuna (8252 + 2)(824% + 57) + Crags (i — ) (is — K1) (it — 5) (it — 5)
+C3311 (I8¢ + 5) (it + &s)(ifs + t)(is + 8&t) + COz33(R2s + 1) (822 + 5?)
+w2p33(ﬁ2t2 T 32)} Q2i(5,0,8)T 7,0
= /Q[(Cllll — 2C1133 + C3333) (s” + 822 (1* + &s7)
4 w2p33(ﬁ2t2 T 82)} Q2i(s.0,0)- g
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_ /wQ[pgg(ﬁth +52)]62i(s,0,t)-z dx
Q

t2
_ 2 2 2 2 -2
= /S;(JJ [p33(8 +t )—w Cq p33m

Again using the above identity at two different frequencies, we end up with

]€2i(s,0,t)-:c der.

p33 =0 in Q.

At this point we have recovered the density dp and the same quantities for the
elastic tensor dC as the zero-frequency case. Similar to (17) we have

(33) / Ci1111V-uV v+ (01133 — 01111)(V -u03v3 + O3usV - 1}) dx = 0.
Q

Step 4. Take
u= (Wt v =9z
with ¢V, ¢ defined as (27) and
r? + k2
9P = (is + ift, ———=2 it — if3s).
T
Substitute into (33), and notice V- u = —kZu and V - v = 0. Then we obtain the

following identity similar to (19) from the leading order terms in r:

&2
t2 4 52

from which we get 01133 = 01111.

/ (Ci13s — Cra11)e? 0D dy = 0,
Q

Step 5. For the last step, simply take

w= C(l)ec(l)'x, v = C(Q)GC(Q).I,
with ¢, ¢ defined as (27). Substitute into
(34) / CiiV-uV - -vdx =0,
Q

and notice V - u = fkf)u, V-v = fkf)v. We can easily obtain Ci11; = 0, and
conclude the proof of Theorem 2.
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