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Abstract

Electro-seismic imaging is a novel hybrid imaging modality in geophysical
exploration where electromagnetic wave and seismic wave are coupled in
porous medium. This paper concerns with an inverse source problem for the
Biot’s equations arising in electro-seismic imaging. Using the time reversal
method, we derive an explicit reconstruction formula, which immediately
gives the uniqueness and stability of the reconstructed source.

Keywords: electro-seismic, hybrid modality, inverse source problem, Biot’s
equations, time reversal, reconstruction

1. Introduction

Electro-seismic (ES) imaging and seismo-electric (SE) imaging are emerging modalities in
geophysical exploration. They provide images of high accuracy with low cost in comparison
with traditional modalities, and have been applied in locating groundwater acquifers and
petroleum hydrocarbon reservoir. The goal of this article is to study an inverse problem aris-
ing in the mathematical model of the ES imaging.

The underlying physical phenomena of ES and SE imaging are known as electro-seismic
conversion and seismo-electric conversion, respectively. These conversions usually occur in
a porous medium, that is a solid skeletal material saturated with fluid electrolyte. When the
solid is positively charged and the liquid negatively charged, or vice versa, the charges tend to
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move and gather at the interface, forming an electrical double layer, typically of 10nm scale,
with the two sides oppositely charged. This double layer then leads to the aforementioned
two types of conversion according to electrodynamics. More specifically, as electromagnetic
wave propagates through the medium, the electric field acts on the charges and generates
pressure difference and consequently seismic disturbance. This is the ES conversion. On the
other hand, external seismic disturbance could cause rearrangement of the charge distribution,
producing an electric field. This is the SE conversion. These conversions have been used as
bore-hole logging and cross-hole logging tools [13, 14, 19, 36-38] and measurements has
been recorded and studied in [6, 12, 16, 22-24, 29, 33, 34].

Both ES and SE imaging involve conversions of electromagnetic energy and seismic
energy. The governing equations were derived by Pride [27]:

V x E = —uo,H, (D
V x H = (0, + 0)E + L(—Vp — p1n0*u®), )
pr10fu’ + ppofu’ = divr, 3
P20 + ppdiu’ + ga,uf +Vp = ZLE, (4)
7 = (Adive® + gdiva®); + u(Vu® + (Vu*)’), 6))
—p = gdivu® + rdivu’, (6)

where E is the electric field, H is the magnetic field, u® is the solid displacement, u/ is the fluid
displacement, p is the magnetic permeability, € is the dielectric constant, o is the conductivity,
L is the electro-kinetic mobility parameter, py; is a linearly combined density of the solid and
the fluid, p;, is the density of the pore fluid, p,; is the mass coupling coefficient,  is the fluid
flow permeability, 7 is the viscosity of pore fluid, A and x are the Lamé parameters, ¢ and r are
the Biot moduli parameters, 7 is the bulk stress tensor, p is the pore pressure, I3 is the 3 x 3
identity matrix. Equations (1) and (2) are Maxwell’s equations, modeling the electromagnetic
wave propagation. Equations (3)—(6) are Biot’s equations, describing the seismic wave propa-
gation in the porous medium [4, 5].

In this work, we focus on the ES imaging. The inverse problem in ES imaging concerns
recovery of the physical parameters in (1)—(6) from boundary measurement of the displace-
ments u® and u’. This problem can be studied in two mutually relevant steps. The first step
concerns an inverse source problem for the Biot equations (3)—(6) to recover the coupling term
ZLE. The second step utilizes this term as internal measurement to retrieve physical param-
eters in the Maxwell equations (1) and (2). The second step has been considered in [8, 9].

The first step, however, has not been well understood mathematically. In an unpublished
work of Chen and de Hoop [7], they suggested using Gassmann’s approximation [17] to
reduce Biot’s equations to the elastic equation and then applying the result in [35]. This
approach has the limitation that Gassmann’s approximation is valid only when the fluid per-
meability is small and the wave frequency is sufficiently low. An inverse source problem
for the Biot’s equations was investigated in [2] in a different context by assuming access
to internal measurement rather than boundary measurement. Recently, the work [3] studied
the electro-seismic model (1)—(6) and derived a Holder stability estimate for recovery of the
electric parameters and the coupling coefficient from internal measurement near the boundary.
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Our goal is to demonstrate a general approach to the first step and complete the two-step
approach towards the coupled physics inverse problem in ES imaging. We study the inverse
source problem from boundary measurement of u® and uf directly for Biot’s equations,
without resorting to Gassmann’s approximation or any internal measurement. We derive an
explicit reconstruction formula in terms of a Neumann series. Uniqueness and stability of the
reconstructed solution are immediate consequences of the explicit formula.

2. Problem formulation and main result

We make two simplifications to the Biot equations (3)—(6). First, in this paper we only study
the corresponding non-attenuated model, that is, we ignore the attenuation term ga,uf in (4).
Second, we assume that the source term ;L LE can be separated into a known temporal comp-
onent A(t) and an unknown spatial component f(x), that is

n(x)

——L(x)E(t,x) = h(t .

PELOE(. ) = h(0) )
We deal with the delta pulse A(f) = 6(¢) in theorem 1. The more general case where h(¢) is a
continuous function can be readily derived, see corollary 2.

Let us rewrite Biot’s equations (without attenuation) in different forms for subsequent
analysis. It follows from (5) to (6) that we have

divr = A, 0 + V(gdiva’), Vp=-V(gdive®) — V(rdivu’),

where the elastic operator A, ) is defined by

A= div(p(Ve® + (Vu*)T)) + V(Adive®),
= pAw + (u+ AN V(dive®) + (dive®) VA + (Ve + (Va*) ) V.
7
Then the Biot equations (without attenuation) can be written as
p11070® + ppdtut — Ay v — V(g divaf) = 0 g
P02 + prdu’ — V(gdive’) — V(rdiva®) = 5(1)f(x). ®)

One can further write the system (8) into a matrix equation. Let

puls p1213> ( —Ap V(qdiv-))
M= , P(D) = . . .
(P1213 pl3 D) —V(gdiv:) —V(rdiv-) ©)

The matrix form of (8) is
Md*u+ P(D)u = §(1)f

which, by Duhamel’s principle, is equivalent to the initial value problem:

Mo*u+PDju = 0 inR x R?,
u— = f(x), (10)
8,ll|l:0 - 0.

Hereafter, a vector with 6 components is written in bold face such as u. It is often split into
two 3-vectors such as u = (u’, uf) € R3? x R3. The names of the two 3-vectors are chosen to
be consistent with the splitting for solutions of the Biot equations. Following this notation, the
right hand side is defined as f = (%, ff) := (0,f). Hence we will not refer to the specific form
any longer but instead consider a general f.
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Well-posedness of the initial value problem (10) can be proved in a similar way as [2, theorem
1.1]. More precisely, for f € H*(2) N H} (), there is a solution u = (u*, u/) to (10) such that

w' € C([=T, T H*(Q) N Hy(Q)) N C (=T, T H' () N C*([-T, T} L*(2))
v e C¥([-T,T); L*(),  dive/ € C([-T,T]; H'(Q)) n CY([-T, T]; L*(Q))

and the following estimate holds for some constant C > 0:
lullc2(—7.11:2(0)) < Cllfll2(0)-

Higher regularity on f leads to smoother u as usual.
The following hypothesis are crucial and assumed throughout the paper.

(H1): The functions pi1, p12, p22, > A, ¢, r are bounded from below by a constant, say
¢ > 0, and have bounded derivatives.

(H2): P11P2 — ,0%2 > 0in R3.

(H3): M —g*>>0inR3.

Here (H1) states that all the physical parameters are positive and sufficiently smooth. (H2)
ensures that the matrix M is positive definite. (H3) guarantees that the energy functional
defined in section 5 is non-negative.

In ES imaging, the measurement is the solid displacement u® and the fluid displacement
u! on the boundary of a domain-of-interest {2 which is a smooth bounded open subset in R3.
Introduce the source-to-measurement operator A as follows:

Af = u|[0,T]><BQ

where u is the solution of the initial value problem (10) and 7" > 0 represents a duration of the
measurement. Note that the initial displacement occurs inside the domain-of-interest, which
means that f is supported in the interior of (2. We are interested in recovering information on
f from the boundary measurement Af.

A quick look at the equation (8) suggests that there is a certain gauge transform for the
recovery of uf. In fact, adding to uf by any vector field g that is divergence free (i.e, divg = 0)
and vanishes on the boundary (i.e. glao = 0) does not affect (8) and Af. This is a reflection of
the simple fact that uf appears in the equations only in the form of divuf. Taking such gauge
into account, we raise the following question which is the central topic of this paper.

2.1. Inverse source problem

Suppose that M and P(D) are known and satisfy the hypotheses ( H1)—( H3), can one recon-
struct the initial source f = (%, ff), compactly supported in €2, from the boundary measure-
ment Af up to a pair of vector fields (0, g) with g divergence free and g|sq = 07

We give an affirmative answer to the question, including a reconstruction formula. Our
main result can be summarized as follows. A rigorous restatement of this theorem is given in
theorem 11.

Theorem 1.  Under appropriate assumptions, the initial source £ € H*(2) N H} () can be
uniquely and stably reconstructed from Af by a convergent Neumann series, up to a pair of
vector fields (0, g) with divg = 0 and g|sa = 0.

Our proof is based on the modified time reversal method proposed by Stefanov and
Uhlmann [30] for thermo-acoustic tomography (TAT). TAT is a hybrid modality in medi-
cal imaging where optical or electromagnetic waves are exerted to trigger ultrasound wave

4
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in tissue through thermo-elastic conversion. Conventional time reversal method is known to
provide an approximate reconstruction of the source [20]. Stefanov and Uhlmann improved
it and obtained an accurate reconstruction of the source by a Neumann series [30] which was
numerically implemented in [10, 26]. This improved time reversal method has since been
adapted and generalized to many other models [11, 18, 21, 25, 31, 35]. We refer to [1] for a
survey on more hybrid modalities in the context of medical imaging.

Remark. A slight variation of our approach can be used to reconstruct f(x) when the source
term takes the form LoLE = ¢'(¢)f(x). Indeed, it follows from Duhamel’s principle that we have

M&?u+P(Dju = 0 inR x R,
ul[:o = 0’
(9,ll|,:0 = f(X)

If u solves this problem, the J,u solves (10) by [32]. Hence one can first reconstruct J,u using
our approach and then integrate to obtain u.

Theorem 1 can be extended to a general source of the form

mL(x)E(t,x) = h(t)f(x)

with k(t) € C([0, T]) a known continuous function and f(x) an unknown function to be recov-
ered. In this case, the Biot’s equations are reduced as before to the following system

Md*u+P(D)u = h(t)f(x) inR x R?,
uy = 0, a1
(9tll|,:0 = 0

with f(x) = (0,f(x)). The measurement is u|g 71 o0

Corollary 2. Let h(t) € C([0, T]) be a known continuous function. Under the same assump-
tions of theorem 1, the spatial function £ € H*(2) N H} () can be determined from u| (0.7]x 09
where u is the solution of (11), up to a pair of vector fields (0, g) with div g = 0 and glaa = 0.

Our proof of the corollary leads to an explicit reconstruction approach, see Section 6. We
would like to remark that the sources considered in (11), which can be written as the product
of a spatial function and a temporal function, have been considered in the inverse problems
literature [39-42].

The rest of the paper is organized as follows. In section 3 we convert Biot’s equations (without
attenuation) to two hyperbolic systems. These systems are used in section 4 to prove finite
speed of propagation and unique continuation results. Section 5 is devoted to discussion of
function spaces. Theorem 1 and corollary 2 are proved in section 6.

3. Biot’s equations

In this section we transform Biot’s equations into two hyperbolic systems: a principally scalar
system and a symmetric hyperbolic system.
3.1. The principally scalar system

Let us start with the principally scalar system. Recall the definition of a principally scalar sys-
tem [15]. For a function a = a(x), define the scalar wave operator [J, := ad? — A.

5
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Definition 3. A principally scalar system refers to
O uj + bj(t,x, Vu) + ¢;(t, x,u) = f;, j=1,...,m. (12)

Here u = (uy, ..., uy), a; = aj(x) € C" are real-valued functions, b; and c; are linear functions

with L°-coefficients of Vu and u.

The system is called principally scalar as the principal part of each equation is a scalar
wave operator. We shall see in section 4 that a principally scalar systems can be uniquely
continued towards inside from proper boundary data. This unique continuation property is
crucial to obtain proposition 8.

We can write the equation in (10) as a principally scalar system by following the proce-
dures in [2]. Let p(x) = p11(x)p22(x) — p2,(x). We have p > 0 by ( H2) and

M- — 1 ( p2l; —91213> .
p \—pi2lz  puls
Multiplying the equation in (10) by M~! to get

#(5) () )

—pAux - +paV(gdiv:) —pnV(gdiv-) + ppV(rdiv )>
pi2lyux - —puVigdiv)  pV(gdiv:) — pV(rdiv-). /

where

M~'P(D) = % (

Now, we write the matrix equation as a system of equations and move all the first and
zeroth order derivatives to the right hand side to get

0%u® — p Aw® — (g + A)Vdive® — ¢;Vdive! = 2(u,uf), ;3
oPuf + i Aw® — nV(divaf) — g V(dive’) = 2(u,uf), (13)

where the new coefficients are

= p"pp, A =p  (p) = p1q), @1 = p " png — par),

o =p 'pop, = p"pur—pig). @ =p"(png— prln+ ).

Here and below, the script letters &2, 2, %, ... denote various first-order linear differential
operators.

A straightforward calculation shows that first order derivatives in & (u®, uf) and 2(u®, uf)
appear in terms of Vu®, (Vu®)7, divu®, and div uf. The left hand side can be simplified by the
substitutions as indicated below.

Introduce the substitutions:

v =dive®, o' =divul, v*=curlu’. (14)
Applying div to (13) and utilizing the relations

div Vu® = Au® = V(divu®) — curl curl v¥, div(Ve®)! = V(divu®),
we get

0?0 — an AV —apAvl = Z(v', 07,05, V)
0?0f — ay AV — apAv/ = (0%, 07,0, v);
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or equivalently

o o s s
0; <Uf) —A(x)A (w‘) =20, v v),

where the coefficient A(x) is

i (40 ) L (o2 o) (02 )
o \aa an p\—pi2 pu /)’ q r)’

The hypotheses (H1)-(H3) ensures that A is a symmetric positive definite matrix. Let a;, a, be
its eigenvalues, then there exists a non-singular matrix Q(x) such that

(Q7'AQ)(x) = Diag (a1, ay)(x).
Making the change of variable

(#,07) = 07 (v",0)
yields that (2*,97) solves

0 — a1 AV = (T, 0,0, v8),
?0) —a AV = (T, 07,0, v8).

Applying cutl to the first equation of (13) and using curl Vu = 0 gives
8,2vs — AV = ,7(733,61", ', v).
The first equation of (13) can be written as
8t2us — pAu® = %(ff,f)f, u’, v%).

Thus we obtain the following principally scalar system in the variables (7%, 9/, u®, v*):

0.7° - al—]///(ffs,@f, u,vs) = 0,
D“Lﬁf - ;—ZJV(z?S,z?f,us,vs) = 0,
D;us — iﬁ(f}s,ﬁf,us,vs) = 0, (5)
D%uf - ﬁ%(f}s,ﬂf,us,vs) = 0.

This is the desired principally scalar system. Note that ay, a;, pt1 are smooth and strictly posi-
tive by (H1), hence their reciprocals exist and are smooth as well. Another observation is that
(0*,9/) = 0if and only if (v*,0/) = 0.

3.2. The symmetric hyperbolic system

We proceed to write the principally scalar system (15) as a first order symmetric hyperbolic
system [28], which will be exploited to show that the Biot equations have finite speed of
propagation. We restrict to the case where the coefficients are time-independent matrices.

For x € R3,let Ag(x), .. .,A4(x) be matrix-valued functions. Denote by £ the partial differ-
ential operator

3
L(x,0,,0,) = Ao(x)0; + Y Aj(x)0y, + Aa(x), (16)

J=1
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where the coefficient matrices Ay, . . . , A4 are assumed to have uniformly bounded derivatives,
i.e.

sup [|0¢ (Ap(x),...,A4(x))|| < oo for any multi — indexa.
x€ER3

Definition 4. L is called symmetric hyperbolic if the following conditions hold:
(i) Ap(x),...,As(x) are symmetric;
(i) Ag is strictly positive, i.e. there is a constant C > 0 such that for all x € R3,
AQ(X) 2 CI,
where I is the identity matrix.

Our goal is to convert the principally scalar system (15) to a symmetric hyperbolic system.
We begin with a scalar wave equation to demonstrate the procedures. The principally scalar
system is treated afterwards.

Let v(x) be a scalar function defined in R? and satisfy the equation

%0 — a;(x) Av = £(9,,0,0,,0, 04,0, 0), (17)
where .Z (0,0, O,,0, 0,0, v) is linear in each derivative. We define a vector V(v):
V(v) = (Vo, V1, Vo, V3, V) := (0,0, Oy, 0, 0,0, Oy, 0, D).
The scalar equation (17) can be written in terms of V, ..., V, as follows:
8,‘/0 — alaxl V1 — alaxZVg — a18x3V3 — X(Vl, ey V4)
a10,Vi — a0y, Vo
a18tV2 — alaxZVO =

a10;Vs — a0,V
Cl18,V4 — 611V0

coooo

In the matrix form, this system reads
Bo(x)a,V + B (x)@xl V4 Bz(x)ﬁxZV + B3 (x)8x3V + B4(X)V =0,

where By, . .., By are 5 x 5 matrices. More explicitly, By = Diag(1,ay, a1, a1, a;), By is deter-
mined by the concrete form of ., and the other matrices are

—a; for(l,i+1)and (i+1,1)entry
B.(x) = =1,2,3.
i) {O for other entries » =123
Note this is a symmetric hyperbolic system since By, ..., Bs are symmetric matrices and By

is strictly positive.

Now we turn to the principally scalar system (15). As each equation in the system takes
the form (17), we define a vector U, which has 40 components and is obtained by juxtaposing
V(v) with v replaced successively by the components of (¢¥,9/,u®, v®), i.e.

U= (Un....Usy) = (V@) V@), V(u}), V(u3), V(3), V(¥]), V(¥3), V(¥3)).

Since the principal part of each equation in (15) is uncoupled, one can write (15) as a first
order system in a similar manner:

Ao(X)BU + A1 (x)8, U + Ay ()0, U + A3(x)0,, U + As(x)U = 0. (18)
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Here each A; is a 40 x 40 matrix, A( represents the diagonal matrix

Diag ((1,a1,a1,a1,a1), (1, a2, a0, az, @), (1, g1, pers o, f1)s - - oo (1, pr, pors o, f11))

which is strictly positive, and Ay, A, A3 are symmetric. This is the desired symmetric hyper-
bolic system that is equivalent to the principally scalar system (15) and the Biot equations in
(10).

4. Finite speed of propagation and unique continuation

We derive some results for the Biot equations regarding finite speed of propagation and unique
continuation. It is crucial to have the symmetric hyperbolic system (18) and the principally
scalar system (15).

4.1. Finite speed of propagation

Let £ be the symmetric hyperbolic operator defined as in (16). For any £ € R\ {0}, let
3
A(E) = inf{l: Ap(x) 2 | D A4 | Aox) > < a1},
j=1

which is the smallest upper bound of the eigenvalues for A, * <Zj=1 Ajfj) A, *. We state the

following result, which shows that the solution of a symmetric hyperbolic system has finite
speed of propagation.

Proposition 5. /28, theorem 2.3.2] Suppose s € R and u € C([0, 00); H*(R3)) satisfies a
symmetric hyperbolic system Lu = 0. If

suppu(0,x) C {x e R*: x- £ <0},

then fort > Q,

suppu(t,x) C {x e R® 1 x- & < A(&)1).

In particular, set cmax := max¢|=; A(§), if

suppu(0,x) C {x € R*: |x| <R},

then
suppu(t,x) C {x € R®: x| < R+ cmaxlt]}.
Here |¢| denotes the Euclidean norm of &. If u is a vector, supp # stands for the union of the
supports of its components.
Using this proposition, one can deduce finite speed of propagation for the solutions of

Biot’s equation. Let ¢pax be the number in proposition 5 with £ defined on the left hand side
of (18).

Corollary 6. Letu = (uv’,uf) solve MO*u + P(D)u = 0. If
supp (u*(0,-),divu’(0,-)) c {x e R*: |x| < r},

9



Inverse Problems 35 (2019) 095009 Y Gao et al

then
supp (u(z,-),divaf(s,)) € {x € R} : x| <7+ cmanlt]}-

Here the support of a vector field is defined to the the union of the supports of its components.

Proof. Given (u®,uf), one can construct the functions (7°,%,u®, v*) as in (14), and further
the solution U of (18). The proof is completed by applying proposition 5 to the symmetric
hyperbolic system (18). O

4.2. Unique continuation

A principally scalar system satisfies certain unique continuation property [15], which will be
used as an intermediate step towards the main theorem. Let 7/ > 0 be a positive number, and
let D C R? be a C>-domain containing the origin. Denote by B(0;R) = {x € R : |x| < R}
the ball of radius R centered at the origin. We state the following unique continuation result.
Proposition 7. [15, corollary 3.5] Let u = (uy, . ..,uy) be a solution of a general prin-
cipally scalar system (12). Suppose that there exists 6 > 0 such that D C B(0;0T’) and the
coefficients aj in (12) satisfy the constraints:

_1 -
0%a;(a; + a; *|IVaj|) < a;+ Yx- Va; in (~T'.T') x D
02a; < 1 in D.

Thenu = dyu =0on (=T',T") x OD implies u =0 on {(t,x) € (=T, T') x D : |x| > 6t}.

The inequality constraints in the theorem justify the pseudo-convexity of a certain phase
function with respect to the wave operators [, [15]. Observe that if a; are positive con-
stants, the above constraints reduce to 92aj < lin D. In this case, any 6 > 0O that is less than

min{ﬁ :j=1,---,m} fulfills the inequalities.

Next proposition is the main result of this section. Choose R > 0 sufficiently large such that
) C B(0; R). Recall that ¢y is defined in corollary 5.

Proposition 8. Let u = (u*,uf) be the solution of the forward problem (10) with £ com-
pactly supported in Q. Suppose there exists 6 > 0 such that B(0; R + CmaX%) C B(0;0T) and
the following inequality constraints hold when a is replaced by aj(x), ay(x), 1 (x) respectively:

Qa(a+a 3 tVal) <a+ix-Va, in (=3, 3L) x B(O;R + cpax L)
0?a < 1 in B(0; R + Cmax 2 ).
Ifus(T,x) = divu®(T,x) = 0 for x € R3\(, then
u*(0,x) = divaf(0,x) =0 forx e Q,x #0.
Proof. In view of the initial conditions in (10), we can extend the solution u as an even func-

tion of 7 to (=7, T) x Q. This extension is denoted by u again.
Given u*(T,x) = divuf(T,x) = 0 for x € R*\, it follows from corollary 6 that

w(t,x) =divaf(r,x) =0 in {(£.x) : |x| > R + cmax|t — T|}.

10
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As u is an even function of ¢, we also have

w(t,x) =divaf(,x) =0 in {(r,x) : |x| > R+ cmax|t + T|}.

On the other hand, the fact that f has compact support in £ implies u*(0, x) = divuf(0,x) = 0
for x € R*\Q. Hence by corollary 6, we get

w(,x) =divaf(,x) =0 in {(£,x) : |x| > R + cmat|}-

Combing the above equations gives

T 3T 3T
uw(t,x) = divul(,x) =0 on {(t,x): |x| = R+cmax§,77 <tr< )

Using proposition 7 with the choice 77 := 3L, D := B(0,R + cmax %) yields
u’(0,x) = divuf(O,x) =0 forxe Q,x+#0,

which completes the proof. O

5. Energy conservation

Define a Sobolev space

H(div;Q) := {vf € (L>(Q))* : divvf € L*(Q)},
which is equipped with the norm

IV @i 2y = ”Vf”Iz}(Q) + ||diVVin2(Q)~
Consider the space

V= {v= (v, vl e (H(Q)?x H(div;Q)},
which has the norm

(v, VO = HVSHigil(Q) + HVin%{(div;Q)'

Introduce a symmetric bilinear form on V:
B(v,w) = / [Adiv v® - divw® + 24 (e(v*) @ e(W')) + rdivv' - divw'] dx
Q

+ [ g[divv"-divw® +divv® - divw'] dx,
Q

where €(v*) = 1(Vv® + (Vv¥)7), A : B=tr(AB") is the Frobenius inner product of matrices
A and B.

It is clear to note that B(v,v) > 0 for all v € V in view of (H3); moreover, B(v,v) = 0 if
and only if v* = 0 and div vf = 0. Thus B induces a semi-norm ||v||z := (v, v)p. We relate the
bilinear form B to the differential operator P(D).

1
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Lemma 9. Suppose v,w € V with v|gq = 0 or W]aq = 0, then
B(V, W) = (P(D)V, W)LZ(Q) = (V, P(D)W)LZ(Q)

Proof. By symmetry, we only need to prove the first equality with the assumption that
w|sa = 0. Recalling w = (w*, wf)T and

P(D)V = (—A, 2V — V(qdivvF), =V (qdivv®) — V(rdivv"))7,

we have

(PV,W)12(0) = / [— AV W — V(gdivv') - w
Q
— V(qdivv®) - w' — V(rdivvF) - wi] dx. (19)

To deal with the first integrand, we expand A, ) using (7) to have

/ [—A V- W] dy = —2/ div (pe(v®)) - whdx —/ V(Adivv®) - w dx.
Q Q Q

We claim that
div (ue(v®)) - w® = div (ue(v®)) w® — pe(v®) : e(w).

To justify this, we write €(v*) := (€1, €2,€3)7, where €j, €, €3 are the three rows; write
w* = (w5, w3, w5)”. Then

3
div (pue(v?)) - w* = Zdlv LE)W Z [div ( uw 6) — e - Vwﬂ
j=1

= d1v (ne(v®)) w® — pne(v®) : e(wh).

Using the integration by parts yields
/ [—A AV - W] dx :/ [2pe(v®) = e(w®) + Adiv v® - div w*] dx
Q Q

+ /89 [—2p (e(v*)W®) — (Adiv v)w*] - v dx. 20)

The boundary term vanishes owing to the compact support of w.
The remaining three integrands in (19) can be treated using the standard integration by
parts:

/ [~V (gdivv") - w* — V(gdivv®) - w' — V(rdivv®) - w'] dx

Q

:/ [qdivvf~divws—|—qdivvs-divwf—|—rdivvf'divwf] dx
Q

+ / [—(qdivv)w* — (gdivv*)w' — (rdivvh)w'] - v dx. (21)
o0

12
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The boundary term again vanishes. This completes the proof. [

Let L?(2; M) be a weighted L>-space with measure M(x)dx where M(x) is the positive
definite matrix defined in (9); in other words, for any v € (L*(2))®, [|V||;2m) := (V. MV) 2.
The space L?(R3; M) and the norm || - ||z2(gs.p) is defined similarly with the domain of integra-
tion replaced by R3.

Given a time-dependent function u(z, x), define its total energy over the domain € at time 7:

Eq(t,w) = 80t )2 cran) + 0t )3 = /Q (M) - du
+ Aldivu’* + 2ple(u®)[* + rldiva > + 2¢(diva ) (dive®)) dx.
This quantity is conservative on a bounded domain €2 for the solution of Biot’s equations when
imposed with appropriate boundary conditions.

Lemma 10. Ler u satisfy Biot’s equations with zero Dirichlet boundary condition:

Md?>u+P(Dju = 0 in (0,7) x Q,
ulprxoo = 0,

then
EQ(I,U)ZEQ(O,U) 0<tr«T.

Proof. We briefly sketch the proof since it is similar to that of lemma 9. Taking the inner
product of the equation with d,u = (d,u’, duf)”, we obtain

0= (3311, atll)p(Q;M) + (P(D)ll, 3,u)Lz(Q)
= (0™, o) 2 (:m) + B(u, ) + b.t.

d
=2—FEq(t, b.t..
% o(t,u) +

Here the second equality is justified by lemma 9; ‘b.t.” represents the arising boundary terms,
which are the boundary integrals in (20) and (21) with v and w replaced by u and d,u respec-
tively. The zero Dirichlet boundary condition annihilates b.t., which completes the proof of
conservation of energy. O

The proof verifies the well known fact that zero Dirichlet boundary condition preserves
energy. In fact each of the following boundary conditions

() u¥(t,x) =0 and uf - v(t,x) = 0on (0,T) x O
(i) u® - v(t,x) = 0 and u’(z,x) = 0 on (0,T) x O
(iii) u* - v(t,x) = 0and uf - v(t,x) = 0 on (0, T) x IQ.
is energy preserving as well, since each of them is sufficient to annihilate the boundary term
‘b.t.” in the proof.

Let u be the solution of the direct problem (10). We can also consider the energy over the
entire space Ep:(t,u). This global energy is conservative as well, i.e.

Eps(t,u) = Eps(0,u) = ||f||3 0<r<T.

13
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To show this, one can take a large ball B(0;R) so that the solution u(z,-) is supported
inside B(0;R) for any ¢ € [0, T]. Then lemma 10 is applicable since |y 7]xsp(0:r) = 0 and
Egs(t,u) = Eq(t,u)forany t € [0, 7).

6. Main theorem

Let v be the solution of

MO*v+P(D)y = 0 in(0,T) x £,
Vlorxea = h
22
V(T7 ) = ¢? ( )
atV(T, ') - 0,

where ¢ is the function satisfying
P(D)p =0, ¢log =h(T.").

The solution ¢ exists since the analysis in section 3 manifests that P(D)¢ = 0 can be trans-
formed into an elliptic system, which is the time-independent counterpart of (15). Define the
time reversal operator

Ah:=v(0,-).

Now we take & = Af as the boundary measurement and expect AAf to be a reasonable
approximation of f. The rationale, from a microlocal viewpoint, is that the hyperbolic operator
in the forward problem propagates microlocal singularities of f to 9€2, while the time-reversal
process tends to send back these singularities. This suggests a possible reconstruction of f, as
least all the microlocal singularities will be restored.

The microlocal viewpoint also suggests the necessity of an additional assumption to make
sure that all the microlocal singularities of u, the solution of (10), are not trapped, i.e. all of
them are able to reach OS2 in a finite time. This indicates the necessity of the following non-
trapping condition.

For the wave operator [J, = ad? — A with a = a(x) > 0, the associated Hamiltonian is
H = }1|¢]? and the Hamiltonian system is

o
& — 7? =1¢, X|i=0 = Xo
d OH 1 1
= —H=uV (%) €1, §li=0 = &o-

We say the wave speed ﬁ is non-trapping if for any &, # 0, the spatial component x(¢) — oo
in R" as t — oo. As the Biot system is equivalent to the principal scalar system (15) where the
highest order derivatives are decoupled, we need to ensure each wave speed v/a,, /a,, Vi in
this system is non-trapping. Then there exists a maximal escaping time T (M, P(D),2) > 0,
depending on M, P(D) and the geometry of €2, such that all the (microlocal) singularities of u
are out of Q2 whenever t > T(M, P(D), Q2); in other words, u(z, x) is smooth for x € {2 when-
evert > T(M,P(D), ).

Now we are in the position to state and prove the main theorem. We show that A is the
inverse of A up to a compact operator and the compact operator becomes a contraction on a
suitable function space. Recall that || - ||z is merely a semi-norm on V' it is not positive defi-
nite since ||w||z = 0 implies only w® = 0 and divw = 0. We can take V modulo the closed
subspace {w € V : w* = 0, divwf = 0} to make it a genuine norm. Denote by B the quotient
space, then (B, || - ||p) is a Banach space and ||w||zp = 0 implies w = 0 in B. We also project

14
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Ah = v(0, ) to this quotient space and abuse the notation to call A composed with the canoni-
cal projection as A. So A maps into (B, || - ||5)-

Theorem 11.  Let Q2 be non-trapping and T > T(M, P(D), Q). Suppose that the hypotheses
( H1)—( H3) and the assumption of proposition 8 are satisfied. Then K := I — AA is compact
and contractive on B in the sense that |K||g—p < 1. As a consequence, I — K is invertible on
B and

= KIAAf = AAf+ KAAE+ K°AAf+ ... in B.
j=0

Proof. The proof is divided into two claims. We first show the inequality ||K||z—p < 1, and
then prove by a contra-positive argument that the inequality is strict. Given a time-dependent
function g(#, x), we abbreviate g(¢) for the spatial function g(7, -).

Claim 1. ||Kf||s < |/f||s unless f = 0 in B.

Let us give another representation of Kf. Let u be the solution of (10); let v be the solution
of (22) with h replaced by Af. Denote w := u — v, then w satisfies

MO?>w+PD)w = 0 in(0,7T) xQ,
Wwlorxo0 = 0,
23
w(T) = u(l)- ¢, 29

ow(T) = onu(T).

Moreover, we have

Kf =f— AAf =u(0) — v(0) = w(0). (24)

On the other hand, it is clear to note that (u(7) — ¢)|sq = 0 by the construction of ¢. It
follows from lemma 9 that

(W(T) — ¢, @) = (a(T) — ¢, P(D)d)12(2) = O,
which gives [[u(T) — ¢||3 = ||u(T)||3 — ||#||3. It is easy to verify that
Eq(T.w) = 0w (T) 172 (qur) + IW(T)Il5
= [102(T) |72 00) + [10(T) — B[
= [102(T) |72 0n) + (D)3 — Il 113
= Eq(T.u) - ||4ll3
< EQ(T, ll).
Combining lemma 10 and conservation of energy in R? yields

Eq(0,w) = Eq(T,w) < Eq(T,u) < Egs(T,u) = Egs(0,u) = ||f]|3.

Thus we have from (24) that

IKEl[5 = [W(0)I[3 < Ea (0. w) < [Ifl[5.

15



Inverse Problems 35 (2019) 095009 Y Gao et al

Suppose the equality holds for some f € B, then all the above inequalities become equalities.
In particular Eq(T,u) = Ep: (T, u), which implies

w*(7,x) = diva’(T,x) =0 forx € R®\Q.

By proposition 8, we obtain f*(x) = 0 and div ff(x) = 0 for x # 0. Changing the value at the
single point x = 0 does not affect a function in B. This completes the proof of claim 1.

Claim 2. K :B — Bis compactand ||K|[p—5 < 1.

Claim 1 alone implies ||K||p—5 < 1. To prove the strict inequality, we show K is a compact
operator on B. The spectrum of a compact operator consists of countably many eigenvalues
which may accumulate only at 0. Since claim 1 excludes eigenvalues of modulus 1, the spec-
tral radius of K must be strictly less than 1, proving that ||K||g—p < 1.

Next we prove the compactness of K. Using the representation (24), we decompose K into
composition of bounded operators:

£5% (£,0) -2 (ul—r — b, duli—r)

= (W(T), aw(T)) =2 (w(0), d,w(0)) = w(0).

Here 7, : (f,g) — f is the natural projection onto the first component; | is its adjoint; U, is

the solution operator of the forward problem (10), mapping the state t = O to the state t = T;

and U, is the solution operator of (23) sending t = T'to t = 0. These are all bounded operators.
Consider

U : (f’ 0) — (u|t:T — ¢, 8tu|l:T)~

In view of the assumption that 7 > T(P(D),?), all the microlocal singularities of f have
escaped from €2 at the moment 7, hence (u|,—7, du|,—r) is a pair of smooth functions. On the
other hand, the function ¢, as a solution of the elliptic equations P(D)¢ = 0, is smooth by
elliptic regularity. We conclude that U, is a smoothing operator, hence compact. This means K
is compact as well, since it is the composition of U; with other bounded operators.

We know that K is a contraction on B, (I — K)~! exists as a bounded operator. Applying
(I — K)~! to the identity (I — K)f = AAf and expanding it in terms of Neumann series, we
obtain the reconstruction formula in the statement of the theorem. O

The following stability estimate shows that the faster the energy escapes from (2, the faster
the convergence of the Neumann series is.

Corollary 12. Under the assumption of theorem 11, the following stability estimate holds

EQ(T, ll)

1

2
—_— f for f in B.
EQ(O,U)) || HB or 7£0H1

Ikl < (
Proof. A simple calculation yields that

IKE[E _ [Iw(O)llz _ Eo(0,w) _ Ea(T,u)
£l Eq(0,u) = Eq(0,u) = Eq(0,u)
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Finally, we prove corollary 2. We will deal with a general source of the form
n(x)
L(x)E(t,x) = h(t )
) LB (.3) = A1) /()

where h(t) € C([0,T]) is a known continuous function and f(x) is to be recovered. The Biot’s
system in this case is reduced to (11) with f(x) = (0, f(x)).

Proof of corollary 2. Let u be the solution of (11). By Duhamel’s principle u can be writ-
ten as

t
u(t,x) = / v(t —s,x;5)ds (25)
0
where v(, x; s) is the solution of the initial value problem
M@,zv +PD)v = 0 inR x R3,
V|l=0 = 0’

Ov|i=0 = h(s)t.

Set w(t,x;5) = O,v(t,x;5); then w solves

MO>w+PDw = 0 inR x R?,
W= = h(s)f,
8,W|t:() = 0.

In (25), we fix x € 9f2 and differentiate in 7 to have

t t t
ou(t,x) = / ov(t—s,x,5)ds = / w(t—s,x,5)ds = / h(s)Af(t — s,x)ds.
0 0 0

This is the convolution of &(-) and Af(-,x). As the left hand side is known for x € 0S, one
can take the Laplace transform to recover Af(z,x). Theorem 11 then recovers f up to a pair of
vector fields (0, g) with divg = 0 and g|sq = 0. O
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