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Abstract
We consider an inverse transport problem in fluorescence ultrasound modulated
optical tomography (fUMOT) with angularly averaged illuminations and
measurements. We study the uniqueness and stability of the reconstruction
of the absorption coefficient and the quantum efficiency of the fluorescent
probes. Reconstruction algorithms are proposed and numerical validations are
performed. This paper is an extension of Li er al (2019 SIAM J. Appl. Math. 79
356-76), where a diffusion model for this problem was considered.

Keywords: inverse transport problem, hybrid modality, ultrasound modulated
optical tomography, fluorescence optical tomography, angularly averaged
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(Some figures may appear in colour only in the online journal)

1. Introduction

Fluorescence optical tomography (FOT) is a popular imaging modality for biomedical and
preclinical research [3, 13, 14, 16, 32]. Upon illumination by a laser pulse, fluorescent probes
are exited to a metastable state and later decay to the ground state by emitting photons at a
lower frequency. The emitted light and the residual excitation light are detected at the bound-
ary for the reconstruction of the spatial concentration and lifetimes of the fluorophores.
Fluorescence ultrasound modulated optical tomography (fUMOT) is a series of FOT exper-
iments performed under varying acoustic modulation [30, 40—42]. The acoustic modulation
perturbs the optical properties of the tissue sample, allowing the measurements to provide
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internal information about the optical field. As the fluorescent probes have high optical con-
trast and tissues are acoustically homogeneous, fUMOT is expected to provide stable high
contrast reconstructions with resolution comparable to the wavelength of the acoustic field.
The availability of the internal data and the wellposedness of the inverse problem is generic
for hybrid imaging modalities [2, 10, 22, 24, 26, 27, 31, 39].

Light propagation in tissues obeys the radiative transport equation (RTE) [23]. When the
tissue environment is highly scattering, the RTE can be approximated by the diffusion equa-
tion with a suitable boundary condition [4, 23]. f{UMOT in the diffusion regime has been
studied in our previous work [29]. However, the diffusion approximation fails in the following
two cases: when the tissue is optically thin, the characteristic length is at the same order as
the transport mean free path, thus the boundary layer effect cannot be neglected; and when
the scattering or the illumination source is highly anisotropic, the optical field is necessarily
anisotropic near the source. In an inverse transport problem, the illuminations and measure-
ments at the boundary can be time dependent or time independent, and angularly resolved or
angularly averaged [5, 7, 12]. Time dependent measurements and angularly resolved measure-
ments are mathematically preferable since they preserve more singularities and permit more
stable and more resolved reconstruction. However, in practice, the photon transport process is
too fast for accurate time dependent measurements, and angularly resolved measurements are
too sensitive to noise due to possibly low particle counts in certain directions. That is, in most
practical applications, time independent and angularly averaged illuminations and measure-
ments are less expensive and more reliable [5, 8, 12].

In this paper, we study fUMOT in the radiative transport regime with time independent and
angularly averaged illumination and measurements. We derive the mathematical model for
fUMOT in the transport regime following the works [29, 36]. Let u(x, v, #) and w(x, v, f) be the
excitation and emission photon densities at location x € €2, along direction v € S?~! at time
t € R™. The governing equations of fluorescence optical tomography (FOT) are

éa,u(x, V1) + V- Vu(X,v,1) 4+ (044(X) + 0y p(X) + 0xs(X))u(X, v, 1)
= ax,s(x)/ p(v-Vu(x,v,t)dv' inX x RT,
§d—1
%atw(x, V,1) + V- Vw(X, V,1) + (Opma(X) + Oy (X) + oms(X))W(X, V, 1) (1

= Um,s(x)/ p(v-VIw(x,v,0)dv + S(x,¢) inX x RT,
Sd—1

u(x,v,t) = g(x,v,1), w(xv,t)=0 onI_ xRT,
u(x,v,r) =0, w(x,v,t)=0 onX x {0}.

Here, Q C R?(d = 2,3) is the domain of interest, X = Q x S~! denotes the phase space,
Iy ={(x,v) €90 xS ! £ng-v>0} are the incoming and outgoing boundary sets,
g(x,v,1) = g(x,v)d(r — 0T) is the external excitation laser pulse, and we assume the reflec-
tion at the interface 02 is negligible. oy, (resp. o,,,) is the intrinsic absorption coefficient of
the medium at the excitation wavelength (resp. emission wavelength), o, (resp. o) is the
intrinsic scattering coefficient of the medium at the excitation wavelength (resp. emission
wavelength), and o, (resp. o,,.¢) is the absorption coefficient of the fluorophores at the excita-
tion wavelength (resp. emission wavelength). The emission source term S(x, #) is proportional
to the radiant energy and given by

S(x,7) = (%) 0,5 (x) /0 L ( /S ol v,s)dv) ds, 2)

T



Inverse Problems 36 (2020) 025011 W Lietal

where 7)(x) is the quantum efficiency or quantum yield of the fluorophores and 7 is the fluo-
rescence lifetime of the excited state. The integral kernel p(v - v/) is the scattering phase func-
tion, which gives the angular distribution of li ght intensity scattered by particle collision. With
slight abuse of notation, we set u(x,v) = [ u(x,v,1)dt, w(x,v) = [;~ w(x,v,7)dt. Then we
integrate the system (1) over time. Noticing the fact that u(x, v, 00) = w(x,v,00) = 0, we
obtain a stationary RTE system for these time-integrated quantities.

V- Vu(X,v) + (0rg + 0cp + 0xs)u(X,v) = ax,s/ p(v-Vu(x,v)dv’ inX,
Sd—1
V- Vw(X, V) + (Oma + Oy + Oms)W(X, V) = O'm,s/ p(v-V)w(x,v)dv’
§d—1
+ naxf/ u(x, v)dv in X,
Sd—1
u(x,v) =g(x,v), w(x,v)=0 onl_.

3)
In practice, the coefficient 0, s is extremely small compared to the other coefficients [37, fig-
ure 1.7], therefore we set it to zero hereafter. For simplicity, in what follows, we consider the
isotropic illuminations only, namely g(x, v) = g(x).

Similar to [15, 29], we consider the plane wave ultrasound modulation in the form of
P(x,t) = A cos(wt) cos(q - X + ¢), where A is the amplitude, w is the frequency, q is the wave
vector and ¢ is the initial phase. Under the acoustic modulation, the optical coefficients take
the form [6, 11]

o5 y(x) = (I +ecos(q- X+ @))os(x),

Ufn,s(x) = (14 ccos(q-x+ ¢))ons(x),

0a(X) = (1 +ecos(q- X+ ¢))ora(X),

Tpa(X) = (1 +£cos(q X+ ¢))oma(X),

o p(x) = (1 +ecos(q-x+ ¢))oys(x), 4)
where € = AC%(“”) < 1, p is the particle number density, and c; is the sound speed. Note that

the time variable ¢ in ¢ is the time on the acoustic time scale, which is approximately constant
during the much faster optical process. According to [6] the quantum efficiency n(x) is not
modulated by the acoustic field. Combining this with the stationary RTE (3), we obtain the
governing equation for f{UMOT in the transport regime,

V- Vu(x,v) + (07, + 05 p + o5 Jue(x,v) = 05 Kuc(x,v) inX,
V- Vwe(X,V) + (0, + 05, )We (X, V) = 0, Kwe (X, V) + 107 1 Zu. (x) in X,
u:(x,v) = g(x), we(x,v) =0 onl_. 3)

where the integral operators K and Z are defined as

ko) = [ oy T = [ peva. ©

§d—1

For the measurements, we record the angularly averaged boundary photon currents at both the
excitation and the emission wavelengths [3, 33],

ju&-:/ U (X, V)V - ngdv, jw&-:/ We (X, V)V - ngdv. 7
Sd*l Sd*l
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For a fixed external excitation source g, such boundary photon currents can be measured with
multiple acoustic fields with various wave vectors q and initial phases ¢. Therefore the mea-
surement operator is

A°(q. ¢) = (Tue, Twe) . ()

Q

The objective is to reconstruct the absorption coefficient of the fluorophores o, f(x) and the
quantum efficiency 7(x) from the measurement operator A¢, assuming that the unperturbed
background coefficients oy 4, 04, 0xs and o, have been reconstructed through other imag-
ing methods [9, 10, 34, 36].

Due to the weak coupling between o,y and 7 in the system (5), there exists a two-step
approach to simultaneously reconstructing these two coefficients. Firstly, a nonlinear inverse
medium problem at the excitation wavelength is solved to recover the absorption coefficient
oxs using internal data derived from the excitation component of the measurement operator
(7). Secondly, with the knowledge of o,r, we solve a linear inverse source problem at the
emission wavelength to find the quantum efficiency 7 using internal data derived from the
emission component of the measurement operator (7).

For the excitation stage, we consider two scenarios: (i) For the linearized problem with some
smallness assumptions, we establish existence, uniqueness, and stability results with standard
transport theory; (ii) For the nonlinear problem under the assumption that oys is a-Holder
continuous and known near the boundary, we propose a proximal reconstruction method for
oxs which algebraically depends on the internal data. The error of this reconstruction can be
made arbitrarily small with a proper choice of the source, and the stability is of Lipschitz type.
The key idea is to use an isotropic source that is localized around a set of points on the bound-
ary. Under this illumination, on a line connecting two bright points on the boundary, only the
ballistic part of u(x, v) contributes to the leading order term of the internal data, whereas the
scattering parts of u(x, v) yield lower order terms. It is an analogue of the highly collimated
source function in [15], where angularly resolved illuminations and measurements are allowed.

At last, we make a few comments on some relevant inverse transport problems. In the
absence of acoustic modulation, inverse problems for the time independent RTE with angu-
larly averaged measurements and illuminations are mostly open [5, 43]. The equation con-
sidered in this setting is the first equation in (3), where the sum oy, + 0, + 0y is denoted
by oy [5]. When o, is unknown or o, is unknown, there is no uniqueness result for the
reconstruction of o, or o;. When only o, is unknown and oy ;s and o, are small, recover-
ing o, is severely unstable [8]. In the presence of acoustic modulation, inverse problems with
the time independent RTE with angularly resolved measurements are studied in [6, 15].

The rest of the paper is organized as follows. In section 2, we extract some internal data
from the measurements. A few general properties of the inverse problem are established in
section 3. In section 4, we reconstruct o,y from the internal data at the excitation stage. We
give results on the uniqueness and stability of o, for the linearized problem, and provide an
algebraic reconstruction formula for the nonlinear problem. In section 5, assuming o, has
been successfully reconstructed, we recover 7 from the internal data at the emission stage. The
numerical experiments on synthetic data are presented in section 6 for validation.

2. Internal data

In analogy to [6], we introduce the self-adjoint operators A. and A, defined by
Aaf = _(o-)ia + U)if + Uis)f + O-;,slcf»
AQf = _(Ux,a + Oxf + ax,s)f + o-x,sK:f; (9)

4
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then the modulated solution u. satisfies
(v-V —Au(x,v) = 0. (10)

We then consider the auxiliary function $4(x, v) := u(x, —v), which satisfies the adjoint radia-
tive transfer equation

(=v-V —Ap)U(x,v) =0 (11)
with $(x,v) = g(x) on the outgoing boundary I' . The quantity

JU(x) == / v - ndl(x, v)dv = / v ngu(x, —v)dv = f/ v ngu(x,v)dv = —Ju(x)
§d—1 §d—1 §d—1
(12)
is available from the measurements. Computing (A, — Ag)f with the modulated coefficients
(4), we find that

(A5 — Ao)f =€ COS(X -q+ (25) (*(O—x,a + Oxf + o—x,s)f + Ux,xlcf) . (13)
Multiplying the equations (10) and (11) by LIy and u. respectively, we obtain

/ / ((Az — Ag)ue) Yopdxdv = / V- V(uAl)dxdv = / / ny - vutdsdv. (14)
st Ja si-1JQ si-1 Joa

Since the boundary illumination is isotropic, the right-hand side is equal to

/ nx-vg(x)ildsdv—i—/r nx-vueg(x)dsdv:/ (TU+ Tu.) g(x)ds(x).

o0
(15)
The right-hand side is known from the measurements by noticing that $(x,v) = u(x, —v).
When ¢ is sufficiently small, we write the solution u. in an asymptotic expansion

U =u—+cu +up+--- . (16)

Then the following quantity is known up to higher order terms in ¢,

/ / cos(X - q+ @) (—(0xa + Oxp + Oxs)ut + 0y Ku) LUdxdy. (17)
st Jo

Varying q and ¢ and performing the inverse Fourier transform, we obtain the internal data
H(x) for the excitation stage

H(x) = / (—(Ora + Ouf + 005t + 00 sKu) $dv
Szlfl

= —0Oyy /SH u(x, V)U(x, v)dv + o, 5 " Ku(x, v)U(x, v)dv

= —0Oyy /Sdil u(x, vu(x, —v)dv + o, " Ku(x, v)u(x, —v)dv, (1g)

where o, := 0y, + 0y and oy, 1= 0,4 + 0y, denote the total absorption coefficient at the
excitation wavelength with and without the fluorescence. Similarly, to compute the internal
data at the emission stage, we define auxiliary functions 20 and ¢ by the equations

—v-VU(X,V) + (Opmg + Oms)W(X, V) = 0, ,LW(x, V) in X,

W(x,v) = h(x) onTs, (19)
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for some strictly positive function A(x) € L>°(9f), and

—v-Vo(x,V) + 0y po(X, V) = 0, ,Ko(X, V) + 10, Z20(X) inX,
e(x,v) =0 onI'y. (20)
Multipling (19) by w, and (5) by 20, we obtain

€ /Q cos(X-q+ @) (7(0,,,,,, + Oms) /Sdil w(x, V)20(x, v)dv + 0,5 Kw(x, v)2(x, v)dv) dx

§d—1

= [ [y vosamay— [ o @o@mas

= / / ny - vw Wdsdv — / noys(Zu)(Z20)dx. 21
Sd=1J9Q Q
Similarly, for (20) and (5), we obtain up to higher orders in €,

5/ cos(X - q + ¢) (fox,,f/ u(x, v)p(x, v)dv + o, Ku(x, v)p(x, V)dV) dx
Q -1

Sd—1

:/SH/Qv-V(uggo)dxdv—k/Qnax,f(fu)(zﬂn)dx

= / / ny - vu.pdsdv + / noys(Zu)(120)dx
51 Joq Q

~ / / ny - Vupdsdv + € / ny - Vi pdsdv + / Noxs(Zu)(I20)dx. (22)
st Joq st Jog Q

The sum of (21) and (22) gives

/ / ny - vw 20dsdv + / / ny - vupdsdv + € / / ny - vu;edsdv
si—1 Joq si—1 Joq si—1 Joq

~e /Q cos(x-q+ o) ( — (Oma + Oms) / w(x, V) (X, v)dV + 0 /Sdil Kw(x, v)20(x, v)dv

§d—1

+ 10y (Zu) (T20) — 0y / w(xV)ex VAV +opy | Ku(x,v)p(x, v)dv) dx.
Sd—l

§d—1

(23)
The first term on left-hand side in (23) is known from the measurements because

/ / nx-vweﬂﬂdsdv:/ ny - vwh(x)dsdv = JTweh(x)ds.  (24)
si=1 J o ry o0

The second term on left-hand side is known from the boundary conditions. The third term is
bounded by the Cauchy—Schwartz inequality

1/2 1/2
/ / ny - vippdsdv| < </ / [ny - v||u1\2dsv) </ / [ny - v||<p|2dsv> ,
si-1 JaQ st Joq st Joq

(25)
and from lemma 2.2 in [1],

/ / Iny - v][oPdsy = / nx~v||so|2dsv<c</ nx-v|so|2dsv+||nax,fm||%zm>>
si-1 Joq r_ Ty

< cl[no TW| 72 0 (26)
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where the constant ¢ depends on €2 only. Experimentally, 7 and o, are usually spatially local-
ized functions concentrated on the target cells such that |70, sZ20||;2(q) < 1, hence we omit
this term from (23). Therefore, the internal data S at the emission stage is

S(%) = —(Oma + Oms) /

§d—1

w(X, V)2 (X, v)dV + 0 ¢ / Kw(x, v)20(x, v)dv
Sd—1

+ 00y p(Zu)(IW) — ovyr /.1 u(x,v)p(x,v)dv + oy Ku(x,v)p(x, v)dv. 27)
§d—1 Sd—1

Under the assumption that ¢ is sufficiently small, the internal data H(x) and S(x) given by
(18) and (27) for all x € () are available. In the diffusion regime, it is easy to check the above
internal data H and S will be simplified to the internal data in [29]. In the following, we will
recover the unknown coefficients (o, s, 7) from the internal data (H, S) simultaneously. Since
the coupling between o, and 7 is weak, we take a two-step reconstruction process, i.e. first
reconstruct o,y from H and then use the recovered coefficient to reconstruct the quantum
efficiency 7 as in [29].

3. General properties of the inverse problems

In this section, we derive some general properties of the inverse problems of recon-
structing o, from the internal data H and reconstructing 7 from S in the transport equa-
tion (3). For any 1 <p < oo, let [P(X) (resp. LP(2)) denote the Lebesgue space of
real-valued functions whose pth power are Lebesgue integrable over X (resp. {2), and
7—[}, (X) the space of LP(X) functions whose directional derivative along v belongs to L*(X)
as well, ie. H)(X):={f(x,v):f €LP(X)and v-VfeLP(X)}. We also let LP(I'_)
denote the space of functions that are the traces of ’H’} (X) functions on I'_ under the norm
Loy = (fr_ In(x) ~V|V\Pdvds)'/”, where ds is the surface measure on 0f). We make
the flowing assumptions

(2A1).  The domain €2 is convex and simply connected, and 92 is C°.
(A2).  The optical coefficients oy 4, x5, Oimas Oms are bounded by some constants ¢; and ¢y,
with

0< ¢ < Ox,as Ox,ss Om,as Om,s < ¢ <00 (28)

The unknown coefficients o,s,n belong to the admissible sets A, and A,, respec-

tively, where
As i ={oyy:0<c3 <oy < g <00}, 29
Ap={n:0<cs<n<c <1}, &

for some constants c3, ¢4, 5 and Cg.

(A3).  The source function g(x) is strictly positive, that is, there exists a constant c; such
that 0 < ¢7 < g(x) for x € 0.

(A4).  The scattering phase function p(v - v') is strictly positive and uniformly bounded and
satisfies

/ p(v-v)dvV =1, 0<cg<p(v-V)<cy<oo (30)
sd—1

for some constants cg and cg.
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The above assumptions permit unique solutions u(x, v), w(x,v) € #)(X) to RTE (3) for any
given function g(x) € L?(0N) from the standard transport theory in [1]. Therefore the internal
data H and S are well-defined for any g(x) € L?(02) that satisfies the above assumptions. In
the following, we show that H and S continuously depend on the unknown coefficients o,y
and 7 respectively.

Theorem 3.1. For any g(x) € LP(09), suppose the assumptions (A1-A44) hold, then the
operator H : L= () — LP/2(Q), which maps Oy s to the internal data H, is Fréchet differenti-
able at any oy € A, in the direction 6o,y € L™ (Q) such that oy + dor 5 € A,. The deriva-
tive is given by

Hlow](60,y) = b0 |

u(x, v)u(x, —v)dv — ZUX,,f/ o(x, v)u(x, —v)dv
Sd—1

§d—1

+ 2055 Ko(x,v)u(x, —v)dv,

Sd—1
(€29)
where v(x, V) satisfies
v - VU(X,V) 4+ 0, 40(X, V) = 0 ;K0(X,V) — dopu inX,
v(x,v) =0 onT_.
(32)

Proof. Let o, s = 0.5 + 0.y, it be the solution to the first equation in (3) with coefficient
.z, and H be the corresponding internal data. Then u’ := &t — u solves the transport equation
V- Vi (X,V) + oyt (X, V) = 0 Ku' (X, V) — 0 sl inX,

w'(x,v) =0 onl_. (33)

Denote the difference between v and the true perturbation u’ by u” := u’ — v. We have that u”
satisfies the transport equation

vV (x,) + o i’ (X, ) = 00 K" (x,v) — dopul’ in X,

W' (x,v) =0 onl_. (34)

We now show that |[u||»(x) is of order||do, f\|iw(9) using the standard theory of transport
equations [1]. The source term do, s’ in (33) is in L”(X), therefore u’ € 7—[,1, (X) and there exist
constants ¢; and ¢, such that

' |lrx) < cilldositllrxy < c2lldorlies ) llgllLra0)- (35)
It follows that the source term do, su’ in (34) lies in L7(X), thus

" Loy < cilldopu||ogxy < crealldosll7oo (o llgllLr o0 (36)

Hence u is Fréchet differentiable with respect to o, s as a map from L>°(Q2) to L7(X). By the
product rule, the Fréchet derivative of H with respect to oy is

H o) (Gosg) =~y |

u(x, v)u(x, —v)dv — ZUX,,f/ v(x, V)u(x, —v)dv
§d—1

Sd—1

+ 20,4 Ko(x, v)u(x, —v)dv. (37)
§d—1
O
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Theorem 3.2. For any g(x) € L>=(9N), suppose the assumptions (21-24) hold. Then the
Fréchet derivative H'[o.y] : L*(Q) — L*() is Fredholm.

Proof. From the assumptions (2(1-2(4), the solution u(x, v) is strictly positive, thus there
exists a constant ¢ > 0 such that

/ u(x,vju(x,—v)dv > ¢, Vxe Q.
sd—1

On the other hand, since v(x, v)u(x, —v) € H}(X) and Kov(x, v)u(x, —v) € H1(X), by the av-
eraging lemma [17, 18], we obtain

/ o(x, V)u(x, —v)dv € W>/2(Q), Ko(x, v)u(x, —v)dv € W>'/2(Q).
Sd—] Sd—l
(38)

Then by the fact that the embedding from W>!/2(Q) to L*(Q) is compact, we obtain that
H'[owy] : L2(Q) — L*(2) is Fredholm. O

Theorem 3.3. For any g(x) € L>(Q), suppose the assumptions (A1-A4) hold and oz is
known. Then the linear operator S : L*(Q) — L*(Q), which maps ) to the internal data S, is
Fredholm.

Proof. Since o, is known, w(x, v) and ¢(x, v) are linear in 7, hence S is a linear functional
of 7. Since the auxiliary function 4(x) in (19) is strictly positive, Z2U is strictly positive over
Q. Thus o, ¢(Zu)(Z2Y) is strictly positive. On the other hand, since w(x, v)20(x,v) € H1(X)
and u(x, v)p(x,v) € H1(X), by the averaging lemma [17, 18], we have

/ w(x, V)(x, v)dv € W21/2(Q), / u(x, v)p(x, v)dv € W2/2(Q),
Sd*l Sd*l
(39)

Similarly, it is easy to verify that Kw(x, v)20(x,v) € H}(X) and Ku(x, v)p(x,v) € H)(X) as
well, hence

/ Kow(x, V)W (x, v)dv € WA/2(Q), / Ku(x, v)p(x, V)dv € W21/2().
Sd—1 Sd—1
(40)

By the compactness of the embedding from W2!/2(Q) into L*(f2), we obtain that
S : L*(2) — L*(9) is Fredholm. O

4. Reconstruction of oy ¢

In this section, we consider the reconstruction of the coefficient oy from the internal data H in
two scenarios. We first show that the linearized inverse problem permits a unique reconstruc-
tion when the medium is optically thin and the scattering is weak. Then propose a proximal
reconstruction for the nonlinear problem, which allows an arbitrary accuracy when oy is
Holder continuous and is known near the boundary. Note that without these further assump-
tions on the medium parameters, this nonlinear inverse medium problem may not have a
unique reconstruction, that is, two different o, s’s may give the same H (see section 6).
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4.1. Uniqueness and stability for linearized problem

We have the following theorem for the linearized problem.

Theorem 4.1. Let g(x) € L*>(0N), and suppose that the assumptions (A 1-204) hold. Let
the following conditions be satisfied:

1. The medium is optically thin, i.e. there exists a small constant 1 > v > 0 such that

exp(lo sup o, (X)) < 1+ with lg = diam(Q2) (41)
xeQ

2. The scattering is weak, i.e. there exists a small constant 1 > 6 > 0 such that

Ox,s

sup
x€Q Oxitf

<9 (42)
3. The constants v and J satisfy

+ 2y

1
(1+0)(1+24*(1+9)%) < with = sup g(x)/ inf e(x). (43)

x€00)

Then the linear equation H'[oyf]00yy = 0 only permits the zero solution.

Proof. It follows from (32) that

=00, fu =V - VO(X,V) + 0, 0(X, V) — 0, K0(X, V). (44)
Substituting the above equation into (31), we obtain that when H'[o.f](doys) = 0, (X, V)
satisfies

V- Vo(X, V) + 0,50(X, V) = 0, ,K0(X, V) + 20,6 K10 — 20, K1 Kv in X,
u(x,v) =0 onl_,

where the map /C; is defined as

Kif(x,v) = i/gdil u(x, v)u(x, —v") f(x,v)dv’ with ¢(x) = / u(x, v)u(x, —v)dv. (46)

§d—1
Define the operators L and T by

L:=c"}

x,if (V.V—i_a’x,tf), and 7 := 0-*1

xif

(O'X,SIC + ZO'x,lle — ZO'XJIClK:) .

Let the space L?(X) be the space of functions with the norm

V) = / e () (%, ¥)| Pdxdy.

By lemma 4.1 in [38], [[L™"{| 1 (x) < (1 — exp(—La supycq 0ry(X))). We also have the fol-
lowing estimate for u(x, v) from the maximum principle and semigroup theory,

exp (—KQ sup o’x,,f(x)> inf g(x) <u(x,v) < sup g(x).
xeQ xeoQ X€9N

10
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Thus ||T|| .z (x) is bounded by

Ox,s

o
[Tz x) < sup == + 24° exp (2(9 sup UX,,f(x)> + 2% exp <2£Q sup Jx,,f(x)) - sup
x€Q Oxgf XEQ XEQ x€Q Oxif

From the given conditions (41), (42) and (43), we deduce that [[L™']|,zx) < ﬁ and
(T2 < 6+ 2u2(1 4+ 4)*(1 + 6). Thus

HLilT”L[,’(X) < ||L71||L5;(X)HTHL£(X)
< %(5+2u2(1+7)2(1+5)) “n
= ﬁ (14221 +9)2)(14+6) —1) < 1.
Therefore Lv = Tv only permits v = 0 in L?(X), and the proof is completed by noticing
L2(X) is the same set as L(X). O

The above local uniqueness result could be interpreted by considering the limiting case.
When the scattering coefficient o, ; — 0, theinternal data H — —0 ¢ fS[,,] u(x, v)u(x, —v)dv.
If the medium is optically thin or diam(2) < 1, then the solution u(x, v) could be well approx-
imated by ignoring the coefficient o,y in (3), thus o, and o, are decoupled and can be
recovered directly.

The following stability estimate follows immediately from the classical stability theory of
Fredholm operators [25].

Theorem 4.2. Let § and $ be two perturbed internal data defined in (31), and doys and
00y s be the solutions to the linearized equations

’H’[ax‘f]éaxf = .6 and H/[Uxf}éé'x’f = 5;:), (48)

where 0, is the background coefficient. Then under the same condition as theorem 4.1, there
exists a constant ¢ = €(v,d) > 0 such that

1 ~ ~ ~ ~
zl9 - Nz < 100xs — 66xsll2() < EIH — Hl20)- (49)

Remark 4.3. 'We point out that most biological tissues are typically strongly scattering, for
Oxs
Txif
the conclusion in Theorem 4.1 to hold in this case, it requires the domain size ¢q, to be small

enough. Alternatively, we introduce a proximal reconstruction method in section 4.2, which

which supycq

is close to 1, thus the second assumption in Theorem 4.1 does not hold. For

requires neither supycq ”"'; < 1nor £q is small.
X,

g

4.2. Proximal uniqueness and stability of nonlinear problem

‘We now show an approach to approximating the coefficient o, with arbitrary accuracy when
oxs is Holder continuous and is known near the boundary. For preparation, we introduce the
following definitions and lemma.

Definition 4.4 (0-covering). Let (M,d)be a metric space. The set V is a §-covering of M
if for every x € M, there exists y € V such that d(y, x) < 4.

1
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Definition 4.5 (d-packing). Let (M,d) be a metric space. The set V is a §-packing of M
if for every X1 # x, € V, d(x1,x2) > 4.

Definition 4.6. Suppose 2 C R is a convex domain and d is a metric defined on R?. Let
V = {y:i}!_, be a vertex set with y; € 92, and G = G(V) be the complete geometric graph
formed from the vertices V. Denote the edge set of G by E. For every e € E, we define the
f-tube of e by

To(e) :={y € R : d(y,e) < 6}. (50)

We then define the 6-skeleton of the graph G by
Go(V):=G(V)\ |J (To(e)Ne). 51)

e1£er€E
See figure 1 for an illustration of the formation of Gy (V).

Lemma 4.7. Suppose Q C R is a unit ball and d is the Euclidean metric defined on R
Then for sufficiently small § > 0, there exists avertex set V. = {y;}1_, C 0Qwithn = O(5'~9)
such that the 0-skeleton Gy(V) generated by V is a 26-covering of Q) for sufficiently small
0 < O(6%/n?), i.e. for any point x € S, there exists a pointy € Gg(V) such that d(x,y) < 24.

Proof. Given any ¢ > 0, we choose a §-packing V of 92 with maximal cardinality. It fol-
lows that V is also a d-covering of 9 and card(V) = O(§'~¢). We claim that G(V) forms a
d-covering of Q. For any x € €), we pick an arbitrary point y; € V, and denote the other inter-
section of 52 and the line through y; and x by x’. Since V is a d-covering of 052, there exists
a point y; € V such that d(x,y;) < 6. When y; # y;, we have that d(x,¢;) < d(x',y;) <0,
where e;; is the edge connecting the vertices y; and y; (see figure 2). The claim is obviously
true when y; # y;.

Letd < %. Consider an edge ¢; € E.Forany e, € E and e # ey, the length of Ty(e1) N ey
is at most 20/ sin v, where a € (0, T ) is the angle between ey, €. On the other hand, since
is the unit ball and |e;| > § from the fact that V is a J-packing of €2, we must have sin « > %,
therefore |Ty(e1) Nes| < 2. Because card(E) = () < n?, the total length removed from e,
is at most nz% < 4.

We now prove that Gy (V) is a 2d-covering of 2. For any x € €, since G(V) is a -covering
of 2, we can find y € G(V) such that d(x,y) < d and an edge e € E such thaty € e. Because
the total length removed from e is at most &, we can find a point t € e N Go(V) such that

d(t,y) <dandd(x,t) < d(x,y) +d(y,t) <20. O

We remark that €2 is taken to be a unit ball in the above lemma only for simplicity. The
proof can be easily adapted to the case when the principal curvatures of J€) are bounded
away from zero. In the following, we assume that the domain €2 is the unit ball and prove the

global uniqueness by a constructive method. The idea is to use the fact that the quadratic term
Jsa—1 u(x, v)u(x, —v)dv contains certain ‘singularities’ when g(x) is concentrated at a few
points on the surface 0f2.

Theorem 4.8. Let ) be the unit ball in R and d the Euclidean metric defined on R?. Sup-
pose the assumptions (A1-44) hold. Let the coefficient o,y satisfy the following conditions:

12
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Y1

Ok

Y3 g y2

Figure 1. Tllustration of the f-skeleton of a graph G. The vertex setis V = {yy, y2, ¥3, Y4 }-
The intersection of the segment y,y, with the 6-tube of the edge y3y, is removed from
G(V).

Figure 2. Illustration of the claim that G(V) forms a §-covering of 2. The dashed circle
is centered at x" and has radius 6. The point y’ is on the line y;y;, and xy’ is parallel
to X'y;. We have y’ € Q by the convexity of 2, and d(x,y’) < d(y;,x’) < by the
similarity between the triangles A(y;y;x") and A(y;y'x).

1. oy is a-Holder continuous, that is, there exists a constant k > 0, such that Vx,y € €},
|04 (%) — oxs ()| < Rd(x,y)" (52)

2. We can decompose oy = org T+ 0oy, where Jg s the known background coefficient and

the unknown §o 5 has compact support in the interior subdomain Q, for some r € (0, 1).
Here

Q,:={x:xeQ and d(x,00) > r}. (53)

Then for any sufficiently small 5 > 0, we can choose an illumination source g(x) € L*(09)
such that the internal data H permits a reconstruction oy such that ¥Vx € €,

|02 (%) = 0w (X)] < O(6%). (54)

Proof. Let 6 <r/5 n=0('"9) and 6= O(5*!). We construct a vertex set
V = {y;}}.; C 9Q whose f-skeleton Gy(V) forms a 26-covering of {2 as in lemma 4.7. Let
B(x, s) denote the ball centered at x with radius s. We consider an illumination source function
gn(x) of the form

13
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"1
= Z EXD" (x), x€09, (55)
j=1

where D; = B(y;, h) N 0Q, xp, is the characteristic function of Dj, the exponent / = (d — 1)/2,
and the parameter & < 6 is sufficiently small such that {D; } L are disjoint from each other.
Then G, D Gy is also a 26-covering of Q and g, € L>(912) for any h > 0.

Define the operators B : L= (9€) — L*°(X) and T : L*=°(X) — L>*(X) as

T (x,v)

Bf (x,v) = f(x — 7_(X,V)V) exp <— /o Oy (X — sv)ds) ,

T_(X,v) l
Tf(x,v) = / exp (—/ Oy (X — sv)ds) oxs(X — IV)Kf(x — Iv,v)dl.
0 0
(56)
The solution to the RTE (3) with boundary illumination source gy, is

up(x,v) = Beg + TBg, + (I — T) ' T?Bg. (57)

Here Bg; is the ballistic part of the solution, 7Bg, is the single scattering part, and
(I — T)~"T?Bg, is the multiple scattering part. For each point x € Q,_45 C €, /5 we have
that

KBgn(x,v) < / p(v-V)gn(x — 7_(x, v )V)dv' < c9/ gn(x — 7_(x, vV )V)dv'
§d—1

_cgz/

d—1

h d—1
< L n _ d—1)/2
\CQJ;hlo (r_45> o(nh ) (58)

It follows that TBg, < O(nh'@=1/2) and (I — T)~'T2Bg, < O(nh=1/?). Hence for all
X € Q),, we can write

up(x,v) = Bgp(x,v) + O(nh\4=D/2), (59)

W —Xp,(X = 7_(x,v)v)dv

The internal data H, is

Hy(x) = —Um»/ up (X, V)up (X, —v)dv + 0y Kup (X, v)up(x, —v)dv

§a-1 §d—1

= —ax,lf/ Bgi(x,v)Bgu(x, —v)dv + O(n*h?™")
§d—1
T_(x,v)
= —O’x’,f/ gn(X, V) exp —/ O (x — sv)ds | dv+ O(n*h?™1),
Sd—1

—74(xv)
(60)

where  gp(X,v) = gn(x — 71— (x V)V )gh(x + 7+ (X, V)V). Let y=x+7.(x,v)v and
y =y—7_(y,v)v withv =% = |

14
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1 .
o L @)y

ds.
Va—1 |x —y[¢~! Y

with n(y) being the unit normal vector at y, and noticing

/ o (X £ 71 (X, V)V)dy = O(h"), Wx € Q,, (61)
Q

we can rewrite the formulation (60) as

E(y,y')

1 T (0 —
X / : ds @) zhd 1
h( ) ’ Vi—1 /E)Q h(y) h( )|X_y‘d 1 (y) ‘ |‘ y+ (n )
n 1 1 E (y’ yl) X — y .
= - - ’ ds O h y
v ij=1 hi=1 Va—1 /D,»j(x) |X — y‘d 1 ll(y) | | y + (n )

where Djj(x) ={y:y € D,y —7_(y,v)v € D; with v= y:§|} and E(y,y') is

ly

1
E(y,y') = exp (—Iy -yl /0 oy +s(y — Y))d5> : (62)

Next, since |y — y;| < hand |y — 7—(y, v)v — y;| < h, we take the Taylor expansion aty =y;
and y’ = y; for each integral over D;; and obtain

n
1 E(yi,y)) iy 2,d—1
Hy(x) = —oy, E 7—/ (%ny~~7+0h dSy + O(n“h
(x) xif < h=1 v,y D;i(x) |x — y, |41 (i) i — il (h) y ( )
n
11 E(yi.y;) Yi— Y 2
= —0y E — n(y;) - dSy + O(n“h). 63
A o =1y, /D,-,-(x) IX—ind” ( ) |Yi_Yj| y ( ) (63)

For an arbitrary z € Q,_»s N G, (V), there exists a unique edge ey € E connecting y; and
yx such that z = ry; + (1 — )y, for some # € (0, 1). This means that D;j(z) # 0 if and only if
i=k,j=1ori=1Ij= k. Therefore we have

Hy(z) = =0y (2)E(ye, ¥1)Bn(z, Y1, 1) + O(n*h), (64)

where B,(z, y, y;) satisfies that for some constant ¢y > 0,

| () - 35 nv) - 35
%h(zv Yk, YI) = i1 / 4S5+ / ds
=y \ Jpy@y |2 —yil™! S A e 7 G
lye —yi 1 / 1 / 1
= i —dS, + ———dS.
2Vd—l hd—1 Du(z) |Z — }’k|d_1 Y Dy (z) |Z - yl|d_1 v
> ciolyx — yil- 65)

Here we have used n(y;) = yx in the second equality. In general, if the principal curva-
tures of 02 are bounded away from zero, the same lower bound in (65) still holds. Since
Bi(z,yi, y1) = 00 for some ci9 > 0 and Bj,(z, yk, y;) is independent of o, ¢, we have

15
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Hh(Z) <n2h>
X0 - - O — ] .
o (2) E(yi, Y1) Bn(2, yi. ¥1) * 0 (66)

On the other hand, by the argument in the proof of lemma 4.7, there exists
7 € Qf’_zé N Q,_45 Nex N Gy(V) (see figure 3) such that

/ Hh(zl) (n2h>
X. - — + O I ) 67
o5 (@) E(Yie, y1)Bi(Z', yi. ¥1) 0 ©7)

which is known from the background coefficient 0'2 e Taking the ratio between (66) and (67),
we obtain

, 2
o Hi(z) By(z', ¥k, y1) Lo <nh> ) (68)

Ux,y‘(z) = o-x,tf(z )Hh(z’) Bh(Z, Y, yl) 0

Recalling that n = O(6'~¢) and h < § = O(6*%), we have O (”iTh) < O(6). Therefore for
each z € Q,_»5 N G,(V), we can recover o, (hence o,y) up to an error of O(J). Since
Q,_25 N G,(V) is a 2d-covering for ., for any x € ,, we can find a pointz € ,_,5 N G,(V)

such that |z — x| < 24. Using the Holder continuity condition of o, > we conclude that the L
reconstruction error is bounded by O(8) + k(20)* = O(6%). O

Notice that, if the conditions in theorem 4.8 are not satisfied, then the uniqueness of the
above nonlinear case might not hold under certain circumstances. We demonstrate a numer-
ical example which permits two distinct reconstructions for this situation in example 6.1. In
practice, the specific singular illumination source in (55) with 2 — 0 is not possible due to
resolution limitation. However, for a moderately small 4, and a source g, which only concen-
trates at a few spots on the boundary, and when the total absorption coefficient o, is not too
large, the ballistic signal still can be captured in fsd,l u(x, v)u(x, —v)dv near its h-skeleton.
This could be used to recover the information on the /-skeleton approximately; see figure 4.
Although the uniqueness result of the above theorem is ‘proximal’ and constructive, it does
not rule out uniqueness for other types of illumination source.

Theorem 4.9.  Under the same assumptions of theorem 4.8, let o} ; and o7 be two admissi-

ble absorption coefficients of the fluorophores. Choose the illumination source gy constructed
in theorem 4.8 with 0 < 1, suppose Hy,H, are the corresponding internal data associated

with a, ; and o7, respectively. If H; and Hy satisfy || H /Hy — Uipoo (o, _ys) < 1 then
oty — oxfllie () < O (6% + [|Hi /Hy — 1|1 (0, ) - (69)

Proof. Using the same argument as in theorem 4.8, for any z € Q,_»5 N G, (V), there is a
unique edge ey, € E such that z € ey and we can find 2’ € G, (V) N Q,_45 N 99725 N ey, such
that

H,(z) By(Z',yiy
1 I n\Z, Yk, Vi
O i(Z) =0, (2
(@ ol )Hl(Z’) By (z, yk, yi
H Bu(Z',yi,

/ 2(1/) h(Z Yk YI) o) (5)
Hy(Z') Bi(z,yx, Y1)
where aj;’tf = Oxq + Oxs + afc f for i = 1, 2. Taking the ratio of the above two equations and
using the fact that o/  is known outside the subdomain (2, we obtain

) + 0O (),
(10)

Ui,zf(z) = Uf,zf(z )

16
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Figure 3. Tllustration of (67). §2, is the inner most ball. Let z be a point on ey in
Q,_25 N G,(V). Since there is at most a total length of § removed from ey and the

middle ring has a width of 26, we can find 2/ € e; N Q,_4s5 N 99725 N G, (V) such that
(67) holds.

Figure 4. The left side is [y, u(x,v)u(x,—v)dv and the right side is
Jsi—1 Ku(x, v)u(x, —v)dv. Here the solution u(x, v) to (3) is solved using homogeneous
coefficients oy, = 0.2, 0,5 = 0.2, 0,y = 0.5 and isotropic scattering. The boundary
illumination (55) consists of six points on the two sides with h = é

Ux],tf(z)

-1
Uf’[f(z)

_ ’Hl(l) Hy(Z)

2|[H /Hy — 1|10 (0, )
—1+0(0 O(6).
H2(z) Hl(z/) + ( ) < + ( ) (71)

S —|[Hi/Hy = 1|, _y)

Since ||Hy /Hy — 1||zc(q,_,5) < 1, we obtain the error estimate for any z € 2,25 N G4(V),

17
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|lorp(2) — 07 (2)| < O (||Hi/Hy — 1|poo,_y5) +0) - (72)

Again, since (aif - Uff) is a-Holder continuous and §,_,5 N G, (V) is a 2§-covering of €,
we obtain

oty — oxpllie () < O ([Hi/Hay — Ul (o, ) +0%) - (73)

O

5. Reconstruction of 7

Once o, is reconstructed from the internal data H at the excitation stage, we use the recon-
structed coefficient oy to reconstruct the quantum efficiency using the internal data S at the
emission stage. In practice, the reconstruction of o,y cannot be exact due to measurement
noise. In the following theorem, we show that, as long as the error of the reconstructed o is
controlled and a mild invertibility condition is satisfied, the error of the reconstructed 7 is also
controlled. This result can be understood by regarding the error in o, as a perturbation of a
compact operator, where the eigenvalues vary continuously with the perturbation [19].

Theorem5.1. Lerg(x) € L>°(Q) and suppose that the assumptions (A1 — A4) hold. Suppose
(0xp>1) (Gug7) € Ag X A, are two pairs of admissible coefficients and || o ; — G| () < €’
is sufficiently small. Let (u,w) and (it,w) be the solutions for the coefficients (of,n) and
(Gxp, 1) respectively, and let S and S be the corresponding internal data at emission stage for
(0xg.m) and (Gxy, 1) respectively. Define the linear operators

L=V -V + 0, S = 0K,
Ly, =v-V+ (Jm,s + Um,a)s S 1= om,le.

We then define the linear operators A; : L*(Q) — L*(Q),1 <i < 3as
Aif = o (Zu)(I20)f,

Aof = —(Oma + Oms) / (I — L,)'S) MLy (o0p(Zu) ) (x, v)2(x, v)dv

§d—1

+ O K(I - 6”_118,")_1(@;1(axf(l'u)f))(x, V)25 (x, v)dv,
Sd—]

Asf = —ax,,f/ u(x,v)(I — L'S) 7 L7 (00 (T) f) (%, v)dv

§d—1

+ows | Kuxv) (I = L718) 7 L (o (TW) (k. v)dv,  (74)
Sd—1

where 20 is defined in equation (19). If zero is not an eigenvalue of Ay + A, + As, then there
exists a constant C > 0 such that

In =il < CUIS = Sll@) + ). (75)

18
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Proof. Let du(x,v), dw(x,v) and dp(x, v) be the solutions to the following RTEs,

V- Vou(x,v) + oy 0u(X, v) = oy ou(xX, v) — doysit inX
V- Vp(X,V) + 0y 500(X, V) = 04 KOP(X, V) + (n0xf — 7165£) L0 inX
V- VOw(X, V) + (Oms + Oma)OW(X, V) = 04 JCOW(X, V) + noy s Tu — 76, L inX
do(x,v) =0, ow(x,v) =0, du(x,v)=0 onI'_.
(76)

Then we can write the solutions du, d¢, dw as
Su=—(I-L;'S)"' L (b0, i)
Sip = (I — £7'8) 7 L7 ((51)0,, T + 160, T20)
dw=(I—L,'Sy) 'L, (0n)orsTu+ 7i(02sTu — 51 5T0)), (77)

where dn = n — 17, d0,s = oxy — Gxs. We then decompose (S — S‘) into two parts: the first
part is a Fredholm operator which acts on d7 and the second part is from the perturbation in
Oxf>»

S(x) — S(x) = —(Oma + Oms) / Ow(x, V)0 (X, v)dV + 0, Kow(x, v)(x, v)dv
§-1 §d—1

+ (6n)0y (Zu)(120) + 1(60s) (Tu) (I20) + 1oy (Zou)(120)
— 00 f ,/§d_1 u(x, v)o(X,v)dv — oy /Sd_l ou(x,v)p(x,v)dv — crx,,f/g u(x,v)do(x,v)

d—1

+ Oxs / Kou(x, v)o(x, v)dv + oy / Ku(x,v)dp(x,V)
Sd*l Sdfl
= (A + A+ A3)on+ R.

It is easy to verify that the reminder R has a trivial bound
IRll2(0) < Clldoxslli= (o) (78)

for some constant C. From the averaging lemma [17, 18], A; 4+ A, + Aj is Fredholm. Thus if
0 is not an eigenvalue, we have the invertibility of A; + A, 4+ A3 and

16nll20) < C'IS = Sllz(e) + C" 160 |1 (0) (79)

for some constants C’ and C”. O

6. Numerical experiments

The forward solver of RTE has been studied extensively in recent years and there are many
existing numerical algorithms [20, 21, 28, 35]. In our work, we implement the forward solver
by the discrete ordinate method with low order collocation scheme, where the phase space
X = Q x S !is discretized in both spatial and angular space. In the physical space €2, we
take the uniform mesh, on which the nodes are denoted by {x;}'_,. In the angular space S~
we uniformly choose the angular directions { v, }*Z_, for each node x;. For a medium with weak
scattering, the solution is solved quickly by the following source iteration:
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T (Xi,Vk)
u N (x;, vi) = g(x; — 7 (Xi, Vi) Vi) €xp <—/ Oy (Xi — svk)ds)
0

T— (X, Vi) !
+/ exp <—/ Oy (Xi — svk)ds) o Ku® (x; — v, vi)dl,
0 0

(80)
where uT(x, v) denotes the solution at the Tth iteration. Along each direction vy, the source
iteration (80) can be computed with complete independence, hence the algorithm has a natural
parallelism. Regarding the path integrals, we use the trapezoid rule for the first path integral
term, which represents the ballistic contribution, and for the second path integral term, we
use Simpson’s rule. The paralleled forward solver is implemented in C++ and wrapped with
MATLAB’s mex interface, the source code is hosted at Github!.

Although the theorem 4.8 implies a constructive way to get an approximated estimate of
oxf, the singular localized sources require very fine mesh to resolve, which is not practical
for numerical simulation with the discrete ordinate method. However, we still can seek for the
reconstruction of o,y by minimizing the following objective functional:

1
Jow] = E/Q|H—H*|2dx+§/9|Vaxf|2dx, (81)

where H* is the synthetic internal data from the excitation stage and 3 is the parameter of
regularization. Using the linearization formula (32), we have

Vo)) = [

(H—H") |:7(50'x‘f1/) + / o(x,v)v(x, V)dv] dx + B/ Voo - Voyrdx,
Q i1 Q

(82)
where 9 = [q,_, u(X, —v)u(x,v)dv and v is the solution to (32). The function Q(x,v) is
defined through

0(x,v) = =20, yu(x, —v) + 20, Ku(x, —v). (83)

We then use the quasi-Newton method (L-BFGS) to minimize the functional J. To simplify
the evaluation process of the gradient, the adjoint state method is usually adopted. Let g(x, v)
be the solution to the adjoint RTE

—v-Vq(x,V) + 0xyq(X,V) = 0:Kqg — (H— H")Q(xX, V) inX, "
q(x,v) =0 onI'y. &4

The gradient of J is

o) (80sf) = / 8oy s {f(H —H )Y+ / q(x, v)u(x, v)dv] dx + 5/ Voo s - Vo, rdx
Q s Q
(85)
The quantum efficiency 7 is then recovered by solving the corresponding linear inverse source

problem using the reconstructed o, s, which is

d—1

1 /
7] = argmin - / |S — §*|*dx + 5 / n|*dx, (86)
neA, 2 Q 2 Q

where §* is the computed internal data from the emission stage and 5’ is the Tikhonov regu-
larization parameter in case the problem is ill-posed.

Uhttps://github.com/lowrank/rte
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Figure 5. Nonuniqueness of o, ;. Left: The reconstructed o, ;. Middle: The exact o,y.
Right: The numerical difference between the exact internal data H* and the computed
internal data H from the reconstructed coefficient on the log scale. We can see that the
difference between the internal data are quite small, however the difference between the
coefficients is large.
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Figure 6. Left: the coefficient o, . Right: the quantum efficiency 7.

In the following numerical experiments, the physical domain is € = [0, 1]*> C R?, and
the scattering phase function is chosen as the Henyey—Greenstein’s function pgg in two
dimension,

1 1-g?
cosf) = ————, 87

pha( ) 27 1+ g2 — 2gcosb @7
where the constant g is the medium’s anisotropy parameter. To avoid the inverse crime, for
the following numerical experiments, the synthetic data are generated on a fine discretiza-
tion on both physical and angular spaces, while the inverse problems are solved on a coarse
discretized phase space with roughly 600000 unknowns. The numerical experiments are per-
formed in MATLAB and the source code is hosted on Github 2.

6.1 Example 1

In this example, we demonstrate the nonuniqueness of the reconstruction of o, in a medium
with relatively strong scattering. Here o, remains unknown on the entire domain 2. The
coefficients are

Ors(X,y) =10+ 02x, o0y4(x,y) =02+02y, oy (x,y) =05+ 0.5x.(88)

2 https://github.com/lowrank/fumot-rte/
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Figure 7. The reconstruction of o,s. Top left: The reconstructed coefficient o,y with
noise level 7 = 1%. Top right: the error of o, the relative L* error is 11.85%. Bottom
left: The reconstructed coefficient o, with noise level 7 = 5%. Bottom right: the error
of oy, the relative L? error is 12.67%.

The illumination source is chosen as g = 1 on the boundary and the anisotropy parameter
g = 0.5, the initial guess of 0, is set to zero. We also let the regularization parameter 3 = 0
and assume noiseless internal data. In figure 5, we can observe that the reconstructed image of
o,y is completely different from the exact coefficient.

6.2. Example 2

In this example, we consider an optically thin medium where o, ; is moderately small and o, ¢
remains unknown on the entire domain ). We set coefficients

Oxs(%,y) =024+ 0.2x, oy4(x,y) =02+ 0.2y,
Oms(%,y) =2.04+0.2x, 0pa(x,y) =04+ 0.2y, (89)

and let o, be the modified Shepp—Logan phantom and 7 the Derenzo phantom; see figure 6.
The anisotropy parameter g = 0.5 and the initial guess is generated randomly. The illumina-
tion source g is chosen as

glx,y)=5 sin? (4mx) + 5 sin? (4my), (x,y) € 00 (90)

Such source simulates the ‘singular’ behavior in theorem 4.8, which results with relative
strong signals along the lines between the ‘points’. For the reconstruction, the regularization
parameter is 3 = 1073, and the internal data is polluted by a multiplicative random noise
H* < H*(1 + 7U([—1,1])), with U([—1, 1]) being the uniform distributed random variable
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Figure 8. The reconstruction of 7. Top left: The reconstructed coefficient n with noise
level 7 = 1%. Top right: the error of 7, the relative L? error is 9.61%. Bottom left: The
reconstructed coefficient 5 with noise level 7 = 5%. Bottom right: the error of ), the
relative L? error is 10.71%.

and 7 the noise level. The numerical reconstructions are shown in figure 7. After the coef-
ficient o, has been recovered, we continue to use this o, to reconstruct the quantum effi-
ciency 7 from the internal data S*, we also pollute the data by a multiplicative random noise
S§* « §*(1 + 7U([—1, 1])) with the same noise level. The Tikhonov regularization parameter
is 3/ = 1078, The corresponding numerical reconstructions are shown in figure 8.

7. Conclusion

In this paper, we studied the inverse problem in fluorescence ultrasound modulated optical
tomography (fUMOT) in the transport regime with angularly averaged illumination and mea-
surement. The inverse problem of interest is to recover the absorption coefficient of the fluo-
rophores o, and the quantum efficiency 7.

We derived two internal functionals, H(x) in (18) and S(x) in (27), from the boundary
measurement. Assuming knowledge of the background optical coefficients oy 4, Oy, Oxs and
Om,s» We investigated the uniqueness and stability of the nonlinear map o,y +— H as well as
its linearization doys — $). For the linearized map, we showed o,y is uniquely and stably
determined by $) for optically thin media. For the nonlinear map, we proved o,s can be
approximately reconstructed with properly chosen illumination sources, up to an error that can
be made arbitrarily small. Upon successful recovery of o, we proved the quantum efficiency
7 1s also uniquely and stably determined by the internal functional S; moreover, the error in the
reconstruction of 7 is controllable as long as that of o is. Finally, the resulting reconstruction
procedures are numerically implemented to validate the theoretical conclusions.
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