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Abstract
We consider an inverse transport problem in fluorescence ultrasound modulated 
optical tomography (fUMOT) with angularly averaged illuminations and 
measurements. We study the uniqueness and stability of the reconstruction 
of the absorption coefficient and the quantum efficiency of the fluorescent 
probes. Reconstruction algorithms are proposed and numerical validations are 
performed. This paper is an extension of Li et al (2019 SIAM J. Appl. Math. 79 
356–76), where a diffusion model for this problem was considered.

Keywords: inverse transport problem, hybrid modality, ultrasound modulated 
optical tomography, fluorescence optical tomography, angularly averaged 
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(Some figures may appear in colour only in the online journal)

1.  Introduction

Fluorescence optical tomography (FOT) is a popular imaging modality for biomedical and 
preclinical research [3, 13, 14, 16, 32]. Upon illumination by a laser pulse, fluorescent probes 
are exited to a metastable state and later decay to the ground state by emitting photons at a 
lower frequency. The emitted light and the residual excitation light are detected at the bound-
ary for the reconstruction of the spatial concentration and lifetimes of the fluorophores.

Fluorescence ultrasound modulated optical tomography (fUMOT) is a series of FOT exper-
iments performed under varying acoustic modulation [30, 40–42]. The acoustic modulation 
perturbs the optical properties of the tissue sample, allowing the measurements to provide 
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internal information about the optical field. As the fluorescent probes have high optical con-
trast and tissues are acoustically homogeneous, fUMOT is expected to provide stable high 
contrast reconstructions with resolution comparable to the wavelength of the acoustic field. 
The availability of the internal data and the wellposedness of the inverse problem is generic 
for hybrid imaging modalities [2, 10, 22, 24, 26, 27, 31, 39].

Light propagation in tissues obeys the radiative transport equation (RTE) [23]. When the 
tissue environment is highly scattering, the RTE can be approximated by the diffusion equa-
tion  with a suitable boundary condition [4, 23]. fUMOT in the diffusion regime has been 
studied in our previous work [29]. However, the diffusion approximation fails in the following 
two cases: when the tissue is optically thin, the characteristic length is at the same order as 
the transport mean free path, thus the boundary layer effect cannot be neglected; and when 
the scattering or the illumination source is highly anisotropic, the optical field is necessarily 
anisotropic near the source. In an inverse transport problem, the illuminations and measure-
ments at the boundary can be time dependent or time independent, and angularly resolved or 
angularly averaged [5, 7, 12]. Time dependent measurements and angularly resolved measure-
ments are mathematically preferable since they preserve more singularities and permit more 
stable and more resolved reconstruction. However, in practice, the photon transport process is 
too fast for accurate time dependent measurements, and angularly resolved measurements are 
too sensitive to noise due to possibly low particle counts in certain directions. That is, in most 
practical applications, time independent and angularly averaged illuminations and measure-
ments are less expensive and more reliable [5, 8, 12].

In this paper, we study fUMOT in the radiative transport regime with time independent and 
angularly averaged illumination and measurements. We derive the mathematical model for 
fUMOT in the transport regime following the works [29, 36]. Let u(x, v, t) and w(x, v, t) be the 
excitation and emission photon densities at location x ∈ Ω, along direction v ∈ Sd−1 at time 
t ∈ R+. The governing equations of fluorescence optical tomography (FOT) are

1
c
∂tu(x, v, t) + v · ∇u(x, v, t) + (σx,a(x) + σx,f (x) + σx,s(x))u(x, v, t)

= σx,s(x)
∫

Sd−1
p(v · v′)u(x, v′, t)dv′ in X × R+,

1
c
∂tw(x, v, t) + v · ∇w(x, v, t) + (σm,a(x) + σm,f (x) + σm,s(x))w(x, v, t)

= σm,s(x)
∫

Sd−1
p(v · v′)w(x, v′, t)dv′ + S(x, t) in X × R+,

u(x, v, t) = g(x, v, t), w(x, v, t) = 0 on Γ− × R+,
u(x, v, t) = 0, w(x, v, t) = 0 on X × {0}.

� (1)

Here, Ω ⊂ Rd(d = 2, 3) is the domain of interest, X = Ω× Sd−1 denotes the phase space, 
Γ± = {(x, v) ∈ ∂Ω× Sd−1| ± nx · v > 0} are the incoming and outgoing boundary sets, 
g(x, v, t) = g(x, v)δ(t − 0+) is the external excitation laser pulse, and we assume the reflec-
tion at the interface ∂Ω is negligible. σx,a (resp. σm,a) is the intrinsic absorption coefficient of 
the medium at the excitation wavelength (resp. emission wavelength), σx,s (resp. σm,s) is the 
intrinsic scattering coefficient of the medium at the excitation wavelength (resp. emission 
wavelength), and σx,f  (resp. σm,f ) is the absorption coefficient of the fluorophores at the excita-
tion wavelength (resp. emission wavelength). The emission source term S(x, t) is proportional 
to the radiant energy and given by

S(x, t) = η(x)σx,f (x)
∫ t

0

1
τ

e−
t−s
τ

(∫

Sd−1
u(x, v, s)dv

)
ds,� (2)
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where η(x) is the quantum efficiency or quantum yield of the fluorophores and τ  is the fluo-
rescence lifetime of the excited state. The integral kernel p(v · v′) is the scattering phase func-
tion, which gives the angular distribution of light intensity scattered by particle collision. With 
slight abuse of notation, we set u(x, v) =

∫∞
0 u(x, v, t)dt, w(x, v) =

∫∞
0 w(x, v, t)dt . Then we 

integrate the system (1) over time. Noticing the fact that u(x, v,∞) = w(x, v,∞) = 0, we 
obtain a stationary RTE system for these time-integrated quantities.

v · ∇u(x, v) + (σx,a + σx,f + σx,s)u(x, v) = σx,s

∫

Sd−1
p(v · v′)u(x, v′)dv′ in X,

v · ∇w(x, v) + (σm,a + σm,f + σm,s)w(x, v) = σm,s

∫

Sd−1
p(v · v′)w(x, v′)dv′

+ ησx,f

∫

Sd−1
u(x, v)dv in X,

u(x, v) = g(x, v), w(x, v) = 0 on Γ−.
� (3)

In practice, the coefficient σm,f  is extremely small compared to the other coefficients [37, fig-
ure 1.7], therefore we set it to zero hereafter. For simplicity, in what follows, we consider the 
isotropic illuminations only, namely g(x, v) = g(x).

Similar to [15, 29], we consider the plane wave ultrasound modulation in the form of 
P(x, t) = A cos(ωt) cos(q · x + φ), where A is the amplitude, ω  is the frequency, q is the wave 
vector and φ is the initial phase. Under the acoustic modulation, the optical coefficients take 
the form [6, 11]

σε
x,s(x) = (1 + ε cos(q · x + φ))σx,s(x),

σε
m,s(x) = (1 + ε cos(q · x + φ))σm,s(x),
σε

x,a(x) = (1 + ε cos(q · x + φ))σx,a(x),
σε

m,a(x) = (1 + ε cos(q · x + φ))σm,a(x),
σε

x,f (x) = (1 + ε cos(q · x + φ))σx,f (x),

�

(4)

where ε = A cos(ωt)
ρc2

s
� 1, ρ  is the particle number density, and cs is the sound speed. Note that 

the time variable t in ε is the time on the acoustic time scale, which is approximately constant 
during the much faster optical process. According to [6] the quantum efficiency η(x) is not 
modulated by the acoustic field. Combining this with the stationary RTE (3), we obtain the 
governing equation for fUMOT in the transport regime,

v · ∇uε(x, v) + (σε
x,a + σε

x,f + σε
x,s)uε(x, v) = σε

x,sKuε(x, v) in X,

v · ∇wε(x, v) + (σε
m,a + σε

m,s)wε(x, v) = σε
m,sKwε(x, v) + ησε

x,fIuε(x) in X,

uε(x, v) = g(x), wε(x, v) = 0 on Γ−.
�

(5)

where the integral operators K and I  are defined as

Kf (x, v) =
∫

Sd−1
p(v · v′) f (x, v′)dv′, If (x) =

∫

Sd−1
f (x, v)dv.� (6)

For the measurements, we record the angularly averaged boundary photon currents at both the 
excitation and the emission wavelengths [3, 33],

J uε =

∫

Sd−1
uε(x, v)v · nxdv, Jwε =

∫

Sd−1
wε(x, v)v · nxdv.� (7)

W Li et alInverse Problems 36 (2020) 025011
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For a fixed external excitation source g, such boundary photon currents can be measured with 
multiple acoustic fields with various wave vectors q and initial phases φ. Therefore the mea-
surement operator is

Λε(q,φ) = (J uε,Jwε)
∣∣∣
∂Ω

.� (8)

The objective is to reconstruct the absorption coefficient of the fluorophores σx,f (x) and the 
quantum efficiency η(x) from the measurement operator Λε, assuming that the unperturbed 
background coefficients σx,a, σm,a, σx,s and σm,s  have been reconstructed through other imag-
ing methods [9, 10, 34, 36].

Due to the weak coupling between σx,f  and η in the system (5), there exists a two-step 
approach to simultaneously reconstructing these two coefficients. Firstly, a nonlinear inverse 
medium problem at the excitation wavelength is solved to recover the absorption coefficient 
σx,f  using internal data derived from the excitation component of the measurement operator 
(7). Secondly, with the knowledge of σx,f , we solve a linear inverse source problem at the 
emission wavelength to find the quantum efficiency η using internal data derived from the 
emission component of the measurement operator (7).

For the excitation stage, we consider two scenarios: (i) For the linearized problem with some 
smallness assumptions, we establish existence, uniqueness, and stability results with standard 
transport theory; (ii) For the nonlinear problem under the assumption that σx,f  is α-Hölder 
continuous and known near the boundary, we propose a proximal reconstruction method for 
σx,f  which algebraically depends on the internal data. The error of this reconstruction can be 
made arbitrarily small with a proper choice of the source, and the stability is of Lipschitz type. 
The key idea is to use an isotropic source that is localized around a set of points on the bound-
ary. Under this illumination, on a line connecting two bright points on the boundary, only the 
ballistic part of u(x, v) contributes to the leading order term of the internal data, whereas the 
scattering parts of u(x, v) yield lower order terms. It is an analogue of the highly collimated 
source function in [15], where angularly resolved illuminations and measurements are allowed.

At last, we make a few comments on some relevant inverse transport problems. In the 
absence of acoustic modulation, inverse problems for the time independent RTE with angu-
larly averaged measurements and illuminations are mostly open [5, 43]. The equation con-
sidered in this setting is the first equation in (3), where the sum σx,a + σx,s + σx,f  is denoted 
by σx,tf  [5]. When σx,tf  is unknown or σx,s is unknown, there is no uniqueness result for the 
reconstruction of σx,tf  or σx,s. When only σx,s is unknown and σx,tf  and σx,s are small, recover-
ing σx,s is severely unstable [8]. In the presence of acoustic modulation, inverse problems with 
the time independent RTE with angularly resolved measurements are studied in [6, 15].

The rest of the paper is organized as follows. In section 2, we extract some internal data 
from the measurements. A few general properties of the inverse problem are established in 
section 3. In section 4, we reconstruct σx,f  from the internal data at the excitation stage. We 
give results on the uniqueness and stability of σx,f  for the linearized problem, and provide an 
algebraic reconstruction formula for the nonlinear problem. In section 5, assuming σx,f  has 
been successfully reconstructed, we recover η from the internal data at the emission stage. The 
numerical experiments on synthetic data are presented in section 6 for validation.

2.  Internal data

In analogy to [6], we introduce the self-adjoint operators Aε and A0 defined by

Aεf = −(σε
x,a + σε

x,f + σε
x,s) f + σε

x,sKf ,

A0f = −(σx,a + σx,f + σx,s) f + σx,sKf ;
�

(9)

W Li et alInverse Problems 36 (2020) 025011
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then the modulated solution uε satisfies

(v · ∇ − Aε)uε(x, v) = 0.� (10)

We then consider the auxiliary function U(x, v) := u(x,−v), which satisfies the adjoint radia-
tive transfer equation

(−v · ∇ − A0)U(x, v) = 0� (11)

with U(x, v) = g(x) on the outgoing boundary Γ+. The quantity

JU(x) :=
∫

Sd−1
v · nxU(x, v)dv =

∫

Sd−1
v · nxu(x,−v)dv = −

∫

Sd−1
v · nxu(x, v)dv = −J u(x)

� (12)
is available from the measurements. Computing (Aε − A0) f  with the modulated coefficients 
(4), we find that

(Aε − A0) f = ε cos(x · q + φ) (−(σx,a + σx,f + σx,s) f + σx,sKf ) .� (13)

Multiplying the equations (10) and (11) by U0 and uε respectively, we obtain
∫

Sd−1

∫

Ω

((Aε − A0)uε)U0dxdv =

∫

Sd−1

∫

Ω

v · ∇(uεU)dxdv =

∫

Sd−1

∫

∂Ω

nx · vuεUdsdv.� (14)

Since the boundary illumination is isotropic, the right-hand side is equal to
∫

Γ−

nx · vg(x)Udsdv +

∫

Γ+

nx · vuεg(x)dsdv =

∫

∂Ω

(JU+ J uε) g(x)ds(x).

� (15)
The right-hand side is known from the measurements by noticing that U(x, v) = u(x,−v). 
When ε is sufficiently small, we write the solution uε in an asymptotic expansion

uε = u + εu1 + ε2u2 + · · · .� (16)

Then the following quantity is known up to higher order terms in ε,
∫

Sd−1

∫

Ω

cos(x · q + φ) (−(σx,a + σx,f + σx,s)u + σx,sKu)Udxdv.� (17)

Varying q and φ and performing the inverse Fourier transform, we obtain the internal data 
H(x) for the excitation stage

H(x) =
∫

Sd−1
(−(σx,a + σx,f + σx,s)u + σx,sKu)Udv

= −σx,tf

∫

Sd−1
u(x, v)U(x, v)dv + σx,s

∫

Sd−1
Ku(x, v)U(x, v)dv

= −σx,tf

∫

Sd−1
u(x, v)u(x,−v)dv + σx,s

∫

Sd−1
Ku(x, v)u(x,−v)dv,

�

(18)

where σx,tf := σx,t + σx,f  and σx,t := σx,a + σx,s  denote the total absorption coefficient at the 
excitation wavelength with and without the fluorescence. Similarly, to compute the internal 
data at the emission stage, we define auxiliary functions W and ϕ by the equations

−v · ∇W(x, v) + (σm,a + σm,s)W(x, v) = σm,sKW(x, v) in X,
W(x, v) = h(x) on Γ+,� (19)

W Li et alInverse Problems 36 (2020) 025011
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for some strictly positive function h(x) ∈ L∞(∂Ω), and

−v · ∇ϕ(x, v) + σx,tfϕ(x, v) = σx,sKϕ(x, v) + ησx,fIW(x) in X,
ϕ(x, v) = 0 on Γ+.�

(20)

Multipling (19) by wε and (5) by W, we obtain

ε

∫

Ω

cos(x · q + φ)

(
−(σm,a + σm,s)

∫

Sd−1
w(x, v)W(x, v)dv + σm,s

∫

Sd−1
Kw(x, v)W(x, v)dv

)
dx

=

∫

Sd−1

∫

Ω

v · ∇(wεW)dxdv −
∫

Ω

ησε
x,f (Iu)(IW)dx

=

∫

Sd−1

∫

∂Ω

nx · vwεWdsdv −
∫

Ω

ησε
x,f (Iu)(IW)dx.

�

(21)

Similarly, for (20) and (5), we obtain up to higher orders in ε,

ε

∫

Ω

cos(x · q + φ)

(
−σx,tf

∫

Sd−1
u(x, v)ϕ(x, v)dv + σx,s

∫

Sd−1
Ku(x, v)ϕ(x, v)dv

)
dx

=

∫

Sd−1

∫

Ω

v · ∇(uεϕ)dxdv +

∫

Ω

ησx,f (Iu)(IW)dx

=

∫

Sd−1

∫

∂Ω

nx · vuεϕdsdv +

∫

Ω

ησx,f (Iu)(IW)dx

≈
∫

Sd−1

∫

∂Ω

nx · vuϕdsdv + ε

∫

Sd−1

∫

∂Ω

nx · vu1ϕdsdv +

∫

Ω

ησx,f (Iu)(IW)dx.

�

(22)

The sum of (21) and (22) gives
∫

Sd−1

∫

∂Ω

nx · vwεWdsdv +

∫

Sd−1

∫

∂Ω

nx · vuϕdsdv + ε

∫

Sd−1

∫

∂Ω

nx · vu1ϕdsdv

≈ ε

∫

Ω

cos(x · q + φ)
(
− (σm,a + σm,s)

∫

Sd−1
w(x, v)W(x, v)dv + σm,s

∫

Sd−1
Kw(x, v)W(x, v)dv

+ ησx,f (Iu)(IW)− σx,tf

∫

Sd−1
u(x, v)ϕ(x, v)dv + σx,s

∫

Sd−1
Ku(x, v)ϕ(x, v)dv

)
dx.

� (23)
The first term on left-hand side in (23) is known from the measurements because

∫

Sd−1

∫

∂Ω

nx · vwεWdsdv =

∫

Γ+

nx · vwεh(x)dsdv =

∫

∂Ω

Jwεh(x)ds.� (24)

The second term on left-hand side is known from the boundary conditions. The third term is 
bounded by the Cauchy–Schwartz inequality
∣∣∣∣
∫

Sd−1

∫

∂Ω

nx · vu1ϕdsdv
∣∣∣∣ �

(∫

Sd−1

∫

∂Ω

|nx · v||u1|2dsv
)1/2 (∫

Sd−1

∫

∂Ω

|nx · v||ϕ|2dsv
)1/2

,

� (25)
and from lemma 2.2 in [1],

∫

Sd−1

∫

∂Ω

|nx · v||ϕ|2dsv =

∫

Γ−

|nx · v||ϕ|2dsv � c

(∫

Γ+

|nx · v||ϕ|2dsv + ‖ησx,fIW‖2
L2(Ω)

)

� c‖ησx,fIW‖2
L2(Ω),

�
(26)

W Li et alInverse Problems 36 (2020) 025011
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where the constant c depends on Ω only. Experimentally, η and σx,f  are usually spatially local-
ized functions concentrated on the target cells such that ‖ησx,fIW‖L2(Ω) � 1, hence we omit 
this term from (23). Therefore, the internal data S at the emission stage is

S(x) = −(σm,a + σm,s)

∫

Sd−1
w(x, v)W(x, v)dv + σm,s

∫

Sd−1
Kw(x, v)W(x, v)dv

+ ησx,f (Iu)(IW)− σx,tf

∫

Sd−1
u(x, v)ϕ(x, v)dv + σx,s

∫

Sd−1
Ku(x, v)ϕ(x, v)dv.

�
(27)

Under the assumption that ε is sufficiently small, the internal data H(x) and S(x) given by 
(18) and (27) for all x ∈ Ω are available. In the diffusion regime, it is easy to check the above 
internal data H and S will be simplified to the internal data in [29]. In the following, we will 
recover the unknown coefficients (σx,f , η) from the internal data (H, S) simultaneously. Since 
the coupling between σx,f  and η is weak, we take a two-step reconstruction process, i.e. first 
reconstruct σx,f  from H and then use the recovered coefficient to reconstruct the quantum 
efficiency η as in [29].

3.  General properties of the inverse problems

In this section, we derive some general properties of the inverse problems of recon-
structing σx,f  from the internal data H and reconstructing η from S in the transport equa-
tion  (3). For any 1 � p � ∞, let Lp (X) (resp. L p(Ω)) denote the Lebesgue space of 
real-valued functions whose p th power are Lebesgue integrable over X (resp. Ω), and 
H1

p(X) the space of Lp (X) functions whose directional derivative along v belongs to Lp (X) 
as well, i.e. H1

p(X) := { f (x, v) : f ∈ L p(X) and v · ∇f ∈ L p(X)}. We also let L p(Γ−) 
denote the space of functions that are the traces of H1

p(X) functions on Γ− under the norm 

‖f‖L p(Γ−) := (
∫
Γ−

|n(x) · v||f | pdvds)1/p, where ds is the surface measure on ∂Ω. We make 
the flowing assumptions

	(A1).	� The domain Ω is convex and simply connected, and ∂Ω is C2.
	(A2).	� The optical coefficients σx,a,σx,s,σm,a,σm,s are bounded by some constants c1 and c2, 

with

0 < c1 < σx,a,σx,s,σm,a,σm,s < c2 < ∞.� (28)

The unknown coefficients σx,f , η  belong to the admissible sets Aσ and Aη, respec-
tively, where

Aσ := {σx,f : 0 < c3 � σx,f � c4 < ∞},
Aη := {η : 0 � c5 � η � c6 < 1},
� (29)

for some constants c3, c4, c5 and c6.
	(A3).	� The source function g(x) is strictly positive, that is, there exists a constant c7 such 

that 0 < c7 � g(x) for x ∈ ∂Ω.
	(A4).	� The scattering phase function p(v · v′) is strictly positive and uniformly bounded and 

satisfies

∫

Sd−1
p(v · v′)dv′ = 1, 0 < c8 < p(v · v′) < c9 < ∞� (30)

for some constants c8 and c9.

W Li et alInverse Problems 36 (2020) 025011
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The above assumptions permit unique solutions u(x, v), w(x, v) ∈ H1
p(X) to RTE (3) for any 

given function g(x) ∈ L p(∂Ω) from the standard transport theory in [1]. Therefore the internal 
data H and S are well-defined for any g(x) ∈ L p(∂Ω) that satisfies the above assumptions. In 
the following, we show that H and S continuously depend on the unknown coefficients σx,f  
and η respectively.

Theorem 3.1.  For any g(x) ∈ L p(∂Ω), suppose the assumptions (A1-A4) hold, then the 
operator H : L∞(Ω) → L p/2(Ω), which maps σx,f  to the internal data H, is Fréchet differenti-
able at any σx,f ∈ Aσ in the direction δσx,f ∈ L∞(Ω) such that σx,f + δσx,f ∈ Aσ. The deriva-
tive is given by

H′[σx,f ](δσx,f ) = −δσx,f

∫

Sd−1
u(x, v)u(x,−v)dv − 2σx,tf

∫

Sd−1
v(x, v)u(x,−v)dv

+ 2σx,s

∫

Sd−1
Kv(x, v)u(x,−v)dv,

� (31)

where v(x, v) satisfies

v · ∇v(x, v) + σx,tf v(x, v) = σx,sKv(x, v)− δσx,f u in X,
v(x, v) = 0 on Γ−.

� (32)

Proof.  Let σ̃x,f = σx,f + δσx,f , ũ be the solution to the first equation in (3) with coefficient 
σ̃x,f , and H̃  be the corresponding internal data. Then u′ := ũ − u solves the transport equation

v · ∇u′(x, v) + σx,tf u′(x, v) = σx,sKu′(x, v)− δσx,f ũ in X,
u′(x, v) = 0 on Γ−.

� (33)

Denote the difference between v and the true perturbation u′ by u′′ := u′ − v. We have that u′′ 
satisfies the transport equation

v · ∇u′′(x, v) + σx,tf u′′(x, v) = σx,sKu′′(x, v)− δσx,f u′ in X,
u′′(x, v) = 0 on Γ−.

� (34)

We now show that ‖u′′‖L p(X) is of order ‖δσx,f ‖2
L∞(Ω) using the standard theory of transport 

equations [1]. The source term δσx,f u′ in (33) is in Lp (X), therefore u′ ∈ H1
p(X) and there exist 

constants c1 and c2 such that

‖u′‖L p(X) � c1‖δσx,f ũ‖L p(X) � c2‖δσx,f ‖L∞(Ω)‖g‖L p(∂Ω).� (35)

It follows that the source term δσx,f u′ in (34) lies in Lp (X), thus

‖u′′‖L p(X) � c1‖δσx,f u′‖L p(X) � c1c2‖δσx,f ‖2
L∞(Ω)‖g‖L p(∂Ω).� (36)

Hence u is Fréchet differentiable with respect to σx,f  as a map from L∞(Ω) to Lp (X). By the 
product rule, the Fréchet derivative of H with respect to σx,f  is

H′[σx,f ](δσx,f ) = −δσx,f

∫

Sd−1
u(x, v)u(x,−v)dv − 2σx,tf

∫

Sd−1
v(x, v)u(x,−v)dv

+ 2σx,s

∫

Sd−1
Kv(x, v)u(x,−v)dv.

�

(37)

□ 
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Theorem 3.2.  For any g(x) ∈ L∞(∂Ω), suppose the assumptions (A1-A4) hold. Then the 
Fréchet derivative H′[σx,f ] : L2(Ω) → L2(Ω) is Fredholm.

Proof.  From the assumptions (A1-A4), the solution u(x, v) is strictly positive, thus there 
exists a constant ĉ > 0 such that

∫

Sd−1
u(x, v)u(x,−v)dv > ĉ, ∀x ∈ Ω.

On the other hand, since v(x, v)u(x,−v) ∈ H1
2(X) and Kv(x, v)u(x,−v) ∈ H1

2(X), by the av-
eraging lemma [17, 18], we obtain

∫

Sd−1
v(x, v)u(x,−v)dv ∈ W2,1/2(Ω),

∫

Sd−1
Kv(x, v)u(x,−v)dv ∈ W2,1/2(Ω).

� (38)

Then by the fact that the embedding from W2,1/2(Ω) to L2(Ω) is compact, we obtain that 
H′[σx,f ] : L2(Ω) → L2(Ω) is Fredholm.� □ 

Theorem 3.3.  For any g(x) ∈ L∞(Ω), suppose the assumptions (A1-A4) hold and σx,f  is 
known. Then the linear operator S : L2(Ω) → L2(Ω), which maps η to the internal data S, is 
Fredholm.

Proof.  Since σx,f  is known, w(x, v) and ϕ(x, v) are linear in η, hence S  is a linear functional 
of η. Since the auxiliary function h(x) in (19) is strictly positive, IW is strictly positive over 
Ω. Thus σx,f (Iu)(IW) is strictly positive. On the other hand, since w(x, v)W(x, v) ∈ H1

2(X) 
and u(x, v)ϕ(x, v) ∈ H1

2(X), by the averaging lemma [17, 18], we have
∫

Sd−1
w(x, v)W(x, v)dv ∈ W2,1/2(Ω),

∫

Sd−1
u(x, v)ϕ(x, v)dv ∈ W2,1/2(Ω).

� (39)

Similarly, it is easy to verify that Kw(x, v)W(x, v) ∈ H1
2(X) and Ku(x, v)ψ(x, v) ∈ H1

2(X) as 
well, hence

∫

Sd−1
Kw(x, v)W(x, v)dv ∈ W2,1/2(Ω),

∫

Sd−1
Ku(x, v)ϕ(x, v)dv ∈ W2,1/2(Ω).

� (40)

By the compactness of the embedding from W2,1/2(Ω) into L2(Ω), we obtain that 
S : L2(Ω) → L2(Ω) is Fredholm.� □ 

4.  Reconstruction of σx ,f

In this section, we consider the reconstruction of the coefficient σx,f  from the internal data H in 
two scenarios. We first show that the linearized inverse problem permits a unique reconstruc-
tion when the medium is optically thin and the scattering is weak. Then propose a proximal 
reconstruction for the nonlinear problem, which allows an arbitrary accuracy when σx,f  is 
Hölder continuous and is known near the boundary. Note that without these further assump-
tions on the medium parameters, this nonlinear inverse medium problem may not have a 
unique reconstruction, that is, two different σx,f ’s may give the same H (see section 6).
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4.1.  Uniqueness and stability for linearized problem

We have the following theorem for the linearized problem.

Theorem 4.1.  Let g(x) ∈ L∞(∂Ω), and suppose that the assumptions (A1-A4) hold. Let 
the following conditions be satisfied:

	 1.	�The medium is optically thin, i.e. there exists a small constant 1 > γ > 0 such that

exp(�Ω sup
x∈Ω

σx,tf (x)) < 1 + γ with �Ω = diam(Ω)� (41)

	 2.	�The scattering is weak, i.e. there exists a small constant 1 > δ > 0 such that

sup
x∈Ω

σx,s

σx,tf
< δ� (42)

	 3.	�The constants γ  and δ satisfy

(1 + δ)(1 + 2µ2(1 + γ)2) <
1 + 2γ

γ
with µ = sup

x∈∂Ω
g(x)/ inf

x∈∂Ω
g(x).� (43)

Then the linear equation H′[σx,f ]δσx,f = 0 only permits the zero solution.

Proof.  It follows from (32) that

−δσx,f u = v · ∇v(x, v) + σx,tf v(x, v)− σx,sKv(x, v).� (44)

Substituting the above equation  into (31), we obtain that when H′[σx,f ](δσx,f ) = 0, v(x, v) 
satisfies

v · ∇v(x, v) + σx,tf v(x, v) = σx,sKv(x, v) + 2σx,tfK1v − 2σx,sK1Kv in X,
v(x, v) = 0 on Γ−,

� (45)

where the map K1 is defined as

K1f (x, v) =
1
ψ

∫

Sd−1
u(x, v)u(x,−v′) f (x, v′)dv′ with ψ(x) =

∫

Sd−1
u(x, v)u(x,−v)dv.� (46)

Define the operators L and T  by

L := σ−1
x,tf (v · ∇+ σx,tf ) , and T := σ−1

x,tf (σx,sK + 2σx,tfK1 − 2σx,sK1K) .

Let the space L p
σ(X) be the space of functions with the norm

‖f (x, v)‖σ :=
∫

X
σx,tf (x)|f (x, v)| pdxdv.

By lemma 4.1 in [38], ‖L−1‖L p
σ(X) � (1 − exp(−�Ω supx∈Ω σx,tf (x))). We also have the fol-

lowing estimate for u(x, v) from the maximum principle and semigroup theory,

exp

(
−�Ω sup

x∈Ω
σx,tf (x)

)
inf

x∈∂Ω
g(x) � u(x, v) � sup

x∈∂Ω
g(x).
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Thus ‖T‖L p
σ(X) is bounded by

‖T‖L p
σ(X) � sup

x∈Ω

σx,s

σx,tf
+ 2µ2 exp

(
2�Ω sup

x∈Ω
σx,tf (x)

)
+ 2µ2 exp

(
2�Ω sup

x∈Ω
σx,tf (x)

)
· sup

x∈Ω

σx,s

σx,tf
.

From the given conditions (41), (42) and (43), we deduce that ‖L−1‖L p
σ(X) �

γ
1+γ  and 

‖T‖L p
σ
� δ + 2µ2(1 + γ)2(1 + δ). Thus

‖L−1T‖L p
σ(X) � ‖L−1‖L p

σ(X)‖T‖L p
σ(X)

�
γ

1 + γ

(
δ + 2µ2(1 + γ)2(1 + δ)

)

=
γ

1 + γ

(
(1 + 2µ2(1 + γ)2)(1 + δ)− 1

)
< 1.

� (47)

Therefore Lv = Tv only permits v = 0 in L p
σ(X), and the proof is completed by noticing 

L p
σ(X) is the same set as Lp (X).� □ 

The above local uniqueness result could be interpreted by considering the limiting case. 
When the scattering coefficient σx,s → 0, the internal data H → −σx,tf

∫
Sd−1 u(x, v)u(x,−v)dv. 

If the medium is optically thin or diam(Ω) � 1, then the solution u(x, v) could be well approx-
imated by ignoring the coefficient σx,f  in (3), thus σx,f  and σx,tf  are decoupled and can be 
recovered directly.

The following stability estimate follows immediately from the classical stability theory of 
Fredholm operators [25].

Theorem 4.2.  Let H and H̃ be two perturbed internal data defined in (31), and δσx,f  and 
δσ̃x,f  be the solutions to the linearized equations

H′[σx,f ]δσx,f = H and H′[σx,f ]δσ̃x,f = H̃,� (48)

where σx,f  is the background coefficient. Then under the same condition as theorem 4.1, there 
exists a constant c̃ = c̃(γ, δ) > 0 such that

1
c̃
‖H− H̃‖L2(Ω) � ‖δσx,f − δσ̃x,f ‖L2(Ω) � c̃‖H− H̃‖L2(Ω).� (49)

Remark 4.3.  We point out that most biological tissues are typically strongly scattering, for 

which supx∈Ω
σx,s
σx,tf

 is close to 1, thus the second assumption in Theorem 4.1 does not hold. For 
the conclusion in Theorem 4.1 to hold in this case, it requires the domain size �Ω to be small 
enough. Alternatively, we introduce a proximal reconstruction method in section 4.2, which 

requires neither supx∈Ω
σx,s
σx,tf

� 1 nor �Ω is small.

4.2.  Proximal uniqueness and stability of nonlinear problem

We now show an approach to approximating the coefficient σx,f  with arbitrary accuracy when 
σx,f  is Hölder continuous and is known near the boundary. For preparation, we introduce the 
following definitions and lemma.

Definition 4.4 (δ-covering).  Let (M, d) be a metric space. The set V  is a δ-covering of M 
if for every x ∈ M, there exists y ∈ V  such that d(y, x) � δ.
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Definition 4.5 (δ-packing).  Let (M, d) be a metric space. The set V  is a δ-packing of M 
if for every x1 �= x2 ∈ V , d(x1, x2) > δ.

Definition 4.6.  Suppose Ω ⊂ Rd  is a convex domain and d is a metric defined on Rd. Let 
V = {yi}n

i=1 be a vertex set with yi ∈ ∂Ω, and G = G(V) be the complete geometric graph 
formed from the vertices V . Denote the edge set of G by E. For every e ∈ E, we define the 
θ-tube of e by

Tθ(e) := {y ∈ Rd : d(y, e) < θ}.� (50)

We then define the θ-skeleton of the graph G by

Gθ(V) := G(V) \
⋃

e1 �=e2∈E

(Tθ(e1) ∩ e2) .
� (51)

See figure 1 for an illustration of the formation of Gθ(V).

Lemma 4.7.  Suppose Ω ⊂ Rd  is a unit ball and d is the Euclidean metric defined on Rd. 
Then for sufficiently small δ > 0, there exists a vertex set V = {yi}n

i=1 ⊂ ∂Ω with n = O(δ1−d) 
such that the θ-skeleton Gθ(V) generated by V  is a 2δ-covering of Ω for sufficiently small 
θ � O(δ2/n2), i.e. for any point x ∈ Ω, there exists a point y ∈ Gθ(V) such that d(x, y) � 2δ.

Proof.  Given any δ > 0, we choose a δ-packing V  of ∂Ω with maximal cardinality. It fol-
lows that V  is also a δ-covering of ∂Ω and card(V) = O(δ1−d). We claim that G(V) forms a 
δ-covering of Ω. For any x ∈ Ω, we pick an arbitrary point yi ∈ V , and denote the other inter-
section of ∂Ω and the line through yi and x by x′. Since V  is a δ-covering of ∂Ω, there exists 
a point yj ∈ V  such that d(x′, yj) � δ . When yi �= yj, we have that d(x, eij) � d(x′, yj) � δ , 
where eij is the edge connecting the vertices yi and yj (see figure 2). The claim is obviously 
true when yi �= yj.

Let θ � δ2

4n2 . Consider an edge e1 ∈ E. For any e2 ∈ E and e2 �= e1, the length of Tθ(e1) ∩ e2  
is at most 2θ/ sinα, where α ∈ (0, π

2 ) is the angle between e1, e2. On the other hand, since Ω 

is the unit ball and |e1| > δ from the fact that V  is a δ-packing of ∂Ω, we must have sinα � δ
2, 

therefore |Tθ(e1) ∩ e2| � 4θ
δ . Because card(E) =

( n
2

)
� n2, the total length removed from e1 

is at most n2 4θ
δ � δ.

We now prove that Gθ(V) is a 2δ-covering of Ω. For any x ∈ Ω, since G(V) is a δ-covering 
of Ω, we can find y ∈ G(V) such that d(x, y) � δ and an edge e ∈ E such that y ∈ e. Because 
the total length removed from e is at most δ, we can find a point t ∈ e ∩ Gθ(V) such that 
d(t, y) � δ  and d(x, t) � d(x, y) + d(y, t) � 2δ.� □ 

We remark that Ω is taken to be a unit ball in the above lemma only for simplicity. The 
proof can be easily adapted to the case when the principal curvatures of ∂Ω are bounded 
away from zero. In the following, we assume that the domain Ω is the unit ball and prove the 
global uniqueness by a constructive method. The idea is to use the fact that the quadratic term ∫
Sd−1 u(x, v)u(x,−v)dv  contains certain ‘singularities’ when g(x) is concentrated at a few 

points on the surface ∂Ω.

Theorem 4.8.  Let Ω be the unit ball in Rd and d the Euclidean metric defined on Rd. Sup-
pose the assumptions (A1-A4) hold. Let the coefficient σx,f  satisfy the following conditions:
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	 1.	�σx,f  is α-Hölder continuous, that is, there exists a constant κ > 0, such that ∀x, y ∈ Ω,

|σx,f (x)− σx,f (y)| � κd(x, y)α.� (52)

	 2.	�We can decompose σx,f = σ0
x,f + δσx,f , where σ0

x,f  is the known background coefficient and 
the unknown δσx,f  has compact support in the interior subdomain Ωr  for some r ∈ (0, 1). 
Here

Ωr := {x : x ∈ Ω and d(x, ∂Ω) � r}.� (53)

Then for any sufficiently small δ > 0, we can choose an illumination source g(x) ∈ L∞(∂Ω) 
such that the internal data H permits a reconstruction σ̃x,f  such that ∀x ∈ Ω,

|σ̃x,f (x)− σx,f (x)| � O(δα).� (54)

Proof.  Let δ � r/5, n = O(δ1−d) and θ = O(δ2d). We construct a vertex set 
V = {yj}n

j=1 ⊂ ∂Ω whose θ-skeleton Gθ(V) forms a 2δ-covering of Ω as in lemma 4.7. Let 
B(x, s) denote the ball centered at x with radius s. We consider an illumination source function 
gh(x) of the form

Figure 1.  Illustration of the θ-skeleton of a graph G. The vertex set is V = {y1, y2, y3, y4}. 
The intersection of the segment y1y2 with the θ-tube of the edge y3y4 is removed from 
G(V).

Figure 2.  Illustration of the claim that G(V) forms a δ-covering of Ω. The dashed circle 
is centered at x′ and has radius δ. The point y′ is on the line yiyj, and xy′ is parallel 
to x′yj. We have y′ ∈ Ω by the convexity of Ω, and d(x, y′) � d(yj, x′) � δ  by the 
similarity between the triangles �(yiyjx′) and �(yiy′x).
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gh(x) =
n∑

j=1

1
hl χDj(x), x ∈ ∂Ω,� (55)

where Dj = B(yj, h) ∩ ∂Ω, χDj is the characteristic function of Dj , the exponent l = (d − 1)/2, 
and the parameter h � θ is sufficiently small such that {Dj}n

j=1 are disjoint from each other. 
Then Gh ⊃ Gθ is also a 2δ-covering of Ω and gh ∈ L∞(∂Ω) for any h  >  0.

Define the operators B : L∞(∂Ω) → L∞(X) and T : L∞(X) → L∞(X) as

Bf (x, v) = f (x − τ−(x, v)v) exp

(
−
∫ τ−(x,v)

0
σx,tf (x − sv)ds

)
,

T f (x, v) =
∫ τ−(x,v)

0
exp

(
−
∫ l

0
σx,tf (x − sv)ds

)
σx,s(x − lv)Kf (x − lv, v)dl.

� (56)

The solution to the RTE (3) with boundary illumination source gh is

uh(x, v) = Bgh + T Bgh + (I − T )−1T 2Bgh.� (57)

Here Bgh is the ballistic part of the solution, T Bgh is the single scattering part, and 
(I − T )−1T 2Bgh  is the multiple scattering part. For each point x ∈ Ωr−4δ ⊂ Ωr/5, we have 
that

KBgh(x, v) �
∫

Sd−1
p(v · v′)gh(x − τ−(x, v′)v′)dv′ � c9

∫

Sd−1
gh(x − τ−(x, v′)v′)dv′

= c9

n∑
j=1

∫

Sd−1

1
hl χDj(x − τ−(x, v)v)dv

� c9

n∑
j=1

1
hl O

(
h

r − 4δ

)d−1

= O
(

nh(d−1)/2
)

.

�

(58)

It follows that T Bgh � O(nh(d−1)/2) and (I − T )−1T 2Bgh � O(nh(d−1)/2). Hence for all 
x ∈ Ωr , we can write

uh(x, v) = Bgh(x, v) +O(nh(d−1)/2).� (59)

The internal data Hh is

Hh(x) = −σx,tf

∫

Sd−1
uh(x, v)uh(x,−v)dv + σx,s

∫

Sd−1
Kuh(x, v)uh(x,−v)dv

= −σx,tf

∫

Sd−1
Bgh(x, v)Bgh(x,−v)dv +O(n2hd−1)

= −σx,tf

∫

Sd−1
gh(x, v) exp

(
−
∫ τ−(x,v)

−τ+(x,v)
σx,tf (x − sv)ds

)
dv +O(n2hd−1),

� (60)

where gh(x, v) = gh(x − τ−(x, v)v)gh(x + τ+(x, v)v). Let y = x + τ+(x, v)v and 
y′ = y − τ−(y, v)v  with v = y−x

|y−x|. Utilizing the transformation
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dv =
1

νd−1

|n(y) · v|
|x − y|d−1 dSy

with n(y) being the unit normal vector at y, and noticing
∫

Ω

χDi(x ± τ±(x, v)v)dv = O(hd−1), ∀x ∈ Ωr,� (61)

we can rewrite the formulation (60) as

Hh(x) = −σx,tf
1

νd−1

∫

∂Ω

gh(y)gh(y′)
E (y, y′)
|x − y|d−1

∣∣∣∣n(y) ·
x − y
|x − y|

∣∣∣∣ dSy +O(n2hd−1)

= −σx,tf

n∑
i,j=1

1
hd−1

1
νd−1

∫

Dij(x)

E (y, y′)
|x − y|d−1

∣∣∣∣n(y) ·
x − y
|x − y|

∣∣∣∣ dSy +O(n2hd−1),

where Dij(x) = {y : y ∈ Di, y − τ−(y, v)v ∈ Dj with v = y−x
|y−x|} and E(y, y′) is

E(y, y′) = exp

(
−|y − y′|

∫ 1

0
σx,tf (y + s(y′ − y))ds

)
.� (62)

Next, since |y − yi| � h and |y − τ−(y, v)v − yj| � h, we take the Taylor expansion at y = yi  
and y′ = yj for each integral over Dij and obtain

Hh(x) = −σx,tf

n∑
i�=j

1
hd−1

1
νd−1

∫

Dij(x)

(
E (yi, yj)

|x − yi|d−1

∣∣∣∣n(yi) ·
yi − yj

|yi − yj|

∣∣∣∣+O(h)
)

dSy +O(n2hd−1)

= −σx,tf

n∑
i�=j

1
hd−1

1
νd−1

∫

Dij(x)

E (yi, yj)

|x − yi|d−1

∣∣∣∣n(yi) ·
yi − yj

|yi − yj|

∣∣∣∣ dSy +O(n2h).

�

(63)

For an arbitrary z ∈ Ωr−2δ ∩ Gh(V), there exists a unique edge elk ∈ E connecting yl and 
yk  such that z = tyk + (1 − t)yl for some t ∈ (0, 1). This means that Dij(z) �= ∅ if and only if 
i = k, j = l or i = l, j = k. Therefore we have

Hh(z) = −σx,tf (z)E(yk, yl)Bh(z, yk, yl) +O(n2h),� (64)

where Bh(z, yk, yl) satisfies that for some constant c10 > 0,

Bh(z, yk, yl) =
1

hd−1νd−1



∫

Dkl(z)

∣∣∣n(yk) · yk−yl
|yk−yl|

∣∣∣
|z − yk|d−1 dSy +

∫

Dlk(z)

∣∣∣n(yl) · yk−yl
|yk−yl|

∣∣∣
|z − yl|d−1 dSy




=
|yk − yl|

2νd−1

1
hd−1

(∫

Dkl(z)

1
|z − yk|d−1 dSy +

∫

Dlk(z)

1
|z − yl|d−1 dSy

)

� c10|yk − yl|.

�

(65)

Here we have used n(yk) = yk in the second equality. In general, if the principal curva-
tures of ∂Ω are bounded away from zero, the same lower bound in (65) still holds. Since 
Bh(z, yk, yl) � c10δ for some c10 > 0 and Bh(z, yk, yl) is independent of σx,f , we have
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σx,tf (z) = − Hh(z)
E(yk, yl)Bh(z, yk, yl)

+O
(

n2h
δ

)
.� (66)

On the other hand, by the argument in the proof of lemma 4.7, there exists 

z′ ∈ Ω�
r−2δ ∩ Ωr−4δ ∩ elk ∩ Gh(V) (see figure 3) such that

σx,tf (z′) = − Hh(z′)
E(yk, yl)Bh(z′, yk, yl)

+O
(

n2h
δ

)
,� (67)

which is known from the background coefficient σ0
x,f . Taking the ratio between (66) and (67), 

we obtain

σx,tf (z) = σx,tf (z′)
Hh(z)
Hh(z′)

Bh(z′, yk, yl)

Bh(z, yk, yl)
+O

(
n2h
δ

)
.� (68)

Recalling that n = O(δ1−d) and h � θ = O(δ2d), we have O
(

n2h
δ

)
� O(δ). Therefore for 

each z ∈ Ωr−2δ ∩ Gh(V), we can recover σx,tf  (hence σx,f ) up to an error of O(δ). Since 
Ωr−2δ ∩ Gh(V) is a 2δ-covering for Ωr , for any x ∈ Ωr , we can find a point z ∈ Ωr−2δ ∩ Gh(V) 
such that |z − x| � 2δ. Using the Hölder continuity condition of σx,f , we conclude that the L∞ 
reconstruction error is bounded by O(δ) + κ(2δ)α = O(δα).� □ 

Notice that, if the conditions in theorem 4.8 are not satisfied, then the uniqueness of the 
above nonlinear case might not hold under certain circumstances. We demonstrate a numer
ical example which permits two distinct reconstructions for this situation in example 6.1. In 
practice, the specific singular illumination source in (55) with h → 0 is not possible due to 
resolution limitation. However, for a moderately small h, and a source gh which only concen-
trates at a few spots on the boundary, and when the total absorption coefficient σx,tf  is not too 
large, the ballistic signal still can be captured in 

∫
Sd−1 u(x, v)u(x,−v)dv  near its h-skeleton. 

This could be used to recover the information on the h-skeleton approximately; see figure 4. 
Although the uniqueness result of the above theorem is ‘proximal’ and constructive, it does 
not rule out uniqueness for other types of illumination source.

Theorem 4.9.  Under the same assumptions of theorem 4.8, let σ1
x,f  and σ2

x,f  be two admissi-
ble absorption coefficients of the fluorophores. Choose the illumination source gh constructed 
in theorem 4.8 with δ � 1, suppose H1, H2 are the corresponding internal data associated 
with σ1

x,f  and σ2
x,f  respectively. If H1 and H2 satisfy ‖H1/H2 − 1‖L∞(Ωr−4δ)

< 1, then

‖σ1
x,f − σ2

x,f ‖L∞(Ω) � O
(
δα + ‖H1/H2 − 1‖L∞(Ωr−4δ)

)
.� (69)

Proof.  Using the same argument as in theorem 4.8, for any z ∈ Ωr−2δ ∩ Gh(V), there is a 
unique edge elk ∈ E such that z ∈ elk  and we can find z′ ∈ Gh(V) ∩ Ωr−4δ ∩ Ω�

r−2δ ∩ elk  such 
that

σ1
x,tf (z) = σ1

x,tf (z
′)

H1(z)
H1(z′)

Bh(z′, yk, yl)

Bh(z, yk, yl)
+O (δ) ,

σ2
x,tf (z) = σ2

x,tf (z
′)

H2(z)
H2(z′)

Bh(z′, yk, yl)

Bh(z, yk, yl)
+O (δ) ,

� (70)

where σi
x,tf = σx,a + σx,s + σi

x,f  for i = 1, 2. Taking the ratio of the above two equations and 
using the fact that σi

x,f  is known outside the subdomain Ωr , we obtain
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∣∣∣∣∣
σ1

x,tf (z)
σ2

x,tf (z)
− 1

∣∣∣∣∣ =
∣∣∣∣
H1(z)
H2(z)

H2(z′)
H1(z′)

− 1 +O(δ)

∣∣∣∣ �
2‖H1/H2 − 1‖L∞(Ωr−4δ)

1 − ‖H1/H2 − 1‖L∞(Ωr−4δ)
+O(δ).� (71)

Since ‖H1/H2 − 1‖L∞(Ωr−4δ) < 1, we obtain the error estimate for any z ∈ Ωr−2δ ∩ Gh(V),

Figure 3.  Illustration of (67). Ωr  is the inner most ball. Let z be a point on elk in 
Ωr−2δ ∩ Gh(V). Since there is at most a total length of δ removed from elk and the 
middle ring has a width of 2δ, we can find z′ ∈ elk ∩ Ωr−4δ ∩ Ω�

r−2δ ∩ Gh(V) such that 
(67) holds.

Figure 4.  The left side is 
∫
Sd−1 u(x, v)u(x,−v)dv  and the right side is ∫

Sd−1 Ku(x, v)u(x,−v)dv. Here the solution u(x, v) to (3) is solved using homogeneous 
coefficients σx,a ≡ 0.2, σx,s ≡ 0.2, σx,f ≡ 0.5 and isotropic scattering. The boundary 
illumination (55) consists of six points on the two sides with h = 1

32.
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∣∣σ1
x,f (z)− σ2

x,f (z)
∣∣ � O

(
‖H1/H2 − 1‖L∞(Ωr−4δ) + δ

)
.� (72)

Again, since (σ1
x,f − σ2

x,f ) is α-Hölder continuous and Ωr−2δ ∩ Gh(V) is a 2δ-covering of Ωr , 
we obtain

‖σ1
x,f − σ2

x,f ‖L∞(Ω) � O
(
‖H1/H2 − 1‖L∞(Ωr−4δ) + δα

)
.� (73)

□ 

5.  Reconstruction of η

Once σx,f  is reconstructed from the internal data H at the excitation stage, we use the recon-
structed coefficient σx,f  to reconstruct the quantum efficiency using the internal data S at the 
emission stage. In practice, the reconstruction of σx,f  cannot be exact due to measurement 
noise. In the following theorem, we show that, as long as the error of the reconstructed σx,f  is 
controlled and a mild invertibility condition is satisfied, the error of the reconstructed η is also 
controlled. This result can be understood by regarding the error in σx,f  as a perturbation of a 
compact operator, where the eigenvalues vary continuously with the perturbation [19].

Theorem 5.1.  Let g(x) ∈ L∞(Ω) and suppose that the assumptions (A1 − A4) hold. Suppose 
(σx,f , η), (σ̃x,f , η̃) ∈ Aσ ×Aη are two pairs of admissible coefficients and ‖σx,f − σ̃x,f ‖L∞(Ω) � ε′ 
is sufficiently small. Let (u, w) and (ũ, w̃) be the solutions for the coefficients (σx,f , η) and 
(σ̃x,f , η̃) respectively, and let S and S̃  be the corresponding internal data at emission stage for 
(σx,f , η) and (σ̃x,f , η̃) respectively. Define the linear operators

Lx := v · ∇+ σx,tf , Sx := σx,sK,
Lm := v · ∇+ (σm,s + σm,a), Sm := σm,sK.

We then define the linear operators Ai : L2(Ω) → L2(Ω), 1 � i � 3 as

A1f = σx,f (Iu)(IW) f ,

A2f = −(σm,a + σm,s)

∫

Sd−1
(I − L−1

m Sm)
−1(L−1

m (σx,f (Iu) f ))(x, v)W(x, v)dv

+ σm,s

∫

Sd−1
K(I − L−1

m Sm)
−1(L−1

m (σx,f (Iu) f ))(x, v)W(x, v)dv,

A3f = −σx,tf

∫

Sd−1
u(x, v)(I − L−1

x Sx)
−1L−1

x (σx,f (IW) f )(x, v)dv

+ σx,s

∫

Sd−1
Ku(x, v)(I − L−1

x Sx)
−1L−1

x (σx,f (IW) f )(x, v)dv,

�

(74)

where W is defined in equation (19). If zero is not an eigenvalue of A1 +A2 +A3, then there 
exists a constant C  >  0 such that

‖η − η̃‖L2(Ω) � C(‖S − S̃‖L2(Ω) + ε′).� (75)
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Proof.  Let δu(x, v), δw(x, v) and δϕ(x, v) be the solutions to the following RTEs,

v · ∇δu(x, v) + σx,tf δu(x, v) = σx,sKδu(x, v)− δσx,f ũ in X

v · ∇δϕ(x, v) + σx,tf δϕ(x, v) = σx,sKδϕ(x, v) + (ησx,f − η̃σ̃x,f )IW in X

v · ∇δw(x, v) + (σm,s + σm,a)δw(x, v) = σm,sKδw(x, v) + ησx,fIu − η̃σ̃x,fIũ in X

δϕ(x, v) = 0, δw(x, v) = 0, δu(x, v) = 0 on Γ−.
� (76)

Then we can write the solutions δu, δϕ, δw as

δu = −(I − L−1
x Sx)

−1L−1
x (δσx,f ũ)

δϕ = (I − L−1
x Sx)

−1L−1
x ((δη)σx,fIW+ η̃δσx,fIW)

δw = (I − L−1
m Sm)

−1L−1
m ((δη)σx,fIu + η̃(σx,fIu − σ̃x,fIũ)),

�

(77)

where δη = η − η̃, δσx,f = σx,f − σ̃x,f . We then decompose (S − S̃) into two parts: the first 
part is a Fredholm operator which acts on δη and the second part is from the perturbation in 
σx,f ,

S(x)− S̃(x) = −(σm,a + σm,s)

∫

Sd−1
δw(x, v)W(x, v)dv + σm,s

∫

Sd−1
Kδw(x, v)W(x, v)dv

+ (δη)σx,f (Iu)(IW) + η(δσx,f )(Iu)(IW) + ησx,f (Iδu)(IW)

− δσx,f

∫

Sd−1
u(x, v)ϕ(x, v)dv − σx,tf

∫

Sd−1
δu(x, v)ϕ(x, v)dv − σx,tf

∫

Sd−1
u(x, v)δϕ(x, v)

+ σx,s

∫

Sd−1
Kδu(x, v)ϕ(x, v)dv + σx,s

∫

Sd−1
Ku(x, v)δϕ(x, v)

= (A1 +A2 +A3)δη +R.

It is easy to verify that the reminder R has a trivial bound

‖R‖L2(Ω) � C‖δσx,f ‖L∞(Ω)� (78)

for some constant C. From the averaging lemma [17, 18], A1 +A2 +A3 is Fredholm. Thus if 
0 is not an eigenvalue, we have the invertibility of A1 +A2 +A3 and

‖δη‖L2(Ω) � C′‖S − S̃‖L2(Ω) + C′′‖δσx,f ‖L∞(Ω)� (79)

for some constants C′ and C′′.� □ 

6.  Numerical experiments

The forward solver of RTE has been studied extensively in recent years and there are many 
existing numerical algorithms [20, 21, 28, 35]. In our work, we implement the forward solver 
by the discrete ordinate method with low order collocation scheme, where the phase space 
X = Ω× Sd−1 is discretized in both spatial and angular space. In the physical space Ω, we 
take the uniform mesh, on which the nodes are denoted by {xi}N

i=1. In the angular space Sd−1, 
we uniformly choose the angular directions {vk}M

k=1 for each node xi. For a medium with weak 
scattering, the solution is solved quickly by the following source iteration:
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uT+1(xi, vk) = g(xi − τ−(xi, vk)vk) exp

(
−
∫ τ−(xi,vk)

0
σx,tf (xi − svk)ds

)

+

∫ τ−(xi,vk)

0
exp

(
−
∫ l

0
σx,tf (xi − svk)ds

)
σx,sKuT(xi − lvk, vk)dl,

� (80)
where uT(x, v) denotes the solution at the Tth iteration. Along each direction vk , the source 
iteration (80) can be computed with complete independence, hence the algorithm has a natural 
parallelism. Regarding the path integrals, we use the trapezoid rule for the first path integral 
term, which represents the ballistic contribution, and for the second path integral term, we 
use Simpson’s rule. The paralleled forward solver is implemented in C++ and wrapped with 
MATLAB’s mex interface, the source code is hosted at Github1.

Although the theorem 4.8 implies a constructive way to get an approximated estimate of 
σx,f , the singular localized sources require very fine mesh to resolve, which is not practical 
for numerical simulation with the discrete ordinate method. However, we still can seek for the 
reconstruction of σx,f  by minimizing the following objective functional:

J[σx,f ] =
1
2

∫

Ω

|H − H∗|2dx +
β

2

∫

Ω

|∇σx,f |2dx,� (81)

where H∗ is the synthetic internal data from the excitation stage and β is the parameter of 
regularization. Using the linearization formula (32), we have

J′[σx,f ](δσx,f ) =

∫

Ω

(H − H∗)

[
−δσx,fψ +

∫

Sd−1
Q(x, v)v(x, v)dv

]
dx + β

∫

Ω

∇δσx,f · ∇σx,f dx,

� (82)

where ψ =
∫
Sd−1 u(x,−v)u(x, v)dv and v is the solution to (32). The function Q(x, v) is 

defined through

Q(x, v) = −2σx,tf u(x,−v) + 2σx,sKu(x,−v).� (83)

We then use the quasi-Newton method (L-BFGS) to minimize the functional J. To simplify 
the evaluation process of the gradient, the adjoint state method is usually adopted. Let q(x, v) 
be the solution to the adjoint RTE

−v · ∇q(x, v) + σx,tf q(x, v) = σx,sKq − (H − H∗)Q(x, v) in X,
q(x, v) = 0 on Γ+.� (84)

The gradient of J is

J′[σx,f ](δσx,f ) =

∫

Ω

δσx,f

[
−(H − H∗)ψ +

∫

Sd−1
q(x, v)u(x, v)dv

]
dx + β

∫

Ω

∇δσx,f · ∇σx,f dx

� (85)
The quantum efficiency η is then recovered by solving the corresponding linear inverse source 
problem using the reconstructed σx,f , which is

η̃ = arg min
η∈Aη

1
2

∫

Ω

|S − S∗|2dx +
β′

2

∫

Ω

|η|2dx,� (86)

where S∗ is the computed internal data from the emission stage and β′ is the Tikhonov regu-
larization parameter in case the problem is ill-posed.

1 https://github.com/lowrank/rte
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In the following numerical experiments, the physical domain is Ω = [0, 1]2 ⊂ R2, and 
the scattering phase function is chosen as the Henyey–Greenstein’s function pHG in two 
dimension,

pHG(cos θ) =
1

2π
1 − g2

1 + g2 − 2g cos θ
,� (87)

where the constant g is the medium’s anisotropy parameter. To avoid the inverse crime, for 
the following numerical experiments, the synthetic data are generated on a fine discretiza-
tion on both physical and angular spaces, while the inverse problems are solved on a coarse 
discretized phase space with roughly 600 000 unknowns. The numerical experiments are per-
formed in MATLAB and the source code is hosted on Github 2.

6.1.  Example 1

In this example, we demonstrate the nonuniqueness of the reconstruction of σx,f  in a medium 
with relatively strong scattering. Here σx,f  remains unknown on the entire domain Ω. The 
coefficients are

σx,s(x, y) = 10 + 0.2x, σx,a(x, y) = 0.2 + 0.2y, σx,f (x, y) = 0.5 + 0.5x.
� (88)

2 https://github.com/lowrank/fumot-rte/

Figure 5.  Nonuniqueness of σx,f . Left: The reconstructed σx,f . Middle: The exact σx,f . 
Right: The numerical difference between the exact internal data H∗ and the computed 
internal data H from the reconstructed coefficient on the log scale. We can see that the 
difference between the internal data are quite small, however the difference between the 
coefficients is large.

Figure 6.  Left: the coefficient σx,f . Right: the quantum efficiency η.
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Figure 7.  The reconstruction of σx,f . Top left: The reconstructed coefficient σx,f  with 
noise level τ = 1%. Top right: the error of σx,f , the relative L2 error is 11.85%. Bottom 
left: The reconstructed coefficient σx,f  with noise level τ = 5%. Bottom right: the error 
of σx,f , the relative L2 error is 12.67%.

The illumination source is chosen as g ≡ 1 on the boundary and the anisotropy parameter 
g = 0.5, the initial guess of σx,f  is set to zero. We also let the regularization parameter β = 0 
and assume noiseless internal data. In figure 5, we can observe that the reconstructed image of 
σx,f  is completely different from the exact coefficient.

6.2.  Example 2

In this example, we consider an optically thin medium where σx,s is moderately small and σx,f  
remains unknown on the entire domain Ω. We set coefficients

σx,s(x, y) = 0.2 + 0.2x, σx,a(x, y) = 0.2 + 0.2y,
σm,s(x, y) = 2.0 + 0.2x, σm,a(x, y) = 0.4 + 0.2y,
�

(89)

and let σx,f  be the modified Shepp–Logan phantom and η the Derenzo phantom; see figure 6. 
The anisotropy parameter g = 0.5 and the initial guess is generated randomly. The illumina-
tion source g is chosen as

g(x, y) = 5 sin2(4πx) + 5 sin2(4πy), (x, y) ∈ ∂Ω.� (90)

Such source simulates the ‘singular’ behavior in theorem 4.8, which results with relative 
strong signals along the lines between the ‘points’. For the reconstruction, the regularization 
parameter is β = 10−3, and the internal data is polluted by a multiplicative random noise 
H∗ ← H∗(1 + τU([−1, 1])), with U([−1, 1]) being the uniform distributed random variable 
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and τ  the noise level. The numerical reconstructions are shown in figure 7. After the coef-
ficient σx,f  has been recovered, we continue to use this σx,f  to reconstruct the quantum effi-
ciency η from the internal data S∗, we also pollute the data by a multiplicative random noise 
S∗ ← S∗(1 + τU([−1, 1])) with the same noise level. The Tikhonov regularization parameter 
is β′ = 10−8. The corresponding numerical reconstructions are shown in figure 8.

7.  Conclusion

In this paper, we studied the inverse problem in fluorescence ultrasound modulated optical 
tomography (fUMOT) in the transport regime with angularly averaged illumination and mea-
surement. The inverse problem of interest is to recover the absorption coefficient of the fluo-
rophores σx,f  and the quantum efficiency η.

We derived two internal functionals, H(x) in (18) and S(x) in (27), from the boundary 
measurement. Assuming knowledge of the background optical coefficients σx,a, σm,a, σx,s and 
σm,s , we investigated the uniqueness and stability of the nonlinear map σx,f �→ H  as well as 
its linearization δσx,f �→ H. For the linearized map, we showed δσx,f  is uniquely and stably 
determined by H for optically thin media. For the nonlinear map, we proved σx,f  can be 
approximately reconstructed with properly chosen illumination sources, up to an error that can 
be made arbitrarily small. Upon successful recovery of σx,f , we proved the quantum efficiency 
η is also uniquely and stably determined by the internal functional S; moreover, the error in the 
reconstruction of η is controllable as long as that of σx,f  is. Finally, the resulting reconstruction 
procedures are numerically implemented to validate the theoretical conclusions.

Figure 8.  The reconstruction of η. Top left: The reconstructed coefficient η with noise 
level τ = 1%. Top right: the error of η, the relative L2 error is 9.61%. Bottom left: The 
reconstructed coefficient η with noise level τ = 5%. Bottom right: the error of η, the 
relative L2 error is 10.71%.
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