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Abstract: In the context of holography, entanglement entropy can be studied either by
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set by the Planck length. In this paper we develop a new method for metric reconstruction
based on the latter approach and show the advantages over existing ones. We start by
studying general linear perturbations around the vacuum state. Generic thread config-
urations turn out to encode the information about the metric in a highly nonlocal way,
however, we show that for boundary regions with a local modular Hamiltonian there is
always a canonical choice for the perturbed thread configurations that exploits bulk local-
ity. To do so, we express the bit thread formalism in terms of differential forms so that
it becomes manifestly background independent. We show that the Iyer-Wald formalism
provides a natural candidate for a canonical local perturbation, which can be used to re-
cast the problem of metric reconstruction in terms of the inversion of a particular linear
differential operator. We examine in detail the inversion problem for the case of spherical
regions and give explicit expressions for the inverse operator in this case. Going beyond
linear order, we argue that the operator that must be inverted naturally increases in order.
However, the inversion can be done recursively at different orders in the perturbation. Fi-
nally, we comment on an alternative way of reconstructing the metric non-perturbatively
by phrasing the inversion problem as a particular optimization problem.
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1 Introduction

1.1 Motivation

Recent progress in the joint program on quantum information and holography has un-
covered striking connections between entanglement and spacetime. Arguably, the most
exciting discovery in this context, and the one which ignited most of the research in this
field, was the proposal of Ryu and Takayanagi that relates the entanglement entropy of a
region A in the boundary to the area of a minimal codimension-two bulk surface γA [1],

SA = 1
4GN

min
γA∼A

[area(γA)] . (1.1)

This formula was further generalized to a fully covariant setting in [2] and proved formally
in [3, 4] using the known entries of the holographic dictionary. The RT prescription (1.1)
and its covariant version generalize in an elegant way the well-known Bekenstein-Hawking
formula for black hole entropy and provide a natural way to interpret it directly in terms
of a microscopic CFT description. Given its elegance and simplicity, entanglement entropy
became a robust tool to investigate fundamental aspects in holography, ranging from the
problem of bulk reconstruction [5–21], to the emergence and dynamics of spacetime [22–29].

Recently, Freedman and Headrick proposed an alternative way to compute entangle-
ment entropy that does not rely on bulk surfaces, but instead, is phrased in terms of a
specific flow maximization problem [30]. More specifically, the new prescription states that

SA = 1
4GN

max
v∈F

∫
A

√
hnµv

µ , F ≡ {v | ∇µvµ = 0, |v| ≤ 1} , (1.2)

and can be shown to be equivalent to the RT formula through the continuous version of the
max flow-min cut theorem of network theory. The maximization above is an example of a
convex optimization program and, hence, the equivalence between (1.1) and (1.2) can also
be proved using techniques borrowed from convex optimization [31]. Soon after this paper
appeared, it was realized that various geometric problems could likewise be translated to
the realm of convex optimization leading to interesting new results [32, 33]. The connection
with convex optimization has also helped uncover various properties of entanglement en-
tropy from the bit thread perspective [34], as well as some generalizations and applications
to other entanglement related quantities [35–41]. A complementary approach that departs
from the realm of convex optimization was put forward in [42, 43] and studies aspects of
bit threads and entanglement by considering explicit constructions of max flows. This is
the line of work that we will mostly follow in this paper.

There is one crucial distinction between the two prescriptions to compute entanglement
entropy that we believe deserves further investigation: while the minimal surface γA is in
most cases unique, the solution to the max flow problem v is highly degenerate. More
specifically, it can be shown that v is uniquely determined only at the bulk bottle-neck γA,
but is highly non-unique away from it. This non-uniqueness raises the question:

Out of the infinitely many thread configurations that could be associated
with a boundary region, is there any meaningful separation or classifica-
tion that could be associated with states of special “entanglement classes”
in the dual field theory?

– 1 –
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Intuitively, it would seem that this large degeneracy could indeed be associated to a choice
of microstate (or a particular class of microstates) that give rise to the same amount of
entanglement between the region A and its complement,1 however, a precise version of
this statement is not settled yet. On the other hand, one can try to exploit this non-
uniqueness to gain new insights on the gravity side. The utility of the non-uniqueness
property stems from the observation that, if a version of this statement is true (even if we
do not know it yet), then a particular solution to the max flow problem v could potentially
carry more information than the minimal surface γA itself: it could encode in detail how
the local correlations between the degrees of freedom in the region A and in its complement
are distributed for a particular choice of microstate. If so, then, one could imagine that
specific questions related to bulk reconstruction and the emergence of spacetime could
be answered in a more efficient way by properly selecting a class of configurations/states
adapted to the specific problem at hand.

In this paper we will give some steps in this direction. Specifically, our main objective
is to understand how the program of gravitation from entanglement [22–29] unfolds in the
language of bit threads and to explore an alternative way of metric reconstruction based
on this framework. The particular questions that we want to address are the following:

• How are the metric and Einstein’s equations encoded in generic thread configurations?

• Can bulk locality be manifest in particular constructions?

• Is it possible to reconstruct the bulk geometry from a max flow solution?

• If so, how does the method compare to the ones based on RT surfaces?

Following [22–29], we begin by considering these questions in a perturbative setting in
which we study small deformations continuously connected to a reference state. An im-
portant motivation of such continuous construction comes from the study of the phase
transition of RT surfaces that happens for disjoint regions as one varies their separation.
It is known that, close to the phase transition, the RT surface can change from a con-
nected to a disconnected configuration. Such jumps posit a puzzle to a potential quantum
information interpretation of the RT surfaces from the bulk perspective, which is solved
in the language of bit threads by imposing the additional property of being continuous
across phase transitions [30]. Continuity is, then, a desirable feature of bit threads under
continuous deformations.

Before we study the above questions, let us review some of the features of the standard
methods of metric reconstruction using RT surfaces [5–21], and explain potential advan-
tages of studying this problem with bit threads. While there are other methods for bulk
reconstruction, e.g. [45–47], our comments and comparisons refer only to approaches that
make explicit use of RT surfaces. Quite generally, if one hopes for a reconstruction of

1The standard lore asserts that states with (semi)-classical bulk duals can only encode bipartite and
perfect-tensor type entanglement, but no other form of multipartite entanglement (see however [44]). Hence,
the class of microstates that we have access to would be a reduced subset of the most general class of CFT
microstates.
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the metric everywhere in the bulk one must start with a sufficiently dense set of extremal
surfaces that probe the full manifold M . This is in fact possible in some simple cases, at
least for the subset of M that can be foliated by boundary anchored extremal surfaces.
For static (2 + 1)−dimensional bulk geometries this was achieved in [9] starting from the
full set of extremal surfaces associated with all CFT intervals, and using ideas from hole-
ography [5–8]. More recently, it was shown that the same ideas could be extended to the
time-dependent case in [18] and to higher dimensions [19], here by focusing on the subset
of extremal surfaces associated with spherical regions (or topologically equivalent, in the
approach of [20]).

The problem of metric reconstruction using bit threads has a major advantage over
the ones described above: it does not rely on the ability of the manifold M of admitting
foliations by boundary anchored extremal surfaces. In fact, threads can probe regions in
the bulk that extremal surfaces cannot, such as entanglement shadows near the vicinity
of (spherical) black hole horizons [43]. It is important to point out that bulk shadows do
not appear exclusively in cases where gravity is strong; one simple counterexample is the
metric of a conical deficit geometry, which arises by the backreaction of a point particle in
AdS [48]. Consequently, formulating the problem of metric reconstruction in the language
of bit threads, even for the simpler case of perturbative states, is interesting on its own
right. In particular, it will shed new light on the issue of emergence of spacetime from
entanglement entropy [49, 50], without resorting to other measures of entanglement such
as entwinement [48].

Another important difference with respect to the problem of metric reconstruction
using extremal surfaces is that the latter requires as a starting point the knowledge of a
dense set of surfaces that probe the bulk geometry. While we can do the same in the
language of bit threads, i.e., start from a dense set of thread configurations, the fact that
one single solution to the max flow problem already probes the full bulk geometry presents
us with an interesting possibility: we can start from a finite set of thread configurations,
containing one, or possibly only a few solutions of the max flow problem. We will consider
both approaches in this paper, and show that the explicit reconstruction is possible in
both cases. In the remaining part of the introduction we will provide a quick guide to help
navigate our paper and enumerate the most important findings of each section.

1.2 Road map and summary

We begin in section 2 with a short discussion of various topics that we constantly refer to
in our paper. Most of this material is a review of previous works, covering known results
about perturbations around AdS and the calculation of entanglement entropy, both in the
language of extremal surfaces and bit threads. We also include a short analysis of bit
threads in perturbative excited states in subsection 2.3.1 which is new. The main message
of this analysis is that, to leading order in the perturbation, it is consistent to use the
prescription (1.2) on a constant-t slice, even if the perturbation includes time dependence.

In section 3 we study simple explicit realizations of max flows for bulk geometries that
are perturbatively close to pure AdS. We begin in section 3.1 by discussing some general
properties about these max flows: the boundary condition at the minimal surface and
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how this condition is sufficient to encode the first law of entanglement entropy. We then
proceed to study two particular constructions in subsections 3.2 and 3.3, respectively. The
first method that we consider is a generalization of the geodesic method developed in [43].
This method assumes a particular set of integral curves as a starting point, which we take
to be the family of space-like geodesics that intersect normally the minimal surface. Given
this assumption, one then determines the norm by imposing the divergenceless condition,
implemented through the Gauss’s law. We show that this construction works both for
geodesics of the unperturbed and perturbed geometries under some mild assumptions. In
subsection 3.3 we study a slightly more general method. Here, our starting point is to
propose a family of level set functions for the flow and then determine its norm based on
the divergenceless condition, now implemented directly by solving a differential equation.
The flows constructed via this method are a generalization of the maximally packed flows
presented in [42, 43], where the level set functions are now arbitrary (not necessarily a
nested set of minimal surfaces). This method is therefore fully non-perturbative and easily
adapted to any boundary entangling region.

Importantly, both constructions presented in section 3 assume as an input a solution to
the Einstein’s equations in the bulk. Given an explicit metric one can determine the norm
of the vector field from the divergenceless condition, which requires an integration from
the minimal surface (where the norm is known) to the points of interest. Such integration
generically introduces a nonlocal dependence on the background metric which renders these
methods non-suitable for addressing questions of bulk reconstruction. However, this also
suggests a way around it. More specifically, since the nonlocality is introduced in both cases
through the implementation of the divergenceless constrain, it suggests that a construction
that implements this condition in a background independent way would be absent of such
nonlocalities, which is possible if pose the question in the language of differential forms.

Motivated by the above observation we start subsection 4.1 by rewriting the bit thread
framework in the language of differential forms. We study in detail the case of perturba-
tive states and show, in subsections 4.2 and 4.3, that the Iyer-Wald formalism provides a
candidate for a thread perturbation which is explicitly local in the metric and furthermore
connects the closedness condition with the linearized Einstein’s equations. Further, we
explore the problem of metric reconstruction in subsection 4.4 and show that it can be cast
in terms of the inversion of a particular differential operator. We provide explicit inversion
formulas for the case of spherical entangling regions in two distinct scenarios: i) assuming
knowledge of a dense set of forms parametrized by their radii and centers and ii) assuming
knowledge of a finite set with a minimal number of forms. The second approach turns
out to be very powerful; for instance, it suffices to have a single form to provide a full
solution for the bulk metric in asymptotically AdS3 and AdS4 spaces, which we construct
explicitly. We also show that the problem is well-posed in higher dimensions, starting with
a carefully selected finite set. We end the section with a detailed analysis of how to recover
the time components of the metric via boosts and translations of the space-like hypersur-
face on which the threads are defined, and a thorough discussion on how to generalize the
reconstruction problem to higher orders in the perturbation.

– 4 –
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2 Preliminaries

In this section, we will start with a brief discussion of a number of topics that we will
be essential throughout the paper. We include this discussion for completeness. However,
since most of this material is a review, it can be safely skipped by the cognoscenti.

2.1 Linear perturbations around AdS

Let us start by reviewing basic properties of linear perturbations around empty AdS. In
Fefferman-Graham coordinates, any asymptotically AdS metric can be written as

ds2 = 1
z2

(
ηµνdx

µdxν + dz2
)

+ δgµν(xσ, z)dxµdxν , δgµν(xσ, z) ≡ zd−2Hµν(xσ, z) ,
(2.1)

where xσ are boundary coordinates and z is the holographic coordinate. For concreteness
we have assumed a Minkowski boundary geometry. With this parametrization, one can
extract the expectation value of the stress-energy tensor from the asymptotic form of the
perturbation,

〈Tµν(xσ)〉 = d

16πGN
Hµν(xσ, z = 0) . (2.2)

Plugging the above ansatz into the vacuum Einstein equations,

Rµν −
1
2gµνR−

d(d− 1)
2 gµν = 0 , (2.3)

we obtain the following expressions for the zz, zµ and µν components [22]:

Hµ
µ = 0 , ∂µH

µν = 0 , 1
zd+1∂z

(
zd+1∂zHµν

)
+�Hµν = 0 , (2.4)

respectively, where the box operator is the standard Laplace operator in Minkowski space,
i.e., � ≡ ∂µ∂µ. Alternatively, one can write down the perturbation as follows:

δgµν(x, z) =
∫
ddy G(y − x, z)Tµν(y) , (2.5)

where G(x, z) is the Green’s function of the graviton in empty AdS,

G(x, z) = 16πGN
d

2d/2Γ[d/2 + 1]
∫

ddp

(2π)d θ(−p
2)z

d/2

pd/2
Jd/2(|p|z)e−ip·x, |p| ≡

√
|pµpµ| .

(2.6)
A somewhat useful expression can be obtained by expanding δgµν in powers of z [51]:

δgµν = 16πGN
d

zd−2
∞∑
n=0

z2nT (n)
µν . (2.7)

The strategy is to use the linear Einstein equations order by order in z to determine T (n)
µν

for n > 0 in terms of the expectation value of the stress-energy tensor T (0)
µν . A simple

calculation shows that the zz and zµ equations imply

T (n)µ
µ = 0 , ∂µT

(n)µν = 0 , (2.8)

– 5 –
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so T (n)
µν is traceless and conserved for all n. Finally, the µν equations imply that

T (n)
µν = − �T

(n−1)
µν

2n(d+ 2n) = (−1)nΓ[d/2 + 1]
22nn!Γ[d/2 + n+ 1]�

nT (0)
µν . (2.9)

It is convenient to go to momentum space,

T (0)
µν (x) =

∫
ddp

(2π)d e
−ip·xTµν(p) , (2.10)

where we can perform the sum

∞∑
n=0

[
1

n!Γ[d/2 + n+ 1]

( |p|z
2

)2n+d/2]
= Id/2(|p|z) , (2.11)

if p is space-like. For time-like momenta p it gives instead Jd/2(|p|z), recovering (2.5).

Perturbations in three-dimensional geometries. For d = 2 there is a crucial sim-
plification: the last term in the last equation of (2.4) is absent! The reason is that for
d = 2, the first two equations (vanishing of the trace and conservation equations) imply
that �Hµν = 0. With this simplification, the last equation implies that

∂zHµν = Cµν
zd+1 , (2.12)

where ∂zCµν = 0. Moreover, since Hµν must be finite at z = 0, the only possibility is that
Cµν = 0. This means that only the n = 0 term in (2.7) survives, while all other higher
order terms vanish. This can also be seen from the recursive formula (2.9): for d = 2 we
have that �T (0)

µν = 0, therefore all n ≥ 1 terms vanish!
The above analysis implies that, to linear order in the perturbation, the general solution

for the metric in d = 2 is given by:

δgµν(xσ, z) = 16πGN
d

Tµν(xσ) . (2.13)

Since the stress tensor should be traceless and conserved the general form it can take is
the sum of right-moving and left-moving waves,

Tµν(t, x) = f(t− x)
(

1 −1
−1 1

)
+ g(t+ x)

(
1 1
1 1

)
. (2.14)

Specific examples can be obtained by specifying the profiles of f(t − x) and g(t + x). In
appendix A we will explore in detail the case corresponding to a local quench state.

2.2 Linear corrections to entanglement entropy

Entanglement entropy can be computed via the RT formula [1],

SA = 1
4GN

min
γA∼A

[area (γA)] , (2.15)

– 6 –
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or its covariant HRT version [2], where the minimality condition is replaced by extremality,

SA = 1
4GN

ext
γA∼A

[area (γA)] . (2.16)

We are interested in computing the leading correction to entanglement entropy, assuming
that the geometry is a small perturbation over AdS.

At linear order in the expansion parameter, λ, entanglement entropy can in principle
receive two types of contributions. To see this we can expand the area functional L and
embedding functions φ(ξi) parametrizing the codimension-two surface γA as follows,

L[φ(ξi)] = L(0)[φ(ξi)] + λL(1)[φ(ξi)] +O(λ2) ,
φ(ξi) = φ(0)(ξi) + λφ(1)(ξi) +O(λ2) ,

(2.17)

where ξi are coordinates describing the surface. Thus, on one hand, we have corrections
due to the change in the geometry, while in the other hand, we have corrections to the
surface itself. However after evaluating L[φ(ξi)] on-shell, only one term survives at linear
order in λ,

δSA = λ

∫
dd−1ξ L(1)[φ(0)(ξi)] + λ

∫
dd−1ξ φ(1)(ξi)

[
��
���

���
���d

dξi
∂L(0)

∂φ′(ξi) −
∂L(0)

∂φ(ξi)

]
φ(0)

+O(λ2) .

(2.18)

This means that at this order, the embedding φ(ξi) can be taken to be the (unperturbed)
embedding in pure AdS. This is a useful property, because there are many exact solutions
for the embending functions of various regions in empty AdS. For our purposes, it will
suffice to recall the explicit embedding for spheres in empty AdS in Poincaré coordinates,

r2 + z2 = R2 . (2.19)

We will make use of this expression in later sections when we discuss concrete realizations
of perturbative bit threads.

2.3 Bit threads in dynamical scenarios

The original formulation of bit threads [30] is equivalent to the (non-covariant) RT for-
mula [1], equation (2.15), so it only applies to situations with time reflection symmetry
(e.g. spatial regions in static spacetimes). In this section we will explain one way to extend
this prescription to fully dynamical cases and show that the formulation of [30] extends
straightforwardly to the case of perturbative excited states.

One way to include time dependence is by using the maximin reformulation of HRT [52].
To do so, we pick a particular Cauchy surface Σ that contains the boundary of the region,
∂A, perform the area minimization on it, and then maximize over all possible Σ. We can
then use the standard bit thread prescription for each Cauchy surface Σ by maximizing
the flux through the boundary region Σ ∩ D[A],2 and then maximizing over all Cauchy

2D[A] is the boundary domain of dependence of region A.

– 7 –
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surfaces:

SA = 1
4GN

max
Σ⊃∂A

min
γA∼A
γA⊂Σ

[area(γA)] ⇐⇒ SA = 1
4GN

max
Σ⊃∂A

max
v∈FΣ

∫
Σ∩D[A]

√
hnµv

µ , (2.20)

where
FΣ ≡ {v ∈ X(Σ) | ∇µvµ = 0, |v| ≤ 1} . (2.21)

Here, X(Σ) is the space of vector fields on Σ. We note that this formula was recently
studied in the context of the membrane theory [40]. There also exists a fully covariant bit
thread version of the correspondence [53], but we will not use it in this paper.

A solution to the maximin prescription given by the left-hand side of (2.20) consists
of a codimension-two surface γA that solves the two optimization steps. Such a solution
would naturally be accompanied by a specific choice of a codimension-one hypersurface Σ
on which γA is a minimal surface. However, in [52] it was shown that such Σ is highly
non-unique away from the maximin surface γA. This fact was used in [52] to argue that
one could pick a particular Σ that simultaneously contains the maximin surfaces of various
disjoint boundary regions required to prove the strong subadditivity property of holographic
entanglement entropy. Below, we will use this freedom to argue that to first order in a
general time-dependent perturbation of a static metric, one can always choose Σ to be the
constant-t hypersurface associated with the unperturbed metric Σ0, or more in general,
any space-like surface that is perturbatively closed to it and passes through γA, Σλ.

2.3.1 The case of perturbative excited states
Even though the choice of Σ is highly non-unique, it can be shown that not any slice that
passes through γA is a good one. The reason is that γA is not necesarily minimal on any
of such slices Σ. To see this, consider a null congruence shot out from γA. The surface γA
is extremal, hence, its expansion vanishes: θ = 0. However, the Raychaudhuri equation
implies that dθ/dλ < 0 [52]. This means that in this case γA is a local maximum of area
rather than a minimum and, by continuity, the same should hold for space-like surfaces
Σ that are close enough to the null congruence. In the left panel of figure 1 we give an
example to illustarate this fact. Notice that in one of these slices Σ the minimal area
surface γ̃A is not the same as extremal surface γA. Therefore, finding a max flow in Σ is
not equivalent to computing the entanglement entropy of region A.

For the case of perturbative excited states, a natural candidate for a good Cauchy slice
would be a slice Σλ that is perturbatively close to the t = t0 hypersurface associated with
the unperturbed metric, Σ0. We can parametrize such a slice as t = t0 +λ δt(z, ~x), with the
constraint that δt(z, ~x) must vanish at γA. The question here is if we can find surfaces on
Σλ that are homologous to A but have smaller area than γA at order λ. Supposing there
are such surfaces, we denote γ̃λA as the one with the minimal area. However, we know that
γA is a minimal area surface in the unperturbed background, therefore, by continuity we
know that γ̃λA → γA as λ→ 0. Without loss of generality we can then parametrize such a
surface with embedding functions as in (2.17). On the other hand, the calculation in (2.18)
shows that corrections to the embedding do not affect the area at linear order. This means
that area(γ̃λA) = area(γA)+O(λ2), so we can conclude that γA is a minimal area surface on

– 8 –
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∂M

D[A]

γA

γ̃A

Σ

Σ0

∂M

D[A]

γA

Σλ
Σ0

Figure 1. A solution to the maximin problem γA is naturally accompanied by a specific choice of
a codimension-one slice Σ on which γA is a minimal area surface. Such a slice is highly non-unique,
however, not all slices that pass through γA are allowed. Left: in this example Σ is perturbatively
close to the null congruence shot out from γA. In this case the minimal area surface γ̃A (orange
curve) does not coincide with γA (red curve). Right: for perturbative excited states, it can be
shown that γA is a minimal area surface on any slice Σλ that is perturbatively close to Σ0. This
means that we can pick any of these surfaces, and in particular Σ0, to construct relevant bit thread
configurations.

any Σλ perturbatively close to Σ0. We illustrate this result in the right panel of figure 1.
This also implies that on any of these surfaces, and in particular on Σ0, the solution to the
max flow ploblem computes the entanglement entropy of region A, and hence all of them
are equally good for the construction of bit thread configurations.

3 Simple realizations of perturbative bit threads

Given the enormous simplification that happens at O(λ) from the point of view of the HRT
prescription, we would like to study and understand the general properties of perturbative
thread configurations based on the constructions developed in [43]. We will start by stating
simple constraints that the O(λ) HRT surfaces induce on general bit threads, and then
proceed with the specific constructions. We will show that these methods lead to thread
configurations that successfully encode general properties of the CFT state and the bulk
geometry, such as the first law of entanglement entropy and its relation to the (linearized)
Einstein’s equations, albeit in a highly nonlocal form. Along the way, we will state the
precise problem of metric reconstruction that we look to solve and enumerate the challenges
that these simple constructions face, leading to a quest for a new method that exploits bulk
locality in a more explicit way.

3.1 Generalities

Let us begin by considering empty AdSd+1 in spherical coordinates. The geometry of a
constant-t slice Σ is given by

ds2
Σ = 1

z2

(
dr2 + r2dΩ2

d−2 + dz2
)
. (3.1)
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The minimal surface γA for a ball of radius R is given implicitly by

r2 + z2 = R2 , (3.2)

and its outward-pointing unit normal vector n̂ at a point (r, z) on the minimal surface is:

n̂a = z

R
(r, z) . (3.3)

For simplicity we have omitted the angular coordinates, since both the minimal surface
and the state are invariant under rotations.

A simple realization of a vector field/thread configuration, v = |v|τ̂ , based on geodesics
is given by (see [43] for details)

va =
(

2Rz√
(R2 + r2 + z2)2 − 4R2r2

)d(
rz

R
,
R2 − r2 + z2

2R

)
, (3.4)

with

|v| =
(

2Rz√
(R2 + r2 + z2)2 − 4R2r2

)d−1

, (3.5)

τ̂a = 2Rz√
(R2 + r2 + z2)2 − 4R2r2

(
rz

R
,
R2 − r2 + z2

2R

)
. (3.6)

As a check, notice that this vector field (i) satisfies the divergenceless condition ∇ · v = 0
and (ii) is equal to n̂ at the location of the minimal surface v|γA = n̂. Combining these
two, it immediately follows that the flux along any bulk surface ΓA homologous to A (not
necessarily the minimal surface γA) yields the entanglement entropy of the ball (in units
of 4GN ),

SA = 1
4GN

∫
v · dSΓA = 1

4GN

∫
n̂ · dSγA = 1

4GN
min [area (γA)] . (3.7)

We emphasize that while the minimal surface γA is in most cases unique, the choice of
vector field v is highly non-unique; it is uniquely determined only at the bottle-neck γA.

Next, we would like to find the perturbed vector field in a perturbatively excited state,
i.e., a state with bulk metric gλµν = gµν + λδgµν +O(λ2) (satisfying Einstein’s equations):

vλ = v + λδv +O(λ2) , (3.8)

at linear order in λ. While the perturbation in the vector field δv is on its own highly
non-unique, any consistent realization must satisfy some nontrivial properties, including
the first law of entanglement entropy in the CFT and the linearized Einstein’s equations
in the bulk. The problem that we want to address is the following:

Given a consistent thread configuration for an excited state vλ, is it pos-
sible to reconstruct locally the bulk geometry at the same order in the
perturbation?

– 10 –
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A couple of comments are in order. First, note that we are focusing on excited states.
While it is true that the same question would make sense even in the vacuum state, we
recall that the bulk metric in this case is fixed by symmetries, rendering the problem
exceptionally simple. Second, the non-uniqueness of vλ for a given metric indicates that
the correspondence is not one-to-one. Even if we isolate a family of thread configurations
that follow from the same bulk metric, the way they encode this information may be non-
unique and, generically, highly nonlocal. In the following, we will identify basic constraints
that generic realizations of vλ must satisfy and then, study how the particular constructions
of [43] encode the information about the bulk metric.

3.1.1 Boundary conditions for the perturbed threads

In order to find a solution v = |v|τ̂ for a thread configuration, we need to solve for the
divergenceless condition ∇ · v = 0 subject to the norm bound |v| ≤ 1. One way to proceed
is to use the fact that the norm bound is saturated |v| = 1 at the bottle-neck γA. In other
words, we need to impose that at the minimal surface γA, v is equal to its unit normal,

vaλ|γA = n̂a . (3.9)

Notice that this does not uniquely determine the vector field everywhere in the bulk;
intuitively, the ambiguity of the thread configuration away from γA corresponds to a choice
of microstate in the dual CFT, such that all the macroscopic properties of the system are
satisfied, including the entanglement entropy SA.

Let us now determine how (3.9) looks like in the perturbed geometry. Fortunately, at
the linear order in the perturbation the RT surfaces are unchanged and we can use this
to our advantage. This implies that at this order, the change in the normal vector is only
induced by the change in the geometry. To see this, consider the metric on a constant-t
slice Σ of the perturbed geometry3

ds2
Σ = gλabdx

adxb = (gab + λδgab)dxadxb , (3.10)

where

gab = 1
z2

(
δij 0
0 1

)
, δgab = zd−2

(
Hij 0
0 0

)
. (3.11)

We will keep the λ’s explicitly throughout our calculations as a bookkeeping device (to
count the order of the perturbations), but at the end we will set it to unity. Also, for
future reference, we give an explicit expression for the inverse metric at linear order in λ,

gabλ = gab + λδgab , (3.12)

where:

gab = z2
(
δij 0
0 1

)
, δgab = −zd+2

(
Hij 0
0 0

)
. (3.13)

3The indices (a, b) here run over the space coordinates xa = {xi, z}.
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As explained in the previous section, the embedding function (3.2) is not corrected at this
order. Therefore its normal covector n̂a remains the same, up to an overall constant N ,

n̂a = N

Rz
xa . (3.14)

Ensuring that n̂ is properly normalized to one, we find that at linear order in λ:

N = 1 + λz2

2R2 δgabx
axb . (3.15)

Finally, raising the index with the inverse metric we find that

n̂a = 1
Rz

(
Ngabxb + λδgabxb

)
,

= z

R
xa + λ

(
zδgcdx

cxdgab

2R3 + δgab

Rz

)
xb . (3.16)

For example, in d = 2, we find that:

n̂a = z

R
(x, z)− λxz3H(t, x)

2R3

(
x2 + 2z2,−xz

)
, H(t, x) ≡ Hxx(t, x) . (3.17)

For d ≥ 3 we can obtain similar but more longwinded expressions but for the sake of
simplicity we will not transcribe them here. Finally, from (3.9) we find that at linear order
in λ, our boundary condition at the bottle-neck γA is:

vaλ|γA = z

R
xa + λ

(
zδgcdx

cxdgab

2R3 + δgab

Rz

)
xb . (3.18)

We emphasize that this condition does not uniquely determine vλ in the bulk, specially in
regions far away from γA where vλ is highly non-unique.

3.1.2 First law of entanglement entropy

Since vλ is divergenceless, the flux across any bulk surface homologous to A is constant.
Hence, the boundary condition (3.18) should be enough to demonstrate the first law of
entanglement, provided we pick γA itself as our homologous region.

To illustrate this, we can perform a simple analysis in d = 2 dimensions. The area
element dSγA in this case is given by

dSγA = n̂dsγA = n̂
dx

z(x)

√
1 + λz2Hxx(t, x, z(x)) +O(λ2) + z′(x)2 , (3.19)

= n̂dx

[
R

R2 − x2 + λ
(R2 − x2)

2R Hxx (t, x, z(x)) +O(λ2)
]
. (3.20)

The order O(λ) term gives the change in entanglement entropy,

δSA = 1
4GN

∫
n̂ · dSγA = 1

4GN

∫
dx

(R2 − x2)
2R Hxx (t, x, z(x)) . (3.21)
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Finally, according to (2.7) we can expand Hxx(t, x, z(x)) as

Hxx(t, x, z(x)) = 8πGN
∞∑
n=0

z(x)2nT (n)
xx (t, x) . (3.22)

However, as emphasized in the previous section, for d = 2 only the n = 0 survives. By the
traceless condition we know that T (0)

xx (t, x) = T
(0)
00 (t, x) = T00(t, x), so we arrive to the first

law of entanglement entropy with the right modular Hamiltonian in 2d [23]

δSA = 2π
∫ R

−R
dx

(R2 − x2)
2R T00(t, x) . (3.23)

For d > 2 the proof is slightly more complicated, but it can be shown by working out the
above expansions in momentum space, and resuming the resulting series. We refer the
reader to [51] for a detailed analysis in these higher dimensional cases.

The crucial insight here is that any divergenceless vector field satisfying (3.18) will
automatically encode the first law of entanglement entropy, which for arbitrary dimensions
takes the form

δSA = 2π
∫ R

−R
dd−1x

(R2 − r2)
2R T00(xσ) , r2 ≡

d−1∑
i=1

x2
i . (3.24)

Since the first law of entanglement entropy has been shown to be equivalent to the bulk
Einstein’s equations at the linear level [23], then all consistent thread configurations should
also encode them in some form. It remains to be seen how are the Einstein’s equations
encoded in the specific thread configurations, and how easy would be to recover the metric
from particular constructions.

3.2 Method 1: geodesic bit threads

Following [43], we will now present simple methods to construct explicit thread configu-
rations satisfying the boundary condition (3.18) for perturbative excited states. The first
method consists on picking a family of integral curves with good properties, and then fixing
the norm by ensuring that Gauss’s law is satisfied everywhere. In the following, we will
describe this construction in some detail and study how the information of the bulk metric
is encoded in the resulting thread configuration.

3.2.1 Integral curves

A good family of integral curves must satisfy the following properties:

1. They must be orthogonal to the minimal surface γA.

2. They must be continuous and not self-intersecting.

3. They must start and end at the boundary, or possibly at a bulk horizon.
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Given a family with these properties, it is then straightforward to construct a divergenceless
vector field with the desired boundary condition. There is a small caveat here, however:
one can only check if the norm bound is satisfied |v| ≤ 1 a posteriori.

One crucial result of [43] is that a thread construction based on space-like geodesics
automatically satisfy the norm bound, provided that the metric background satisfies some
simple geometric properties. This conclusion followed from a systematic analysis of geodesic
foliations of an arbitrary Riemannian geometry, so it must also hold true for the case in
consideration, i.e., for geometries dual to perturbative excited states. Therefore, our first
candidate for the family of integral curves will be the space-like geodesics of the perturbed
background.

Corrected geodesics: let us consider the d = 2 and d > 2 cases separately. In [43] it
was shown that space-like geodesics in an arbitrary (2+1)-dimensional (d = 2) background
lead to a vector field satisfying the norm bound |v| ≤ 1, provided that the Ricci scalar on
a constant-t slice (a Riemannian submanifold) is negative everywhere, i.e.

R < 0 . (3.25)

We can check that this condition is indeed satisfied for the perturbative states that we are
considering. Working in coordinates adapted to the geodesics, and using the same notation
of [43], we will write the bulk metric as follows:

ds2 ≡ Gµνdxµdxν = −ψ(λ, x)dt2 + dλ2 + γ(λ, x)dx2 , (3.26)

where x labels different points along the minimal surface and λ is an affine parameter
that runs along geodesics orthogonal to it.4 The above metric is a solution of Einstein’s
equations:5

Rµν −
1
2RGµν + ΛGµν = Tµν , (3.27)

where Tµν is the bulk energy momentum tensor. A quick calculation shows that the induced
Ricci on a constant-t slice is:

R = 2
ψ(λ, x)(T00(λ, x) + Λψ(λ, x)) , (3.28)

hence, for negative cosmological constant Λ < 0, we have that R < 0 if and only if the
local energy density is bounded from above:

ε(λ, x) ≡ −T 0
0(λ, x) < −Λ . (3.29)

Since the kind of perturbations that we are considering are all vacuum solutions, i.e. we
have Tµν = 0, then we conclude that the corrected geodesics can indeed be taken as a good
family of integral curves.

4This coordinate system does not need to foliate the full manifold; points that are not covered by these
coordinates have by definition a vanishing vector field v = 0.

5We have set 8πGN = 1 for simplicity.
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For spheres in higher dimensional spaces (d > 2) the situation is a bit more complicated.
Assuming that the state is invariant under rotations, we can pick a plane that intersects
the origin and find the geodesics within this plane. Then we foliate the full spacetime by
surfaces of revolution generated by rotating such geodesics along all possible angles. With
this construction, the bulk metric can be written as

ds2 = −ψ(λ, x)dt2 + dλ2 + γ(λ, r)dr2 + e2τ(λ,r)dΩ2
k , ds2

2 ≡ dλ2 + γ(λ, r)dr2 .(3.30)

After some algebra, one finds that the criterion (3.25) generalizes to [43]

R2 < 2k
[
∂2
λτ + ∂λτ(k + ∂λ log γ)

]
, (3.31)

where R2 is the induced Ricci on the auxiliary 2-dimensional metric defined in (3.30). On
a pure AdS background, one finds that R2 = −2, while the terms on the right hand side
of (3.31) are strictly positive. This means that there is a finite gap, or in other words,
that the bound is O(1) far from saturation. On the other hand, linear perturbations of
the metric would lead to corrections on both sides of the equation but these corrections
can only be of order O(λ). This means that for sufficiently small λ, the condition (3.31)
will still hold true, regardless of the fluctuations. Similar arguments could be made for
metrics that are perturbatively close to AdS but are not rotationally invariant, however,
the analysis would be certainly more complicated. In these situations one would need to
find corrected geodesics within infinitely many planes intersecting the origin and repeat
the above steps. But, again, since the pure AdS case is far from saturating (3.31), the
analysis at linear order would only lead to corrections of order O(λ), meaning that the
bound would always be satisfied for sufficiently small λ.

The above arguments show that the O(λ) geodesics are good candidates for integral
curves for any number of dimensions. There is a slight technical problem, however: it is
practically impossible to obtain closed expressions for the corrected geodesics in a generic
perturbed background. In practice, rather than working with the corrected geodesics, it is
more convenient to propose an alternative family of integral curves. In the following we
will explore this possibility in more detail.

Uncorrected geodesics: the corrected geodesics are far from saturating the
bound (3.25) in d = 2 or, more generally, (3.31) in higher dimensions. Therefore, it is
clear that a continuous family of curves that are perturbatively close to them will similarly
do the job. The most natural and simplest candidate for this are the uncorrected space-like
geodesics.

To illustrate this point we will consider the d = 2 case, where we can make a precise
analytic statement. In this case, the minimal surface (3.2) is given implicitly by

z2
m + x2

m = R2 . (3.32)

We have added subindexes ‘m’ to point out that these coordinate points are on γA. The
geodesics in pure AdS are given by semicircles anchored at the boundary. These semicircles
form a two-parameter family of curves and are defined implicitly by

(x− xs)2 + z2 = R2
s (3.33)
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where xs is the center of the circle and Rs its radius. The tangent vector with unit norm
at an arbitrary point is given by

τ̂a =
(
z

Rs
− λz5H(t, x)

2R3
s

)
(z, xs − x) , (3.34)

whereH(t, x) ≡ Hxx(t, x). As expected, the tangent vector still points in the same direction
but its normalization is corrected at leading order in the perturbation. Since the integral
curves must be orthogonal to the minimal surface, we must enforce that τ̂ |γA = vλ|γA ,
where the latter is given in (3.18). At order O(λ), this requirement leads to6

Rs(xm) = R
√
R2 − x2

m

xm

[
1 + λ(R2 − x2

m)2H(t, xm)
R2

]
, (3.35)

xs(xm) = R2

xm

[
1 + λ(R2 − x2

m)2H(t, xm)
R2

]
. (3.36)

In order to arrive to these expressions we have made use of the equation (3.32) to eliminate
zm. Finally, plugging (3.35)–(3.36) into (3.33) we obtain an implicit expression for the
family of geodesics orthogonal to γA, parametrized by the point xm ∈ [−R,R] on the
minimal surface.

Next, we need to check if the proposed integral curves are properly nested [43]. In
order to check this, we find the point xa at which they intersect A,7

xa = xs −Rs = R

xm

(
R−

√
R2 − x2

m

)[
1 + λ(R2 − x2

m)2H(t, xm)
R2

]
, (3.37)

and the dual point xā at which the curves intersect Ā,

xā = xs +Rs = R

xm

(
R+

√
R2 − x2

m

)[
1 + λ(R2 − x2

m)2H(t, xm)
R2

]
. (3.38)

One can check that self-intersection is avoided if and only if dxa/dxm > 0 and dxā/dxm < 0.
A quick calculation leads to

dxa
dxm

= R2

x2
m

(R−
√
R2 − x2

m)√
R2 − x2

m

(3.39)

×
[
1 + λ(R2 − x2

m)2H(t, xm)
R2 + λxm

√
R2 − x2

m

R3
d

dxm

(
(R2 − x2

m)2H(t, xm)
)]
,

dxā
dxm

= −R
2

x2
m

(R+
√
R2 − x2

m)√
R2 − x2

m

(3.40)

×
[
1 + λ(R2 − x2

m)2H(t, xm)
R2 + λxm

√
R2 − x2

m

R3
d

dxm

(
(R2 − x2

m)2H(t, xm)
)]
.

6With these definitions Rs can take negative values. We can take an absolute value of xm in the
denominator of (3.35) to make Rs positive. However, allowing Rs to take any value will be useful below,
in the definitions of xa and xā.

7If we insist that Rs ≥ 0, these definitions for xa and xā would only be valid for xs ≥ 0, while for xs ≤ 0
one should interchange the two.
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One can check that at order O(1) both conditions are satisfied, i.e., dxa/dxm > 0 and
dxā/dxm < 0. At linear order in the perturbation, we get a term that does not have a
definite sign (the last term in the square brackets), but one can always choose a small
enough λ such that these inequalities are still satisfied. As an example, let us consider a
plane wave, H(t, x) = ε sin[ω(t − x)].8 The last term in the square brackets can become
order O(1) if the frequency ω is large enough. To prevent this to happen, one must take
λ � 1/(ε ωR3). If the background is decomposed in Fourier modes, then the maximum
frequency will be the relevant one, and the above condition is replaced by

λ� 1
ε ωmaxR3 . (3.41)

This means that for smooth functions we can always find a small λ that satisfies the
conditions. For sharply peaked functions this might not be the case, since the Fourier
spectrum could contain arbitrarily high frequency modes. We will therefore restrict our
attention to states with smooth stress energy tensor. Notice that this is not an important
restriction. In CFT language, a state with a sharply peaked stress energy tensor will not
be perturbatively close to the vacuum, and hence, the gravity dual would have important
higher order contributions that we have ignored in the approximation of linearized gravity.

3.2.2 Magnitude

Given a set of integral curves the next step is to find the appropriate norm of the vector
field |vλ|. We will denote X(xm, ξ) the proposed family of curves; xm labels points on the
minimal surface and ξ is a parameter that runs along the curve. As explained above, the
curves X(xm, ξ) can be the uncorrected geodesics. The parameter ξ can be taken as the
proper length from the given point to the minimal surface.

Following [43], we now fix the norm by implementing a version of Gauss’s law for an
infinitesimal cylinder enclosing each curve.9 More specifically, we impose that the flux
through an infinitesimal area element δA transverse to one of the threads is constant,∫

δA
|vλ|

√
h|λdd−1x = constant , (3.42)

where hab = gab− τ̂aτ̂b is the projection of the metric on a plane orthogonal to the integral
curve. Using the fact that at the minimal surface |vλ(xm, ξm)| = 1, and letting δA → 0,
we arrive to the following expression for the norm

|vλ(xm, ξ)| =
√
hλ(xm, ξm)√
hλ(xm, ξ)

, (3.43)

8In this example even the second term in the square brackets can have a negative sign, but this problem
goes away when one impose energy conditions. The last term, however, will still be indefinite after imposing
energy conditions.

9Alternatively, we could fix the norm by solving the first order differential equation for |vλ| resulting
from the divergenceless condition, subject to the appropriate boundary condition at γA. This would be
completely equivalent to the Gauss’s law method described here, since the latter condition is the differential
form of Gauss’s law. However, since we have the explicit form of the integral lines, the Gauss’s law turns out
to be more convenient in this case, providing a final answer in closed form, as shown below in equation (3.43).
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where ξm is the parameter at which the curve intersects the minimal surface γA. Notice
that we do not need to verify whether the norm bound |vλ| ≤ 1 is satisfied everywhere. This
is already guaranteed given our choice of integral curves and the argument based on the
negativity of the scalar curvature presented in section 3.2.1. Reference [43] provides various
explicit examples of geodesic flows constructed with this method, including the case of
spherical regions in empty AdS, given in equation (3.4). In appendix A we complement this
study by constructing a new explicit example, now for the case of the specific perturbative
excited state corresponding to a local quench.

We can now inquire about how the bulk metric and the Einstein’s equations are encoded
in this particular construction. Unfortunately, at this level we can already see that such
information is encoded in the vector field vλ in a highly nonlocal fashion. On one hand,
one needs to solve for the geodesics in the unperturbed background subject to a boundary
condition that depends on a particular metric perturbation. And, on the other hand, the
magnitude of the vector is found by transporting the boundary condition along the geodesic,
ensuring that the vector field is divergenceless. This process is inherently nonlocal; in
particular, the final result for |vλ| exhibits an explicit bilocal dependence on the metric
perturbation, since it must be evaluated at the points labeled by ξm and ξ. The latter
parameter, in particular, encodes the proper distance between the point in consideration
and the minimal surface γA, which is nonlocal information on its own. These observations
imply that it would be rather difficult to invert the problem and recover the metric from
the resulting thread configuration. Similarly, the same remarks apply for the Einstein’s
equations: even though they are assumed as a starting point for this construction (the
perturbations we consider are on-shell), they are ultimately encoded nonlocally in the
resulting thread configuration.

3.3 Method 2: level set construction

The second method of constructing thread configurations consists on starting with a specific
family of level set hypersurfaces and then building up a vector field that is orthogonal to
them and, of course, divergenceless. This is a slight generalization of a method initially
proposed in [43], as we will see below. In the following, we will spell out the details of the
general construction for arbitrary metrics, and then specialize to the case of perturbative
excited states, where the construction simplifies drastically.

3.3.1 General metrics

We begin by proposing a family of level set surfaces with the following properties:

1. They must contain the minimal surface γA as one of its members.

2. They must be continuous and not self-intersecting.

3. They must not include closed bulk surfaces.

Given a family with these properties, it is then straightforward to construct a divergenceless
vector field with the desired boundary condition. We can understand this as follows: given
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a family of level set hypersurfaces, one can first generate the corresponding integral lines by
imposing that they must be orthogonal to each member of the family. Having the integral
lines, then, the problem reduces to that of section (3.2) so we could follow the steps
outlined there. This means that, in general, we can only check if norm bound is satisfied a
posteriori. There is however, one clever exception to the rule. We can ensure that |v| ≤ 1
is satisfied everywhere by construction if we impose the following extra condition on the
level set surfaces:

4. They must be homologous to A.

If this condition is satisfied, then, the max flow-min cut theorem guarantees that |v| will
be maximal at the bottle neck γA. Since |v|γA = 1 then, this implies that |v| ≤ 1 at any
other member of the family. Notice that condition 4 is not a strict requirement, but a
useful one. In fact, simple examples of vector fields generated by level sets that are not
homologous to A are the maximally packed flows constructed in [43]. In that construction
the level set surfaces were picked as a family of nested minimal surfaces, containing γA as
one of its members. The motivation there was to find a flow with maximal norm |v| = 1 in
a given codimension-one region of the bulk, which was possible due to the nesting property
of bit threads [30, 31].10 For the purposes of this paper, however, we are not interested in
the above requierement, so we can explore other possibilities. In the remaining part of this
section we will in fact assume that the condition 4 is satisfied, so we do not have to deal
with the norm bound.

Let us now describe in detail the construction from level sets. To begin with, we need
an efficient way to specify our level set hypersurfaces. In practice, we can do so by picking
an appropriate scalar function ϕ(xi) such that the ϕ = constant surfaces give us our desired
level sets. We can then write the following equation for vλ:

v = Υ(xi)∇ϕ(xi) . (3.44)

At first glance, (3.44) seems more general than a gradient flow, but in fact it is not. In
principle one could always redefine the scalar function ϕ→ ϕ̃ =

∫ ϕ Υ(ψ)dψ and therefore
simply write v = ∇ϕ̃. However, the function ϕ̃ would not only encode information about
the level sets, but also about the norm, so it would be extremely difficult to guess a good
function that gives us our desired level sets and that also satisfies the divergenceless condi-
tion ∇2ϕ̃ = 0. In practice, then, it is much easier to start with (3.44) and determine Υ(xi)
through the divergenceless condition. We emphasize that, in this scenario, the specific
values of ϕ do not have a particular meaning and are in particular not related to the norm
of v. The field ϕ here only determines the unit vector in ~τ = v/|v|, through

~τ = ∇ϕ
|∇ϕ|

. (3.45)

One crucial observation that follows from the definition (3.44) is that the covector va (i.e.
v with lower index) only depends on the metric gab through Υ(xi). To make this point

10Maximally packed flows also satisfy the norm bound by construction. If one picks level sets that are
not homologous to A and are not minimal surfaces, then indeed, the norm bound should be checked a
posteriori.
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self-evident, and in a form which is partially “independent” of the metric, we can write

va = Υ(ϕ, g)∂aϕ . (3.46)

We will exploit this observation below, for the case of perturbative states. For now, let us
notice that the boundary condition at the minimal surface implies:

Υ2(ϕ, g)gab∂aϕ∂bϕ
∣∣∣
γA

= 1 , (3.47)

or, equivalently,

Υ(ϕ, g)
∣∣∣
γA

= 1
|∂ϕ|g

∣∣∣∣
γA

, |∂ϕ|g ≡
√
gab∂aϕ∂bϕ . (3.48)

All we have left is to determine Υ away from the minimal surface, which can be done by
imposing the divergenceless condition. Here we have two options: i) we can use Gauss’s law
as we did in section 3.2 or ii) we can directly attempt to solve ∇· v = 0, which should give
us a first order differential equation for Υ. As mentioned in section 3.2, the two methods
are completely equivalent, since Gauss’s law is the integral form of the divergenceless
condition. However, since we do not have explicit expressions for the integral lines, then,
the first option turns out to be more complicated in this case.11 We therefore proceed by
deriving a differential equation for Υ, which can be derived from ∇·v = 0. Plugging (3.46)
into this condition and massaging the equation leads to:

(∇ϕ) · (∇Υ) + (∇2ϕ)Υ = 0 . (3.49)

As advertised, this is a first order differential equation for Υ in terms of the scalar field ϕ and
the background metric g. Solving this equation subject to the boundary condition (3.48)
would then give a unique solution for the vector field v.

3.3.2 Perturbative excited states

The above construction simplifies drastically for the case of perturbative excited states. In
the following we will specialize to this situation and study in detail how the information
about the bulk perturbation is encoded in the resulting thread configuration.

For a metric of the form gλab = gab + λδgab we are only interested in obtaining the
vector field vλ (3.8) to linear order in the perturbation around the zeroth order solution.
Since the minimal surface γA does not change at linear order in λ, a simple choice for the
level sets consistent with all requirements would be to pick the same surfaces as for the
unperturbed geometry. In this case we have that:

vλa = va + λδva = Υλ(ϕ, gλ)∂aϕ , Υλ(ϕ, gλ) = Υ(ϕ, g) + λδΥ(ϕ, gλ) . (3.50)

In other words, with this choice of level sets, only the function Υ(xi) gets corrected at
linear order in λ, so the first correction of the vector field δva turns out to be proportional
to the zeroth order solution,

δva = δΥ(ϕ, gλ)∂aϕ = Ψ(ϕ, gλ)va , Ψ(ϕ, gλ) ≡ δΥ(ϕ, gλ)
Υ(ϕ, g) . (3.51)

11We could get the integral lines X(xm, ξ) in terms of the field ϕ and its derivatives, but in order to do
so we would need to solve a first order differential equation, which would by itself have the same level of
complexity as solving directly the divergenceless condition.
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The function Ψ is determined at the minimal surface by the boundary condition |vλ| = 1.
Expanding at linear order, we obtain

gabλ v
λ
av

λ
b

∣∣∣
γA

= gabvavb + λ
(
2gabvaδvb + δgabvavb

) ∣∣∣
γA

= 1 . (3.52)

Since the zeroth order term is already normalized to one, the terms inside the parenthesis
must vanish. Using (3.51) we arrive to:

Ψ(ϕ, gλ)|γA = −1
2δg

abvavb = 1
2δgabv

avb . (3.53)

In the last equality we have used the fact that δ(δab) = δ
(
gabgbc

)
= δgabgbc + gabδgbc = 0.

We did this, because it would be particularly convenient to have an expression for the
boundary condition of Ψ(ϕ, gλ) in terms of the background v with upper index.

Next we would like to determine the function Ψ away from the minimal surface, which
can be done by imposing the divergenceless condition. Again, we proceed by deriving a
differential equation for Ψ akin to (3.49). In order to do so, first notice that

vaλ = va + λδva = (gab + λδgab)(vb + λδvb) , (3.54)

so12

δva = gabδvb + δgabvb = Ψgabvb + δgabvb = Ψva − gabδgbcvc . (3.55)

Taking the divergence of vλ and using the fact that ∇ · v = 0 (at zeroth order), we obtain:

∇λ · vλ = 1
√
gλ
∂a (√gλ vaλ) =

√
g

√
gλ

(���∇ · v) + λ
√
gλ
∂a [δ (√gλ) va +√g δva] = 0 . (3.56)

Taking the explicit variation of √gλ and using (3.55) we obtain:

∂a

(1
2
√
g gbcδgbcv

a + Ψ√g va −√g gabδgbcvc
)

= 0 , (3.57)

or, equivalently,

v · ∇Ψ +∇a(δgabvb) + 1
2v · ∇(δg) = 0 , (3.58)

where δg ≡ gabδgab. In summary, given a background metric gab and a solution to the
max flow problem va, one can always solve the problem of maximizing the flux in a state
where the metric gλab is perturbatively closed to the original one. Assuming that the level
set surfaces remain the same in the perturbed geometry, the solution for the perturbation
of v is given by equation (3.55), which is determined in terms of a scalar function Ψ and
the metric perturbation δgab. This function can be obtained by solving the first order
differential equation (3.58) subject to the boundary condition (3.53).

In retrospective, the only non-trivial input required for this kind of construction is
the choice of background vector field v, which is in turn used as a seed for the perturbed
solution vλ. Specializing to spherical regions, one simple choice would be to pick v as a

12Notice that δva is proportional to va but δva is not proportional to va. This is why we have mostly
worked with covectors in this section.
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x/R

z/R

γA

|v|

Figure 2. Contour plot for the magnitude |v| of the geodesic flow given in (3.4), in d = 2 dimensions
(i.e., empty AdS3). The contours correspond to the level set surfaces of v, which are all homologous
to A and, in particular, include γA as one of its members. This implies that this vector field v can
indeed be used as a seed to generate a good solution vλ in a perturbative excited state.

geodesic flow, which is known in closed form if the background metric is empty AdS. This
background v is given explicitly in equation (3.4). It is easy to check that the level sets of
this vector field are all homologous to A, as is shown in figure 2. Since this construction
assumes that the level sets are kept fixed, this implies that any perturbative solution vλ
build up from this background field v will automatically respect the norm bound |vλ| ≤ 1.
In appendix A we present an explicit example of such perturbative solutions, for the case
of a local quench.

Finally, we can comment on how the metric perturbation and the Einstein’s equa-
tions are encoded in this particular construction. Although the explicit use of metric is
reduced in comparison to the construction via integral curves, the last step in the level sets
method introduces the same level of nonlocality. In particular, the way we fixed the scalar
field Ψ was by solving the divergenceless condition (3.56). Even though this equation is
local, the nontrivial boundary condition (3.53) introduces nonlocalities in the solutions,
because the equation effectively transports information from γA to other regions in the
bulk. From the Gauss’s law perspective the situation is perhaps easier to understand. In
that case, the final answer for vλ exhibits an explicit bilocal dependence with respect to
the metric perturbation, through its magnitude (3.43). The way we solve for Ψ in this
formalism is completely equivalent to that case, because Gauss’s law is nothing but the
integral form of the divergenceless condition. Hence, even though this construction seems
particularly efficient for building up perturbative solutions vλ, it ultimately contains the
same kind of nonlocalities than the construction via integral curves. Hence, the inversion
problem to recover the bulk metric and the Einstein’s equations is equally difficult in both
constructions.

4 Bit threads and bulk locality

The simple perturbative realizations of bit threads of the previous section highlight the
need of a bit thread construction that does not make explicit use of the metric. Fortu-
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nately, we know how to reformulate this formalism in a framework that makes background
independence explicit: using the language of differential forms. The equivalence between
divergenceless vector fields v and closed (d − 1)−forms w was already emphasized in [30]
and was used in [31] to efficiently deal with some subtleties of the max flow problem for
null intervals.13 In this section we will first break down this equivalence in detail, giving
explicit formulas that translate various relevant expressions between the two languages. We
then argue that the Iyer-Wald formalism provides us with a particular realization of the
perturbed thread configuration δw that makes explicit use of bulk locality. In particular,
we show that the linearized Einstein’s equations are explicitly encoded in this construction
through the closedness condition, i.e., dδw = 0. We exploit this unique property of the
Iyer-Wald construction to tackle the question of metric reconstruction and show that this
problem can be phrased in terms of the inversion of a particular differential operator. Fi-
nally, we carry out the explicit inversion at linear order and discuss how to generalize our
results to higher orders in the perturbation.

4.1 Bit threads in the language of differential forms

In the presence of a metric gab, the explicit map between flows, i.e., divergenceless vector
fields v and closed (d− 1)−forms w, is given by

va = gab(?w)b , (4.1)

where ?w represents the Hodge star dual of w, defined via

(?w)b ≡
1

(d− 1)!
√
g wa1...ad−1εa1...ad−1b . (4.2)

In the above formula εa1...ad represents the totally antisymmetric Levi-Civita symbol, with
sign convention εi1...id−1z = 1. Furthermore, the indices of ?w are raised with the Rieman-
nian metric gab, and its determinant is denoted by g. At this point we can already notice
an important difference between the two objects, namely that, while the notion of a flow
requires a background metric, w can be defined independently of gab. This will play a
crucial role below, specifically, when we address the problem of metric reconstruction.

Let us carry on with our analysis. The inverse of the map (4.1) can be stated in terms
of the natural volume form ε, given by

ε = 1
d! εa1...addx

a1 ∧ · · · ∧ dxad , (4.3)

where εa1...ad is proportional to εa1...ad and normalized such that εi1...id−1z = √g. In terms
of ε, the (d− 1)−form w is given by

w = 1
(d− 1)!εa1...ad−1b v

b dxa1 ∧ · · · ∧ dxad−1 , (4.4)

or in components,

wa1...ad−1 = εa1...ad−1bv
b . (4.5)

13We also point out that a reformulation of the Ryu-Takayanagi prescription in terms of calibrations
(closed forms) was worked out independently in [54].
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Following standard manipulations one can relate the divergence of va with the exterior
derivative of w.14 Explicitly, taking the exterior derivative of equation (4.4) leads to

dw = (∇ava) ε . (4.6)

This formula shows explicitly the anticipated fact that divergenceless vector fields, or
“flows”, are mapped to closed (d − 1)−forms. The precise relation between the two is
given by (4.4).

Now, it is well known that k−forms have well defined integrals over k−dimensional
hypersurfaces. Therefore it is convenient to write down an explicit formula for the restric-
tion of w on a codimension-one surface Γ in terms of intrinsic geometric quantities of that
surface. Such a formula can be derived using the fact that the volume d−form ε induces a
volume (d− 1)−form ε̃ on Γ via

εa1...ad−1b = d ε̃[a1...ad−1nb] , (4.7)

where n is the unit normal to the surface. Contracting the last index of (4.7) with v

and using (4.5) leads to an explicit expression for the form w evaluated at an arbitrary
codimension-one surface Γ, with local unit normal n, in terms of the (d− 1)−form ε̃

w|Γ = (nava)ε̃ . (4.8)

Next, consider Gauss’s theorem applied to the divergenceless vector field va, in a bulk
region N with ∂N = A ∪ (−m), where m is a surface homologous to A (m ∼ A):∫

N
∇avaε =

∫
∂N

(nava) ε̃ =
∫
A

(nava) ε̃−
∫
m

(nava) ε̃ = 0 . (4.9)

This leads to the homology condition∫
A

(nava) ε̃ =
∫
m∼A

(nava) ε̃ . (4.10)

This result is equivalently derived in the language of forms, using Stoke’s theorem:∫
N
dw =

∫
∂N
w =

∫
A
w −

∫
m
w = 0 . (4.11)

This leads to ∫
A
w =

∫
m∼A
w , (4.12)

which is equivalent to (4.10), given (4.8).
With the ingredients described above, we are now in a position to translate the max

flow-min cut theorem to the language of differential forms. First, we have∫
m
w =

∫
m

(nava) ε̃ ≤
∫
m
ε̃ . (4.13)

14See e.g. appendix B.2 of [55] for an explicit derivation of various identities that we use in this section.
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The inequality here comes from the standard norm bound, |v| ≤ 1, which in terms of forms
can be rewritten as

1
(d− 1)!g

a1b1 · · · gad−1bd−1wa1...ad−1wb1...bd−1 ≤ 1 . (4.14)

In short, equation (4.13) implies that, locally, the form w evaluated on any codimension-
one hypersurface is bounded by the natural volume form defined on it ε̃. The max flow-min
cut theorem then implies that

max
w∈W

∫
A
w = min

m∼A

∫
m
ε̃ , (4.15)

where W is the set of closed forms obeying the bound (4.14). This means that at the
bottle-neck γA, an optimal bit thread form w∗ should be equal to the volume form ε̃, i.e.,

w∗|γA = ε̃|γA . (4.16)

Finally, combining with the RT formula for entanglement entropy, (4.15) becomes

SA = 1
4GN

max
w∈W

∫
A
w . (4.17)

which is the differential form version of the max-flow formula (1.2).
There are many situations in which one might want to define the threads in terms of

forms w instead of vector fields v. In particular, this reformulation will prove extremely
useful for the problem at hand, namely, for the study of perturbations around a given
background and the corresponding solutions to the flow maximization problem.

4.1.1 The case of linear perturbations

Having understood how the bit threads formalism translate to in the language of differential
forms, it is now time to go back to our original problem. We will assume that the following
data is given: a background metric gab on a manifold M with boundary ∂M , and an
optimal flow v that maximizes the flux through a boundary region A. Using (4.5), then,
this would also imply the knowledge of an optimal closed form w. In the following, we
will consider the max flux problem in geometries that are perturbatively close to gab, i.e.,
gλab = gab + λδgab. We will denote a solution to the problem as wλ, where wλ = w + λδw.

First, notice that the closedness condition implies

d (w + λδw) = 0 → d (δw) = 0 . (4.18)

We can also use the fact that the minimal surface γA does not change at first order in the
perturbation, so γλA = γA. Since this is a bottle-neck for the flow, both v and w are fixed
at its location. In particular, from (4.16) it follows that

(w + λδw) |γA = (ε̃+ λδε̃) → δw|γA = δε̃ . (4.19)

Then, given a max flow w for the unperturbed geometry, we are set to find a closed
(d− 1)−form δw that satisfies the boundary condition (4.19) and it is such that the norm
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bound constraint (4.14) holds everywhere in the bulk for the sum wλ = w + λδw. For
simplicity, let us introduce the following notation for the inner product

〈w, w̃〉g = 1
(d− 1)!g

a1b1 · · · gad−1bd−1wa1...ad−1w̃b1...bd−1 , (4.20)

and for its first order variation with respect to the metric

〈w, w̃〉δg = 1
(d− 1)!δ(g

a1b1 . . . gad−1bd−1)wa1...ad−1w̃b1...bd−1 . (4.21)

With these notations, the norm bound (4.14) at first order in λ is given by

〈w,w〉g + λ [2〈w, δw〉g + 〈w,w〉δg] ≤ 1 , (4.22)

which looks more difficult to implement than its vector field counterpart. From (4.22) it
is clear that the norm bound will typically depend on w so a priori it seems unlikely that
a generic δw obeying (4.18) and (4.19) could satisfy (4.22) independent of w. The task
becomes even more untractable if one requires δw to be given in terms of a linear local
functional of δgab and its covariant derivatives ∇(a1 · · · ∇an)δgab (see however [56]). In the
remaining part of this section we will show that, despite the above remarks, the Iyer-Wald
formalism provides a concrete realization of such perturbed form.

4.2 Iyer-Wald formalism and Einstein’s equations

One of the crucial breakthroughs in the joint program of holography and quantum infor-
mation is that the first law of the entanglement entropy, together with the Ryu-Takayanagi
formula, imply the linearized Einstein’s equations in the bulk. This was originally proven
using Hamiltonian perturbation theory [22]. In a beautiful paper [23], it was further shown
that it is possible to make this connection more explicit by the proper implementation of
the Noether’s charge formalism in the bulk, also known as the Iyer-Wald formalism. In
this new language, the problem of linearized perturbations is cast in terms of differential
forms, a more natural and elegant approach that bridge the CFT and bulk quantities in
an efficient way. In this section we will briefly review the basic ingredients of [23], making
the connection between entanglement entropy and Einstein’s equations manifest. Later in
section 4.3 we will show that the Iyer-Wald formalism provides us with a canonical choice
for the differential form δw that solves the max flux problem in a perturbed geometry. As a
byproduct, we will show that such a canonical form will automatically encode (locally) the
linearized Einstein’s equations in the bulk which, in turn, will prove useful for the problem
of metric reconstruction.

Let us first state the problem that [22] sought to solve and then discuss the approach
of [23]. In general quantum field theories (holographic or not), for small perturbations over
a reference state, ρ = ρ(0) + λδρ, entanglement entropy satisfies the first law

δSA = δ〈HA〉 , (4.23)

where 〈•〉 represents the expectation value of the operator in the respective quantum state
and HA is the so-called modular Hamiltonian. By definition, this operator is related to the
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reduced density matrix ρA = trAc [ρ] through

ρA = e−HA

tr[e−HA ] . (4.24)

However, there are very few cases for which (4.24) can be explicitly inverted to obtain HA

in closed form. The most famous example is the case where A is half-space, say x1 > 0,
and ρ corresponds to the vacuum state of the QFT. In this case [57, 58]

HA = 2π
∫
A
x1 T00(t, ~x) dd−1x . (4.25)

For generic CFTs, this setup can be conformally mapped to the case where A is a ball of
radius R, centered at an arbitrary point ~x = ~xc, in which case [59, 60]

HA = 2π
∫
A

R2 − (~x− ~xc)2

2R T00(t, ~x) dd−1x . (4.26)

On the other hand, the left-hand side of (4.23) is computed via the Ryu-Takayanagi formula
in the bulk. For ball shaped regions in pure AdS, or small perturbations around it, the
RT surface γA is given by a half hemisphere of radius R extended on the extra dimension,
centered at ~x = ~xc and z = 0. The Ryu-Takayanagi formula then adopts the form

δSA = 1
4GN

∫
γA

δε̃ (4.27)

where δε̃ is the variation of the natural volume form on the surface γA. A further ingredient
is the relation between the expectation value of the boundary stress tensor, appearing in
the right-hand side of (4.23), and the fluctuations of the bulk metric δgµν . In the Fefferman-
Graham gauge, where the latter is given by (2.1), the former can be identified as the first
subleading (normalizable) mode in a near boundary expansion (2.2). Taking into account
that the boundary field theory is conformal and that the stress tensor conserved, then, this
identification imposes non-trivial boundary condition for the metric fluctuations Hµν ,

〈Tµµ(x)〉 = 0 → Hµ
µ(x, z = 0) = 0 ,

∂µ〈Tµν(x)〉 = 0 → ∂µH
µν(x, z = 0) = 0 .

(4.28)

Using the above, the right-hand side of (4.23) becomes

δ〈HA〉 = 2π
∫
A
dd−1x

R2 − |~x− ~x0|2

2R δ〈Ttt(t0, ~x)〉 ,

= d

16GNR

∫
A
dd−1x

(
R2 − |~x− ~x0|2

)
H i

i(t0, ~x, z = 0) . (4.29)

Similarly, evaluating the left-hand side of (4.23) using (4.27) yields

δSA = 1
4GN

∫
γA

δε̃

= 1
8GNR

∫
γA

dd−1x
(
R2δij − (xi − xi0)(xj − xj0)

)
Hij(t0, ~x, z) . (4.30)
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The first law (4.23), together with (4.29) and (4.30), then establishes a relation between
integral functionals of Hµν on A and on γA. It turns out that this functional dependence
in turn implies the Einstein’s equations for Hµν , linearized around pure AdS. This was
shown originally in [22] by a direct comparison between the two sides of (4.23).

From the gravitational perspective, (4.23) was then proven to be equivalent to the
generalized first law of black hole thermodynamics applied to the bifurcate killing horizon
of Rindler AdS [23]. This was made explicit by a clever implementation of the Noether’s
theorem in the bulk, using a formalism developed a couple of decades back by Iyer and
Wald in [61]. In order to apply this formalism to the problem at hand, the key observation
was that the RT surface for ball-shaped regions in pure AdS, or perturbations around it,
coincides with the bifurcate horizon of the time-like killing vector

ξ = −2π
R

(t− t0) [z∂z + (xi − xi0)∂i] + π

R
[R2 − z2 − (t− t0)2 − (~x− ~x0)2]∂t , (4.31)

with respect to which a notion of energy and entropy are possible. In fact, a specific
conformal transformation (known as the CHM map [60]) maps the interior of the Rindler
wedge associated with A to the exterior of an hyperbolic black hole in AdS, where the killing
vector ξ coincides with the generator of time translations. Following Iyer and Wald [56,
61, 62] one then investigates the Noether’s theorem for the Killing symmetry generated by
ξ. This leads to the definition of a (d− 1)−form

χ = − 1
16πGN

[
δ(∇AξBεAB) + ξBεAB(∇chAC +∇AhCC)

]
, (4.32)

where hAB = zd−2HAB and εAB is the volume (d− 1)−form

εAB = 1
(d− 1)!εABC3···Cd+1dx

C3 ∧ · · · ∧ dxCd+1 , (4.33)

with εzti1···id−1 =
√
−G. As noted in [23], the form χ satisfies the following properties∫

γA

χ = δSA ,

∫
A
χ = δ〈HA〉 , (4.34)

which can be more easily verified by evaluating (4.32) on a Cauchy hypersurface Σ, con-
taining both γA and A. For instance, taking Σ to be the t = t0 slice, one obtains the
(d− 1)−form

χ|Σ ≡ χ̃ = zd

16πGN

{
εtz

[(2πz
R

+ d

z
ξt + ξt∂z

)
H i

i

]

+εti

[(
2π(xi − xi0)

R
+ ξt∂i

)
Hj

j −
(

2π(xj − xj0)
R

+ ξt∂j
)
H i

j

]}
, (4.35)

from which both equations in (4.34) follow trivially. The key point here is that χ is closed
provided that the bulk equations of motion are satisfied. For instance, in the constant-t
Cauchy slice used above one finds

dχ̃ = −2ξtδEgtt εt , (4.36)
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where δEgtt is the tt component of the linearized Einstein’s equations, and εt is the induced
volume form on Σ. Similarly, other components of the Einstein’s equations are obtained by
specializing to different Cauchy slices. Thus, provided that the metric perturbations satisfy
these equations, the form χ is closed and the Stokes theorem implies the equality between
the left and right equations (4.34). This equivalence also applies in the converse way, given
the nonlocal form of (4.34) and the arbitrariness of R and ~x0. This concludes the proof
of the statement that they were after, namely, that for theories where the Ryu-Takayanagi
formula computes entanglement entropy, the first law of entanglement entropy in the CFT
is equivalent to the Einstein’s equations in the bulk, linearized over empty AdS.

4.3 Method 3: canonical bit threads from Iyer-Wald

Taking into account the nice properties of χ defined via the Iyer-Wald formalism, here, we
propose that specializing this form to a spacelike hypersurface Σ containing both γA and
A can be taken as a canonical candidate for the perturbed thread (d− 1)−form15

χ̃ = 1
4GN

δw . (4.37)

Given the integral properties of this form, it is straightforward to check that the flux
through any surface homologous to A yields the change of the entanglement entropy in
the perturbed state, δSA, as expected. Furthermore, this construction fully exploits the
property of bulk locality, in particular, connecting the required closedness of δw with the
linearized Einstein’s equations via (4.36). We will see below that this property will play a
very important role for the problem of bulk reconstruction.

It only remains to be checked whether the norm bound constraint (4.14) is satisfied
at the desired order (4.22) everywhere in the bulk. This condition will depend on the
background form w and then might not hold in general. However, for our purposes it will
suffice to find one w such that the combination wλ = w + λδw respects the bound for
any perturbation. We will devote the remaining part of this section to check that this is
indeed possible.

To begin with, we note that the norm constraint in the form (4.22) is slightly more
complicated than its equivalent in terms of vectors. Hence, we will first translate the
form (4.37) into the language of flows and then check the condition in terms of the latter.
For this purpose, we will need an explicit expression relating δv and δw in the presence of
a perturbed metric gλab = gab + λδgab. In terms of the Levi-Civita symbol ε, the variation
of (4.5) reads

λδwa1...ad−1 = εba1...ad−1δ(
√
gλ v

b
λ) = λεba1...ad−1

√
g

(
δvb + 1

2g
cdδgcdv

b
)
. (4.38)

It is convenient to define a new vector field δvaΦ, given by

δvaΦ ≡
δ
(√
gλ v

a
λ

)
√
g

∣∣∣∣
λ→1

= δva + 1
2g

bcδgbcv
a , (4.39)

15See [63] for a previous attempt at deriving a bit thread configuration from Iyer-Wald.
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which is divergenceless with respect to the unperturbed metric gab, i.e.,

∇ · δvΦ = 1
√
g
∂a(
√
g δvaΦ) = 0 , (4.40)

and is related to δw via its Hodge dual (again, with metric gab),

δvaΦ = gab(?δw)b . (4.41)

The subindex Φ here highlights the fact that the flux of this vector field across any bulk
surface homologous to A, computed with the original metric, equals the change in the
entanglement entropy δSA. We emphasize that this vector field should not be thought as
the variation of the flow v, but just as an auxiliary object. However, given a δvaΦ obtained
from (4.41), we can easily recover the true variation of the flow δva from (4.39). In the
Fefferman-Graham gauge (2.1), the metric perturbation takes the form δgij = zd−2Hij

(with δgzz = δgzi = 0) and δva reads

δva = δvaΦ −
1
2z

dH i
iv
a , (4.42)

where H i
i = δijHij . Thus, δva depends not only on δw but also on the background flow

va. In fact, the extra piece in (4.42) is precisely what is needed such that the divergence
of va taken with the full metric gλab vanishes at the desired order,

∇λ · vλ = 1
√
gλ
∂a(
√
gλv

a
λ) =

√
g

√
gλ

(���∇ · v) + λ
√
gλ
∂a[δ(

√
gλ)va +√gδva] ,

= λ
√
gλ
∂a

[
��

��
�1

2z
dH i

iv
a +√g

(
δvaΦ −

��
�
��1

2z
dH i

iv
a
)]

,

= λ

√
g

√
gλ

(∇ · δvΦ) = 0 . (4.43)

Next, we need to make a choice for the background flow v in order to get an explicit
δva and test the norm bound |vλ| ≤ 1. Since the background v should already respect
the bound |v| ≤ 1, it is clear that vλ can only exceed this bound by an amount of order
O(λ). This can indeed be the case for bulk points that saturate the bound at leading order
|v| = 1 (e.g., at the bottle-neck γA), or in their vicinity. On the other hand, points that are
parametrically far from saturating the bound at leading order are safe, in the sense that
we can always take λ to be arbitrarily small such that |vλ| = |v|+O(λ) ≤ 1.

Given the above discussion, then, we should ideally pick a background flow v such
that its magnitude decays rapidly away from the minimal surface γA. Fortunately, we
already know good examples of flows respecting this property, e.g., the so-called “geodesic
flows” [43], which for spheres in empty AdS take the form (3.4). In the following we will take
these background solutions and verify that the norm bound is satisfied at the desired order
in the perturbation. First, notice that from (3.4), and using (4.41)–(4.42), it immediately
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follows that

δvΦ = zd+1

4π

{[(2πz
R

+ d

z
ξt + ξt∂z

)
H i

i

]
∂z

+
[(

2π(xi − xi0)
R

+ ξt∂i
)
Hj

j −
(

2π(xj − xj0)
R

+ ξt∂j
)
H i

j

]
∂i

}
. (4.44)

and

δv = zd+1

4π

{[(2πz
R

+ d

z
ξt + ξt∂z − 2π

z
vz
)
H i

i

]
∂z −

(2π
z
vi
)
Hj

j∂i

+
[(

2π(xi − xi0)
R

+ ξt∂i
)
Hj

j −
(

2π(xj − xj0)
R

+ ξt∂j
)
H i

j

]
∂i

}
. (4.45)

By construction, vλ = v+λδv saturates the norm bound on γA since the formwλ = w+λδw
from which it is derived obeys the appropriate boundary condition for a max flow (4.16).
We can check this explicitly: at γA we have that ξt = 0, so16

v|γA = z

R

[
(xi − xi0)∂i + z∂z

]
, δv|γA = −z

d+1

2R
(
xj − xj0

)
H i

j ∂i . (4.46)

This leads to the expected saturation at first order in λ,

gλabv
a
λv

b
λ

∣∣∣
γA

= gabv
avb + λ((((((

(((
(((

δgabv
avb + 2gabvaδvb)

∣∣∣
γA

= 1 . (4.47)

Away from γA the norm bound is not guaranteed to hold, but since |v| decays as a power
law, it would suffice to study |vλ| in a neighborhood of γA. In order to see this in detail,
we note that the level sets of the background flow v (depicted in figure 2) have the form

(z + ∆)2 + |~x− ~x0|2 = R2 + ∆2 , z ≥ 0 , (4.48)

where ∆ ∈ R, i.e., spheres with radius
√
R2 + ∆2, centered at (~xc = ~x0, zc = −∆). It can

be checked that, in the vicinity of the minimal surface (∆2 � R2)

|v| ≈ 1− (d− 1)∆2

2R2 . (4.49)

Since d > 1, then |v| < 1 for any ∆ 6= 0 as expected. Now, we want to check whether the
norm bound is still satisfied for vλ at the leading order in the perturbation. More precisely,
what we really want is to check that for a fixed λ, |vλ| ≤ 1 at linear order in λ for an
arbitrary ∆. A short calculation shows that

|vλ| = 1− (d− 1)∆2

2R2 + λ

(1
2δgabv

avb + gabv
aδvb

) ?
≤ 1 , (4.50)

16A brief comment is in order. The expression for δva|γA in (4.46) does not agree with the expected
boundary condition at the bulk bottle-neck (3.18). The explanation of this mismatch is simple: the difference
between the two vector fields is proportional to a vector that is tangential to the minimal surface δvaT =
(δab − vavb) δvb so its first order contribution to the norm constraint vanishes, gabvaδvbT = 0, because δvT
is orthogonal to v. Therefore, δva|γA in (4.46) is equally good as (3.18) to our order of approximation.
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which after some algebra can be put in the following form:

λ
∆zd+1

R2

(
(xi − xi0)∂iHj

j − (xi − xi0)∂jHij + z∂zH
j
j + (d− 1)Hj

j

) ?
≤ (d− 1)∆2

R2 . (4.51)

The parenthesis in the left-hand side of (4.51), or (4.50), can in fact be non-negative, which
implies that the above inequality will not hold for arbitrarily small ∆. Nevertheless, it is
interesting to estimate the order of magnitude of the potential violation of the norm bound
constraint as it could still be consistent with our order of approximation. From (4.51) it
follows that the norm bound can be violated provided that

∆
R
. O(λ) . (4.52)

Plugging (4.52) back into (4.50), we observe that this would only lead to a violation of
order O(λ2). Since all of our analysis is at linear order in λ, we can safely ignore this issue.
In other words, up to our order of approximation the norm bound is not violated and this
means that the “canonical” thread configuration constructed from the Iyer-Wald formalism
satisfies all the defining properties for a max flow. We relegate to appendix A the study of
a explicit example of these canonical thread configurations.

Finally, we can comment on how the information of the metric perturbation and the
Einstein’s equations are encoded in this particular thread construction. First, notice that
the variation of the flow δv constructed from Iyer-Wald fully exploits the property of bulk
locality. This is evident, since for this particular construction the divergenceless condition,
∇λ · vλ, maps directly to the Einstein’s equations, which are defined locally in the bulk.
Moreover, the fact that the δv constructed here (4.45) can be written in terms of a linear
local functional of δgab and its derivatives, present us with an interesting possibility: we
can use the information of this canonical solution to invert the problem and recover the
bulk metric from it! We will explore this problem in more detail in the next subsection,
and comment on the implications and possible generalizations to the full non-linear regime.

4.4 Metric reconstruction

4.4.1 Explicit reconstruction at linear order

Our bit thread construction based on differential forms makes explicit use of the property
of bulk locality, hence, it should be possible to invert the problem and recover the metric
for a generic linear excitation of the boundary quantum state. In this section we will study
this problem in detail. More specifically, we will consider a manifold M with boundary ∂M
and a set of forms δw that encode the local pattern of entanglement of boundary regions.
We will assume the knowledge of the zeroth order —pure AdS— metric gµν , which is
otherwise fixed by conformal symmetry (i.e. kinematics), and set up the problem of how
to reconstruct the metric perturbations δgµν from the above data.

Our starting point is the knowledge of the change in the entanglement structure of the
CFT, which in this case is encoded in the set of (d − 1)−forms δw. We emphasize that
these canonical forms can be uniquely specified solely from CFT data. Given a perturbative
excited state in the CFT, one can first evaluate the expectation value of the stress-energy

– 32 –



J
H
E
P
0
1
(
2
0
2
1
)
1
9
3

tensor Tµν and thus the modular Hamiltonian HA associated with a spherical region A.
This information can then be used as a boundary condition for δw on A ⊂ ∂M . For
instance, specializing to a constant-t slice Σ, this yields17

δw|A = 4πGN
R

(
R2 − |~x− ~x0|2

)
〈T00〉 ε̄ , (4.53)

where ε̄ is the natural volume form in the boundary CFT. In fact, we can analytically
continue this form to the whole boundary ∂M , so that18

δw|∂M = 4πGN
R

(
R2 − |~x− ~x0|2

)
〈T00〉 ε̄ . (4.54)

One way to see that this is consistent would be to conformally map the interior of the sphere
to the exterior. Upon implementing this transformation one finds the same functional form
for the modular Hamiltonian but integrated along ~x ∈ Ac, hence, providing a boundary
condition also at Ac = ∂M \A. With the above boundary condition, the full (d−1)−form in
the interior of the manifoldM is then uniquely determined if we assume bulk locality [56]. To
see this, notice that the Iyer-Wald construction yields a form δw such that dδw = 0 on-shell,
which is a local condition. If we want to maintain this condition, then, the only ambiguity
in δw would be the addition of a term δw → δw + dC where C is a (d − 2)−form such
that dC vanishes on ∂M . This is of course a gauge redundancy, which we fix by working
in Fefferman-Graham coordinates. Therefore, the boundary condition (4.54) together with
the condition of bulk locality are enough to uniquely specify the full (d− 1)−form on M .

Before proceeding with the specifics of this analysis, let us first quickly review how
the problem of metric reconstruction is normally addressed. In the usual HRT story, given
background metric gµν , the change in the entanglement entropy of a region A at first order
in the perturbation δgµν is given by19

δSA =
∫
γA

δ
√
h dd−2x , δ

√
h = 1

2
√
hhijδhij . (4.55)

This means that δSA encodes information about the first order change in the trace of
the induced metric hij over the extremal surface γA. On the other hand, the induced

17Notice that a choice of boundary condition on A is equivalent to picking a specific entanglement contour
in the dual CFT. We emphasize that this corresponds to focusing on a particular class of microstates with
a given local entanglement pattern. Although this boundary condition is in general non-unique, (4.54) is
the boundary condition singled out by the Iyer-Wald construction.

18More covariantly, on a general Cauchy slice Σ′ containing ∂A, the boundary condition would be

δw|∂M = 4GN NµζνA〈Tµν〉 ε̄ ,

where Nµ is a future pointing unit normal vector, and ζA is the conformal killing vector that generates D[A],

ζA = π

R

[
(R2 − (t− t0)2 − |~x− ~x0|2)∂t + 2(t− t0)(xi − xi0)∂i

]
.

Upon conformally mapping the causal development of the region D[A] to the hyperbolic cylinder Hd−1×Rτ ,
it can be shown that ζA coincides with the time-like Killing vector 2πR∂τ .

19The analysis in terms of extremal surfaces can be done for general states, not necessarily perturbative.
Here we are discussing only this simpler case to highlight an important difference with our approach.
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metric on γA depends on the bulk metric as well as the explicit embedding of γA on the
geometry. Therefore, by cleverly considering different boundary regions with extremal
surfaces intersecting at a bulk point, one could access to the various components of the
bulk metric at the given bulk point and hence derive an inversion formula for the metric
perturbation δgµν .

As is evident from the previous paragraph, the problem of metric reconstruction by
extremal surfaces heavily relies on the possibility of foliating the full manifold M with
boundary anchored extremal surfaces. In particular, we would necessarily need to start
from a dense family of surfaces that pass through all (reachable) bulk points multiple times.
While we can do this in the language of bit threads, i.e., start from a dense set of thread
configurations, the fact that one single solution to the max flow problem already probes
the full bulk geometry presents us with an interesting possibility: we can start from a
finite set of thread configurations, containing one, or possibly only a few solutions of the
max flow problem. The minimal number of thread configurations needed in such a set
will generally depend on symmetry considerations as well as the number of dimensions,
as will be discussed below. For the time being, let us summarize the two approaches to
metric reconstruction that we can explore. For simplicity, we will frame the discussion by
focusing on a constant-t slice Σ, so that we will aim to recover the spatial components
of the metric δgij . The δgtt and δgti components can be recovered in a similar way, by
choosing appropriate boosted slices Σ′, as we will explain at the end of the section. The
two methods that we will explore are:

• Reconstruction from a dense set of thread configurations. Here we will assume knowl-
edge of δw for all spheres in the CFT, with arbitrary radius R and center point ~x0.

• Reconstruction from a minimal set of thread configurations. Here we will assume
knowledge of δw for a few spheres with radius R(i), and center point ~x(i)

0 , with
i = 1, . . . , n. The precise value of n will be fixed so that the inversion problem is
well defined.

We will now discuss these two methods in detail.

Reconstruction from a dense set of thread configurations. Given the infinite set
of (d− 1)−forms δw encoding the canonical entanglement pattern of spheres of arbitrary
radius R and center point at ~x0, on a constant-t slice Σ, our goal is to extract the com-
ponents of the perturbed metric δgij . We recall that, in the presence of a metric, the set
of (d− 1)−forms δw define a set of covector fields δwa(R, ~x0, z, ~x), instead of the numbers
δS(R, x0), so it is clear that in this framework we have infinitely more information in com-
parison to the standard setup using extremal surfaces. Hence, we can expect to be able to
reconstruct the metric in a more straightforward way.

If the full metric is given in the Fefferman-Graham gauge (2.1), the components of the
metric perturbation take the form δgij = zd−2Hij (with δgzz = δgzi = 0). In this gauge,
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the components of the covectors δwa can be related to the metric perturbations as follows:

δwz(R, ~x0, z, ~x) = z

4π

(2πz
R

+ d

z
ξt + ξt∂z

)
H i

i , (4.56)

δwi(R, ~x0, z, ~x) = z

4π

[(
2π(xi − xi0)

R
+ ξt∂i

)
Hj

j −
(

2π(xj − xj0)
R

+ ξt∂j
)
H i

j

]
, (4.57)

where
ξt = π

R

(
R2 − z2 − |~x− ~x0|2

)
. (4.58)

These equations can be easily inverted using the dependence on R and ~x0 of (4.56)
and (4.57). In fact, there are infinitely many ways to invert these equations. The sim-
plest way is to get rid of the derivative terms, so that we obtain a system of algebraic
equations. However, we have several ways to accomplish this. Below we will discuss two
different options.

The first option is by evaluating both sides of (4.56) and (4.57) on the set of parameters
(R, ~x0) that satisfy ξt(R, ~x0) = 0, i.e.,

R2 = z2 + |~x− ~x0|2 . (4.59)

Notice that the requirement given by (4.59) means that our reconstruction is limited to the
points that are accessible via extremal surfaces. This means that this option is, in a sense,
analogous to the metric reconstruction via the HRT prescription and does not exploit the
full reach of the bit threads. We will continue for now and then explain an alternative that
does not impose this limitation. Let us first analyze (4.56). From this equation, we can
immediately find an algebraic expression that gives the perturbed trace H i

i(z, ~x),

H i
i(z, ~x) = 2R

z2 δwz (R, ~x0; z, ~x)
∣∣∣∣∣
ξt(R,~x0)=0

. (4.60)

In fact, we can extract the trace H i
i at a point (z, ~x) from (4.60) using any single covector

with parameters (R, ~x0) such that (4.59) is satisfied. This is an example of the non-
uniquess of the inversion formulas. Notice that equation (4.60) provides the solution to
the full inversion problem for d = 2, in which case (4.57) is identically zero. In fact, for
d = 2 the only component of the metric perturbation that we need to solve for corresponds
to Hxx(z, x) which equals the trace (4.60). In higher dimensions, we can use (4.57) in
addition to (4.56), and proceed in a similar way to extract the information of the individual
components of the perturbed metric H i

j(z, ~x). In order to do that, first replace the solution
for the trace (4.60) in equation (4.57), so that the latter equation becomes:

δwi
∣∣∣
ξt=0

= (xi − xi0)
z

δwz
∣∣∣
ξt=0
− z

2R
(
xj − xj0

)
H i

j . (4.61)

Further, for a given j and within the set of allowed parameters, we can take xj0 6= xj and
xk0 = xk for k 6= j. This leads to the following solutions for the diagonal and non-diagonal
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components of the perturbation:

(no sum over j) Hj
j(z, ~x) = − 2R

z(xj − xj0)
δwj

∣∣∣
ξt=0

+ 2R
z2 δwz

∣∣∣
ξt=0

, (4.62)

H i
j(z, ~x) = − 2R

z(xj − xj0)
δwi

∣∣∣
ξt=0

, (4.63)

which provides the solution to the full inversion problem for d > 2.
As mentioned above, the method outlined in the previous paragraph is limited to the

points that are accessible via extremal surfaces. An alternative way of inverting the system
of equations in a less restrictive setting is the following. First notice the relations

∂ξt

∂xk0
= 2π(xk − xk0)

R
,

∂ξt

∂xk0

∣∣∣∣
xk0=xk

= 0 , (4.64)

Using the above, one finds that

∂δwz

∂xk0

∣∣∣∣
xk0=xk

= 0 ,

∂δwi

∂xk0

∣∣∣∣
xk0=xk

= − z

2Rδ
i
kH

j
j + z

2Rδ
j
kH

i
j , (4.65)

from which one can easily invert the diagonal and off diagonal components of the pertur-
bation for d > 2.20 More explicitly, we obtain that

(no sum over j) Hj
j(z, x) = 2R

z

(
∂δwj

∂xj0

∣∣∣∣
xj0=xj
− 1
d− 2

∑
i

∂δwi
∂xi0

∣∣∣∣
xi0=xi

)
, (4.66)

H i
j(z, x) = 2R

z

∂δwi

∂xj0

∣∣∣∣
xj0=xj

, (4.67)

which gives the solution to the full inversion problem for d > 2. On the other hand, for
d = 2 we can simply use equation (4.60) or, alternatively, the second reconstruction method
that we explain below. Notice that summing over j in equation (4.66) leads to a different
expression for the trace of the perturbation as (4.60). This represents another example of
the non-uniqueness in the inversion equations.

Reconstruction from a minimal set of thread configurations. One may wonder
whether the extended nature of the entanglement pattern information present in a single
form δw(R, ~x0; z, ~x) for fixed (R, ~x0), or a finite number of forms n, could suffice to recover
the components of the metric perturbations δgij . Naively, the number of unknown variables
that we need to solve for is d(d − 1)/2, which is the number of symmetric components of
Hij ({i, j} run over d − 1 values). On the other hand, the number of equations that we
would have at our disposal is given by nd, i.e., d components of a single covector δwa, times

20Notice that for d = 2 equation (4.57) is identically equal to zero and then equations (4.65) are trivial.
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the total number of forms n ∈ N. Assuming they are all linearly independent of each other,
we have that for a fixed d, the minimum number of forms n̄ that we would need is

n̄ =
⌈
d− 1

2

⌉
, (4.68)

where d•e represents the ceiling function (i.e., the smallest integer greater or equal to its
argument). For d = 2 and d = 3 (3d and 4d gravity respectively) we obtain n̄ = 1, which
means that we can hope to recover the full metric from a single form. In higher dimensions
the problem would be underdetermined so we would need to increase the number of forms,
although, to a finite number set by d. In the following, we will focus on the cases for which
n̄ = 1 but we will come back to the higher dimensional cases at the end of the section.

We start with equation (4.56) and notice that its right-hand side can be rewritten as

δwz(R, ~x0, z, ~x) = (ξt)2

4πzd−1∂z

(
zdH i

i

ξt

)
. (4.69)

This equation can be in principle easily inverted for the trace H i
i. However, we must

proceed with some care because ξt can attain a zero value in multiple points in the bulk.
We refer the reader to appendix B for a detailed analysis of this equation, and we will
simply state the final result here. The analysis is naturally split for bulk points ~x ∈ Ac and
~x ∈ A (∀z). In the former case, ξt never vanishes in the bulk, so the analysis is particularly
simple. In this case we obtain

H i
i(z, ~x) = 4R(z2

∗ − z2)
∫ 1

0
dλ

λd−1δwz(λz, ~x)
[z2
∗ − (λz)2]2 , z2

∗ ≡ R2 − |~x− ~x0|2 . (4.70)

This equation is also valid for ~x ∈ A provided that z2 < z2
∗ . For z ≥ z∗ the integrand

in (4.70) has a double pole at λ∗ = z∗/z (with λ∗ ∈ [0, 1]). This divergence can be removed
by an appropriate regularization, e.g., using the principle value prescription. However,
given the simplicity of our problem we can find the answer directly from (4.69) by taking
one of the end points of the integral to be arbitrarily close to the zero locus of ξt. After a
series of careful manipulations explained in appendix B we arrive at a formula that is valid
in the region ~x ∈ A and for all z:

H i
i(z, ~x) = 2Rzd−4

∗ δwz(z∗, ~x)
zd−2

+4R(z2
∗ − z2)

∫ 1

0
dλ
λ[λd−2δwz(λz, ~x)− λd−2

∗ δwz(z∗, ~x)]
[z2
∗ − (λz)2]2 . (4.71)

This new integral seems to still have a single pole at λ = λ∗. However, a close inspection
shows that this term is proportional to

(d− 2)δwz(z∗, ~x) + z∗∂zδwz(z∗, ~x) = 0 , (4.72)

which can be checked from (4.56). Therefore, the integral is manifestly finite. We note
that, indeed, the naive principle value regularization of (4.70) results in (4.71), and likewise
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there are many ways to derive (4.71) from (4.70). Perhaps the simplest way to do it is by
slightly changing the integration contour:

H i
i(z, ~x) = 4R(z2

∗ − z2)
∫ 1+iε

iε
dλ

λd−1δwz(λz, ~x)
[z2
∗ − (λz)2]2 , (4.73)

where ε ∈ R, and then letting ε → 0. It can be shown that this prescription is consistent
with both (4.70) and (4.71) so it is valid everywhere in the bulk.

Notice that in the above formulas we have not specified the number of dimensions
d. This means that given the knowledge of a single δw(z, ~x) one can always find an
inversion formula for the trace of the perturbation, given explicitly by (4.70)–(4.71) or its
equivalent (4.73). We will now recover the other components of the metric for the cases
d = 2 and d = 3.

The d = 2 case: the inversion problem in d = 2 is exceptionally simple because in this
case there is only one metric component to solve for. Therefore, the trace of the perturba-
tion provides the full solution to the problem, i.e., H i

i(z, x) = Hxx(z, x). Nevertheless, we
will analyze this case in some detail and check that our formulas for the trace ar consistent
with the expected results.

First, notice that in this case there are further simplifications that considerably reduce
our problem: equation (4.57) vanishes exactly so δwx = 0 everywhere in the bulk. The
closedness relation dδw = 0 then implies ∂zδwz = 0, so δwz(z, x) = δwz(0, x). Using this
fact, and applying the formula (4.73) which is valid everywhere in the bulk, we obtain

Hxx(z, x) = 4Rδwz(0, x)(z2
∗ − z2)

∫ 1+iε

iε
dλ

λ

[z2
∗ − (λz)2]2

∣∣∣∣
ε→0

= 2Rδwz(0, x)
z2
∗

= Hxx(0, x). (4.74)

This is precisely what is expected from the analysis of section 2.1, specifically from equa-
tion (2.13). For x ∈ Ac, (4.70) coincides explicitly with (4.73) so the integral above is the
same. For x ∈ A we can alternatively use (4.71). Notice that for d = 2 the integrand
in (4.71) is identically zero since δwz(z, ~x) is constant so, in this case, the full result is
given by the first term in (4.71). Indeed, this term coincides with (4.74), as expected.

Again, since for d = 2 this is the only component of the perturbed metric that we need
to solve for, then, equation (4.74) completes the inversion problem.

The d = 3 case: to solve the inversion problem in d = 3 we need equations (4.57), in
addition to (4.56). These equations involve derivatives with respect to the spatial coor-
dinates ∂i so, as a system of first order differential equations, we would need information
about Hij at some fixed xi in order to have a well defined boundary value problem. We
will deal with the choice of such boundary conditions below, but for now, let us explain
how to setup the inversion problem.

First, since equation (4.73) already provides the solution for the trace part of the
metric, we can already replace this back into (4.57) and solve for the remaining metric
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components. We find it convenient to write the fluctuations as

Hij =
(

h
2 + φ χ

χ h
2 − φ

)
, (4.75)

so that h = H i
i gives the trace while φ and χ are the two fields that we still need to solve

for. Defining x1 ≡ x and x2 ≡ y, equations (4.57) then take the form:

δwx = z

4π

[(2π(x− x0)
R

+ ξt∂x

)(
h

2 − φ
)
−
(2π(y − y0)

R
+ ξt∂y

)
χ

]
, (4.76)

δwy = z

4π

[(2π(y − y0)
R

+ ξt∂y

)(
h

2 + φ

)
−
(2π(x− x0)

R
+ ξt∂x

)
χ

]
. (4.77)

Thus, we have a system of two coupled partial differential equations of first order. It
is possible to decouple these equations by taking one further derivative and combining
appropriately the two equations. To do so, we first rewrite (4.76)–(4.77) as:

∂x

(
φ

ξt

)
+ ∂y

(
χ

ξt

)
= δΩx , δΩx ≡ ∂x

(
h

2ξt
)
− 4π
z(ξt)2 δwx , (4.78)

−∂y
(
φ

ξt

)
+ ∂x

(
χ

ξt

)
= δΩy , δΩy ≡ ∂y

(
h

2ξt
)
− 4π
z(ξt)2 δwy . (4.79)

Equations (4.78) and (4.79) can now be combined as a pair of Poisson’s equations:(
∂2
x + ∂2

y

)( φ
ξt

)
= ρφ , ρφ ≡ ∂xδΩx − ∂yδΩy , (4.80)(

∂2
x + ∂2

y

)( χ
ξt

)
= ρχ , ρχ ≡ ∂xδΩy + ∂yδΩx , (4.81)

where ρφ and ρχ act as sources for φ and χ, respectively. These equations can be solved
using standard Green’s function methods. Assuming knowledge of the solutions at a closed
surface ∂V, one can formally write the solution in the interior of the surface V as follows:

φ(~x)
ξt(~x) =

∫
V ′
G(~x, ~x′)ρφ(~x′)dV ′ +

∫
∂V ′

[
φ(x′)
ξt(x′)∇

′
G(~x, ~x′)−G(~x, ~x′)∇′ φ(x′)

ξt(x′)

]
· dS′ , (4.82)

χ(~x)
ξt(~x) =

∫
V ′
G(~x, ~x′)ρχ(~x′)dV ′ +

∫
∂V ′

[
χ(x′)
ξt(x′)∇

′
G(~x, ~x′)−G(~x, ~x′)∇′ χ(x′)

ξt(x′)

]
· dS′ , (4.83)

where G(~x, ~x′) is the Green’s function for the Laplace operator in 2d, given by

G(~x, ~x′) = 1
2π log |~x− ~x′|+ c0 . (4.84)

Next, we need to impose appropriate boundary conditions. To do so, let us start
discussing the region z > R for which ξt < 0 so that there will be no subtleties with poles
in the integrals. We will consider a closed surface ∂V ′ at infinity, so that dS′ = r̂ r′dθ′,
with r′ = |~x′| → ∞. We note that, normally, the integral over ∂V ′ in 2d would give a
finite contribution, assuming that the fields that we solve for are finite at infinity. This is
because ∇′G(~x, ~x′) · dS′ → constant at large r′. However, in our particular problem, we
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need to solve for the combination φ/ξt, or χ/ξt, which decay (at least) as 1/r′2 at large
r′.21 This means that the surface integrals in (4.82) and (4.83) vanish, regardless of the
specific values of φ and χ at r →∞, and therefore,

φ(~x) = ξt(~x)
2π

∫
V ′

log |~x− ~x′|ρφ(~x′)dV ′ , (4.85)

χ(~x) = ξt(~x)
2π

∫
V ′

log |~x− ~x′|ρχ(~x′)dV ′ , (4.86)

where the boundary conditions once again force c0 = 0.22 For the region z < R, we note
that ξt can become zero at multiple points in the bulk, so we would need to deal with
potential divergences of the integrands. Following the calculation of the trace (explained
in detail in appendix B), we can expect to get rid of these non-physical divergences by a
simple regularization procedure. One easy way to do this is by adding a small imaginary
part to z,

φ(~x) = ξt(~x)
2π

∫
V ′

log |~x− ~x′|ρφ(~x′)dV ′
∣∣∣∣
z→z+iε

, (4.87)

χ(~x) = ξt(~x)
2π

∫
V ′

log |~x− ~x′|ρχ(~x′)dV ′
∣∣∣∣
z→z+iε

, (4.88)

and at the end of the calculation let ε → 0. The integration region should now be free of
singularities, so these formulas apply for all values of z. Hence, together with the trace
formula (4.73), they provide a complete solution of the reconstruction problem in d = 3.

Higher dimensional cases: as discussed above, by comparing the number of indepen-
dent components of the perturbed metric Hij against the number of equations that we
obtain from a single form δw, one can conclude that the minimum number of forms n̄
that are in principle required to invert the problem is given by (4.68). However, this does
not imply that any set of n̄ forms should lead to a well defined inversion problem since,
depending on the choice, one could end up with a set of equations that are not completely
linearly independent. In the following we will spell out the precise conditions that we must
impose on a minimal set of forms and give a concrete example of how these conditions can
be satisfied.

First, notice that for a spherical region, a single form δw is parametrized by d real
numbers P = {R, x1

0, · · · , xd−1
0 }. Moreover, one can easily check that for each choice

of such numbers, the d components of the form δwa, with a ∈ {z, 1, . . . , d − 1}, are all
linearly independent since each component involves different sets of metric components
Hij . Therefore, the task at hand reduces to finding a convenient set of parameters Pk, with

21To see this, notice that both φ and χ are components of the perturbation Hij , which can generally be
written as (2.7), i.e., Hij ∼

∑
z2nT

(n)
ij . The leading order term gives the CFT stress-energy tensor, which

scales as T (0)
ij ∼ 1/rd−2 ∼ 1/r for perturbations of compact support, or T (0)

ij ∼ constant otherwise (e.g. for
plane waves). For n > 0, equation (2.9) tells us that T (n)

ij ∼ �
nT

(0)
ij , so these terms they decay faster at

infinity. Hence, Hij scales like T (0)
ij and φ/ξt ∼ 1/r2 and χ/ξt ∼ 1/r2 at large r (in the worst case scenario).

22Notice that if c0 6= 0, both φ ∼ r2 →∞ and χ ∼ r2 →∞ at large r, which would be unphysical.
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k ∈ {1 , . . . , n̄}, such that the individual components of each form are linearly independent
across the set. More concretely, if we label the n̄ forms as δwk, then we would need to
impose that for a fixed a the set {δw1

a , . . . , δw
n̄
a} must be linearly independent.

In order to visualize explicitly the dependence of each component δwa on the param-
eters {R, x1

0, · · · , xd−1
0 }, we rewrite equations (4.56) and (4.57) as follows:

δwz =
(
R2 − |~x0|2

4R

)(
dH i

i + z∂zH
i
i

)
+ xl0

2R
(
d xlH

i
i + xlz∂zH

i
i

)
− 1

4R
[ (

(d− 2)z2 + |~x|2
)
H i

i + z
(
z2 + |~x|2

)
∂zH

i
i

]
, (4.89)

δwi =
(
R2 − |~x0|2

4R

) [
z
(
∂iHj

j − ∂
j H i

j

)]
+ xl0

2R
[
z xl

(
∂iHj

j − ∂
j H i

j

)
−z
(
δilH

j
j−δ

j
lH

i
j

)]
− 1

4R
[(
z2 + |~x|2

) (
∂iHj

j − ∂
j H i

j

)
+ 2z

(
xiHj

j − x
jH i

j

)]
. (4.90)

In this way, we can express each component of the form as a linear combination of (d+ 1)
linearly independent functions

δwa(R, ~x0; z, ~x) =
d+1∑
l=1

αl(R, ~x0)F la(z, ~x) , (4.91)

with coefficients αl given by

{α1 , α2 , . . . , αd+1} =
{(

R2 − |~x0|2

4R

)
,
x1

0
2R , . . . ,

xd−1
0
2R ,

1
4R

}
. (4.92)

Note, however, that by choosing a set of parameters P we can only specify up to d of the
above coefficients, while one of them will necessarily be determined in terms of the others.
This is in fact not a problem. If we consider the set of forms δwk and repeat the above
analysis, we find now that

δwka(Rk, ~x k0 ; z, ~x) =
d+1∑
l=1

αkl (Rk, ~x k0 )F la(z, ~x) , (4.93)

where k ∈ {1, . . . , n̄}. We note that the number of coefficients αkl that we can fix for each
k is larger than the total number forms that we have at our disposal, i.e., d >

⌈
d−1

2

⌉
.

Therefore, we still have a lot of freedom on the choice of parameters Pk to be able to make
the set {δw1

a , . . . , δw
n̄
a} linearly independent. One way to achieve this is by focusing only

on a subspace of forms obtained by varying n̄ out of the d free coefficients of each δwka ,
which we denote as βkl , while keeping the rest fixed. More explicitly, we can split the sum
in (4.93) as

δw(k)
a =

∑
l

βkl F
l
a +

∑
l

β̃kl F
l
a , (4.94)

where βkl is now a n̄× n̄ matrix, with the coefficients that we vary, and β̃kl denote the ones
that we keep fixed. The condition for the above linear independence is then given by the
non-vanishing of the determinant of the matrix βkl . For instance, we could take

βkl =
{

(x1
0)k

2Rk , . . . ,
(xn̄−1

0 )k
2Rk ,

1
4Rk

}
, (4.95)
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and vary the parameters {Rk, (xi0)k} for i ∈ {1, . . . , n̄ − 1} such that det(βkl ) 6= 0 while
keeping (xi0)k fixed for i ∈ {n̄, . . . , d − 1}. More generally, notice that there can be many
other possible choices. One one hand, the choice of the subset βkl ⊂ αkl can be arbitrary
and, on the other hand, the remaining free parameters can be random; they must not
necesarily be kept fixed.

General time slices: recovering the full bulk metric. Let us now go back to the
problem of recovering the full bulk metric δgµν . First, notice that when we picked a
constant-t slice Σ, we were able to recover the components of the metric tangent to it,
namely, δgij . This means that we still need to find the time components, δgtt and δgti, in
order to complete the reconstruction problem. Below, we present a simple algorithm to
recover these extra metric components.

From the bulk point of view it is easy to see that δgtt and δgti are, in fact, constrained
from the equations of motion (2.4). Specifically, they can be determined from the zz and
zµ components of Einstein’s equations,

δgµµ = 0 , ∂µδg
µν = 0 . (4.96)

These equations imply that δgtt must equal the spatial trace δgtt = δgii, while δgti can be
determined from a first order equation ∂tδgti = ∂jδgij . This can be easily implemented in
practice. However, the problem is that these particular bulk equations of motion are not
known from the CFT perspective, so their use cannot be justified. Indeed, once the surface
Σ is chosen to be a constant-t slice, the closedness condition dδw = 0 only encodes the tt
component of the Einstein’s equations, as explained at the end of section 4.2.

One simple solution to this problem, is to pick a more general time slice Σ′ and repeat
the reconstruction analysis outlined above. For simplicity, we will pick here a boosted slice
parametrized by coordinates (t′, x′i, z′), but a similar analysis can be implemented from
more general choices of Σ′. We will denote the boosted coordinate xi = x and label the
coordinates orthogonal to it as xj = yj for j 6= i. With this notation, a boost with rapidity
β (which we can take to be arbitray) is given by the bulk transformations

t = t′ cosh β + x′ sinh β , (4.97)
x = x′ cosh β + t′ sinh β , (4.98)
yi = y′j , (4.99)
z = z′ . (4.100)

We can now perform the reconstruction analysis in this new slice, and recover the com-
ponents δgi′j′ on Σ′. Indeed, a quick calculation shows that the components that we can
recover are

δgx′x′ |β = sinh2 β δgtt + 2 sinh β cosh β δgtx + cosh2 β δgxx , (4.101)
δgx′y′i |β = sinh β δgtyi + cosh β δgxyi , (4.102)
δgy′iy

′
j
|β = δgyiyj . (4.103)
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If this analysis is done for at least a few values of the rapidity β1 6= β2 6= 0, then it is clear
that we will have enough information to recover the extra components δgtt and δgtx from
linear combinations of δgi′j′ |βi .

This completes the reconstruction problem for the locus of all points in the intersection
between the original slice Σ and the new slices Σ′, as shown in left panel of figure 3. In
particular, from the transformations (4.97)–(4.100), it follows that the constant-t′ slices
parametrized by β intersect the surface Σ at the line

x = 0 , (4.104)

depicted in red. If we want to reconstruct other points of Σ, then, we can generalize the
boost transformations (4.97)–(4.100) to include a translation in x, so that

t = t′′ cosh β + x′′ sinh β , (4.105)
x = x′′ cosh β + t′′ sinh β + σ , (4.106)
yi = y′′j , (4.107)
z = z′′ . (4.108)

The new slices Σ′′, depicted in the right panel of figure 3, intersect the original slice Σ at

x = σ , (4.109)

so it is clear that, if we perform the reconstruction problem for a general slice Σ′′ with
arbitrary β and σ we would have enough information to reconstruct the full metric in Σ.

Finally, note that the above algorithm has a trivial extension to generic choices of Σ.
Thus, picking a family of slices Σ that foliates the full manifold M , and repeating the same
analysis for each Σ gives a complete solution to the reconstruction problem in M .

4.4.2 Going beyond linear order

In the past section we have shown that the problem of metric reconstruction can be carried
out explicitly at linear order for the case of perturbative excited states. This was accom-
plished using the canonical bit thread construction based on differential forms. But, can
this methodology be generalized to the non-linear regime?

To answer this question, we will start with a brief review of our findings and then
discuss how the different aspects of our proposal can be generalized. To begin with the
reconstruction problem, we assumed knowledge of a set of canonical forms that codify the
entanglement pattern of subregions in the dual CFT. We recall that these canonical forms
δw can be uniquely specified from CFT data. Specifically, they are completely fixed by the
boundary condition on ∂M (4.54), which is given in terms of the one-point function of the
CFT stress-energy tensor 〈Tµν〉, and the requirement of bulk locality. In the presence of a
metric, we found that one of these forms specifies a covector field that can be schematically
written as

(?δw)a = F bca δgbc , (4.110)
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∂M

Σ
δgij

δgi′j′ |β2

δgi′j′ |β1

Σ′|β1

Σ′|β2

∂M

Σ

Σ′′|β,σ1
Σ′′|β,σ2
Σ′′|β,σ3

x = σ3
x = σ2

x = σ1

Figure 3. Algorithm to reconstruct the full bulk metric, including its time components δgtt and
δgti. In the left panel we show the components of the metric that can be recovered on a generic
boosted slice Σ′|β . Combining the data obtained from multiple boosted slices it is possible to
recover the full metric on the locus of points in the intersection between the original slice Σ and the
new slices Σ′, depicted in red. In the right panel we show new slices Σ′′|β,σ that are obtained by
a simple translation of the original boosted slices Σ′. The extra data obtained from the inversion
problem in these new slices is sufficient to recover all components of the metric in the full slice Σ.

where F bca is a specific linear differential operator. In low-dimensional cases, the equations
resulting from a single form provide enough data to invert the problem, so that

δgab = [F−1]cab (?δw)c . (4.111)

This kind of inversion works for d = 2 and d = 3, i.e., in AdS3 and AdS4, respectively.
For higher dimensional cases the problem becomes underdetermined, but it can be easily
generalized by starting from a set of differential forms δW = {δw1, . . . , δwn}, that encode
the entanglement pattern of a family of subregions in the CFT. In this case, we find that

(?δwi)a = (F i)bca δgbc , (4.112)

so, for large enough n one can always invert the system as

δgab = [F−1
i ]cab (?δwi)c . (4.113)

The optimal value of n depends on the number of dimensions, and is given by (4.68). Of
course, the larger the value of n, the more information that we have at our disposal, and
the easier the inversion problem becomes. In fact, in the limit of n→∞, or when the set
of differential forms is dense enough, there is even enough maneuver to turn the inversion
problem into a simple algebraic system of equations as shown explicitly in section (4.4.1).

Let us now comment on what to expect in the non-linear regime. To start with, we can
treat the problem perturbatively but extending the above results to higher orders in the
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perturbation. In this case, the perturbation of the metric can be given as an expansion23

gλµν = gµν + λδgλµν , δgλµν ≡ δ(1)gµν + λδ(2)gµν + λ2δ(3)gµν + · · · , (4.114)

and, similarly, any solution to the max-flow problem

wλ = w + λδwλ , δwλ ≡ δ(1)w + λδ(2)w + λ2δ(3)w + · · · . (4.115)

On general grounds we expect that, in the presence of the metric (4.114), the change in
the form δwλ should follow an equation similar to (4.110), i.e.,

(?δwλ)a = F̃ bca δgλbc , (4.116)

but now with F̃ bca being a higher order differential operator. For example, at second order
in λ we expect a second order differential operator, and similarly for higher orders. This
introduces the standard non-uniqueness problem for the inversion of a non-linear operator.
However, this issue can be circumvented by solving the reconstruction problem recursively
in λ. To see this, notice that the different terms in (4.115) should depend on the different
metric perturbations and their derivatives as follows:

δ(i)w = δ(i)w(δ(j)gµν ,∇kδ(j)gµν) , (4.117)

for j ∈ {1, . . . , i} and k ∈ {1, . . . , 1 + i − j}. In other words, for a given value of i, in the
right-hand side of (4.117) we expect up to ith derivatives of δ(1)gµν but only 1st derivatives
of δ(i)gµν . Thus, if we solve for the metric at first order in λ, then we can reformulate the
problem of bulk reconstruction at second order as a linear problem above the gµν+λδ(1)gµν
solution. This also generalizes to higher orders in λ, so that the inversion problem at a
given order can also be cast as a linear problem above one lower order.

We should also comment on how the boundary condition (4.54) generalizes to higher
orders in λ. At linear level, we saw that it is fully specified by the one-point function of
the CFT stress-energy tensor 〈Tµν〉. However, at higher orders we would need to specify
further data, e.g. [66]. A useful case study would be to consider the reconstruction problem
at second order in λ, which was already worked out in [27] in the framework of extremal
surfaces. This paper generalized the Iyer-Wald construction, and thus [23], to include
second order variations in the metric, hence their construction can be used to obtain
canonical thread configurations at second order in λ. More specifically, [27] focused on
a class of CFT states which are expected to have a classical gravity description, and are
defined by adding sources for primary operators to the Euclidean path integral defining
the vacuum state [67–69],

|ψλ〉 = Te
−
∫ 0
−∞ dtEd

d−1xφ
(0)
α Oα |0〉 (4.118)

23As shown in [64], when going to higher orders in λ it is convenient to work in the so-called Hollands-
Wald gauge [65] so that the coordinate location of γA is fixed and LξA (gλµν)|γA = 0. In this gauge the
argument presented in section 2.3.1 about the choice of Σ can be extended to higher orders in λ.
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Among other things, their calculation led to a closed expression for the entanglement
entropy in these CFT states at second order in the sources:24

SA(〈T 〉, 〈O〉) = a∗S
(0)
A + λ

∫
K

(1)
A (x)〈T (x)〉+ λ2

∫∫
K

(2)
A (x1, x2)〈Oα(x1)〉〈Oα(x2)〉

+ λ2

CT

∫∫
K̃

(2)
A (x1, x2)〈T (x1)〉〈T (x2)〉 , (4.119)

where K(1)
A (x), K(2)

A (x1, x2) and K̃(2)
A (x1, x2) are some specific kernels. A few comments are

in order. First, notice that at this order the entanglement entropy depends on the specific
CFT only through the central charges a∗ and CT . In fact, for theories that are dual to
Einstein gravity, they must be proportional to each other, i.e., a∗ ∝ CT , so the answer
depends only on one CFT parameter. Second, (4.119) correctly encodes the first-law of
entanglement δSA = 〈HA〉 at linear order in λ but, in addition, it also contains information
about the relative entropy in the excited state δ(2)S(ρA||ρ(0)

A ), to second order in λ. Finally,
note that equation (4.119) can now be used to specify a canonical boundary condition for
δwλ in ∂M ,

δwλ(x)|∂M = 4GN
[
K

(1)
A (x)〈T (x)〉+ λ

∫
K

(2)
A (x, x′)〈Oα(x)〉〈Oα(x′)〉

+ λ

CT

∫
K̃

(2)
A (x, x′)〈T (x)〉〈T (x′)〉

]
ε̄ , (4.120)

and so, it should suffice to uniquely specify the full (d − 1)−form on M by further re-
quiring bulk locality. This means that at second order in λ, we need also the one-point
functions of all primary operators 〈Oα〉, in addition to stress-energy tensor. From the
bulk perspective, [27] showed that the closedness of the Iyer-Wald form χ, related to δwλ

through (4.37), encodes now the following data: at first order one recovers (4.36), which
specialized to an arbitrary slice Σ leads to the linearized Einstein’s equations E(1)

ab = 0. At
second order, one obtains

E
(2)
ab ≡ (E(2)

ab )grav −
1
2T

(2)
ab = 0 , (4.121)

where (E(2)
ab )grav is the second order Einstein tensor and T

(2)
ab is the second order stress-

energy tensor associated with the bulk fields φα dual to the CFT operators Oα. Thus,
for theories with a∗ = CT , a CFT state of the form (4.118) secretly encodes Einstein’s
equations (at least up to second order in the perturbation) with matter determined by the
CFT one-point functions. Therefore, on general grounds we can expect that the inversion
problem using the canonical bit thread prescription to be well defined at second order in λ.

One can also go to higher orders in perturbation theory, however, it is clear that one
would ultimately need infinitely more CFT data in the full non-linear regime, rendering
the problem untractable. To see this, notice that to the ith order in the perturbation, the

24In their calculation, they expressed the second order terms in terms of the first order sources. After
that, they related the sources at first order to the one-point functions at first order via a map that depends
on the CFT two-point functions (which are fixed by conformal symmetry).
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relative entropy δ(i)S(ρA||ρ(0)
A ) will generically involve i-point functions of the primary op-

erators Oα, so at the full non-linear level we would need to specify all correlation functions
of the theory. Here we have two options to proceed. One could try to pursue the recon-
struction problem in a theory with a know gravity dual, e.g., N = 4 SYM, and with some
hard work, one should be able to recover the metric order by order in the perturbation.
Alternatively, one could start with a generic CFT and try to constrain the structure of the
CFT i-point functions such that the calculations match with the gravity side. Indeed, such
constraints must start appearing for i ≥ 4, since these correlation functions are not fixed
by conformal invariance.

Another possibility would be to consider the full reconstruction problem without re-
sorting to perturbation theory.25 For example, given a CFT with a known holographic
dual, one can start by computing entanglement contours [70, 71] for several regions Ai in a
state of the form (4.118). These contours can then be used as boundary conditions in ∂M
for a set of closed bulk forms wi that encode the entanglement pattern of the individual
regions. Via the closedness condition, dwi = 0, and assuming further input such as bulk
locality, one should then be able to reconstruct particular realizations of the set of forms
wi on M that solve the max flow problem in the bulk. If this set is sufficiently dense,
then, one could set up the problem of metric reconstruction as a particular optimization
problem. More specifically, given a set of such (d − 1)− forms W = {wi}, the metric gab
should emerge as the minimal positive definite symmetric (0, 2) tensor for which the norm
bound constraint

1
(d− 1)!g

a1b1 · · · gad−1bd−1wa1···ad−1wb1···bd−1 ≤ 1 . (4.122)

holds for all the elements wi of the fundamental setW . It would be interesting to develop
a more precise algorithm based on this optimization problem and understand how the
Einstein’s equations would emerge upon its implementation.

5 Conclusions and outlook

In this paper we developed a new framework for metric reconstruction based on the bit
threads reformulation of entanglement entropy. Our work can be divided roughly into
two main parts. In section 3 we explored simple constructions of perturbative thread
configurations based on the general methods originally developed in [43] but expanded
in this paper in various ways. We explored in detail two particular constructions, one
that starts by specifying the class of integral curves and a second one that assumes a
specific family of level set surfaces. We showed that both methods are efficient and can
be easily implemented for the case of perturbative excited states, as we discuss in detail
in the concrete example of a local quench in appendix A. However, we realized that both
constructions encode the information about the bulk metric in a highly nonlocal way. This
implies that these realizations are not particularly useful to tackle the question of metric
reconstruction and highlights the necessity of reformulating bit threads in a language that
makes background independence manifest.

25A version of this idea appeared originally in [30].
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Motivated by the above results, we started section 4 by reformulating the bit threads
framework in terms of differential forms. We gave general formulas that translate the
relevant equations of the standard description in terms of flows into this new language and
studied in detail the case of perturbative excited states. We pointed out that the Iyer-
Wald formalism provides us with a canonical choice for the perturbed thread configuration
that makes explicit use of bulk locality. More explicitly, we showed that the Iyer-Wald
construction yields a particular solution to the max flow problem in the bulk that can
be uniquely determined from CFT data, and encodes the Einstein’s equations in the bulk
through its closedness condition. Assuming that a set of such forms is given, we then showed
that the problem of metric reconstruction is equivalent to the inversion of a particular
differential operator. We gave explicit inversion formulas for the case of 2d and 3d CFTs,
and argued that the problem is also well possed in higher dimensions. Finally, we discussed
the generalization of our results to higher orders in the perturbation and its relation to the
full Einstein’s equations.

There are some open questions related to our work which we think are worth exploring:

• Explicit inversion at higher orders: in section 4.4.2 we have sketched out how to
generalize the metric inversion problem to higher orders in λ. We believe that this
would be fairly straightforward to second order in the perturbation if one uses [27] as
a starting point, while it would be illuminating to have explicit inversion formulas for
the differential operator at this order. Generalizing this story to higher orders should
be possible but may require some extra work. To some extent, this study would
be even more rewarding since it could yield non-trivial constraints on the space of
theories with classical gravity duals, specifically on the structure of their correlation
functions. It would also be interesting to work out a more precise algorithm for
metric reconstruction at the full non-linear level following the discussion at the end
of section 4.4.2 and, in particular, understand how the Einstein’s equations would
emerge in this context.

• More general states and entangling regions: in our work we have considered pertur-
bations around the vacuum state and focused on spherical regions in the boundary
theory. While it is true that in this setting one could in principle recover Einstein’s
equations systematically (order by order) and hence the bulk geometry, one could
relax these two points, with the latter one being arguably the easiest of the two (at
least for regions with local modular Hamiltonians). We note that substantial progress
on generalizing the former using the Iyer-Wald formalism appeared in [72]. This pa-
per also argued that doing the linear analysis for arbitrary states and shapes of the
entangling region is sufficient to capture the full non-linear Einstein’s equations in
the bulk. It would be interesting to relax these conditions in our method of bulk
reconstruction using bit threads, and try to make these statements a bit more precise
in our context. It would also be interesting to explicitly start with a state for which
the bulk geometry has entanglement shadows, and understand how our approach
encodes information about these regions.
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• Covariant bulk reconstruction: in this work we have incorporated time-dependence
by combining the maximin prescription introduced in [52] and the non-covariant
formulation of bit threads [30]. As explained in section 2.3.1, this was possible in
virtue of various crucial simplifications of the perturbative setting that we consider.
However, it should be possible to pose the same question in the fully covariant for-
mulation of bit threads [53]. We believe that in this case, the full modular flow in
the bulk should play a role, and could serve as a guide for constructing canonical bit
thread configurations in other special cases. Related to this, it would be interesting
to ask the question about bulk reconstruction in time-dependent situations that are
not easily accessible to the perturbative setting we consider here, e.g., completely
far-of-equilibrium states that could lead to black hole formation in the bulk.

• Higher derivative theories: finally, we believe it would be worthwhile to explicitly
generalize our method of bulk reconstruction to the case of higher derivative theories
in the bulk. We point out that the program of gravitation from entanglement using
extremal surfaces has been worked out in detail for these theories in [28], using the
Iyer-Wald formalism both to first and second order in the state deformations around
the vacuum. Likewise, the bit thread reformulation of entanglement entropy has al-
ready been generalized to the case of higher derivative gravities in [36], incorporating
corrections to the local norm bound that depend on the specific theory. It would be
interesting to see how our formulas are corrected if we turn on these extra gravity
couplings.

We hope to come back to some of these points in the near future.

Acknowledgments

It is a pleasure to thank Ning Bao, Horacio Casini, Jan de Boer, Matthew Headrick, Martin
Roček, Andrea Russo, Andrew Svesko and Zach Weller-Davies for useful discussions and
comments on the manuscript. CAA is supported by the National Science Foundation (NSF)
Grant No. PHY-1915093. EC is supported by the NSF Grants No. PHY-1620610 and No.
PHY-1820712. JFP is supported by the Simons Foundation through It from Qubit: Simons
Collaboration on Quantum Fields, Gravity, and Information.

A Explicit example: local quench state

In this section we will work in detail the concrete example of a local quench using the three
methods presented in this paper: the geodesic construction, the level set construction and
the canonical construction based on Iyer-Wald. For simplicity, we will focus on the d = 2
case but a similar analysis can be extended to higher dimensions as well.

Let us consider a three dimensional asymptotically AdS geometry,

ds2 = 1
z2

[
(ηµν + z2Hµν(xσ, z))dxµdxν + dz2

]
. (A.1)
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In a general dimension, the metric perturbation can be expanded as Hµν =
16πGN

d

∑
z2nT

(n)
µν . However, in d = 2 all n ≥ 1 terms vanish and we have,

Hµν(xσ, z) = 8πGN Tµν(xσ) . (A.2)

The stress tensor should be traceless and conserved, therefore, its general form is

Tµν(t, x) = f(t− x)
(

1 −1
−1 1

)
+ g(t+ x)

(
1 1
1 1

)
. (A.3)

For general linear perturbations we can perform a Fourier decomposition, and take f(t+x)
and g(t+ x) to be an appropriate superposition of plane waves. However, for concreteness
we will consider an example that is physically motivated: a local quench that arises by the
insertion of a local primary operator. The stress tensor of a local quench is given by the
sum of two shock waves [73, 74],

Tµν(t, x) = λα3

π

[
1

((t− x)2 + α2)2

(
1 −1
−1 1

)
+ 1

((t+ x)2 + α2)2

(
1 1
1 1

)]
,

= 2α3λ

π


(t2 + x2 + α2)2 + 4t2x2

[(x2 − t2 − α2)2 + 4α2x2]2
−4tx(t2 + x2 + α2)

[(x2 − t2 − α2)2 + 4α2x2]2

−4tx(t2 + x2 + α2)
[(x2 − t2 − α2)2 + 4α2x2]2

(t2 + x2 + α2)2 + 4t2x2

[(x2 − t2 − α2)2 + 4α2x2]2

 , (A.4)

where the (small) parameter λ gives the total energy inserted and α acts as a UV regulator.
As discussed in section 3.2 the unperturbed geodesics provide a family of integral curves

that satisfy the criteria given in [43]. In pure AdS, the geodesics are semicircles anchored
at the boundary. These semicircles form a two-parameter family of curves, defined by

(x− xs)2 + z2 = R2
s , (A.5)

where xs is the center of the circle on the x-axis and Rs is its radius. If we denote (xm, zm)
a point on the minimal surface γA, we showed in section 3.2.1 that

Rs(xm) = R
√
R2 − x2

m

xm

[
1 + λ(R2 − x2

m)2H(t, xm)
R2

]
, (A.6)

xs(xm) = R2

xm

[
1 + λ(R2 − x2

m)2H(t, xm)
R2

]
, (A.7)

where H(t, x) ≡ Hxx(t, x). Plugging A.6 and A.7 in A.5 we obtain a family of geodesics or-
thogonal to γA, parametrized by the point xm ∈ [−R,R] on the minimal surface. Likewise,
we can use the formula (3.43) to obtain the magnitude of the vector field. This calculation
can be done following the examples of [43]. The final result for the integral curves and
magnitude are plotted in figure 4.

We can study the same example using the level set construction discussed in section 3.3.
In this approach, given a solution to the max flow problem in the unperturbed geometry
v, the solution for the perturbation of δv is

δva = Ψva − gabδgbcvc , (A.8)
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Figure 4. Perturbed vector field obtained using the unperturbed geodesic construction. Panels (a)
and (b) illustrate the vector lines for R = 1, λ = .1, t = .25 and t = .5 respectively. Panels (c) and
(d) illustrate the corresponding vector norms.

where Ψ is a scalar function that is determined by solving the first order differential equation

v · ∇Ψ +∇a(δgabvb) + 1
2v · ∇(δg) = 0 , (A.9)

with boundary condition

Ψ(ϕ, gλ)|γA = 1
2δgabv

avb . (A.10)

In figure 5 we present the results obtained using this method.
The third method explored in this paper, discussed in section 4.3, relies on the Iyer-

Wald formalism to define a canonical bit thread perturbation. This approach uses the
language of differential forms and relates a max flow vector field v, to an optimal closed
form w. In a background that is perturbatively close to a given geometry, i.e. g → g + δg,
the optimal closed form w → w + δw. Since knowing w + δw determines the max flow
v+δv, the problem now amounts to finding δw. The Iyer-Wald formalism provides a form,
χ, defined in (4.32), that can be taken as δw,

δw = 4GN χ. (A.11)
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Figure 5. Perturbed vector field obtained using the level set construction. Panels (a) and (b)
illustrate the vector lines for R = 1, λ = .02, t = 0 and t = 1/2 respectively. Panels (c) and (d)
illustrate the corresponding vector norms.

The form χ is closed when the equation of motions are satisfied. Having δw it is straight
forward to determine δv. However, the configuration should satisfy the norm bound (4.22)
and that is not guaranteed, in general, in this construction since this condition depends
explicitly on the metric. Nevertheless, the more detailed analysis performed in section 4.3,
reveals that up to our order of approximation, the norm bound is indeed satisfied. To
illustrate this point we plot the norm for the same perturbation studied with the previous
approaches. The resulting v and its norm is plotted in figure 6 shows that for a perturbative
small λ the norm bound is indeed satisfied.

In figures 4–6 we have presented the perturbed vector field, vλ = v + λ δv, and its
magnitude obtained using the three different methods developed in this paper. It is also
interesting to look just at the perturbation δv to gain insight into the time-dependence
of the local pattern of entanglement induced by the quench. For concreteness we only
show results using the level-set method, which are presented in figure 7. In [73] it was
conjectured that the quench insertion generates an entangled pair of wave packets that
move in opposite directions (see figure 4 of [73] for a pictorial representation). However,
it was recently shown in [74] that this intuition is only true if one includes the leading
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Figure 6. Perturbed vector field obtained using the canonical bit thread construction that relies
on the Iyer-Wald formalism. Panels (a) and (b) illustrate the vector lines for R = 1, λ = .02, t = 0
and t = 1/2 respectively. Panels (c) and (d) illustrate the corresponding vector norms.

1/N corrections coming from the entanglement of bulk fields. More specifically, in this
paper it was argued that at the leading order in GN the two wave packets are effectively
unentangled, and only the quantum correlations between the degrees of freedom in each
individual packet contribute to the total entanglement entropy. Remarkably, we can reach
the same conclusion from the plots in figure 7, which exhibit the following features: i)
two wave packets moving together with the shocks, i.e., in opposite directions at the speed
of light and ii) threads around each wave packet connecting degrees of freedom in their
fronts with those in their tails. The fact that we do not see threads connecting the two
wave packets implies that they are effectively unentangled at the leading order in GN , in
agreement with the result of [74]. Moreover, the precise pattern of the threads explains
why SA peaks at t = R (see e.g. figure 7 of [74]): at this time most of the threads connect
the degrees of freedom of A with those in its complement (recall that threads connecting
points within A do not contribute to the entanglement entropy of the region). It will
be very interesting to repeat this analysis for the case of a global quench, and understand
how the local pattern of entanglement evolves in time for cases that admit an entanglement
tsunami interpretation [75, 76] (large regions) and cases that do not [77, 78] (small regions).
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Figure 7. Panels (a), (b), (c) and (d) show δv obtained using the level set construction for
t = 0, .5, 1, 1.5 respectively. We have taken λ = 0.02, R = 1.

B Details of the linear inversion problem

We start by integrating equation (4.69) to obtain

zdH i
i

ξt

∣∣∣∣z
z0

= 4R2

π

∫ z

z0
dζ

ζd−1δwz(ζ, ~x)
(z2
∗ − ζ2)2 , z2

∗ ≡ R2 − |~x− ~x0|2 , (B.1)

and hence

H i
i(z, ~x) = 4R2ξt(z, ~x)

πzd

∫ z

z0
dζ

ζd−1δwz(ζ, ~x)
(z2
∗ − ζ2)2 + zd0ξ

t(z, ~x)
zdξt(z0, ~x)H

i
i(z0, ~x) . (B.2)

The second term in the above formula seems to encode the boundary condition since at
z = z0 the integral in the first term vanishes and we obtain H i

i(z, ~x) = H i
i(z0, ~x). However,

if we first let z0 → 0, the second term goes away and we seem to naively lose the boundary
condition. The presence of the singular term ∼ 1/zd in the integral tell us that we should
treat the above limit with some care. Changing the integration variable to λ = ζ/z, we
obtain

H i
i(z, ~x) = 4R (z2

∗ − z2)
∫ 1

z0/z
dλ
λd−1δwz(λz, ~x)
[z2
∗ − (λz)2]2 +

(
z0
z

)d (z2
∗ − z2)

(z2
∗ − z2

0)H
i
i(z0, ~x) , (B.3)

which in the limit z0 → 0 yields

H i
i(z, ~x) = 4R (z2

∗ − z2)
∫ 1

0
dλ
λd−1δwz(λz, ~x)
[z2
∗ − (λz)2]2 . (B.4)
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It can be checked that this equation is now consistent with the boundary condition. Indeed,
taking the explicit z → 0 limit leads to

H i
i(0, ~x) = 4Rδwz(0, ~x)

z2
∗

∫ 1

0
dλλd−1 = 4Rδwz(0, ~x)

dz2
∗

, (B.5)

which agrees with the z → 0 limit of (4.56).
Equation (B.4) is valid for ~x ∈ Ac and ∀z, or for ~x ∈ A and z < z∗. For ~x ∈ A and

z ≥ z∗ the integrand of (B.4) has a double pole at λ∗ = z∗/z at some point in the range
of integration, i.e., λ∗ ∈ [0, 1]. In order to get an expression that is valid in this region, we
first note that the limit z → z∗ (or λ∗ → 1) is in fact finite. To see this, we integrate up to
1 − ε and then let ε → 0. We further assume that δwz(λz, ~x) is continuous and (at least
first) differentiable so that, we can isolate its value at λ→ 1 as follows:

δwz(λz, ~x) = δwz(z, ~x)− (1− λ)zW (λz, ~x) . (B.6)

Here W (λz, ~x) is a continuous function which obeys the condition W (λz, ~x)|λ=1 =
∂zδwz(z, ~x). Replacing (B.6) into (B.4) leads to

H i
i(z, ~x) = 4R(z2

∗ − z2)
[
δwz(z, ~x)

∫ 1−ε

0
dλ

λd−1

[z2
∗ − (λz)2]2 − z

∫ 1−ε

0
dλ
λd−1(1− λ)W (λz, ~x)

[z2
∗ − (λz)2]2

]
.

(B.7)
The first integral in (B.7) has a double pole, and evaluates to∫ 1−ε

0
dλ

λd−1

[z2
∗ − (λz)2]2 = 1

2z2
∗(z2
∗ − z2) −

d− 2
2dz4

∗
2F1

[
1, d2 ,

d+ 2
2 ,

(
z

z∗

)2]
+O(ε) . (B.8)

As expected, the result has a single pole at z → z∗; however, the integral is multiplied
by a factor (z2

∗ − z2) so the final result is finite. In addition, there is also a subleading
logarithmic divergence that comes from the hypergeometric function, but this term does
not contribute in this limit since (z2

∗ − z2) log(z∗ − z)→ 0 as z → z∗. The second integral
in (B.7) has a single pole and leads to another logarithmic divergence upon integration.
However, the same argument is valid here so it ends up not contributing in the z → z∗
limit. Putting all together, we obtain that

H i
i(z∗, ~x) = 2R

z2
∗
δwz(z∗, ~x) , (B.9)

which is indeed consistent with the z → z∗ limit of (4.56).
We are now in a position to investigate the region ~x ∈ A and z ≥ z∗. Notice that the

expression (B.4) cannot be naively extended to the z ≥ z∗ region. Instead, we will start
from (B.2) for z0 arbitrarily close to z∗ either from above z+

∗ (where z ≥ z+
∗ ) or from bellow

z−∗ (where 0 ≤ z ≤ z−∗ ) in order to avoid crossing the singular point. In either case we can
write the following equation for the trace

H i
i(z, ~x) = 4R(z2

∗ − z2)
zd

∫ z

z0
dζ

ζd−1δwz(ζ, ~x)
(z2
∗ − ζ2)2 (B.10)

+2Rzd−2
0 (z2

∗ − z2)
zd

[
δwz (z0, ~x)(
z2
∗ − z2

0
) − d

2z2
∗
δwz(z∗, ~x)− z0

4R∂z0H
i
i (z0, ~x)

]
.
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where the second line above corresponds to the leading term in a series expansion around
z0 ≈ z∗ of the second term in (B.2). Such expansion is naturally encoded in (4.56).

In the z0 → z∗ limit we can identify possible divergences coming from the integrand
when ζ ≈ z0 ≈ z∗ and from the first term inside the brackets. However, these divergences
turn out to cancel. For instance, the identity∫ z

z0

2ζdζ
(ζ2 − z2

∗)
2 = 1

z2
0 − z2

∗
− 1
z2 − z2

∗
, (B.11)

allows us to turn the term with a single pole into an integral which can be combined with
the first line of (B.10). After this replacement is implemented, the z0 → z∗ limit leads to

H i
i(z, ~x) = 4R(z2

∗ − z2)
zd

∫ z

z∗
dζ

ζ
[
ζd−2δwz(ζ, ~x)− zd−2

∗ δwz(z∗, ~x)
]

(z2
∗ − ζ2)2 (B.12)

+2Rzd−2
∗
zd

δwz (z∗, ~x)− zd−4
∗ R(z2

∗ − z2)
zd

[
d δwz(z∗, ~x) + z3

∗
2R∂z∗H

i
i (z∗, ~x)

]
.

The second line of the above expression is manifestly finite, while the integrand of the first
line has an apparent single pole as we let ζ → z∗,

ζd−2δwz(ζ, ~x)− zd−2
∗ δwz(z∗, ~x)

(z2
∗ − ζ2)2 = zd−3

∗ [(d− 2)δwz(z∗, ~x) + z∗∂z∗δwz(z∗, ~x)]
4z4
∗(ζ − z∗)

+ finite .

(B.13)
Fortunately, its residue identically vanishes as can be checked from the relation

(d− 2)δwz(z∗, ~x) + z∗∂z∗δwz(z∗, ~x) = 0 (B.14)

which follows from (4.56). This makes the expression (B.12) well defined across the minimal
surface and therefore valid ∀z.

We note that, in its present form, equation (B.12) is not fully determined by δwz(z, ~x)
as it requires knowledge of ∂z∗H i

i(z∗, ~x). This can be fixed by considering z → 0 limit of
the above expression. After a bit of algebra one finds that finiteness of such limit implies

∂z∗H
i
i(z∗, ~x) = −2R(d− 2)

z3
∗

δwz(z∗, ~x)

− 8R
zd−1
∗

∫ z∗

0
dζ
ζ
[
ζd−2δwz(ζ, ~x)− zd−2

∗ δwz(z∗, ~x)
]

(ζ2 − z2
∗)2 . (B.15)

Plugging this result back into (B.12) leads to our final expression for the trace:

H i
i(z, ~x) = 2Rzd−4

∗
zd−2 δwz(z∗, ~x)

+4R(z2
∗ − z2)
zd

∫ z

0
dζ
ζ
[
ζd−2δwz(ζ, ~x)− zd−2

∗ δwz(z∗, ~x)
]

(z2
∗ − ζ2)2 . (B.16)

Notice that the consistency condition (B.15) can be derived from this expression via explicit
differentiation at z = z∗, and therefore (B.16) is selfconsistent and finite for all z.
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Finally, after the change of variables ζ → λz one can rewrite (B.16) as

H i
i(z, ~x) = 2Rzd−4

∗ δwz(z∗, ~x)
zd−2

+4R(z2
∗ − z2)

∫ 1

0
dλ
λ[λd−2δwz(λz, ~x)− λd−2

∗ δwz(z∗, ~x)]
[z2
∗ − (λz)2]2 . (B.17)

where λ∗ = z∗/z. Equation (B.17) has a close resemblance with (B.4) and indeed it can
be derived from it via various regularizations. For instance, it can be checked that the
principle value of the integral (B.4) yields (B.17). Perhaps a yet simpler way to arrive
at (B.17) starting from (B.4) is to change slightly the integration contour:

H i
i(z, ~x) = 4R(z2

∗ − z2)
∫ 1+iε

iε
dλ

λd−1δwz(λz, ~x)
[z2
∗ − (λz)2]2 , (B.18)

for ε ∈ R and then letting ε→ 0. It can be easily checked that this prescription is consistent
both for ~x ∈ Ac and ~x ∈ A (∀z).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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