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ABSTRACT
The determination of phase behavior and, in particular, the nature of phase transitions in two-dimensional systems is often clouded by
finite size effects and by access to the appropriate thermodynamic regime. We address these issues using an alternative route to deriving the
equation of state of a two-dimensional hard-core particle system, based on kinetic arguments and the Gibbs adsorption isotherm, by the use of
the random sequential adsorption with a surface diffusion model. Insight into coexistence regions and phase transitions is obtained through
direct visualization of the system at any fractional surface coverage via local bond orientation order. The analysis of the bond orientation
correlation function for each individual configuration confirms that first-order phase transition occurs in a two-step liquid-hexatic-solid
transition at high surface coverage.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5123231., s

I. INTRODUCTION

The phase behavior of the two dimensional systems is a key
aspect of many current research areas such as emulsion stability
due to particle adsorption at the interface,1,2 particle self-assembly
into clusters,3–6 chemisorption on metal surface,7,8 and melting at
an interface.9,10 Numerous equations of state (EOS) such as the
Langmuir11 and Volmer models have been introduced over the
years to describe the adsorption behavior of such systems.12,13 The
Langmuir model is based on localized adsorption where the adsor-
bate molecules are smaller than the adsorption sites,14 but in many
practical cases, the adsorbate is actually larger than the adsorp-
tion site. Likewise, the Volmer model, which assumes fully delocal-
ized adsorption (adsorbates much bigger than the adsorption sites),
is equally inappropriate except, perhaps, for nanoparticles. Rather
than directly prescribing the EOS, an alternative is the random
sequential adsorption model (RSA), which describes the dynamics
of the adsorption process by allowing objects to adsorb sequentially

onto the open sites of a one- or two-dimensional lattice.15 The
model has been extensively used in the literature, for example
by Manzi et al.16 who discuss the adsorption of human serum
albumin on the nanostructure of a black silicon surface using RSA.
Further applications of this model include chemisorption, deposi-
tion, layered growth, vibrated granular material, and the car-parking
problem.17–26

More specifically, in the RSA model, molecules or particles are
progressively added at random to an initially empty surface with the
only restriction that overlap is not allowed, an assumption based
physically on short-range electrostatic repulsion. As the coverage
increases, the free area left for further adsorption decreases, not only
because the sites are occupied by previously adsorbed molecules but
also because vacancies can be too small to allow adsorption with-
out overlap. Without desorption or surface diffusion, adsorption
kinetics rapidly slows down and coverage asymptotically approaches
the jamming limit (equivalent to maximum random packing) if the
substrate is not prepatterned. However, it has experimentally been

J. Chem. Phys. 151, 104702 (2019); doi: 10.1063/1.5123231 151, 104702-1

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1063/1.5123231
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5123231
https://crossmark.crossref.org/dialog/?doi=10.1063/1.5123231&domain=pdf&date_stamp=2019-September-10
https://doi.org/10.1063/1.5123231
https://orcid.org/0000-0003-0895-2287
https://orcid.org/0000-0002-5623-184X
mailto:jkoplik@ccny.cuny.edu
https://doi.org/10.1063/1.5123231


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

observed27 that the relaxation time scale of adsorbed particles, due
to their rearrangement on the surface, can be comparable to the
deposition time scale. The final configuration is comparable with a
dense-packed ordered system. Furthermore, none of the above mod-
els is able to explain the ordered layering observed in adsorption of
certain materials on the surface.7,8,27

A different approach is taken in the lattice gas model, which
uses statistical mechanical reasoning to describe adsorbate configu-
rations on a surface, where an adsorbate molecule may occupy one
or a few adsorption sites. Applications of this model include a recent
study of photoexcited Rydberg gases by Ji et al.,28 where an order-
disorder phase transition corresponds to the phase transition on a
square lattice with first neighbor exclusion, a study of self-assembly
of isophthalic acid on graphite by Lackinger et al.,29 adsorption
of selenium on nickel surface by Bak et al.7 and chemisorption of
oxygen on palladium by Zhang et al.30 Although the lattice gas
model has been studied extensively in the literature, only the single
case of a triangular lattice with first neighbor exclusion was solved
exactly, by Baxter.31 For all other variants, a number of lattice gas
methods have been developed over years based on various approx-
imation methods: the matrix method of Kramer and Wannier,32–38

the density (or activity) series expansion method,32,33,39–43 the gener-
alized Bethe method,44–46 Monte Carlo simulation,37,47–51 the Rush-
brooke and Scoins method,52 and fundamental measure theory.53

Despite all of this effort, the lattice gas model is not able to describe
the adsorption isotherm of the system and instead focuses on the
equation of state and the nature of phase transition.

In order to combine the advantages of both the RSA and lat-
tice gas models, we previously developed an alternative route to
deriving the equation of state of a two-dimensional hard-core par-
ticle with first neighbor exclusion, based on kinetic arguments and
the Gibbs adsorption isotherm: the RSAD model.54 Here, one con-
siders a two-dimensional lattice gas in equilibrium with a three-
dimensional solution of adsorbate molecules, where the equality of
chemical potential throughout the system leads to

dΠ = kT
Θ
Aa

d lnC, (1)

where Aa is the interfacial area covered by a single adsorbate
molecule, θ is the fractional surface coverage, and C is the concen-
tration of the (three-dimensional) solution. Integrating the above
equation gives

Θ

∫

0

Θ
C

∂C
∂Θ

dΘ =
Aa

kT
Π, (2)

from which we see that knowledge of the adsorption isotherm,
the relationship between C(Θ), bulk concentration, and fractional
coverage, enables one to calculate the equation of state Π(Θ).

The adsorption isotherm, in turn, can be obtained through
kinetic arguments. At equilibrium, the rates of adsorption and
desorption of molecules are equal,

Ka C(1 − β(Θ)) = Kd Θ, (3)

where Ka and Kd are the adsorption and desorption rate constants,
respectively, and β(Θ) is the “blocking function,” the fraction of the

surface area which is excluded from further adsorption by already
adsorbed molecules. Solving for C and inserting the result into the
integral version of the Gibbs adsorption isotherm yield

Θ

∫

0

(1 − β(Θ))
∂

∂Θ
[

Θ
1 − β(Θ)

]dΘ =
Aa

kT
Π. (4)

Thus, the blocking function is the only information needed to cal-
culate the equation of state, and we have shown previously54 that
for lattice gases, the blocking function can be easily extracted from
RSAD model simulations.

In the RSAD model, where surface diffusion is introduced in
parallel with adsorption, vacancies large enough to adsorb a further
particle are both created and destroyed. When diffusion is suffi-
ciently rapid, the size distribution of vacancies no longer depends
on the history of adsorption (the positions where the adsorbates
first arrived on the substrate) but only on the fractional surface
coverage. One of the advantages of using the RSAD model is in
locating the equilibrium state, which assures us that enough ther-
malization is present to reach the equilibrium state. Note that in
this model, the potential energy is effectively infinite for particle
overlap, due to the repulsive interaction, which restricts the occu-
pancy of neighbors, and is zero otherwise. The system can therefore
be considered as athermal.38,50,54 Our results show that the RSAD
model can be used as an equilibrium model and our equation of
state, the nature of our phase transition, and the phase transition
coverage are in excellent agreement with the only model with an
exact solution in the literature.31 From the definition of the adsorp-
tion rate, used above to define adsorption equilibrium, the blocking
function can be extracted from the numerical simulations through
the derivative of surface coverage with respect to the number of
attempts,

∂N
∂n

= 1 − β(Θ). (5)

Here, N is the number of adsorbed molecules, n is the number of
attempts and t, defined by nAa/A = KaC/t, is an adimensional time
defined via the adsorption rate. The latter definition will be used
in practice by equating the blocking function to the rebuttal rate
of adsorption attempts. Ushcats et al.43 used an alternative method
based on the power of activity at low and high densities, which
shows the importance of accounting for the holes in deriving the
equation of state of lattice gases. Based on their method,42,43 hole-
particle symmetry, the total interaction energy is directly related to
the interaction of holes at any specific configuration.

In this paper, we study the phase behavior of hard-core
molecules with third neighbor exclusion on a triangular lattice
and compare our results with those of Orban and Bellemans33

who studied this model previously. Hard-core molecules with
extended exclusion ranges are studied extensively in the litera-
ture but mainly on a square lattice.37,38,50,51,55–59 In some experi-
ments, it is observed that lateral interactions of adsorbed particles
on solid surfaces (chemisorption) follow the extended exclusion
range, which is important in surface science as ordering affects the
surface functionality.7,8,30,60 Increasing the exclusion range could
also correspond to a smaller lattice site which becomes equivalent
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to the continuum limit when the exclusion range is significantly
large.33,50,51

Simulation data related to the triangular lattice with third
neighbor exclusion are given in Sec. III, where a first order liquid-
hexatic-solid phase transition is obtained at high surface coverage.
In the liquid state, positional and orientational correlations of par-
ticles decay exponentially, while in solid state, they have a quasi-
long-range orientational order. Besides these two phases, there is an
intermediate hexatic phase, where particles have quasi-long range
orientational order and exponential positional order. We quan-
tify the ordering using a bond orientation correlation function,
g6(r), calculated from the local bond orientation order, Ψ(r). In a
dense system, most of the particles are surrounded by six parti-
cles, and the local bond orientation is represented by the sixfold
orientation,

Ψ(rj) =
1
Nk

Nk

∑

k=1
ei6θjk , (6)

where k is the number of the nearest neighbors of particle j and θjk
is the angle between the line joining the centers of mass of parti-
cles j and k and a reference axis. The bond orientation correlation
function is then defined as an average of the local bond orientation
order,

g6(r) =
⟨

N
∑

k≠j
Ψ(rj)∗Ψ(rk)δ(r − ∣rj − rk∣)⟩

⟨

N
∑

k≠j
δ(r − ∣rj − rk∣)⟩

. (7)

A power-law decay of g6(r) means that there is a quasi-long-
range orientation correlation. For the system in a hexatic phase,
g6(r)∝ r−η, where 0 < η < 0.25.

Liquid-solid transitions have been reported extensively in the
literature for two-dimensional systems in lattice gas models with
extended exclusion ranges. However, here our simulation results
reveal a liquid-hexatic-solid phase transitions for the triangular lat-
tice cover seven sites, which have the same nature of the phase tran-
sition as the melting transition of hard-disk molecules. Although
melting is studied extensively in the literature,9,10 there is still con-
troversy about the nature of its phase transition that can arise
from the finite size effect or inefficiency of the system to equili-
brate the system. In two-dimensional systems, there are three dif-
ferent scenarios for the melting transition of hard disks in the
literature:

● Kosterlitz, Thouless, Halperin, Nelson, and Young (KTHNY)
scenario:61–63 a two-step continuous phase transition, first
from the liquid to hexatic phase and then from the hexatic
to solid phase,64,65

● Two step transition: first order phase transition from the liq-
uid to hexatic phase and then continuous phase transition
from the hexatic to solid phase,9,10

● First order phase transition from the liquid to solid phase.66

We will show in Sec. III how finite size effects and access to
the thermodynamic regimes can bring uncertainty regarding phase
behavior of the system, mainly the nature of phase transition where
these issues are extensively reported in the literature about the nature
of melting transition.9,67

II. SIMULATION DETAILS
The adsorption of hard-core molecules with a third neighbor

exclusion range on the triangular lattice involves the adsorption
of molecules covering 7 adsorption sites in the manner as repre-
sented by a red circle in Fig. 1. As it is clear from the hexagon
drawn around the adsorbate (red circle) in Figs. 1(a) and 1(b), this
model could have two different orientations at high coverage in
comparison with other adsorbates such as hard-core molecule with
first neighbor exclusion.54 Here, we employ two complementary
methods as in our previous work:54 an “adsorption method,” which
begins from an empty lattice, and a “desorption method,” which
begins with a full lattice and progressively decreases coverage. The
results are expected to bracket the correct equilibrium equation of
state.

In the adsorption method, molecules or particles are progres-
sively added to an initially empty d × d lattice surface where a
periodic boundary condition is used to ameliorate finite size effects.
The only restriction is that overlap is not allowed; an assumption
based physically on short-range electrostatic repulsion. For each
adsorption attempt, a random position (x, y) is selected repre-
senting the center of mass of the particle. If the selected site and
its neighbors are empty, adsorption is accepted. Otherwise, it is
rejected. Diffusion, the simultaneous movement of particles, is intro-
duced sequentially with a predefined ratio D between the number
of diffusion attempts and the adsorption attempts: For D = 3, each
adsorption is followed by 3 diffusion attempts, etc. For each dif-
fusion attempt, a previously adsorbed particle and a direction for
the displacement of the particle are selected randomly; an arrow in
Fig. 1 illustrates the possible direction. If moving the center of the
mass of the particle to the next node along this direction does not
infringe the nonoverlap condition, diffusion is accepted. Otherwise,
it is rejected. In the RSAD model, when diffusion is fast enough,
the surface layer is at internal equilibrium (even during transient
adsorption) and the blocking function can be considered as a state
function.

For the desorption method, the lattice is initially full. For each
simulation step, two particles are randomly selected and removed.
Then, one adsorption attempt and D diffusion attempts are

FIG. 1. Triangular lattice with first, second, and third neighbor exclusion where
each adsorbate covers 7 sites. The center of the adsorbate is represented by a
circle, arrows indicate possible displacements of particles, and stars represent the
sites where the center of other particles is not allowed to adsorb. (a) and (b) show
two different configurations at the maximum close packing.

J. Chem. Phys. 151, 104702 (2019); doi: 10.1063/1.5123231 151, 104702-3

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

performed following the same procedure as for the adsorption
method. The choice of the sequence (2 desorption events followed
by 1 adsorption) is arbitrary but answers the need at each time step
to decrease coverage and add at least one particle to calculate the
blocking function.

For both adsorption and desorption methods, the blocking
function is extracted from the success rate of adsorption attempts.
500 runs are performed, and an ensemble average is used to reduce
the noise arising from the numerical calculation of the derivative of
the coverage. The blocking function is fitted with a polynomial func-
tion before it is used to generate the adsorption isotherm. The latter
is inserted into the Gibbs adsorption isotherm equation to obtain the
equation of state.

In this work, we also used a relaxation method in order to track
the structure of particles by time and prove our hypothesis about
expecting the correct equilibrium equation of state starting from
either the adsorption or the desorption method. In this method,
either the adsorption or the desorption method can be used to reach
a specific coverage. In the second step, one adsorption attempt and
D diffusion attempts are performed following the same procedure
as for the adsorption method. In order to keep the coverage con-
stant, if the adsorption attempt is successful, one particle is randomly
selected and removed. 1500 runs are performed to extract the suc-
cess rate of adsorption attempts or, in other words, the blocking
function.

III. RESULTS
Accessing the thermodynamic regime is an initial step toward

studying the phase behavior of the system9,10 where some algorithms
are insufficient to equilibrate the system in order to study the phase
transition of the system in a reliable manner.64 The effect of surface
diffusion for a lattice size d = 105 is studied in Fig. 2. Initially, when
the system is diluted, all of the curves regardless of their methods or
their surface diffusion overlap in the low surface coverage, as pre-
sented in Fig. 2(a). The fluctuation in the phase transition region is
much larger than the pure liquid and solid phase, where the differ-
ence is maximized in the middle of phase transition, as illustrated
in Fig. 2(b).66 As presented in Fig. 2(b), at high surface coverage,
probability of success of adsorbing a new particle initially decreases
due to the caging effect. However, by increasing the ordering of
particles, this caging effect will be diminished in order to maxi-
mize the available surface for accepting the new incoming particles.
The system reaches the equilibrium state when two curves overlap
in the whole range of fractional surface coverage, so accessing the
thermodynamic regime will be apparent.

Figure 3 represents the relaxation of blocking function of hard-
core molecules with third neighbor exclusion on a triangular lat-
tice for D = 0.01, d = 196, and θ = 0.915. This figure confirms
that the equilibrium state is a function of a blocking function and
does not depend on initial configuration. The blocking function of
the desorption method increases in time until it reaches the equi-
librium value, whereas the adsorption method shows the opposite
trend. Simulation data show that the desorption method reaches the
equilibrium value faster than the adsorption method.

Finite size effects are another important key issue in finding
the equation of state in lattice simulations. Figure 4 presents the

FIG. 2. (a) Effect of surface diffusion on the adsorption rate vs surface coverage for
d = 105. Ads and Des refer to adsorption and desorption methods, respectively. (b)
The inset expands the high-coverage region where sensitivity to surface diffusion
appears.

variation in the adsorption rate for triangular lattices covering 7 sites
of sizes 105–266. For surface diffusion of D = 1, the same blocking
function is obtained from both adsorption and desorption methods
at low surface coverage, as presented in Fig. 4(a). Initially, in the
vicinity of the phase transition, by increasing the lattice size dimen-
sion, the adsorption rate increases for both the adsorption and des-
orption methods, as illustrated in Fig. 4(b). Exactly before all of the
curves overlap around full coverage, the adsorption rate decreases
by increasing the lattice dimension for both methods. The results
in Fig. 4(b) show that the adsorption rate is significantly different
for d = 105 in comparison with d = 196 and d = 266. As a result,
d = 105 is not a reliable lattice size for finding the equation of state.
Later on, we will discuss this case and compare it with d = 196 in
Figs. 5(b) and 6 only to show the importance of using a large enough
system. One of the advantages of using the RSAD method is we know
how big our system should be to ensure that the results are, at the
same time, accurate and computationally less expensive.

FIG. 3. Relaxation dynamics of a hard core molecule with third neighbor exclusion
on a triangular lattice for a surface coverage of θ = 0.915 and d = 196. D = 0.01
in both the first and second steps. Adsorption and desorption methods refer to the
initial configuration to reach the surface coverage of 0.915.
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FIG. 4. (a) Effect of lattice size on the adsorption rate vs surface coverage
for D = 1. Ads and Des refer to adsorption and desorption methods, respectively.
(b) The inset expands the high-coverage region where sensitivity to lattice size
appears.

Although an exact solution of this model does not exist in the
literature, meaning that there is no certain agreement upon the equa-
tion of state and its phase transition, we can compare our results
with the analytic calculation of Orban and Bellmans33 for d = 196
and D = 80 in Fig. 5(a). This paper used two different methods, the
matrix method, based on the sequence of exact solutions for lattices
of infinite length and increasing finite width, and the series expan-
sion method, based on knowing the final structure at close packing
and constructing the density and activity series to find the surface
pressure. A first order transition was found for both the matrix and
the series expansion methods, where the transition occurs at surface
pressure of 4.5–5 for surface coverages of 0.81 ± 3 and 0.98 ± 1 for
fluid and solid regimes, respectively. This system is also studied by
Chestnut33 using a Monte Carlo technique, but the study was limited
to surface coverages lower than 0.75, where no phase transition was
found.

As illustrated in Fig. 5(a), at low surface coverage, there is no
difference between the reported equations of state. However, in the

FIG. 5. (a) Comparison of our EOS where d = 196 and D = 80 with Orban and Bell-
man (matrix method and low and high density method)33 for hard core molecules
on a triangular lattice covers 7 sites. (b) The inset shows a magnified view of error
bar between the adsorption and desorption method for (d = 196, D = 80) and
(d = 105, D = 80) in the phase transition region.

FIG. 6. (a) Analysis of the phase transition region where d = 196 and D = 80 and
(b) d = 105 and D = 80.

lower part of the phase transition zone, our equation of states shows
lower surface pressure than Orban and Bellman’s series expansion
method (low and high density) but higher surface pressure than their
matrix method. On the contrary, in the upper part of the phase tran-
sition region, the matrix method shows higher surface pressure than
what we found, but the series expansion method overlaps with both
of our methods. The thermodynamically stable surface pressure loop
is observed in our simulation results as is reported extensively in the
literature due to finite size effects.9,10,68,69 Surface pressure can create
a thermodynamically stable loop at equilibrium for a finite size sys-
tem, but this loop will disappear at infinite size and the coexistence
zone will be flat. Creation of the flat pressure is visible in Fig. 5(b) for
d = 196 around a surface pressure of 4.5 ± 0.05. Moreover, based on
the lower part of the phase transition in Fig. 4(b), the adsorption rate
tends to increase by increasing the lattice dimension, which means
less surface pressure will be expected for a larger lattice size. Con-
versely, the adsorption rate tends to decrease for both the adsorption
and desorption methods in the upper part of the phase transition,
which means higher surface pressure will be expected for a larger lat-
tice size. This behavior indicates the tendency of the system toward
flatness at an infinite size. From the equality shown in the hatched
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area of Fig. 5(b), the horizontal surface pressure is obtained from
the Maxwell construction, where overlapping of this construction
line with the flat region of the equation of state confirms the ten-
dency of the system to be flat at infinite size. Fig. 5(b) shows that
by increasing the lattice dimension, surface pressure decreases in the
lower part of the phase transition and increases in the upper part
of phase transition. Bernard et al.9,10 reported the same trend for the
equation of state of the melting transition of hard disks by increasing
the number of particles where they reported a two step transition,
first order liquid-hexatic and continuous hexatic-solid transition for
their system.

The phase transition zone is studied in Fig. 6 based on the
derivative of surface pressure with respect to surface coverage in the
adsorption method. One can see from Fig. 6(b) that for an insuf-
ficiently large system, the first order liquid-solid phase transition
is obtained for d = 105 and D = 80; however, a different phase

transition is obtained for d = 196 and D = 80 in Fig. 6(a), which
indicates the importance of using a sufficiently large system. Phase
transition peaks obtained from Fig. 6(a) for d = 196, D = 80 are
analyzed through a bond orientation correlation function, g6(r), in
Fig. 7 based on the relaxation method for each individual configu-
ration. For additional insight into the phase transition region, each
of these configurations is visualized via the local bond orientation
order function Ψ(r), based on the relaxation method, in Fig. 8. The
first peak in the phase transition curve corresponds to a surface cov-
erage of 0.826. The fact that the same exponential decay of g6(r)
before and after relaxation at a surface coverage of 0.75 [see Fig. 7(a)]
suggests that the system is in a pure liquid regime below a surface
coverage of 0.826. Furthermore, the homogeneous distribution of
local bond orientation order over the surface in Fig. 8(a) confirms
the presence of a liquid phase below a surface coverage of 0.826. In
Fig. 6, we see that lattice size does not have any impact on the liquid

FIG. 7. Bond orientation correlation function of the hard core molecule with third neighbor exclusion based on the relaxation method, where d = 196 and D = 0.01 in both
steps of relaxation at different surface coverages: (a) θ = 0.75, (b) θ = 0.85, (c-1) and (c-2) θ = 0.869, (d-1) and (d-2) θ = 0.915, (e-1) and (e-2) θ = 0.963, and (f-1) and (f-2)
θ = 0.98. Before relaxation refers to the configuration obtained from the adsorption method at D = 0.01 in the first step of the relaxation method, and after relaxation refers to
the equilibrium configuration.
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FIG. 8. Local bond orientation order based on the relaxation method at low surface diffusion D = 0.01 and different surface coverages: (a) θ = 0.75, (b) θ = 0.85, (c) θ = 0.869,
(d) θ = 0.915, (e) θ = 0.963, and (f) θ = 0.98. Before relaxation refers to the configuration obtained from the adsorption method at D = 0.01 in the first step of the relaxation
method, and after relaxation refers to the equilibrium configuration.

phase since the same behavior from the liquid regime is obtained
for both d = 105 and d = 196 through fractional surface coverage up
to 0.826.

The transition between positive and negative slopes occurs at a
surface coverage of 0.864, located between the first and second peaks,
so we analyze surface coverages of 0.85 and 0.869 to see the behavior
of the system below and above the transition value. For a surface cov-
erage of 0.85, g6(r) decays exponentially at the same rate before and
after relaxation in Fig. 7(b); more peaks were observed after relax-
ation, which is an indication of the creation of a more ordered phase
in the system. Creation of a more ordered phase is also confirmed
by the local bond orientation order seen in Fig. 8(b), indicated by
more red spread through the surface. For a surface coverage of 0.869,
g6(r) still decays exponentially but at different rates before and after
relaxation, as illustrated in Figs. 7 (c-1) and (c-2), respectively. The
local bond orientation order in Fig. 8(c) shows that ordered particles
prefer to stick to each other. The third peak in Fig. 6 corresponds
to a surface coverage of 0.915. At this coverage, the system decays
exponentially before relaxation, as presented in Figs. 7(d-1) and 8(d)
shows that the cluster of the ordered phase spreads through the sur-
face and indicates a glassy state. After relaxation, g6(r) decays with

a power law with θ = 0.25, as illustrated in Fig. 7(d-2), which is
an indication of a hexatic phase. The local bond orientation order
shown in Fig. 8(d) reveals that at this coverage, all the ordered parti-
cles tend to stick together and they are between the mobile particles,
as was also reported in Ref. 3. The tendency of ordered particles to
stick together causes the probability of success to increase in Fig. 2(b)
due to maximizing the available free surface for accepting the new
incoming particles. By increasing the surface coverage from 0.915 to
0.963, η decreases from 0.25 to 0.08 after relaxation, as illustrated in
Fig. 7(e-2), which indicates that the fourth peak in Fig. 6 corresponds
to a first order transition from the hexatic phase to solid phase in the
equilibrium state.

To further illustrate the relaxation dynamics toward an equilib-
rium state, the local bond orientation order parameter of particles
at a surface coverage of 0.915 was tracked over time for two differ-
ent initial configurations obtained from adsorption and desorption
methods at very low surface diffusion (D = 0.01, d = 196). Figure 9(a)
indicates that the density should be increased very slowly when we
start from an empty lattice, or else the system will be locked into
a glassy configuration.66 A glassy state is reported in Ref. 3 during
rapid compression of a system composed of spherical particles. For
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FIG. 9. Local bond orientation order for a surface coverage of 0.915 with D = 0.01 and d = 196: (a) for adsorption method over time and (b) for desorption method over time.

the desorption method [Fig. 9(b)], the system is initially ordered, so
the density should be decreased very slowly or else the system will be
metastable.66 As time passes in the equilibrium state, phase separa-
tion occurs, where ordered particles tend to cluster and create more
space for further adsorption.

IV. CONCLUSION
In this paper, we studied the phase behavior of hard-core

molecules with third neighbor exclusions in a triangular lattice with
RSAD simulations, in order to derive the equation of state of a
two-dimensional hard-core particle based on kinetic arguments and
the Gibbs adsorption isotherm. We compared our results with the
result of Orban and Bellman,33 who used a matrix method and
a series expansion method in low and high densities, and found
only partial agreement. Our results show that the system is in a
pure liquid regime below a surface coverage of 0.826. Increasing
the surface coverage will create a more ordered phase where a first
order liquid-hexatic phase transition occurs between surface cover-
ages of 0.877 and 0.915. At a surface coverage of 0.915, g6(r) decays
algebraically after relaxation with a power-law exponent η = 0.25,
which is an indication of a hexatic phase. Our simulation results
reveal that as the surface coverage increases, after relaxation, the sur-
face particles tend to form tightly packed clusters in like-oriented
domains, while the remaining mobile particles have more ran-
dom orientations. By increasing the surface coverage above 0.915,
η decreases from 0.25 toward zero after relaxation, where the sys-
tem undergoes a first order transition from a hexatic phase to a solid
phase.

One of the advantages of using the RSAD model is being able
to locate the equilibrium state, which assures us that adequate ther-
malization and finite size are being used to reach the equilibrium
state. Moreover, subtle details of the clustering structure, through

direct visualization of the system using the relaxation method at any
fractional surface coverage, provide insight regarding coexistence
regions and phase transitions.

ACKNOWLEDGMENTS
This research was supported by the National Science Foun-

dation under Grant No. 1743794, PIRE: Investigation of Multi-
Scale, Multi-Phase Phenomena in Complex Fluids for the Energy
Industries.

REFERENCES
1V. Pauchard, J. P. Rane, and S. Banerjee, “Asphaltene-laden interfaces form soft
glassy layers in contraction experiments: A mechanism for coalescence blocking,”
Langmuir 30, 12795–12803 (2014).
2F. Liu, S. Darjani, N. Akhmetkhanova, C. Maldarelli, S. Banerjee, and
V. Pauchard, “Mixture effect on the dilatation rheology of asphaltenes-laden
interfaces,” Langmuir 33, 1927–1942 (2017).
3Z. Hou, K. Zhao, Y. Zong, and T. G. Mason, “Phase behavior of two-dimensional
Brownian systems of corner-rounded hexagons,” Phys. Rev. Mater. 3, 015601
(2019).
4S. Fortuna, D. L. Cheung, and A. Troisi, “Hexagonal lattice model of the patterns
formed by hydrogen-bonded molecules on the surface,” J. Phys. Chem. B 114,
1849–1858 (2010).
5U. K. Weber, V. M. Burlakov, L. M. A. Perdigao, R. H. J. Fawcett, P. H. Beton,
N. R. Champness, J. H. Jefferson, G. A. D. Briggs, and D. G. Pettifor, “Role of inter-
action anisotropy in the formation and stability of molecular templates,” Phys.
Rev. Lett. 100, 156101 (2008).
6V. A. Gorbunov, S. S. Akimenko, A. V. Myshlyavtsev, V. F. Fefelov, and M. D.
Myshlyavtseva, “Adsorption of triangular-shaped molecules with directional
nearest-neighbor interactions on a triangular lattice,” Adsorption 19, 571–580
(2013).
7P. Bak, P. Kleban, W. N. Unertl, J. Ochab, G. Akinci, N. C. Bartelt, and T. L.
Einstein, “Phase diagram of selenium adsorbed on the Ni(100) surface: A physical
realization of the Ashkin-Teller model,” Phys. Rev. Lett. 54, 1539 (1985).

J. Chem. Phys. 151, 104702 (2019); doi: 10.1063/1.5123231 151, 104702-8

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1021/la5028042
https://doi.org/10.1021/acs.langmuir.6b03958
https://doi.org/10.1103/physrevmaterials.3.015601
https://doi.org/10.1021/jp9098649
https://doi.org/10.1103/physrevlett.100.156101
https://doi.org/10.1103/physrevlett.100.156101
https://doi.org/10.1007/s10450-013-9480-0
https://doi.org/10.1103/physrevlett.54.1539


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

8D. E. Taylor, E. D. Williams, R. L. Park, N. C. Bartelt, and T. L. Einstein, “Two-
dimensional ordering of chlorine on Ag(100),” Phys. Rev. B 32, 4653 (1985).
9E. P. Bernard and W. Krauth, “Two-step melting in two dimensions: First-order
liquid-hexatic transition,” Phys. Rev. Lett. 107, 155704 (2011).
10M. Engel, J. A. Anderson, S. C. Glotzer, M. Isobe, E. P. Bernard, and W. Krauth,
“Hard-disk equation of state: First-order liquid-hexatic transition in two dimen-
sions with three simulation methods,” Phys. Rev. E 87, 042134 (2013).
11I. Langmuir, “The adsorption of gases on plane surfaces of glass, mica and
platinum,” J. Am. Chem. Soc. 40, 1361–1403 (1918).
12J. P. Rane, S. Zarkar, V. Pauchard, O. C. Mullins, D. Christie, A. B. Andrews,
A. E. Pomerantz, and S. Banerjee, “Applicability of the Langmuir equation of state
for asphaltene adsorption at the oil–water interface: Coal-derived, petroleum, and
synthetic asphaltenes,” Energy Fuels 29, 3584–3590 (2015).
13J. P. Rane, V. Pauchard, A. Couzis, and S. Banerjee, “Interfacial rheology of
asphaltenes at oil–water interfaces and interpretation of the equation of state,”
Langmuir 29, 4750–4759 (2013).
14K. Y. Foo and B. H. Hameed, “Insights into the modeling of adsorption isotherm
systems,” Chem. Eng. J. 156, 2–10 (2010).
15J.-S. Wang, P. Nielaba, and V. Privman, “Collective effects in random sequential
adsorption of diffusing hard squares,” Mod. Phys. Lett. B 7, 189–196 (1993).
16B. M. Manzi, M. Werner, E. P. Ivanova, R. J. Crawford, and V. A. Baulin,
“Simulations of protein adsorption on nanostructured surfaces,” Sci. Rep. 9, 4694
(2019).
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