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ABSTRACT
In this work, the early time dynamics of low-viscosity liquid drops spreading in their saturated vapor on partially wetting surfaces are inves-
tigated by lattice Boltzmann numerical simulations. Attention is paid to the effect of vapor transport through condensation on the spreading
process. We observe that the condensation current resulting from the slight supersaturation of the liquid vapor near the dynamic wetting
meniscus contributes to the motion and affects the spreading dynamics. Our results indicate that, in order to properly capture the initial
dynamics of inertial spreading of a relatively volatile liquid drop, it is important to account for the vapor transport through condensation in
the immediate vicinity of the contact line. A direct qualitative and quantitative comparison with experimental data of spontaneously wetting
liquid drops is presented.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5135728., s

I. INTRODUCTION

When a liquid drop makes contact with a solid surface, the
contact line moves until the liquid/solid/vapor system reaches the
equilibrium state. This process is known as spreading and corre-
sponds to the contact line between the vapor, liquid, and solid mov-
ing across the solid surface. The spreading dynamics of the liquid on
solid surfaces is relevant to many natural and engineering processes
ranging from pollutant oil wetting fish scales1 and hydrophobic feet
of insects2 to inkjet printing,3,4 coating,5 and water–oil mixtures in
oil recovery.6 All these phenomena are governed by the surface and
interfacial interactions acting at very small distances. Due to the
ubiquity of the spreading process, it has attracted the attention of
researchers for many years and still does.7,8 General reviews of wet-
ting phenomena are given by de Gennes,9 Bonn et al.,10 Snoeijer
and Andreotti,11 and Sui et al.12 Despite the apparent simplicity of a
spreading liquid drop on a solid surface, the evolution of the drop is
difficult to investigate analytically as the classical continuum hydro-
dynamic description of the contact line motion under the usual no
slip condition at the solid surface leads to a non-integrable stress sin-
gularity.9,13,14 Various mechanisms have been proposed to resolve
this non-physical divergence. One common approach in numerical

solutions of the Navier–Stokes equations is to introduce a boundary
condition with a stress- or velocity-dependent slip at the solid sur-
face in the vicinity of the three-phase point.15,16 The other extreme
approach to describe the contact line motion is to directly resolve
all regions of the flow, such as in molecular dynamics (MD) sim-
ulations. MD simulations give useful information on the effects of
diffuse boundary and effective slip at molecular distances.17,18 Such
simulations, however, require a prohibitively large computational
effort and, thus, are restricted to small systems and simple model
fluids. Even hybrid approaches in which MD simulation around a
contact line is coupled to a continuum model still suffer from the
same problem.10

A middle ground is taken by mesoscale modeling techniques,
which offer alternative explanations of contact line motion without
relying on the breakdown of the no slip condition. These approaches
incorporate a diffuse interface,19–30 thus removing any contact line
singularity. They are also able to address longer length- and time-
scales than molecular dynamics. Seppecher19 established the gov-
erning equations for isothermal flow in the Stokes regime near a
moving contact line on a planar solid wall using a diffuse interface
model. He showed that the curvature of the interface in the vicin-
ity of the contact line drives mass transport through the interphase
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boundary, which served as an effective slip mechanism relieving the
viscous stress singularity. Pismen and Pomeau23 applied the phase
field model to study spreading of thin liquid films in the lubrica-
tion limit and also observed that phase change may strongly affect
the dynamics near the contact line. Briant et al.25 studied the steady-
state interface profile of a droplet held between two shearing walls
by the lattice Boltzmann approach and showed that the contact
line singularity is overcome by evaporation or condensation near
the contact line, which is driven by the curvature of the diffuse
interface.

All the above-mentioned diffuse interface numerical studies of
contact line motion19,23,25 in different flow geometries have reported
that the curvature of the interface near the contact line leads to mass
transport across the interface. However, these studies were restricted
to the steady state, lubrication limit, or Stokes flow regime, and none
of the reported results were directly compared to the experimen-
tal data. The focus of this work is on determining the influence of
mass transfer across the interface through condensation on the early
time dynamics of inertial spreading and comparing the numerical
results reported in this work to the experimental results obtained
by Bird et al.31 As all liquids are volatile to a certain extent, it is
expected that phase change can aid the contact line motion with the
no slip boundary condition applied at the solid boundary. It actu-
ally seems natural to expect that phase change can aid contact line
motion.32,33 Evaporation/condensation has first been proposed by
Hardy34 as a possible mechanism for controlling the contact line
motion at the molecular scale. Derjaguin’s concept of disjoining
pressure has been used by Wayner and co-workers in order to inves-
tigate this possibility.35–39 Recently, a theory for liquid transport by
evaporation and re-condensation has been suggested, in which use
is made of Kelvin’s equation, giving the dependence of the equi-
librium vapor pressure of a liquid on the curvature of its exposed
surface.32,40–42

Although the later stages of the spreading phenomena close
to equilibrium are well understood from the work of Voinov,43

Cox,44 and Tanner,45 the physical mechanisms governing the ini-
tial spreading dynamics right after a liquid drop make contact with
a partially wetting solid surface is not yet fully understood, espe-
cially when phase change is involved. The spreading behavior with-
out phase change effects is characterized by the Ohnesorge number
Oh = ηl/(ρlσR0)1/2 and the fluid–solid interactions represented
by equilibrium contact angle θeq, where ηl is the liquid viscosity,
ρl is the liquid density, σ is the liquid–vapor surface tension, and
R0 is the initial drop radius. Considering the type of force resist-
ing the spreading drop deformation and in the absence of gravi-
tational forces, the spreading process has been classified either as
a two-regime process for low-viscosity liquids (Oh < 1), where the
spreading process starts in an inertia dominated regime31,46–48 fol-
lowed by a viscosity dominated regime close to equilibrium,43–45

or as a single viscosity dominated process for high-viscosity liquids
(Oh > 1).49,50

For low-viscosity liquids, the initial stages of spreading on a
completely wetting surface are strongly reminiscent of the inertial
coalescence of two freely suspended spherical liquid drops.46,51–53 In
both systems, the spreading radius r follows a power law scaling
with a spreading exponent α = 0.5.46 However, for drops spread-
ing on partially wetting surfaces, the initial spreading dynamics were
found to depend strongly on surface wettability, r ∼ tα, with a non-

universal exponent α that varies systematically with the equilibrium
contact angle.31,54,55 In the final stage of inertial spreading, close to
equilibrium, the drop spreads following Tanner’s law, which relates
the contact radius with time as r ∼ t1/10.45

In this study, we investigate the effect of condensation trans-
port on the early time dynamics of inertial spreading of a liquid drop
within the framework of lattice Boltzmann simulations. To explore
how condensation affects the early time dynamics of inertial spread-
ing, we utilize two lattice Boltzmann equation (LBE) approaches
to model the spreading of a liquid drop in contact with an atmo-
sphere of its pure vapor. The first is a non-ideal fluid LBE model,56

which is employed to model the condensation-assisted spreading
(CAS). The second is a two phase fluid (nearly) incompressible
LBE model,57 and it is employed to model the spreading of a liq-
uid drop without condensation effects. The comparison between the
results of the two methods establishes the sensitivity of the results
to condensation as an additional mechanism that influences the
spreading dynamics at early times. The methods are briefly dis-
cussed in Sec. II, before the presentation of the results in Sec. III.
The numerical results are compared to the previous experimen-
tal results of spontaneously wetting liquid drops in the inertial
regime.31

II. NUMERICAL METHODS
The discrete Boltzmann equation (DBE) for mass and momen-

tum of nonideal fluids with external force can be written as

Dtfα = ∂tfα + eαi∂ifα = −
fα − f eqα
λ

+
(eαi − ui)Fi

ρc2
s

f eqα , (1)

where f α is the particle distribution function along the α direction,
eαi is the i component of the α-direction microscopic velocity, ui is
the macroscopic velocity, ρ is the density, c2

s = (∂ρp)s is the square
of speed of sound at constant entropy (s), λ is the relaxation time, Fi
models the intermolecular attraction and the effects of the exclusion
volume of the molecules on the equilibrium properties of a dense
gas, and p is the pressure. The equilibrium distribution function f eqα
is given by

f eqα = tαρ[1 +
eαiui
c2
s

+
(eαieαj − c2

s δij)uiuj
2c4

s
], (2)

where tα is a weighting factor.58 In the case of a pseudo-van der
Waals fluid without the effect of gravity, the intermolecular attrac-
tion expressed in the potential form to avoid the development of the
parasitic currents56 can be written as

Fi = ∂jρc2
s δij − ρ∂i(μ0 − κ∂2

j ρ), (3)

where μ0 is the bulk chemical potential and κ is the gradient param-
eter related to the magnitude of the surface tension force. The
equilibrium properties of a system without wall boundary can be
described by a bulk free energy ψb = ∫Ω(E0(ρ) + κ

2∂kρ∂kρ)dΩ. In the
pseudo-van der Waals fluid, E0 can be approximated as E0(ρ) ≈ β(ρ
− ρsatv )2(ρ − ρsatl )2,59 where β is a constant that is related to the com-
pressibility of bulk phases and ρsatv and ρsatl are the densities of vapor
and liquid phases at saturation, respectively. Given the thickness of
the diffuse interface ϵ, the gradient parameter and the liquid–vapor
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surface tension σ could be calculated as κ = βϵ2(ρsatl − ρsatv )2/8 and

σ = (ρsatl − ρsatv )3/6
√

2κβ, respectively. In Eq. (3), the bulk chemical
potential is related to E0 by μ0 = ∂ρE0 and to the pressure p by the
equation of state p = ρ∂ρE0 − E0, which leads to ∂ip = ρ∂iμ0. Consid-
ering short-ranged fluid–solid interactions such that they contribute
a surface integral to the total free energy of the system, the bound-
ary condition for the Laplacian of density in Eq. (3) can be estab-
lished by considering the following additional wall free energy ψs
= −ϕ1ρs, where ϕ1 is a constant describing the wetting properties in
the regime of partial wetting and ρs is the density at the solid sur-
face. Then, the total free energy takes the following form: ψb + ψs
= ∫Ω(E0(ρ) + κ

2∂kρ∂kρ)dΩ−∫Γ(ϕ1ρs)dΓ. This imposes the boundary
condition for ∂2

j ρ in Eq. (3) as κ∂nρs = −ϕ1. At the solid surface, the
equilibrium boundary condition60,61 is imposed for the calculation
of the unknown particle distribution function and the bounce-back
rule guaranteeing the mass and momentum conservation is invoked
as well.

The DBE [Eq. (1)] for the mass and momentum equations
is transformed into that for the isothermal pressure evolution
and momentum equations. The details of this transformation are
shown in the Appendix. The validations and implementation of
the two LBE models are described in Refs. 56, 57, 60, and 62.
The macroscopic equations recovered from the two LBE mod-
els through the Chapman–Enskog expansion are the continuity,
momentum, and isothermal pressure evolution equations described
as follows:

∂tρ + ∂i(ρui) = 0, (4)

∂t(ρui) + ∂j(ρuiuj) = −∂jpδij + ∂jσ(v)ij + κρ∂i(∂2
j ρ), (5)

∂tp + ρ(∂ρp)∂iui + ui∂ip = 0. (6)

Here, σ(v)ij is the viscous stress tensor. In essence, the two LBE mod-
els differ only by the way the pressure is updated. In the non-ideal
fluid LBE model, ∂ρp for a typical cubic equation of state (EOS)
is not constant and turns negative at the phase interfaces, which
may trigger isothermal phase change due to pressure variation.62

In the incompressible LBE model, ∂ρp is assumed to be constant
and positive, and consequently, phase change is not allowed to take
place.

III. RESULTS AND DISCUSSION
A. Simulation setup

In our numerical simulations, spreading of a two-dimensional
(2D) liquid drop of radius R0 = 400 lattice units (l.u.) in con-
tact with an atmosphere of its pure vapor, generated on a 4000
× 2000 l.u. computational domain, is studied. The boundaries are
all symmetric except at the solid surface, where the wall bound-
ary condition presented in Sec. II is imposed. Contact prob-
lems such as coalescence and spreading are known to be essen-
tially 2D phenomena,47,51,63 and the same is expected here. It
has been shown51 that ω, the height of the meniscus [Fig. 1(a)],
gives the driving curvature as it is always smaller than the con-
tact radius r (Fig. 1). Thus, at initial times, the three-dimensional
problem has similar asymptotic behavior as the two-dimensional
one.

The surface tension, density, and bulk viscosity of the simulated
fluid are fixed with Oh = 0.1. The liquid/vapor density and viscos-
ity ratios, the interfacial thickness, and the parameter β are ρl/ρv
= 10, μl/μv = 10, ϵ = 4 l.u., and β = 0.02, respectively. The nondi-
mensional measure for the interface thickness is the Cahn number,
defined by Cn = ϵ/2R0, and has a value of 4/800 = 0.005 in the
simulations. The parameter β, ϵ, and Cn are fixed in all the simu-
lations, unless otherwise mentioned. The Bond number defined as
Bo = (ρl − ρv)gR2

0/σ, with g being the gravity, is set to zero in all
simulations. Grid resolution analysis is performed using a grid size
as a function of the initial radius of the drop 10R0 × 5R0 with the
equilibrium contact angle θeq = 30○ while keeping the interfacial
thickness fixed ϵ = 4 l.u. The sizes of the grids used in this analy-
sis are 4000 × 2000, 6000 × 3000, and 8000 × 4000. Figure 2 presents
the effect of gird refinement on the time evolution of the spread-
ing contact radius resulting from the non-ideal fluid LBE model
[condensation-assisted spreading (CAS)] and the two phase fluid
(nearly) incompressible LBE model (spreading without condensa-
tion effects). The contact radius is scaled by the initial drop radius
R0 and time by the inertial time scale ti =

√
ρlR3

0/σ. We observe in
Fig. 2 that grid refinement does not have significant impact on the
results. Thus, for the droplet radius R0 = 400 l.u. used in our simu-
lations, the results are essentially independent of increased grid res-
olution. A domain size dependency test is performed using different
domain sizes. For the domain of size 4000 × 2000 l.u., the increased
size of the domain has negligible influence on the spreading
process.

FIG. 1. (a) Schematics showing the geometry of the drop
during the initial stages of spreading. R0 is the initial drop
radius, and r is the contact radius. The height of the menis-
cus ω determines the local curvature and, thus, the driving
force. (b) Schematics showing the geometry of the drop
during the late stages of spreading.
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FIG. 2. Effect of grid resolution on the temporal evolution of the contact radius.
Filled symbols correspond to condensation-assisted spreading (CAS) resulting
from the non-ideal fluid LBE, and open symbols correspond to spreading without
condensation effects resulting from the two phase fluid incompressible LBE.

B. Flow field and interfacial profiles
Figure 3 compares the velocity field in the vicinity of the contact

line [the inset in Fig. 1(a)] from the simulation results of the spread-
ing without condensation effects [Figs. 3(a) and 3(c)] with that
of the condensation-assisted spreading [Figs. 3(b) and 3(d)] at t/ti
= 0.2 [Figs. 3(a) and 3(b)] and t/ti = 0.4 [Figs. 3(c) and 3(d)] with an

equilibrium contact angle of θeq = 3○, where ti is inertial time scale
defined above. The liquid–vapor interface is represented by an iso-
density level (ρsatl +ρsatv )/2. As the liquid drop contacts the solid sur-
face, the interface becomes highly curved close to the contact point,
with a meniscus characterized by a small height as shown in Fig. 1(a).
This strongly curved meniscus generates a rapid flow toward the
contact line region due to the gradient in Laplace pressure between
the drop’s periphery and its center. As the drop spreads without con-
densation effects [Figs. 3(a) and 3(c)], we observe that vapor escapes
radially away from the moving contact line. However, the velocity
field resulting from the condensation-assisted spreading [Figs. 3(b)
and 3(d)] shows a different trend. In Figs. 3(b) and 3(d), the velocity
vectors in the vapor phase are directed toward the contact line indi-
cating mass transfer across iso-density lines of the interface, which
represents condensation of the vapor phase at the interface. The con-
densation in our simulations is signaled by the negative divergence
of the velocity field ∂iui < 0. The highly curved contact meniscus
leads to an effective slight supersaturation of the liquid vapor. If
the spreading liquid is volatile to some extent, then local conden-
sation ensues. The coupling between the liquid meniscus curvature
and the mass exchange across the interface is provided by the Kelvin
effect. Directly over the curved interface of a liquid meniscus, the
local vapor pressure of the liquid is determined by the curvature,
as described by the classic Kelvin equation pv = psatv exp[ −σvl

RTωeq
],

where pv is the vapor pressure, psatv is the saturation vapor pressure,
ωeq is the equilibrium radius of curvature of the meniscus (Kelvin
radius), and vl, R, and T are liquid molar volume, ideal gas constant,
and temperature, respectively. This equation has to be modified in
the presence of a solid surface, and solid–fluid interactions must be
taken into account. However, the modified Kelvin equation retains
the prediction that a concave meniscus requires a lower local vapor

FIG. 3. The velocity field in the contact line region at t/ti = 0.2 [(a) and (b)] and t/ti = 0.4 [(c) and (d)], resulting from the spreading without condensation effects [(a) and (c)]
and the condensation-assisted spreading [(b) and (d)]. The velocity vectors in [(a) and (b)] and [(c) and (d)] are plotted with the same scale.
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pressure to stay at equilibrium than a planar surface. An advancing
liquid interface presents greater concavity than when at equilibrium.
As a consequence, vapor coming from elsewhere on the macroscopic
part of the drop (of greater convexity) may re-condense near the
contact line.41,42

Assuming short-ranged solid–fluid interactions compared to
the thickness of the diffuse vapor–liquid interface, an additional wall
free energy contribution to the overall energy is considered. For the
wall free energy functional ψs utilized in our models, the modified
Kelvin equation is then written as pv = psatv exp[ vl

RT (
−σ
ωeq

− Π(h))],
where Π(h) is the disjoining pressure between the vapor–liquid and
liquid–solid interfaces and h denotes the dynamic interfacial pro-
file height from the solid surface. The disjoining pressure repre-
sents the shift of chemical potential in the proximity of the solid
surface and is dependent on the boundary conditions at the solid
surface. For exponentially decaying solid–fluid interactions, Π is
computed in the framework of the phase field theory23 and is given
by Π = −2κ

ϕ1
exp(−h/ϵ)(1 − 1

ϕ1
exp(−h/ϵ)). For large h, the disjoin-

ing pressure becomes negligible, and at small h, it is not singular as
in the sharp-interface theories with van der Waals interactions. In
the modified Kelvin equation, the saturation vapor pressure, sur-
face tension, and molar volume are all properties of the fluid at
equilibrium and are considered constants with respect to the sys-
tem. Temperature is also considered constant in the Kelvin equation
as it is a function of the saturation vapor pressure. The conden-
sation of vapor results in the release of latent heat and increases
the temperature difference between the condensed liquid and the
surrounding vapor phase. It is unlikely that the heat released by
the condensation of vapor could give rise to a large value of ΔT.64

Here, we assume large thermal conductivity and isothermal phase
change.59

From the modified Kelvin equation, we may calculate the
appropriate equilibrium pressure of vapor, pv , where the drop pro-
file is at equilibrium with this geometry. Excess vapor pressure, Δp,
driving local condensation from the ambient saturated vapor is then
given by Δpv = psatv − pv = psatv {(1 − exp[ vl

RT (
−σ
ωeq

−Π(h))])}, where
the net rate of condensation Jc is proportional to the vapor excess
pressure Jc ∼ Δp.41,65 The condensation current resulting from the
modified curvature of the dynamic wetting meniscus near the con-
tact line contributes to the motion and affects the spreading rate.
This effect is expected to be important in a small region of the liq-
uid meniscus very close to the contact line,66 where phase change
self-adjusts to the contact line motion according to the modified
Kelvin equation. Figure 4 shows the divergence of the velocity field
∂iui at an early time t/ti = 0.2 [Fig. 4(a)] and at a later time t/ti
= 1.2 [Fig. 4(b)] in the spreading process. The darker color repre-
sents the more negative value of ∂iui, i.e., higher condensation rate.
As shown in Fig. 4, the intensity of the divergence field is reduced
with time as the condensation rate self-adjusts to the contact line
motion.

Figure 5 shows snapshots of the droplet as it wets different
solid surfaces with an equilibrium contact angle of θeq = [3○, 60○,
120○]. The right half of each panel in Fig. 5 shows the results of the
condensation-assisted spreading, and the left half shows the results
of spreading without condensation effects. Each panel has six snap-
shots in time of the droplet as it spreads across the solid surface. The
first snapshot is at time 1 (t/ti = 0.04), and the droplet spreads across
the surface in the successive times 2, 3, 4, 5, and 6. The droplet ini-
tially forms a large contact angle when it starts to wet the surface. As
it spreads on the surface, the dynamic contact angle relaxes toward
its equilibrium value θeq. In the initial times of the spreading, the
dynamic contact angle varies rapidly. We note that the results of

FIG. 4. The color field represents the divergence of the velocity field ∂ iui at t/ti = 0.2 (a) and at t/ti = 1.2 (b). The velocity vectors in (a) and (b) are plotted with the same
scale.

FIG. 5. Droplet shapes at (1) t/ti = 0.04,
(2) t/ti = 0.1, (3) t/ti = 0.2, (4) t/ti = 0.3,
(5) t/ti = 0.4, and (6) t/ti = 0.5 for three
different surfaces: θeq = [3○, 60○, 120○].
The right half of each panel shows the
condensation-assisted spreading, and
the left half shows the spreading of the
droplet without condensation effects.
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the condensation-assisted spreading (right half) show faster relax-
ation toward the equilibrium contact angle and lower curvature in
the vicinity of the contact line compared to spreading without con-
densation effects (left half). The two LBE models predict a somewhat
different shape of the droplet interface. We see clearly that the con-
tact line in the case of condensation-assisted spreading propagates
faster than spreading without condensation effects. Condensation
modifies the liquid profile and, therefore, the flow field. There is a
mutual interdependence between the dynamic contact angle and the
local flow field. Thus, condensation current causes a change in the
apparent dynamic contact angle and results in a faster relaxation
toward the equilibrium contact angle compared to the spreading
without condensation effects.

C. Temporal contact line evolution
The temporal evolution of the contact radius during the ini-

tial stages of wetting as the droplet spreads on five different surfaces
[θeq = 4○, θeq = 30○, θeq = 60○, θeq = 90○, and θeq = 120○] with
and without condensation effects is presented and compared to the
experimental results by Bird et al.31 in Fig. 6. The contact radius
is scaled by the initial drop radius R0, and time is scaled by the
inertial time scale ti. The experiments by Bird et al.31 provided
detailed analysis of first steps of spreading of inviscid liquid (water
and water–glycerol mixtures) droplets over solid surfaces with dif-
ferent degrees of wettability. The results presented in Fig. 6 show
that a faster time evolution of the spreading radius is observed for
condensation-assisted spreading on all surfaces compared to spread-
ing without condensation effects. As discussed in Sec. III B, the
condensation current resulting from the modified curvature of the

FIG. 6. Temporal contact line evolution for θeq = 3○, θeq = 30○, θeq = 60○, θeq

= 90○, and θeq = 120○. Full lines correspond to condensation-assisted spreading
(CAS), and dashed lines correspond to spreading without condensation effects.
The experimental results of Ref. 31 are given by open circles, triangles, and
diamond shaped markers for θeq = 3○, θeq = 43○, and θeq = 117○, respectively.

dynamic wetting meniscus contributes to the motion and results in
a faster spreading rate. In the case of condensation-assisted spread-
ing, the motion of the contact line involves both a hydrodynamic
current resulting from the gradient in Laplace pressure, Jh, and a
condensation current, Jc, and the total speed of the contact line
has both hydrodynamic and condensation contributions.42 When
the condensation effects are considered negligible, the contact line
speed has only hydrodynamic contribution, which results in a slower
evolution of the contact line compared to the evolution of the
condensation-assisted spreading.

The results of the condensation-assisted spreading show good
agreement with the experimental results by Bird et al.31 on three
surfaces with equilibrium contact angles [θeq = 3○, 43○, and 117○]
(Fig. 6). Excellent agreement is observed for the spreading on
hydrophilic and hydrophobic surfaces. Our results indicate that in
order to correctly capture the wetting speed and recreate the wetting
physics observed experimentally, it is crucial to account for conden-
sation effects in the vicinity of the contact line region when modeling
the spreading of relatively volatile liquids. Neglecting condensation
effects results in a slower spreading rate compared to the experimen-
tal data reported by Bird et al.31 Shanahan42 investigated the effect of
condensation transport on the spreading of water using a model he
proposed and observed that condensation currents result in a higher
spreading rate in agreement with the results presented here.

In Fig. 7, the evolution of the contact radius is plotted vs time
in logarithmic units along with the experimental data for a longer
range of time. It is clear from Fig. 7 that the spreading radius follows
a power law r

R0
= C( t

ti
)α, whose exponent α depends on the wetting

properties of the solid surface, where the drop with lower θeq spreads
faster than the drop with higher θeq.31,55 We also observe a distinct
change in the exponent of the simulation results for spreading with
and without condensation effects and the experimental data when
dimensionless time has a value around 2. This shift in the expo-
nent corresponds to cross over from inertial to viscous spreading.

FIG. 7. A log–log plot of the data presented in Fig. 6 for a longer time range.
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FIG. 8. Effect of β on the time evolution of the condensation-assisted spreading
contact radius for θeq = 3○ and Oh = 0.1. The experimental results31 for θeq = 3○

are given by open circle markers.

Biance et al.46 provided an estimate for the duration of the iner-
tial regime and calculated the characteristic time required for the
crossover from the inertial to the viscous regime as τc ∼ ( ρlσR0

η2
l
)1/8ti.

By introducing the parameters used in the simulated cases, we obtain
τc/ti ≈ 1.8, which is in good agreement with the experimental and
numerical data presented in Fig. 7. The slight discrepancy between
the experimental data and the numerical results of the condensation-
assisted spreading at late times is an effect of differences in the
experimental and computational setup. At late times in the exper-
iments, the droplet starts to detach from the needle. In the simu-
lations, the liquid drop is freely suspended and not attached to a
rod. It is noteworthy that the effect of condensation on the spreading
behavior becomes less important at later times close to equilibrium,
and the difference between the curves corresponding to spread-
ing with and without condensation effects for all θeq becomes very
small.

Finally, we discuss the effect of the parameter β on the spread-
ing rate. The parameter β in the LBE models is related to the speed
of sound, and thus, changing β implies the modification of the speed
of sound. The effect of β on the condensation-assisted spreading is
plotted in Fig. 8 for β = 0.03, 0.02, and 0.01, θeq = 3○, and Oh = 0.1
along with the experimental results for θeq = 3○. We note that the
higher β results in slightly faster evolution of the contact line. The
differences in the results are minor in this range of β. After deter-
mining β, the model has, in principle, no adjustable parameters. The
width of the interface ϵ is chosen to be the smallest numerically sus-
tainable value above which the LBE method becomes unstable or the
interface shape is distorted.

IV. CONCLUSIONS
We have numerically investigated the effect of condensation

transport on the spontaneous spreading of low-viscosity liquid

droplets on solid surfaces with different degrees of wettability. Two
LBE models are utilized to capture the effect of condensation trans-
port on the dynamics. We show that in order to correctly capture
the dynamic wetting phenomena of relatively volatile spreading liq-
uid droplets, the condensation effects have to be taken into account
when modeling the spreading process. In the case of condensation-
assisted spreading, the total spreading speed contains both hydro-
dynamic and condensation contributions, and thus, the spreading
process initially proceeds faster in time. The condensation current
modifies the liquid profile and, therefore, the flow field and the
dynamic contact angle. The condensation flux self-adjusts to the
contact line motion according to the modified Kelvin’s equation,
and its effect on the spreading becomes less important at late times
close to equilibrium. In the case of condensation-assisted spreading,
a good qualitative and quantitative agreement between the numer-
ical and experimental31 temporal evolution of the spreading radius
is obtained. A good match is found for the time of transition from
inertial to viscously dominated wetting between the simulations and
the theory proposed by Biance et al.46
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APPENDIX: DISCRETE BOLTZMANN EQUATION FOR
PRESSURE AND MOMENTUM

The DBE [Eq. (1)] for the mass and momentum equations
is transformed into that for the isothermal pressure evolution and
momentum equations.62,67 In order to perform the transformation,
a new particle distribution function is defined as

gα = fαc2
s + (p − ρc2

s )Γα(0), (A1)

where Γα(u) = f eqα /ρ. Taking the total derivative Dt of the new
variable gα gives

Dtgα = c2
sDtfα + DtpΓα(0) − c2

sDtρΓα(0)

= −1
λ
(gα − geqα )

+ (eαi − ui)[∂iρc2
s − ρ∂i(μ0 − κ∂2

j ρ)]Γα(u)
+DtpΓα(0) − c2

sDtρΓα(0), (A2)

where the new equilibrium geqα is

geqα = tα[p + ρc2
s(

eαiui
c2
s

+
(eαieαj − c2

s δij)uiuj
2c4

s
)]. (A3)

In the non-ideal fluid LBE model, the last two terms on the right-
hand side of Eq. (A2) are expanded through the continuity equation
as follows:

Dtp = ∂tp + eαi∂ip = −∂ρp∂iρui + eαi∂ip (A4)

and

Dtρ = ∂tρ + eαi∂iρ = −∂iρui + eαi∂iρ. (A5)
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In the incompressible LBE model, the divergence free condition, i.e.,
∂iui = 0, is applied to the above two equations and Eqs. (A4) and
(A5) reduce to

Dtp = −∂ρp∂iρui + eαi∂ip = (eαi − ui)∂ip (A6)

and
Dtρ = −∂iρui + eαi∂iρ = (eαi − ui)∂iρ. (A7)

Now that the DBE for mass and momentum has been transformed
into the DBE for pressure and momentum, and another set of dis-
tribution function for density is needed. For this purpose, Eq. (1)
suffices.
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