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Abstract—We study distributed causal shared memory (or key-
value pairs) in an asynchronous network under crash failures.
Causal memory, introduced by Ahamad et al. in the context of
multi-processor environment in 1994, is an abstraction which
ensures that nodes agree on the relative ordering of read and
write operations that are causally related on key-value pairs.
Inspired by the recent interests in geo-replicated causal storage
systems (e.g., COPS, Eiger, Bolt-on), we systematically study the
fault-tolerance property of the causal shared memory in the
client-server model in this work.

We identify that 2f 4 1 servers is both necessary and sufficient
to build a resilient causal memory in the presence of up to f
crashed servers. We provide both the necessity proof and a new
optimal algorithm that matches the bound. For evaluation, we
implement our algorithm in Golang and compare the perfor-
mance with state-of-the-art fault-tolerant algorithms that ensure
atomicity in the Google Cloud Platform.

Keywords — distributed storage system, causal memory,
evaluation, asynchrony, crash faults

I. INTRODUCTION

This paper considers the problem of implementing dis-
tributed shared memory (or shared key-value pairs)' over
asynchronous message-passing networks. Different from most
prior theory works (e.g., [5], [4]), we adopt the client-server
paradigm in which clients are the ones accessing the shared
key-value pairs through read and write operations, and the
servers are the ones that manage the data so that the desired
consistency property is satisfied. No communication among
clients is assumed. In this paper, we focus on providing the
causal consistency [4], [34] in the presence of crash-prone
nodes. In other words, we are interested in resilient (or crash-
tolerant) causal shared memory.

Resilient shared memory has been extensively studied in
both crash fault model (e.g., [5], [49], [27]), semi-Byzantine
fault model (e.g., [43], [42], [19]), and Byzantine fault model
(e.g., [30], [28]). Nonetheless, to the best of our knowledge,
there is very few study on the fault-tolerance aspect of causal

*Work was done while the authors were with Boston College.

n the theory literature, it is also called shared read/write objects, whereas
in the system literature, it is simply referred to shared causal storage systems.
Since this paper is inspired by the theory literature, we will use the name
“shared memory” and “key-value pairs” interchangeably. Even though “causal
storages” typically support more features such as read-only transactions,
essentially they are the same data structure that supports concurrent read and
write operations that respect a causal ordering of operations.
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memory [4]. Especially, we are not aware of any work that
studied the tight resilience bound of causal memory. Existing
works either rely on consensus protocols (e.g., [38], [9]) or
did not present tight result (e.g., [10], [51]). In this paper,
we systematically study the fault-tolerance property of causal
memory. In particular, we identify that it is both necessary
and sufficient to have at least 2 f 4 1 servers when any clients
and up to f servers may crash. The necessity proof is based
on the well-known indistinguishability argument [23], [6]. For
sufficiency, we constructively provide an optimal algorithm
that matches the 2f + 1 bound.

On one hand, the identified resilience bound is not entirely
surprising, since 2f 4 1 is also the tight bound for resilient
shared memory that provides stronger notion of consistency,
e.g., atomicity [5], linearizability [27], or regularity [35].
On the other hand, we believe that our work is the first
step towards understanding resilient causal memory in the
client-server model more thoroughly. First, our results show
that it is necessary to consider the convergence property for
causal memory to derive a meaningful bound. This is different
from other resilient shared memory with stronger consistency;
hence, the tradeoff between convergence and resilience is a
new topic to be explored in the context of shared memory.
Second, our algorithm does not depend on other expensive
primitive such as fault-tolerant consensus or broadcast, allow-
ing a more efficient and simpler implementation in practice.

A. Motivation

Large-scale distributed storage systems are a critical in-
frastructure of many Internet services nowadays. Most user-
facing Internet services are extremely sensitive to latency. It
is observed that a slight increase in user-perceived latency
results into significant revenues loss (e.g., [38], [22]). Hence,
recent practical replicated storage systems (e.g., [1], [18], [37])
adopt weak consistency models to achieve higher performance
(low latency and high throughput). Among the proposed weak
consistency models, causal consistency is one of the more
appropriate models, because it provides useful consistency
guarantees for application developers [37], [38], [9], and is
one of the strongest consistency models achievable [41] in
network partition (or more precisely, under the framework of
CAP theorem [14], [39]).

As the system grows larger, machine and hardware failures
and soft errors (caused by defects, bugs, and/or configura-



tion errors) are inevitable. Practical systems often rely on
consensus protocols and state-machine replication to tolerate
machine failures [37], [38], [9]. These systems replicate each
machine using consensus so that a server (based on multiple
machines) would be more resilient. However, such an approach
is prohibitively expensive in terms of message complexity and
end-to-end latency if one needs to tolerate many failures, since
consensus protocols, e.g., Paxos [36], do not scale well. These
observations motivate us to explore causal memory without
using any expensive primitive such as consensus or atomic
broadcast protocol.

B. Causal Consistency and Convergence

We briefly discuss the properties of causal memory. These
properties will be formally defined in Section III. Causal
memory provides read and write interfaces to access multiple
key-value pairs that are stored and maintained at servers.
Specifically, client ¢; can invoke two operations:

o write operation w;(x)v that stores the value v onto the
variable with key z.2

e read operation r;(x)v that reads from the variable with
key x which later returns the value v to client c;.

Causal memory provides causal consistency, which en-
sures that the values returned by read operations observe
the causality (or happens-before relation [34]). That is, if a
write operation w(x)a causally precedes (or happens before)
w(x)b, then the value returned by any client should respect
the ordering. Recall that write operation w is said to causally
precedes another write w’ if (i) both writes are invoked by the
same client and w is invoked first, (ii) a client reads the value
written by w, then invokes w’, or (iii) transitivity.

Causal consistency is found to be useful in many Inter-
net services [37], [38], [9], because causality is natural for
application developers to reason with. We will use social
network examples for motivation. If an underlying storage
system provides only eventual consistency, then it is possible
that (i) after Alice creates a post, she might not see that post
after refreshing the page several times; and (ii) Alice and Bob
are commenting on Carol’s profile picture, but Carol might
see random subset of that conversation — which might appear
in any order — and miss the logical implication between the
comments. Causal memory ensures that these two scenarios
would not occur, because a client will always observe events
respecting causality. In these two examples, Alice will see
her more recent post, and Carol will observe all comments
that “happens-before” the newest comment she saw, and the
comments will appear in a causal order. More importantly,
causal memory can be implemented in a low-latency fashion,
by not contacting a majority of nodes.

Roughly speaking, convergence defines the eventual state
at each server. Original causal memory definition [4] does not
require convergence to satisfy safeness. In practical systems,
it is necessary to consider the convergence property to ensure
correct application logic. This paper adopts the persistence

2If 4 is clear from the context, then we may ignore i in the notation.

property [10], [25], which requires that the value written by
a completed write operation will never be lost if there is no
other concurrent write.

C. Contributions

o In Section IV, we identify why prior solutions (e.g., [4])
can tolerate any number of failures in a multi-processor
environment, whereas in the client-server model, such
solutions do not work. In other words, we identify the
need for new algorithms for resilient causal memory.

o In Section V, we present an algorithm for causal memory
under the case when up to f servers and any number of
clients may crash. Our algorithm requires at least 2f + 1
servers for correctness.

o In Section VI, we prove that it is necessary to have 2f+1
servers. This shows that 2f + 1 is the tight bound, i.e.,
the proposed algorithm is optimal in resilience.

e We implement our algorithm and compare its per-
formance with ABD algorithm [5], the well-known
crash-tolerant algorithm for atomic memory, and SBQ
(Small Byzantine Quorum) algorithm [43], state-of-the-
art single-writer algorithm providing atomicity when
servers may suffer semi-Byzantine failures.

II. RELATED WORK

There is a long history of study on Distributed Shared
Memory (DSM). We only discuss the most relevant ones
here. Resilience is well studied in quorum systems and DSMs
ensuring atomicity, sequential consistency, regularity, and lin-
earizability, e.g., [3], [5], [49], [2], [24], [31], [27]. These
algorithms typically require clients to contact a quorum or
even a majority of servers, and are not feasible if there is
a network partition [39], [14]. Therefore, practitioners have
strong interests in weaker consistency models. Among them,
causal consistency is one of the more appropriate models,
because it provides strong enough guarantees for application
developers while ensuring low latency.

Most works on causal DSM were studied in the MCS
(Memory-Consistency System) model (e.g., [29], [4], [11],
[41], [33], [32]), which is significantly different from the
client-server model in the presence of faults. James and Singh
[29] pointed out that causal memory is (n — 1)-resilient (or
wait-free [26]) in the MCS model. We will explain in Sections
IV and VI, respectively, why these algorithms are not correct,
and why no (n — 1)-resilient causal memory is possible in the
client-server model with crash-prone nodes.

The closest works are [51] and [10], which also focus on re-
silient causal memory. SwiftCloud’s [51] implementation also
ensures some form of convergence and relies on a variation of
reliable broadcast. Since SwiftCloud’s focus is on client-side
mergeable transactions, it relies on more complicated mecha-
nisms such as causal broadcast between servers, exactly-once
delivery and execution, global committing protocol, server
reconnection protocol, etc. It is not clear if SwiftCloud can
be adapted to our model in a straightforward way. Plus, there
is no formal analysis on the tradeoff achieved by SwiftCloud in



[51]. The final difference is that client (called scout in [51]) is
always connected to a single server (called datacenter in [51]),
whereas in our algorithm, a client can communicate with any
server. Baldoni et al. [10] studied a slightly different problem,
resilient causal memory with dynamic servers, and presented
a beautiful algorithm; however, their algorithm is not optimal
in our model (the static setting). Their algorithm requires 3 f
servers, more than the optimal bound 2f + 1 presented in
the paper. Moreover, Baldoni et al. [10] did not consider the
convergence property.

Recently, there is also a rich study on different aspects of
causal memory, including various practical systems (e.g., [37],
[38], [9], [21], [20], [13], [47]), partial replication (e.g., [46],
[45], [16], [50]), and eventual property [7]. These works did
not focus on the fault-tolerant aspect. Please refer to [48] for
more details.

III. PRELIMINARIES

A. System model

The client-server model consists of two types of nodes: (i)
server nodes (or simply servers) that store data in the form of
key-value pairs, and (ii) client nodes (or simply clients) which
invoke operation to read and write the key-value pairs stored
on the servers. The term “nodes” refer to both server and client
nodes. If there is no failure, clients can communicate with
any server, and servers can communicate among themselves.
Clients do not communicate among themselves.

The asynchronous communication channel is modeled by a
fair-loss point-to-point link [40], [10]. In the fair-loss channel,
if the two ends are both fault-free, then the message can
eventually be delivered; however, if one end becomes faulty,
then there is no guarantee that a message will be delivered.
This channel is both authenticated and reliable. That is, a
correct node receives a message from another correct node
if and only if the other correct node sent it. We do not assume
known bounds on message transmission times. In other words,
the communication is asynchronous.

The set of servers is static, and we do not assume the
existence of a failure detector [15] or a membership service
[17]. Consequently, in our system, faulty nodes are indistin-
guishable from slow nodes. The system consists of n (n > 2)
servers and n. (n. > 2) clients, since Distributed Shared
Memory (DSM) is trivial when n = 1 or n, = 1. We will use
S ={s1,-+,8,} and C = {e1, -+, ¢, } to denote the set
of servers and clients, respectively. We assume that up to f
servers and any number of clients may crash.

In the crash model, any clients and up to f servers may
crash. If a node ¢ crashes, it stops the execution possibly
without noticed by other nodes, and other nodes may re-
ceive different set of messages from node ¢ because of the
assumption of a fair-loss point-to-point link and asynchronous
delivery. If a node never fails throughout the execution, it is
called a fault-free node; otherwise, it is said to be faulty.

B. Memory model and Consistency

Key-value pairs are replicated to each server. We assume
that each write operation is univocally identifiable, and each
client is sequential. As the object can be concurrently accessed
by clients, the memory must guarantee consistency property
that defines the semantics of the shared data, i.e., the value
returned by each read operation. We adopt the causal consis-
tency model in [4], which defines the consistency model in
terms of histories. Let L; denote the local history at client 1,
i.e., the sequence of read/write operations. A history H (of
the system) is then the union of all local histories.

We now introduce the definition of the causal order (or
happens-before relation) in DSM [4]. Let ? represent the

causal order induced by a history H and the corresponding
reads-from order defined over H. For brevity, we ignore H in
the notation. Formally, we say that o; E) 09 if any of the
following conditions holds:
o Program-order: oy L—> 02 for some c¢; (01 precedes 09 in
the local history L),
e Reads-from: 0, —d> 02 (09 returns the value written by
01)’ or rea
e Transitivity: there is some other operation o’ such that
0, — 0 — 0.
cc cc
If o9 W 09 in history H, we will say o1 happens before
09 in H. Two writes w; and wso are said to be concurrent if
w1 7(% wy and wy 7(? w1, and is denoted by wy ||ws.
Let H|(c; + W) denote the set of all operations in local
history L; and all write operations (by any client) in history
H. Then, we define causal consistency in the presence of faults

below. Note that it is a generalization of the original definition
in the MCS model [4].

Definition 1. (Causal Consistency [4]) A history H is
causally consistent if there exists a complete history H' such
that (i) H' completes H, and (ii) for each client c;, there exists
a serialization S; of H'|(c;+W) that respects the causal order
—.

cc

Since we consider faulty clients, we need to consider only
the complete history. Roughly speaking, a complete history is
obtained from removing some of the incomplete operations
and appending the response event to the other incomplete
operations in any given history. There is a known technique to
perform the transformation. Due to page limit, we present the
details in our technical report [48]. In this paper, we assume
that all histories are complete.

An algorithm is said to be safe if any history is causally
consistent as per Definition 1, and satisfies liveness if in
any history, every operation can be completed in finite amount
of time given that the client does not crash and at most f
servers crash. As also observed in [10], most prior work on
causal memory only considered safety and liveness. However,
for practical usages, we need to rule out a trivial solution that
is not useful for most practical usages: returning initial value
1 for each read and ignoring any write. Thus, we also need
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Fig. 1: Memory-consistency system model.

the convergence property.> We adopt persistence [10], [25] for
convergence, which rules out the trivial solution.

Definition 2 (Persistence of a value v). A value v of key k is
persistent, if v is written into key x and there is no successive
nor concurrent write operations, a client that reads infinitely
many times on key x will eventually read v forever.

Successive and concurrent writes are defined with respect to
real time (or wall-clock time) of the event. Note that real time
is only used for definitions. Each node does not have a notion
of real time in our model, as typical in most prior works, e.g.,

[4], [5].

Definition 3 (Persistence). An algorithm satisfies persistence
if for all the key-value pairs (k,v), every value written to key
k is persistent.

IV. RESILIENT CAUSAL MEMORY: AN OVERVIEW

In this section, we discuss why many prior causal memory
implementations (e.g., [4], [33], [32]) are not resilient in the
client-server model.

A. Causal Memory in MCS Model

Causal consistency was first proposed by Lamport [34] to
order messages and events. Later, Ahamad et al. [4] integrated
causal property with DSM, and studied it under the context
of multi-processor environment, which is modeled as the
Memory-Consistency System (MCS). In the MCS model, each
node contains two processes: an application process that needs
to access the key-value pairs, and an MCS process that is
responsible to maintain the consistency guarantees through
accessing local memory and communicating with other MCS
processes via network. Pleaser refer to Figure 1 (adapted from
a figure in [8]) for an illustration. One important feature of
the MCS model is that if a node crashes, both application
and MCS processes crash; hence, one does not need to worry
about the application reading inconsistent data due to failures

3In the system literature, convergence property belongs to a subset of more
general notion of “liveness.” To focus on the tradeoff, we adopt the liveness
property from traditional DSM literature (e.g., [?], [10], [29]), which only
requires an operation to complete in finite amount of time.
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Fig. 2: Client-server model.

of the MCS process. It is shown in [29] that Ahamad’s causal
memory implementation [4] can tolerate any number of node
failures in the MCS model.

B. Causal Memory in Client-Server Model

Recently there is a renewed interest in implementing causal
memory in geo-replicated storage systems (e.g., COPS, Eiger,
Bolt-on). The more appropriate model for these geo-replicated
stores is the client-server model where servers posses all the
key-value pairs, and clients only store values that they have
recently queried. Typically, clients and servers usually reside
on different physical machines in these storage systems. Please
refer to Figure 2 for an illustration.

Resilience is much harder to achieve in the client-server
model than in the MCS model. Consider the following ex-
ample: a client ¢ reads some value v for key k from server
p, and later p crashes, then the system must ensure that the
value v is stored at some place other than server p; otherwise,
either client ¢ cannot complete a new read operation on key
k, violating liveness (i.e., the operation cannot terminate), or
client ¢ reads some (old) value from other servers that violates
causal consistency. A similar dilemma also occurs when we
allow clients to cache recent data. Our lower bound proof
is a generalization of this observation, which is presented in
Section VI.

The main idea of consensus-based implementations in prior
causal storage system [38], [9] is using a cluster of machines
to jointly act as the server; hence, no “server” will ever crash
in their systems. In this work, we do not use consensus to
replicate the data across machines. Each server is executed
on one (virtual) machine, and may suffer crash failure. This
design choice significantly reduces the coordination overhead.

V. OUR ALGORITHM: RCM

One solution is to augment algorithm by Ahamad et al.
[4] so that it is fault-tolerant in the client-server model.
The trick is to use the reliable broadcast primitive [12] for
all the server-server and client-server communication. The
solution is possible, because n > 2f + 1 is sufficient for
implementing reliable broadcast on top of fair-loss links [12],
[44]. However, such a simple solution incurs high message



complexity, since to deliver one message, at least f+1 servers
need to be involved. The main contribution here is to devise
a cheap and simple algorithm. Specifically, our algorithm has
lower message complexity and lower latency than both the
augmented algorithm and ABD [5]. Note that ABD provides
atomicity, which is stronger than causal consistency.

We first describe a key element on tracking dependency (of
the happens-before relation). Then we present our algorithm
RCM (Resilient Causal Memory) followed by its correctness
proof.

A. Dependency Tracking

Dependency tracking is the key to implement causal mem-
ory, e.g., [34], [4], [33], [32]. RCM uses vector timestamp [34]
of size n. to keep track of potential causal ordering, where n.
is the number of clients. Having a vector timestamp of size
n. might seem prohibitively expensive for a system with large
number of clients. In the context of geo-replicated systems, n.
is usually moderate, because “clients” actually are proxies or
coordinators within the same system. Hence, the number of
clients are typically small in this scenario — in most cases,
ne < 10 (e.g., [1], [18]). It is left as an interesting future
work to reduce the size of the vector timestamp.

Each vector timestamp is a vector of n. entries: ¢ =
(t[1], ,t[nc]). Bach entry is a non-negative integer
that represents to the number of writes invoked and completed
by each client. Two timestamps ¢ and ¢’ are partially ordered
naturally: ¢ < ¢’ if for all 1 <34 <n,, t[i] <t'[i]. A careful
usage of the vector timestamp ensures that no stale value (with
respect to the causal ordering) can be read by a client. A client
uses the following function to merge its local timestamp and
the timestamp learned from servers. For two timestamps ¢ and
t', MERGE(¢,t') = (max{¢[1],t'[1]},- - ,max{t[n.],t'[n}).

B. RCM (Resilient Causal Memory)

The pseudo-code of RCM is presented in Algorithm 1 (for
server) and Algorithm 2 (for client). The algorithm uses two
communication primitives: send and multicast. Send is simply
a unicast to a specific receiver. Multicast sends a message
to each server. If the sender is a server, multicast will send
the message to itself as well. Recall that we assume a fair-
loss channel; hence, if both sender and the intended receiver
is fault-free, then the message will eventually be delivered.
However, if one end fails, then there is no guarantee that
the message is delivered. Furthermore, a message may be
delivered out of order.

1) Variables: Each server j keeps an array M in the local
memory, and M [k] stores the value corresponding to key k.
Server j also stores incoming update messages in a message
queue Q. Additionally, each server has a vector timestamp t/
of size n.. When the identity of j is clear, we often neglect j
in the notation of timestamp for simplicity.

Initially, the timestamp has O in each entry, and all the
variables M|[k] are set to L at the servers. For each write,
we also use an integer variable witness(x,x), which is
initialized to 0O, to keep track of how many servers have seen

this write request so far. The main purpose is to ensure that
enough servers have seen a request so that the request can
be safely written to the local memory. Essentially, this part
resembles reliable broadcast, and ensures that whenever a
server applies the write request, eventually all other fault-free
servers will apply the write request too.

Each client 7 has its local vector timestamp ¢, to keep track
of dependency. We will use ¢, if ¢ is clear from the context.
Client ¢ also has a non-negative integer counter that is
used to count the number of local operations at client ¢. The
purpose of counter is to extract the information from the
response messages corresponding to the counter-th opera-
tion. Finally, client ¢ has two buffers resp and writeBuf
that store the read responses and write acknowledgments from
the servers, respectively.*

2) Algorithm Flow: The algorithm is event-driven as prior
algorithms [4], [33], [32]. Servers are expecting three types
of messages: message with read and write operations from
the client and message with an update operation from other
servers. RECEIVING(*) function specifies the steps to take
when receiving the corresponding messages. When receiving
a read request, a server waits until it is safe to return the
value from its local storage (line 1 to line 3 in Algorithm 1).
When receiving a write request w, a server has to wait until it
applies w to its local storage through a lazy update mechanism,
and all the writes that happen before w (line 4 to line 7 in
Algorithm 1). The server compares the vector timestamps to
check whether these conditions have been met. Line 8 to line
15 in Algorithm 1 implement a variation of reliable broadcast
by forwarding messages and collecting enough witnesses.

UPDATE(*) function is used to apply the write operation to
local storage and update local timestamp ¢, and is executed
infinitely often. Moreover, it is also executed in parallel to
address the possibilities that messages might be added to the
@ in an arbitrary order. This part is similar to the lazy update
mechanism in prior works [4], [33], [32]. The key innovation
here is to integrate the update function with the codes in line
8 to line 15 in Algorithm 1, which ensures the following
properties when a message m is added to @ at server j: (i)
m will eventually be applied at server j if 7 has not crashed,
and (ii) other fault-free servers will eventually add m to Q.
This is because that we require witness(x,%) > f + 1,
which means that at least one fault-free server has “witnessed”
the message, and will eventually deliver this message to other
fault-free servers.

Clients provide read and write functions that specify how
to interact with the servers and how to update the local
timestamp t.. As discussed earlier, clients use MERGE to
merge timestamps from servers and its own local timestamp.
RECEIVING(*) function is also event-driven, which handles
messages received from servers.

4These two buffers could be eliminated in pseudo-code; however, we choose
the event-driven presentation to mimic a common practical implementation
which has a separate process that handles the receiving messages in the
background.



Algorithm 1 RCM for server j

Algorithm 2 RCM for client ¢

1: function RECEIVING(READ, k, i, counter;, t;)

2:  wait until ¢1[I] > ¢;[l], VI _

3: Send (RESP, counter;, M[k],t}) to client 4

4: function RECEIVING(WRITE, k, v, i, counter;, t;)

5: Multicast (UPDATE, k, v, %, counter;, t;, j)

6:  wait until ¢[1] > ¢,[l], VI

7: Send (ACK, counter;,t%) to client

8: function RECEIVING(UPDATE, k, v, i, counter;, t;, s)
9: \* witness(*,x) is initialized to 0 *\

10: if this is the first UPDATE message from s then

11: witness(i, counter;) < witness(4, counter;) + 1
12: if j has not sent this UPDATE message then

13: Multicast (UPDATE, k, v, %, counter;, t;,J)
14: if witness(4,counter;) = f + 1 then

15: Enqueuve (k,v,1,t;) to Q

16: \* this function is executed infinitely often *\
17: function UPDATE( )
18: if @ is non-empty then

19: (k,v,1,t;) < dequeue Q _

20: wait until #[i] = ¢;[i] — 1 and t[l] > t;[I], VI #i
21: \* update timestamp and write to local memory *\
22: th[i] « t;[i]; M[k] < v

C. Correctness

We first briefly discuss the intuition behind the proof. Causal
consistency follows from the usage of vector timestamp. This
part of the proof is inspired by the proof in the original causal
memory paper [4]. Our proof is more involved, since a client’s
local history is essentially a combination of different “views”
of the servers that the client has interacted with. This makes the
construction of a serialization of the client’s local history more
complicated. Liveness and the two convergence properties
follow from the usage of witness and the two aforementioned
properties in Section V-B2.

Correctness Proof: Let H be a history of any execution.
Based on the observations that the timestamp is always incre-
mented, and for a write operation, the writer client increments
its corresponding entry in the timestamp, the following lemma
can be proved by induction. Following the notation in [4],
ti(0) denotes the timestamp of operation o at any client i
(timestamps used at line 10 in Algorithm 2).

Lemma 1. Let 01 and o2 be two operations such that oy E)

0o. Then for any clients i and j, we have (i) t'(o1) < ti(02);
and (ii) if 0y is a write operation, then t'(o1) < tJ(03). The
same conditions hold if i = j.

Lemma 1 is then used to prove the safety property as stated
below. The proof is inspired by the one in [4] that cleverly
used the property of vector timestamps. There are two major
differences in our proof: (i) we need to find a complete history
H'; and (ii) the construction of a serialization S of H'|(¢;+W)
is different, as clients do not see all the writes (unlike the case
in MCS model where each node will all the write operations
eventually).

Theorem 1 (Safety). H satisfies causal consistency.

Proof of Theorem 1. Due to space constraint, we assume

1: function READ(k)

2: Multicast (READ, k, 4, counter, %)

3 wait until (counter,v,t) is in resp
4:  t! < MERGE(tl,t)

5: counter < counter +1

6: return v

7

8

9

: function WRITE(k, v)
: \* increment timestamp *\
thli] « ti[i] + 1

10: Multicast (WRITE, k, v, 4, counter, t%)
11: wait until (counter,t) is in writeBuf
12: ¢! < MERGE(t.,t)

13: counter ¢ counter +1

14: return WRITE-ACK

15: function RECEIVING(RESP, counter’, v,t)
16: Add (counter’,v,t) to resp

17: function RECEIVING(ACK, counter’, t)
18: Add (counter’,t) to writeBuf

the history H’ is complete and consists of only completed
operations. Please refer to [48] on how to obtain a complete
history H' from H. Then, the next step is to find a serialization
S of H'|(¢; + W) that respects the causal ordering. S is
constructed as follows:

o Let 01,09,...
tions.

» For each i’s operation o, let S(0) be any of the servers
from which the client ¢ received a reply message (write
acknowledgment or read response).

e Rule I: The serialization is concatenating all writes at
client ¢ as they are applied (line 14 of Algorithm 2) and
all reads as they occur (line 6). That is, all the operations
at client ¢ follows the same ordering of the local history
L.

e Rule 2: For the remaining write operations, we insert
them to S one-by-one in the order of increasing times-
tamps (breaking tie arbitrarily). For each remaining write
w, iterate through S and find the first operation o such
that #J(w) < t.(0) for some clients j, 1. Insert w right
before o.

denote the sequence of client i’s opera-

Claim 1. Using the construction above, S is a serialization.

Proof. Suppose it is not, which means that there are consec-
utive operations wy,ws and 7 on the same variable k£ in S
such that (i) wy precedes wo and wo precedes r in S; and
(ii) r returns the value written by write w;. If ws is client 2’s
write, then the scenario is impossible due to (i) S respects the
program order (by Rule 1), and (ii) ! (wy) < ti(wq) < ti(r)
(by Lemma 1). Now consider the case when ws is some other
client j’s write. Since wy is inserted before r in S, we have
ti(we) < ti(r). By construction, there must be some server
s, from which client ¢ received a response to complete read
r or some operation prior to read r, letting client ¢ know the
existence of ws, since t1(ws)[j] < t%(r)[j]. As a result, read
r must return the value written by wsy or some value “newer”
than the one by wo, a contradiction. In both cases, we derive



a contradiction, proving the claim. O

Using a similar argument in [4] which is based on Lemma
1 and the property of the timestamps, we can show that W

is a partial order in H’, since E) is acyclic by the definition

of vector timestamp. Finally, we use the following claim to
complete the proof of Theorem 1.

Claim 2. Let 01 and o2 be two operations in H'|(c; + W)
such that oq E) 09, 01 precedes os in S.

Proof. The proof is by contradiction. Suppose that for some
01 and o0s, 07 E) 0o and oy precedes 07 in S. By Lemma

1, we have tJ(01) < t.(0y) for some j,1. Then, o; cannot be

inserted due to Rule 2 of the construction of S. This means that

both 0; and o, are operations by client . And by Rule 1, 09

occurs before o; in L;. This contradicts with the assumption

that oy — 0o. O]
cc

Observe that due to lines 8 to 15 in Algorithm 1, if
m = (k,v,i,t;) is in any server’s (), then eventually m will
be in any other fault-free server’s (). We can then use this
observation to prove liveness.

Theorem 2 (Liveness). Any operation o can be completed
eventually at fault-free clients.

Proof. The claim below follows from the observations: (i)
|witness(x)| > f+1; (i) among these f+1 servers, at least
one is fault-free, say s; and (iii) every other fault-free server
will receive s’s multicast message at line 13 of Algorithm 1.

Claim 3. If m = (k,v,i,t;) is in any server’s Q, then
eventually m will be in any other fault-free server’s Q.

Consider a server s with m inside its (). By induction and
Claim 3, it is easy to see that server s can increment each entry
until the point where #/[i] = ¢;[i] — 1 and tI[I] > t;[l], VI # .
To see this, suppose client ¢ increments the [-th entry of its
timestamp, which means some server (in the write quorum)
has applied the corresponding write operation from client [,
say w;. Then, by Claim 3, server s will also be able to receive
wy, and eventually increment the [-th entry of ¢5 and catch up
to the point of ¢;. [

Finally, the following theorem can be proved based on the
observation that each completed write operation will eventu-
ally be propagated to all the fault-free servers.

Theorem 3 (Persistence). H satisfies persistence as per
Definition 3.

Theorems 1, 2, and 3 together prove that RCM is correct
given that n > 2f + 1.
VI. LOWER BOUND

In the section, we show that 2f + 1 is the lower bound on
the number of servers for an f-resilient causal memory, i.e.,
a causal shared memory that tolerates up to f server crashes

w;(x)1

Clientc; |——

Client ¢;

ri(x)? r

Fig. 3: Intuition for Theorem 4.

and any client crash. Due to space limit, we only present the
theorem and the intuition behind the proof. Pleaser refer to
[48] for details.

Theorem 4. If there exists an f-resilient DSM that satisfies
liveness and persistence, then the system consists of at least
2f + 1 servers, i.e., |S| =n>2f+ 1.

In Theorem 4, we do not include the safety condition, since
it turns out that liveness and persistence together already imply
the lower bound. The proof is an adaption of the proof showing
that an atomic shared memory is not possible when there
are strictly less than 2f + 1 servers [5]. Our proof is more
complicated due to the “eventual” feature in the definition of
persistence.

In our proof, we formally show that if n < 2f, then the
scenario in Figure 3 is possible. Particularly, after ¢; completes
a write w;(x)1 and crashes, then it is possible that another
client ¢; might never be able to read the value 1 on the same
key x. While the intuition is simple, the full proof relies on
some delicate lemmas and notions that were introduced in
prior work [23], [6], [26] such as execution, legal execution, A-
free execution for some set of nodes A, and extended history.
The key tool to show contradiction in our proof is based on
the indistinguishability argument [23], [6]. More precisely, we
create two executions that are indistinguishable to the client
node c¢;, because it observes the same message pattern in both
executions. Then we show that either liveness or persistence is
violated in an execution. Hence, no such DSM implementation
exists if n < 2f. Please refer to [48] for complete discussion
on the notions and tools, and the full proof.

VII. EVALUATION

In this section, we first describe our implementation and the
tools used, then report our evaluation results.

A. Implementation

We chose Golang® (Go) to implement our system. It is
an open source language developed by Google, which aims
for efficiency and ease-of-use for developing concurrent and
distributed applications. Moreover, it is a lightweight, statically
typed, and compiled language, and its concurrency mecha-
nisms (such as channels) makes development of distributed
systems much easier. Finally, there are many open-sourced
Golang projects, which simplifies our development. Specif-
ically, we use the following open-sourced projects in our
implementation:

Shttps://golang.org/
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o For writing and reading data into and from disk, we use
diskv,® a persistent disk-backed key-value storage system.

o For point-to-point communication among servers, and
between servers and clients, we use ZeroMQ (ZMQ).”
ZMQ is a high performance and asynchronous distributed
messaging system. We chose ZMQ over raw TCP because
of its simple socket management. Moreover, it provides
a thread-safe message queue, enabling us to remove a
number of mutex locks that are blocking some concurrent
operations. Compared to the TCP-based design, ZMQ
speeds up the efficiency by a considerable amount. We
also use a third-party Go-binding library zmg4® to dy-
namically control ZMQ in our system.

ZMQ provides several scalable messaging patterns to
for different application scenarios. We adopt the Publish-
Subscribe (Pub-Sub) pattern for the Multicast primitive, and
the Extended Request-Reply pattern for replying message for
the Send primitive. The Pub-Sub pattern is a data distribution
pattern which connects set of publishers and set of subscribers.
This type of one-way architecture satisfies the need of multi-
casting messages and listening for messages. It is particularly
useful when the sender does not expect the response a priori.
The Extended Request-Reply pattern is a non-blocking request-
response pattern that allows us to build the asynchronous
communication pattern.

Ohttps://github.com/peterbourgon/diskv
"https://zeromq.org
8https://github.com/pebbe/zmq4

B. Experiment Setup

All evaluations were performed on virtual machines (VM)
in Google Cloud Platform (GCP). Each node (both client and
server) is executed on a separate VM of type nl-standard-2
with 2 virtual cores and 7.5 GB RAM. In all the experiments,
we have three servers and two clients. Our workload generator
at the client continuously sends out read or write requests to
the servers. There are 10 keys, and in each run of the ex-
periments, we generate 10,000 operations uniformly random
on the keys. It is known that the bottleneck of distributed
replicated storages is the concurrent operation on the same
key-value pairs. Therefore, we have high ops/key ratio to
understand the worse scenarios. We expect to see performance
improvement if there are more keys accessed.

We test our implementation in both local area network
(LAN) case and wide-area network (WAN) case:

e LAN: all servers and clients are in the same datacenter
in GCP. The measured average round-trip time (RTT)
between any two VMs is around 250us.

o« WAN: all nodes are in different continent. We have one
server in South Carolina (North America), one server in
London (Europe), one server in Tokyo (Asia), one client
in Sao Paulo (South America), and one client in Sydney
(Australia). The measured average RTT is around 200m:s.

In addition to the location of the VMs, we also control two
variables in our experiments:

e Data size: the size of value in each key-value pair. We
test three sizes: 32 Bytes, 1024 Bytes (1KB), and 32 KB.
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e Read/Write ratio: the ratio between the number of read
operation and the number of write operation. We test
30/70, 50/50, and 70/30, where first number represents
the percentage of read operations among total operation.

The reason that these variables are of interest is the results

would demonstrate the impact of higher concurrency (due to
higher write ratio) or higher network latency (due to larger
value to be transmitted over the network). We report the
average of five runs for each experiment configuration.

C. Evaluation Results

We compare RCM with the well-known fault-tolerant al-
gorithms ABD [5] and SBQ [43]. ABD and SBQ achieves
atomicity in the presence of crash and semi-Byzantine faults,
respectively. SBQ assumes fault-free clients and the timestamp
is always correct (i.e., incorruptible); hence, it does not tolerate
full Byzantine faults. For SBQ, we set Read and Write
quorums to 3; For all three algorithms (ABD, SBQ, and RCM ),
we set f to 1.

The first set of figures show the read latency, write latency,
and throughput per client of the three algorithms in LAN under
different data size with a write ration of 0.1 in Figures 4a, 4b,
and 4c respectively. The second set of figures show the read
latency, write latency, and throughput per client of the three
algorithms in LAN under different write ratio with data size 64
Bytes in Figures 5a, 5b, and 5c respectively. The third set of
figures show the read latency, write latency, and throughput per
client of the three algorithms in WAN under different data size
with a write ration of 0.1 in Figures 6a, 6b, and 6¢ respectively.
We present more evaluation results in [48].

We summarize a few interesting points below:

e One interesting observation is that as the read ratio
increases, all the algorithms have higher throughput. This
might be owing to the effect of concurrent writes and the
fact that write operation takes longer to complete as all
the data has to be written to the disk.

o Results in WAN and LAN have similar patterns. However,
due to much higher network latency, the difference among
the latency of each algorithm is more significant. Our
algorithms show significant improvement in latency over
ABD and SBQ.

o While ABD and SBQ are relatively stable with different
read-write ratio, RCM has lowest performance when read-

write ratio is 30/70. This may be due to the increasing
buffer size when most operations are writes, which leads
to a slowdown in local computation.

e In all cases, RCM has higher throughput than ABD and
SBQ, indicating that it is a good alternative for latency-
sensitive applications if atomicity can be sacrificed.

Note that the client is single-threaded, so the throughput

is unreasonably low for practical usage. This can be easily
addressed by increasing the parallelism of the client workload
generator. The main purpose of the evaluation is to test
the performance under different network scenarios. Such an
optimization is left as an interesting future work.

VIII. SUMMARY

In this paper, we first identify the difference between MCS
model (multi-processor environment) and client-server model.
The main result is showing that 2f + 1 servers is both
necessary and sufficient to implement causal shared memory
in asynchronous networks with crash-prone nodes. We also
perform evaluation in GCP and demonstrate that RCM is faster
than ABD and SBQ.

There are several interesting open problems. We list three
important ones below:

¢ A more efficient mechanism to track dependency to

reduce the timestamp size.

« A weak enough but still useful convergence property to
reduce the required number of servers.

A causal shared memory implementation to tolerate more
severe types of failures, e.g., Byzantine failures.
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