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Abstract—Shared register emulations on top of message-
passing systems provide an illusion of a simpler shared memory
system which can make the task of a system designer easier.
Numerous shared register applications have a considerably high
read to write ratio. Thus having algorithms that make reads
more efficient than writes is a fair trade-off.

Typically such algorithms for reads and writes are asymmetric
and sacrifice the stringent consistency condition atomicity as it is
impossible to have fast reads for multi-writer atomicity. Safety is
a consistency condition has has gathered interest from both the
systems and theory community as it is weaker than atomicity yet
provides strong enough guarantees like “strong consistency” or
read-my-write consistency. One requirement that is assumed by
many researchers is that of the reliable broadcast (RB) primitive,
which ensures the all or none property during a broadcast. One
drawback is that such a primitive takes 1.5 rounds to complete.

This paper implements an efficient multi-writer multi-reader
safe register without using a reliable broadcast primitive. More-
over, we provide fast reads or one-shot reads – our read operation
can be completed in one round of client-to-server communication.
Of course, this comes with the price of requiring more servers
when compared to prior solutions assuming reliable broadcast.
However, we show that this increased number of servers is indeed
necessary as we prove a tight bound on the number of servers
required to implement Byzantine-fault tolerant safe registers in
a system without reliable broadcast.

We extend our results to data stored using erasure coding as
well. We present an emulation of single-writer multi-reader safe
register based on MDS code. The usage of MDS code reduces
storage cost and communication cost. On the negative side, we
also show that to use MDS code and achieve one-shot read at
the same time, we need even more servers.

Index Terms—Byzantine faults, MDS codes, Safe registers,
Reliable broadcast.

I. INTRODUCTION

A longstanding vision of distributed computing has been to
design algorithms that emulate reliable systems on unreliable
components. For example, fault tolerant storage [1], reliable
broadcast [2], atomic broadcast [3], failure detectors [4],
etc. As we are increasingly dependent on services (online
banking software, e-shopping, online auctions, etc) provided
by distributed systems over the Internet, “fault-tolerance” is
becoming a necessary property of these services in order to
make them usable.

These faults can range from benign (crash-faults) to ex-
tremely adversarial (Byzantine faults). The term “Byzantine”
fault represents the whole spectrum of failures imaginable
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ranging from malicious attacks and operator mistakes to
software errors and conventional crashes. Driscoll et al. [5]
presented a case study of Byzantine faults in several real-
world applications. Naturally, over the past four decades, there
has been a significant work on developing Byzantine-fault
tolerant solutions to distributed problems like consensus [6] and
read/write registers [7]. In this paper, we focus on Byzantine-
tolerant read/write registers, as it has prevalent usage in industry,
e.g., geo-replicated key-value storage (Cassandra [8]), and
distributed shared memory (Redis [9]).

A. Read/Write Register

The emulation of shared storage on top of a message passing
system allows the system designers to develop applications
designed for the simpler shared memory model. Typically such
emulation algorithms provide fault-tolerant storage of shared
data by replicating the data on to several data stores. The
ABD algorithm [1] showed that it is possible to implement a
shared atomic register on top of an n-process asynchronous
message-passing system if just a majority of servers were not
crash-faulty.

This paper set forth a wave of research papers on fault-
tolerant read/write registers. Although the theory literature has
a huge body of work implementing atomic registers, in practice
atomicity can be quite expensive and unnecessary. For example,
popular geo-replicated storages such as Amazon Dynamo and
Cassandra all adopt a weaker notion of consistency. Bailis
et al. [10] quantitatively demonstrate how such eventually
consistent systems offer significant latency benefits over full
quorums.

Consistency conditions like safety [11] and regularity are
weaker than atomicity and can be cheaper to implement with
improved latencies of operations, especially read operations.
In many applications [12]1, the number of read operations
are much larger than the number of writes. As a result it is
desirable to have reads that are faster than writes.

In a semi-fast register implementation the read (or write) op-
eration is fast and the write (or read) operation is slow. Since it
is impossible to implement a semi-fast multi-writer/multi-reader
(MWMR) atomic register even with just crash failures [13],
we choose to sacrifice atomicity to achieve a semi-fast safe

1This paper states that across all Facebook products, read requests form
around 99.8% of of all operations while write requests form only around
0.2%



register with fast reads. In our emulation, our read only takes
one round of client-to-server communication, achieving optimal
round complexity.

B. To RB or Not to RB

It is a common practice in the literature of shared read/write
registers (e.g., [14], [15]) to assume the existence of a reliable
broadcast primitive [2] or communication layer that ensures
the eventual “all or none” property. Closely related work in
the literature is discussed in Section VI.

In this paper, we take a different route. We show that it is
possible to implement a Byzantine-tolerant safe register without
the existence of a reliable broadcast mechanism if we assume
more redundancy, i.e., our model assumes f more servers than
the results [15] that assume reliable broadcast where f is the
maximum number of servers that can be Byzantine faulty.

Again, our design choice is motivated by the observation that
reducing response time is one of the most important goals in
many latency-sensitive applications. Plus, most storage systems
can be built upon commodity machines, making the cost of
adding f extra machines minimal. Finally, reliable broadcast is
simple to argue with, but it comes with a cost. Such an “all-or-
nothing” property is typically not guaranteed by any networking
protocol. Reliable broadcast implementation on top of reliable
point-to-point channel typically requires 1.5 rounds of delay,
e.g., [2]. If an emulation algorithm uses reliable broadcast
for every message exchanged, the accumulated latency will
eventually become blow up by a factor of 1.5.

C. Erasure Coding

To further reduce latency, we also consider a practical
approach – reducing communication bandwidth consumption.
This will be particularly useful when network has limited
bandwidth or the data is too large. We achieve this by using
erasure coding-based approach. An added benefit of using
erasure codes is the reduced storage space at each server.

In comparison with the traditional replication-based approach
(i.e., all servers storing the same copy of data), consistent mem-
ory emulation algorithms that use erasure codes reduce both
the storage and communication costs of the implementation.
In an erasure coding-based algorithm, an [n, k] erasure code
splits the value v of size 1 unit into k elements, each of size 1

k
units, creates n coded elements, and stores one coded element
per server. The size of each coded element is also 1

k units,
and thus, the total storage cost across the n servers is n

k units.
Same analysis applies to bandwidth consumption as well.

A class of erasure codes known as Maximum Distance
Separable (MDS) codes have the property that value v can be
reconstructed from any k out of these n coded elements. The
usage of MDS codes to emulate consistent and fault-tolerant
shared storage is an ongoing research topic, including tolerating
crash-failures [16], [17] and Byzantine failures [18], [14]. None
of the prior solutions that we know of provides fast read or
one-shot read.

D. Main Contributions

Motivated by the practical interests in reducing latency, we
have the following positive results:
• An algorithm emulating Multi-Writer-Multi-Reader

replicated-based safe register with one-shot read (Section
III).

• An algorithm emulation Single-Writer-Multi-Reader 2

erasure coding-based safe register with one-shot read
(Section IV).

We also briefly discuss two methods to extend our work to
provide an even stronger guarantee, Multi-Writer Regularity.
All our algorithms do not assume the existence of reliable
broadcast.

Our replication-based algorithm requires n ≥ 4f+1, whereas
our erasure coding-based algorithm requires n ≥ 5f+1. These
numbers are worse than prior solutions that only require n ≥
3f + 1, e.g., [15]. However, we show in Section V these two
numbers are necessary. In other words, the propose solutions
have optimal resilience and optimal round complexity of reads.

II. MODELS AND DEFINITIONS

In this section, we describe the models of computation,
explain the concepts of safe and regular registers, erasure
codes, and the performance metrics used in the paper.

A. System Model

We consider a distributed system consisting of asynchronous
processes of three types: a set of readers, a set of writers and a
set of n servers. The readers and writers are together referred
to as clients. Asynchronous means processes progress at their
own speed, which can vary with time and remains always
unknown to the other processes. There is also no bound on
the message delays.

Each process is associated with a unique identifier (ID), and
we denote the sets of IDs of the readers, writers and servers
as R, W and S, respectively. The set R ∪ W ∪ S forms a
totally ordered set under some defined relation (>), for example
lexicographical order if the IDs are alphanumeric strings.

The reader and writer processes initiate read and write
operations, respectively, and communicate with the servers
using messages. At all times, at most one operation can run
on a client.

At most f servers can be Byzantine faulty, i.e., it can behave
arbitrarily and deviate from the algorithm in any way. For
example, a Byzantine server can send incorrect register values,
incorrect timestamp values, no reply or multiple replies to
a certain request, etc All clients may suffer crash failures;
otherwise, they follow the protocol specification.

We assume that every client is connected to every sever by
bidirectional reliable communication channels that neither loses,
duplicates nor creates messages, but may reorder messages
arbitrarily. The model allows the sender process to fail after

2Our implementation actually provides stronger guarantees than Single-
Writer-Multi-Reader safety. It can tolerate multiple writers as long as writes
are not concurrent.



placing the message in the communication channel; message-
delivery depends only on whether the destination is non-faulty.
This means that as long as the destination process is non-
faulty, any message sent on the link is guaranteed to eventually
reach the destination process. We do not make any assumptions
regarding relative order of message delivery in the same channel.
The communication channels connecting servers and clients
provide message authentication using digital signatures [19].
This prevents Byzantine servers from spreading misinformation
about the sender of a message.

B. Shared Memory Abstraction

Our system consists of a finite set of shared variables (or
read/write objects). The object values v come from some set
V ; initially, v is set to a distinguished default value v0 (∈ V ).
Reader r requests a read operation on object x. Similarly, a
write operation is requested by a writer w.

Each operation at a non-faulty client begins with an invoca-
tion step and terminates with a response step. An operation π is
incomplete in an execution when the invocation step of π does
not have the associated response step; otherwise, we say that π
is complete. An execution is set of possibly infinite sequences
(one for each process) of invocation and responses. In an
execution, we say that an operation (read or write) π1 precedes
another operation π2, if the response step for π1 precedes the
invocation step of π2. Two operations are concurrent if neither
operation precedes the other.

A response event er is said to match an invocation event
ei if (i) they are associated with the same client, and (ii) ei
precedes er at the invoking process. An execution is said to
be valid if for every client process: (i) it is empty (client
crashes before invoking any operation), or its first event is an
invocation; (ii) an invocation can only be followed by a client
crash event or a matching response event; (iii) every invocation
event has at most one matching response event; and (iv) there
are no more events after the client’s crash event (if there is
any). An operation is said to be live if it terminates within a
finite amount of time.

C. Definitions

We define our consistency conditions over complete op-
erations in an execution. We present the definition of the
correctness conditions safety [11] and regularity [15], [20] for
multi-writer multi-reader (MWMR) registers.

Definition 1. A MWMR register is safe if it satisfies the
following (i) a read r that is not concurrent with any write
returns the value of some write w that precedes r, as long as
no other write falls completely between w and r (ii) otherwise
the value returned is within the register’s allowed range of
values.

Definition 2. A MWMR register is regular if it satisfies the
safety property above and the linearization of any two reads
agree on the ordering of all writes that began before both the
reads complete.

Note that both consistency conditions imply some form of
“strong consistency” used widely in industry – no stale version
of value will be read. The discussion is intentionally informal,
as there is no standard definition of “strong consistency” used
in industry. Here, we follow the RIAK discussion on strong
consistency.3

Another important property is the fast read or one-shot
read. For a read operation, a round (or round-trip delay)
consists of a read request message from the client initiating
the read operation to the server, and subsequently, the server
sending at least one version of the object value in its response.
No server-to-server is involved in the process.

Definition 3 (One-Shot Read). One-shot reads require that
each read operation completes in one round of client-to-server
communication.

III. BSR ALGORITHM

In this section, we present the algorithm for Byzantine
replication-based Safe Register (BSR). In our algorithm, we
rely on the notion of witness at a reader client Cr. A server p
is called a witness of value v if p sends v to Cr as a response
to a read request from Cr.

A. Pseudocode

Below we describe the key elements of the emulation
algorithm BSR before presenting the pseudocode in Figures 1,
2, and 3

a) State Variables: Every server si, for i ∈ [n], contains
a list L of pairs of tags and values corresponding to each
written value stored. Initially L has only the initial value v0
of the register.

b) Write Operation: A write operation initiated by some
writer w consists of two phases get-tag and put-data. In the
get-tag phase, w sends a message of type QUERY-TAG to all
servers in S and waits for responses from n− f servers from
which it selects the (f + 1)-th highest tag t. Then the writer
initiates the put-data phase where it creates a new tag as
(t.num+ 1, w), and sends the message (PUT-DATA, (tw, v)) to
server si in S for any i ∈ [n]; v is the value the writer wants
to write to the register. Once w receives acknowledgements
from n− f servers w completes the write.

c) Read operation: A read operation initiated by some
reader r consists of only one phase, which we refer to as
get-data. During this phase r sends out read request messages
in the form of (QUERY-DATA) to servers in S and waits for
responses from n − f servers in S. Reader r completes the
read by returning value with the highest tag that was verified
by at least f + 1 servers. otherwise it returns the most recent
value it has previously heard of (which may be the initial value
v0).

d) Server responses: The servers responses correspond
to the two phases for the writers and one phase for the reader.

3https://docs.riak.com/riak/kv/latest/learn/concepts/strong-consistency/
index.html

https://docs.riak.com/riak/kv/latest/learn/concepts/strong-consistency/index.html
https://docs.riak.com/riak/kv/latest/learn/concepts/strong-consistency/index.html


Response to writers: When any server si receives a
(QUERY-TAG) message from a writer w, a get-tag-resp occurs,
during which si responds by sending the maximum of tag
stored in its L to w. When a server si receives a message
(PUT-DATA, (tin, vin)), a put-data-resp occurs at si where if
the incoming tag tin is higher then the tags in L then si adds
(tin, vin) to L, and sends an acknowledgement to w.

Response to readers: When si receives a (QUERY-DATA)
from a reader r, a get-data-resp occurs where si sends
the locally available (tmax, cmax) pair (corresponding to the
highest tag tmax in L) to r.

Fig. 1 BSR for write operation write(v)w, for writer w ∈ W .
1: get-tag:
2: Send QUERY-TAG to servers in S
3: Wait for responses from n− f servers in S
4: Select the (f + 1)-th highest tag t

5: put-data:
6: Create new tag tw = (t.num + 1, w).
7: Send (PUT-DATA, (tw, v)) to servers in S
8: Wait for ACKs from n− f servers in S

Fig. 2 BSR for read operation, readr, for reader r ∈ R.
1: Initially (tlocal, vlocal) = (0,⊥, v0)
2: get-data:
3: Send (QUERY-DATA, treq) to servers in S
4: Wait for responses from n− f servers in S
5: P ← the set of all pairs with ≥ f + 1 witnesses
6: Select pair, say (tr, vr), with the highest tag among P
7: if (P 6= ∅ & (tr, vr) > (tlocal, vlocal)) then
8: (tlocal, vlocal) = (tr, vr)

9: Return value vlocal

Fig. 3 BSR for any server s ∈ S.
1: State Variables:

L ⊆ T × V , initially {(t0,⊥)}
2: get-tag-resp (QUERY-TAG) from w ∈ W:
3: Send max{t : (t, ∗) ∈ L} to w

4: put-data-resp (PUT-DATA, (tin, vin)) received:
5: if tin is higher than the locally available tag then
6: L← L ∪ {(tin, vin)}
7: Send ACK to writer w of tag tin
8: get-data-resp (QUERY-DATA) from r ∈ R:
9: Send the locally available (t, v) pair.

B. Correctness of BSR

Theorem 1. BSR satisfies liveness if at any point of the time,
n− f servers are available, i.e., at most f servers crash.

Proof. All operations (reads and writes) wait for only n− f
replies from the servers. Thus liveness is satisfied if there are
n− f correct servers in the system.

Lemma 1. For each pair of read r and write w, if w completes
before r begins and r is not concurrent with any write, then

the timestamp of w ≤ the timestamp of r.

Proof. A client has to hear from at least n− f servers for an
operation to complete. The write operation w completes by
contacting server set W1, and, |W1| ≥ n−f . Let the timestamp
of the write be m. Thus the timestamp at the servers in W1

after w completes will be ≥ m. Suppose the read operation
r contacts the server set R1 with |R1| ≥ n − f . Since we
assume that n ≥ 4f + 1, |W1 ∩ R1| ≥ 2f + 1, which means
the timestamp ≥ m was written to at least 2f + 1 servers that
r reads from. Of these at most f are Byzantine faulty, and
thus, the (-th highest tag will be ≥ m.

Lemma 2. The write operations are totally ordered by
timestamp, and the resulting order respects the real-time order.

Proof. Every write operation has two phases: get-tag and
put-data. The get-tag phase collects the tags of the most recent
writes known by the servers and the put-data phase sends out
the new value and timestamp to be updated by the servers.
Note that servers update their local value only as a response
to put-data. Every pair of writes w1 and w2, will satisfy one
of the following conditions:
• Case 1: The writes are not concurrent.

WLOG, let w1 completes before w2 starts and let the
timestamp of w1 be m. This means, at least n−f servers
have heard of w1 and thus their timestamp is ≥ m. When
w2 is invoked, at least n − 2 ≥ 2f + 1 of these nodes
reply to the get-tag query for w2. Since at most f nodes
can be Byzantine faulty, the f + 1th highest tag (by line
number 4) id at least m. This tag value gets incremented
by 1 in the next phase. Thus the tag value of w1 is strictly
smaller than that of w2

• Case 2: The writes are concurrent.
This means that the real time of w1 and w2 overlap with
each other. In this case, there may be two scenarios:

– One write hears about the other concurrent write in
the get-tag phase. WLOG, let w2 hears about w1 in
its get-tag phase4. This scenario is similar to Case 1
and the tag of w2 will be larger than that of w1.

– The two writes are unaware of each other. In this
case, the get-tag query returns the same tag value for
both the write operations. Since a writer can have at
most one write operation the “tie” is broken by the
total order on the ids of the two writers.

Lemma 3. For every read operation r, there exists w denoted
ρ(r) such that it is some write operation that began before r
began, such that r returns the value written by w or the initial
value v0 and has the same timestamp as w or 0.

Proof. Any value v returned by a reader R at the end of a
read operation r must have f + 1 witnesses. If not R returns
the last known value, which is v0 initially. This ensures that
at least one fault-free server S has sent v to R. Since S is

4This is possible if at least one server has heard of the put-data phase of
w1 and has sent out her ack but w1 hasn’t completed because some messages
related to this write are still in transit



fault-free, v is written by some write wi or is the initial value
v0. Moreover, by definition, when R receives the value v, the
read operation r is not terminated yet. In other words, w must
have begun before r terminates. Letting ρ(r) = w completes
the proof.

A completed write is a write operation that executes line
number 8 of Algorithm 1 and a completed read is read operation
that executes line number 9 of Algorithm 2.

Theorem 2. Every well-formed execution of BSR satisfies
safety given n ≥ 4f + 1.

Proof. We show that, for every execution, there is a total order
on each completed read r and completed writes that begin
before r begins. We now show that the execution satisfies
safety. Intuitively, the lemma holds because for each completed
read r we can construct a total order on r and completed writes

It is easy to see why a natural construction based on
timestamps leads to a legal order. There are three cases to
consider:
• A write followed by a read: due to Lemma 1
• A write followed by a write: due to Lemma 2
• A read followed by a write: due to Lemma 3.
Consider any read r. We now show how to construct a total

order τr on the set consisting of r and all write operations as
follows:
• Case I: If r is not concurrent with any write:

1) Order all the writes that began before r before any
write that began after r.

2) Order all the writes that began before r in timestamp
order among themselves.

3) Order all the writes that began after r in timestamp
order among themselves.

4) Order r immediately after ρ(r) before the following
write.

• Case II: If r is concurrent with some write:
1) Order all writes based on timestamps
2) Order r immediately after ρ(r) before the following

write.
From lemma 3, we know that ρ(r) exists; hence, such a

construction is always feasible. The total order is legal by
construction because a read concurrent with a write returns
some valid value (∈ V ) and a read not concurrent with any
write returns the value of the most recent write. Using the
construction above, the total order on the writes respects real-
time order (from Lemma 2).

This completes the proof of Theorem 2.

C. MWMR Regular Register from BSR algorithm

Regularity is a stronger consistency condition than safety as
indicated by the following theorem.

Theorem 3. The BSR algorithm does not satisfy regularity

Proof. Consider a system with n = 5 and f = 1 as follows: 5
servers {S1, · · · , S5}, 5 writers {W1 · · ·W5} and 1 reader {R}.

WLOG, suppose server S5 is faulty. Writer W1 performs a
write of value v1 which completes by contacting all the servers.
After w1 completes, writers W2 to W5 initiate one write each
that write values v2, v3, v4 and v5 respectively. The get-tag
phase (line number 4 of Algorithm 1) of each of these writes
completes quickly. The PUT-DATA message (line number 7 of
Algorithm 1) sent out for each of these writes reaches servers
S2, S3, S4 and S5 quickly and these servers Si update their
local value to vi. However the other messages sent out in the
put-data phase are slow. Assume the R starts a read after each
server Si has updated its value to vi. All messages related to
this read are fast and servers S1, · · · , S5 reply with their local
values which are currently v1, v2, v3, v4 and v5 respectively. As
a result, the set P on line number 5 for the read is empty and the
reader R returns the initial value v0, violating regularity.

In order to ensure regularity of operations we can modify
the BSR algorithm in two different ways:
• We can send the history of writes to a reader. We change

line number 9 of Algorithm 3 to send the entire history
of writes (L) instead of sending just the locally available
(t, v) pair.

• We make the reads slow. Each read has two phases as
well. A get-tag phase and a get-data phase. The get-tag
phase is similar to the one in the writer algorithm. But
the get-tag-resp from the servers is different. Instead of
the most recent tag value, the sever sends a history of all
the tags back to the reader. The reader chooses the largest
tag t verified by ≥ f + 1 servers and in the get-data
phase, asks the servers for the write corresponding to this
tag t. A read is complete when the reader receives f + 1
matching replies corresponding to the get-data request.

These two different approaches to BSR takes into account the
worst case scenario mentioned in Theorem 3 and guarantees
regularity. The full algorithms and proofs will be presented in
the future technical report.

IV. BCSR ALGORITHM

In this section, we present the algorithm for Byzantine Coded
Safe Register (BCSR). We will first focus our discussion on
SWMR safety, as it will be easy to show that there does not
exist a one-shot erasure coding-based MWMR safe register.

A. MDS Erasure Code

In our algorithm, we rely on the MDS code that fix erroneous
coded elements. Particularly, we will use [n, k] MDS code for

k = n− f − 2e,

where f is the maximum number of erasures and e is
the maximum number of erroneous coded elements used in
decoding. The meaning of erroneous element will become
clear later. In our emulation algorithm, e is bounded by 2f .
Therefore, k = n− 5f .

In BCSR, we use a linear [n, k] MDS erasure code [21]
over a finite field Fq to encode and store the value v among
the n servers. An [n, k] MDS erasure code has the property



that any k out of the n coded elements, computed by encoding
v, can be used to recover (decode) the value v.

For encoding, v is divided into k elements v1, v2, . . . vk with
each element having size 1

k (assuming size of v is 1). The
encoder takes the k elements as input and produces n coded
elements c1, c2, . . . , cn as output, i.e.,

[c1, . . . , cn] = Φ([v1, . . . , vk]),

where Φ denotes the encoder. For ease of notation, we simply
write Φ(v) to mean [c1, . . . , cn].

The vector [c1, . . . , cn] is referred to as the codeword
corresponding to the value v. Each coded element ci also
has size 1

k . In our scheme we store one coded element per
server. We use Φi to denote the projection of Φ on to the ith

output component, i.e., ci = Φi(v). Without loss of generality,
we associate the coded element ci with server i, 1 ≤ i ≤ n.

Recall that the decoder function Φ−1 can correctly decode
the original value if the input contains n− f coded elements
and among these used elements, up to e may be erroneous. In
our scenarios, a coded element may be erroneous if the server
is Byzantine faulty or the server is slow (hence, returning stale
data, i.e., an earlier version of the value).

B. BCSR Pseudocode

Below we describe the key elements of the emulation
algorithm BCSR before presenting the pseudocode in Figures
4, 5, and 6:

a) State Variables: Every server si, for i ∈ [n], contains
a list L of pairs of tags and coded elements corresponding to
the i-th coded elements for values stored. Initially L has a set
of initial values, corresponding to the default or initial value
stored in the object.

b) Write Operation: A write operation is very similar
to the one in Fig 1. The only difference is that the writers
send out a coded element (PUT-DATA, (tw, ci)) instead of the
complete value of the simulated register.

c) read operation: The query part of the read operation
is similar to the read operation in BSR. After the (QUERY-
DATA) message is sent out, r waits for responses from n− f
servers in S, to receive coded element ci from server i ∈ S.
Reader r completes the read by returning the decoded value,
vr, ← Φ−1(ci), if possible, otherwise, the default value v0 is
returned.

d) Server responses: The get-tag-resp at any server is
the same as in BSR. The put-data-resp is similar to BSR
except that the server stores the timestamp, code pair instead
of the entire value of the register. The get-data-resp occurs
when si receives a (QUERY-DATA) from a reader r, where si
sends the locally available (tmax, cmax) pair corresponding
the highest tag tmax in L.

Fig. 4 BCSR: write operation write(v)w for writer w ∈ W .
1: get-tag:
2: Send QUERY-TAG to servers in S
3: Wait for responses from n− f servers in S
4: Select the (f + 1)-th highest tag t

5: put-data:
6: Create new tag tw = (t.num + 1, w).
7: Send (PUT-DATA, (tw, ci)) to si for i ∈ [n] , where ci = Φi(v)
8: Wait for ACKs from n− f servers in S

Fig. 5 BCSR for read operation, readr, r ∈ R.
1: get-data:
2: Send (QUERY-DATA) to servers in S
3: Wait for responses from n − f servers in S, say receiving coded

element ci from server i ∈ S
4: Return the decoded value vr ← Φ−1(ci), if possible; O.W., return v0

C. Correctness of BCSR

We now prove that BCSR is correct when n ≥ 5f + 1. The
following theorem can be proved similarly as in the previous
section.

Theorem 4. The BSCR algorithm is live if any reader may
crash fail, and any writer and up to f servers can exhibit
Byzantine failure.

Lemma 4. Every well-formed execution of BCSR is safe given
n ≥ 5f + 1.

Proof. Suppose a write W (v) that is not concurrent with
another write completes, and a subsequent non-overlapping
read R will return the the value v. We only need to consider this
scenario due to the definition of MWMR safeness condition.

First, by the time W (v) completes, at least n−2f fault-free
servers i have the pair (t, ci) for some t in their local state
variable.

Second, a reader then will receive ≥ n − 3f correct pair
(t, ci), i.e., the coded element is not corrupted by a faulty
server, and corresponds to the most recent value written by
W (V ). Therefore, among all the coded elements received by
the reader, ≤ (n− f)− (n− 3f) = 2f are erroneous. Hence,
by assumption of the decoder function, the reader will be able
to decode the correct value v.

V. LOWER BOUND FOR SAFETY OF ONE-SHOT READS

In the proofs below, we assume that there are n servers of
which ≤ f are Byzantine. We first show that there need to be
enough “witnesses” to safely return a value.

Lemma 5. Safety is violated if value returned by a read
operation is not witnessed by at least f + 1 servers

Proof. Suppose not by way of contradiction. Since a read
requires at most f witness servers, the f Byzantine servers
may choose to send a value vb /∈ V . If a read returns vb,
validity (and thus safety) of the register is violated.

The following lemma directly follow form our model
definition and liveness property.



Fig. 6 BCSR for any server s ∈ S.
1: State Variables:

L ⊆ T × V , initially {(t0, cs0)}
2: get-tag-resp (QUERY-TAG) from w ∈ W:
3: Send max{t : (t, ∗) ∈ L} to w

4: put-data-resp (PUT-DATA, (tin, cin)) received:
5: if tin is higher than the locally available tags then
6: L← L ∪ {(tin, cin)}
7: Send ACK to writer w of tag tin
8: get-data-resp (QUERY-DATA) from r ∈ R:
9: Send (tmax, cmax) pair, where tmax ≡ max{t : (t, ∗) ∈ L}

Lemma 6. Liveness cannot be guaranteed if an operation
needs to wait for more than n− f replies from servers.

For Lemma 7 and Theorem 5, we consider a system and a
replication-based safe register algorithm A, with four servers
s0, s1, s2 and s3. The system contains two writers w1 and
w2, and one reader r. Suppose n = 4 and f = 1. Moreover,
assume that server s0 is Byzantine faulty. Let v0 be the initial
default value stored in the replicated register.

Lemma 7. Safety cannot be guaranteed if write operations do
not communicate with at least 3f servers.

Proof. Assume by contradiction A emulates a safe register
where writes do not communicate with at least 3 servers.
Suppose there is only one write operation W (v1), writing
value v1 initiated by writer w1. Let the writer communicate
with just two servers: s0 and s1.

Now, consider a read operation R from reader r that starts
after W completes. Lemma 6 states that to guarantee liveness,
any operation can wait for at most n− f = 3 servers. Suppose
R receives replies from servers s0, s2 and s3. Servers s2 and s3,
have not heard of the write W and hence they return the initial
value of the register v0. Additionally, since s0 is Byzantine, it
falsely returns the value v0 as a response to R. Therefore, R
completes by returning the initial value v0. This violates safety
leading to a contradiction. Thus, any write must communicate
with at least 3 servers. By a simple simulation argument, the
lemma is implied.

Theorem 5. It is impossible to emulate a replicated safe
register and guarantee liveness of reads and writes where
reads are one-shot, with n servers of which at most f ≥ n

4
may be Byzantine faulty.

Proof. Assume by contradiction, A emulates a safe register
with 4 servers of which s0 is Byzantine faulty. Consider the
following scenario: Two write operations W1(v1) and W2(v2)
are invoked on the register by writers w1 and w2, respectively.

Let W2(v2) be invoked after W1(v1) completes. A read
operation R is invoked by a reader r other than w1 and w2

after W2(v2) completes. By the correctness of A, R completes.
By Lemmas 6 and 7, each write waits for exactly 3 responses.

Suppose write operation W1 communicates with servers s0, s1,
s2 and write operation W2(v2) communicates with servers s0,
s2, s3. Servers s0, s1 and s2 respond to the invocation of R ny
returning the whole history. Since s0 is Byzantine it can return

any arbitrary message to reader r in its response. Suppose s0
returns v1 instead of v2. Thus, R receives the values v1 from
s0 and s1, and v1, v2 from s2.

Lemma 5 states that R cannot return v2, as it is witnessed by
only f = 1 server. Thus R returns v1, violating safety. Again,
by the simulation argument, the theorem follows.

Remark 1. Our proof works because we assume that the
algorithms or the networking layer do not use nor provide
the reliable broadcast abstraction. In many prior works [15],
[20], [22], a reader can wait until all the fault-free servers
receive enough messages regarding recent write operations.
In our case, it is possible that two fault-free servers would
never receive the same set of messages, especially if the sender
crashes.

Remark 2. Our proof can be extended to the case with multiple
client-to-server communication. The only thing we exclude is
the server-to-server communication. Since in that case, the
reliable broadcast primitive can be implemented on top of
reliable channel with n ≥ 3f + 1 servers [2].

Erasure-Coding-based Register

We now focus on the EC-based register emulation. Suppose
the emulation uses [n, k] code, where k = n − f − 2e. The
proof is similar to the one above. The difference is that now
the quorum intersection between readers and writers need to
be larger due to the usage of erasure code. We include the full
proof below for completeness.

First, is should be easy to observe the following lemma if
we have only 5f servers.

Lemma 8. Safety cannot be guaranteed if write operations do
not communicate with at least 4f servers.

Then, we are ready to present the key proof.

Theorem 6. It is impossible to emulate a safe register and
guarantee liveness of reads and writes where reads are one-
shot, with n ≤ 5f .

Proof. Assume by contradiction, A emulates a safe register
with 5 servers of which s0 is Byzantine faulty with f = 1.
Consider the following scenario: Two write operations W1(v1)
and W2(v2) are invoked on the register by writer w1.

Let W2(v2) be invoked after W1(v1) completes. A read
operation R is invoked by a reader r other than w1 after
W2(v2) completes. By the correctness of A, R completes.

By Lemmas 6 and 8, each write waits for exactly 4 responses.
Suppose write operation W1 communicates with servers s0, s1,
s2, s3 and write operation W2(v2) communicates with servers
s0, s2, s3, s4.

Servers s0, s1, s2, s3 respond to the invocation of R by
returning the whole history of values. Since s0 is Byzantine,
it can return any arbitrary message to reader r in its response.
Suppose s0 returns the coded element corresponding to v1 in-
stead of v2. Thus, R receives the coded element corresponding
to v1 from s0, s1, s2, s3, and coded element to v2 from s2 and
s3. Recall that to use the MDS code, we need to have n− f



coded elements with up to e erroneous coded elements. Hence,
the only choice is to return v1. If the algorithm chose to return
v1, then there are one missing coded element (which is stored
at s4), and two erroneous (in this case, stale) coded elements
(which are returned by s0, s1). Consequently, the decoding
function does not work.

Finally, by the simulation argument, the theorem follows.

VI. RELATED WORK

Reliable computing must handle malfunctioning components
that give potentially conflicting information to different parts
of the system. The term “Byzantine” nodes was introduced by
Pease et al. to describe such malfunctioning components. In
this paper [6], the problem of reaching agreement or consensus
was studied in the presence of Byzantine faults. Lamport et
al. [22] showed that using unforgeable or digitally signed [19]
messages, this problem is solvable if and only if more than
two-thirds of the nodes not Byzantine faulty. Martin et al. [23]
present protocols for asynchronous Byzantine Quorum Systems
(BQS) built on top of reliable channels by using read and write
quorums of different sizes and show how to remove dependency
on reliable networking. The paper by Marko Vukolic [24]
provides a detailed survey of the evolution of quorum systems
for distributed storage and consensus.

Shared memory implementations on top of message-passing
has been of great interest to the distributed systems community
as it makes programming (for the shared memory model)
simpler. The register is one of the most basic objects of
computer science as most shared data structures are built
using using registers as a building block at some point in
their construction. Lamport [11] defines three classes of shared
read/write registers called safe, regular, and atomic which vary
in their consistency conditions in the presence of concurrency.

The most famous atomic register implementation [1] on
top of an n-process asynchronous message-passing system
is termed the ABD algorithm after its authors Attiya, Bar-
Noy and Dolev. They showed that f < n/2 (where f is the
maximal number of processes that may crash and n is the
number of servers in the system) is a necessary and sufficient
requirement to build an atomic register on top of a crash-prone
asynchronous message passing system.

Dutta et al. [25] showed how to obtain fast crash-tolerant
implementations of a single-writer/multi-reader atomic registers
in which both read and write operations complete in one
communication round-trip, under the constraint that the number
of readers is less than n

f − 2. Georgiou et al. [13] prove that
no semi-fast implementation exists for the multi-reader/multi-
writer atomic register even with crash failures. Mostefaoui et
al. [26] devise a new time-efficient asynchronous algorithm for
atomic registers that reduces latency in many cases. Several
papers [27], [28] have explored mechanisms to implement wait-
free multivalued registers from a collection of binary registers.

Taubenfeld [29] considers generalizations of Lamport’s
notions, called k-safe, k-regular and k-atomic and provides
constructions for implementing 1-atomic registers (the strongest
type) in terms of k-safe registers (the weakest type). These

constructions allow solving of classical synchronization prob-
lems, such as mutual exclusion [30] and l-exclusion, using
SWMR k-safe bits, for any k ≥ 1. Shao et al. [20] modify
Lamport’s definitions of a regular register to give four new
consistency conditions, implementing some form of regularity
for a MWMR register. They also provide algorithms to
emulate multi-writer regularity for each of these newly defined
consistency conditions. In [15], Kanjani et al. present a simple
replication-based register emulation that tolerates Byzantine
faults. They assume the existence of reliable broadcast, and
they rely on a technique called relay5.

The importance of the register has has motivated many
directions for research on this simple data structure. Pozzo et
al. [31] emulate a regular read/write register in a synchronous
distributed system with anonymous clients. In their paper
servers may be rational malicious Byzantine processes. The
authors model this problem as a Bayesian game and design
a protocol implementing the regular register that forces the
rational malicious server to behave correctly. In addition to
building registers from scratch, much effort has been put into
building stronger wait-free registers from weaker ones. Johnen
and Higham [32] present a wait-free implementation of a single-
writer/single-reader regular register using single-writer/single-
reader safe registers. Jayanti et al. [33] implement a single-
writer/single-reader atomic register from two regular registers.

Significant gains over replication-based strategies can still
be achieved while using erasure codes that can tolerate crash-
failures [16], [17] and Byzantine failures [18], [14]. Here,
we focus on Byzantine-tolerant work. In [18], the erasure
code is used, along with cryptographic hashes to provide
strong consistency guarantees. [14] provides an erasure coded
implementation of strong consistency with Byzantine failure.
These works do not provide one-shot read, and assumed a
reliable broadcast primitive.

VII. CONCLUSION

This paper identifies optimal approaches to emulate MWMR
replication-based safe register and SWMR erasure coding-based
safe register with one-shot read. The first algorithm requires
≥ 4f + 1 servers, whereas the second one requires ≥ 5f + 1
servers. We prove that these numbers are optimal.
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