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Abstract—In wireless caching networks, a user generally has
a concrete purpose of consuming contents in a certain preferred
category, and requests multiple contents in sequence. While most
existing research on wireless caching and delivery has focused
only on one-shot requests, the popularity distribution of contents
requested consecutively is definitely different from the one-shot
request and has been not considered. Also, especially from the
perspective of the service provider, it is advantageous for users
to consume as many contents as possible. Thus, this paper
proposes two cache allocation policies for categorized contents
and consecutive user demands, which maximize 1) the cache
hit rate and 2) the number of consecutive content consumption,
respectively. Numerical results show how categorized contents
and consecutive content requests have impacts on the cache
allocation.

I. INTRODUCTION

In multimedia services, e.g., on-demand streaming services,
a relatively small number of popular contents generally occu-
pies a large portion of the massive global data traffic, and most
of user demands are overlapped and repeated [1]. To deal with
this issue, wireless caching technologies have been studied,
wherein the base station (BS) or the server pushes popular
contents for off-peak hours to cache-enabled nodes so that
these nodes provide contents directly to nearby mobile users
during peak hours [2]. In practice, caching nodes (i.e., caching
helpers and/or cache-enabled devices) have finite storage sizes,
which leads the content placement problem to determine which
content is better to be stored in caching nodes [3].

The goal of the content placement problem is to find optimal
caching policies according to the popularity distribution of
contents and network topology. In stochastic wireless caching
networks, there exist research efforts on probabilistic content
placement introduced in [4], [S]. Many probabilistic caching
methods have been proposed for various systems, e.g., device-
to-device (D2D) networks [6], N-tier hierarchical networks
[7], multi-quality dynamic streaming [8], and probabilistic
coded caching was also recently proposed in [9].

Previous research optimized content placement for users
requesting only one content, i.e., one-shot request, under
the assumption that all content requests are independent. In
multimedia services, the user typically accesses a service
platform with the purpose of consuming a specific category of

the content, and generally consumes more than one content.
In this case, the sequence of consecutively consumed contents
is highly correlated. For example, in video services such as
YouTube, the related video list is recommended to the user
after the first content is consumed [10]. In particular, the view
count of a given video varies in almost the same scale as the
average view count of the top referrer videos in the related list
[11]; therefore, a user is highly likely to request one of the
videos in the related category. Therefore, this paper considers
the scenario in which a user consecutively requests multiple
contents that are likely to be in its preferred category. In this
context, this paper proposes two cache allocation policies for
categorized contents and consecutive user demands, which
maximize the cache hit rate and the expected number of
consecutive content consumptions, respectively.

The previous work of [12] has proposed a caching policy for
consecutive user demands with the assumption that the number
of content requests is fixed. This assumption does not allow
the service provider to maximize user’s content consumption;
however, in the perspective of service providers, it is important
to satisfy as many of the user’s requests as possible. In this
paper, each user determines whether to continue to consume
more contents depending on cache states in its vicinity, and
the service provider aims at making users stay in the service
longer.

The main contributions are as follows:

« Different from most existing results on wireless caching
in which one-shot requests are considered only, consec-
utive requests of categorized contents are considered.
In practice, the sequence of consecutively consumed
contents is highly correlated, and an advanced caching
scheme is required.

o Based on real data set, the recent work of [13] has
modeled the category-based conditional content popular-
ity distribution. This paper uses this measurement-based
popularity model to obtain the proposed cache allocation
rule for consecutive requests of categorized contents.

o This paper proposes two cache allocation schemes which
maximize cache hit rates and the expected number of
consecutive content requests, respectively. The iterative
algorithm is presented to find the optimal cache allocation



rules and its convergence is proved.

o Numerical results show how 1) the popularity concentra-
tion to the preferred category and 2) different numbers
of contents in the different categories influence the cache
allocation rule.

The rest of the paper is organized as follows. The system
model is described in Section II. The cache allocation rules
maximizing the cache hit probability and the number of
consecutive content consumption are proposed in Sections
IIT and IV, respectively. The numerical results are shown in
Section V and Section VI concludes the paper.

II. SYSTEM MODEL
A. Wireless Caching Network

This paper assumes that caching nodes are randomly dis-
tributed according to a general spatial distribution ®, and the
server which has a content library A/ pushes some popular
contents to each caching node during off-peak hours. Suppose
that a library A/ consists of NV contents and all contents have
a normalized unit size. Let all N contents be grouped into K
categories, and N; contents are in categor%/(i denoted by C;,
forall i € K = {1,--- , K}, satisfying ) ;" N; = N. Also,
denote the content index set of C; by N; = {1,--- , N;}.

The caching nodes have the finite storage size M, which
means only M contents can be cached in each node. Since
N > M in practice, caching nodes store a part of contents
in V. A user requests the content from caching nodes in its
vicinity. If the user finds at least one caching node that stores
the desired content, this case is called the cache hit. When
the user requests multiple contents, we define the cache hit
as the case where all of requested contents can be found
in nearby caching nodes. When there is no caching node
having some of the requested contents, the server can deliver
them via a cellular link. However, this paper assumes that
the transmission quality of the cellular link is insufficient
due to delay and/or congestion that leads to unacceptable
video quality, so that henceforth we do not consider direct
transmission from the server.

Let the storage size M be divided into K fractions with
unequal sizes denoted by «; for all ¢ € K, and contents
in C; are stored within «;. These fractions will be called
cache allocations for categories and satisfy Zf; o < M
and «; < N;. Given all of @ = (a1, -+ ,ak), how to store
individual contents within each category becomes a classical
content placement problem, and we consider the probabilistic
caching policy for individual contents as shown in [4], [5].

B. Content Popularity Model

This paper focuses on the scenario in which the user
requests multiple contents consecutively, different from most
of existing caching policies which considered only one-shot
requests. A representative example is a video streaming ser-
vice. For example, a user can access the service platform with
a concrete purpose of watching some sports highlight clips. In
this case, we can postulate that sports is the user’s preferred
category, therefore the probability of requesting sports videos
in sequence is very high. In contrast, the probability of

TABLE I
KEY NOTATIONS

Number of categories

Number of contents in category ¢

Index of the preferred category

Cache size

a; Cache allocation for category ¢

fi Global popularity of category %

p1 | Popularity of the preferred category

T Rank of category that requests contents

l Number of consecutive content requests

Iy Number of requested contents in the r-ranked category
ip Category index of the r-ranked category

€ Probability of not requesting the next content

Sk

requesting contents in other categories, e.g., movie trailers,
is very small although not zero.

Accordingly, the content request can be modeled by the
following steps. First, the user randomly picks one category
in K. Each category ¢ € K has a global category popularity,
which follows the Zipf distribution [4]: f; = ¢77/ Z]K:1 7
where v denotes the popularity distribution skewness. Then,
the selected category has the first rank among all categories;
note that the global category popularity is only used for
choosing the first rank. Other categories can have any rank
except for the first rank, but this paper models all categories
that are not the first for this particular user as statistically
equivalent; in other words, the relative ranking from 2,--- , K
does not matter. After determining the preferred category,
the user chooses one of categories to request the content
depending on their ranks. Again, the category rank distribution
given the preferred category is assumed to follow the Zipf
distribution, ie., Pr{R = r} = r—™/Y%  j=™, which
represents the popularity of the r-th ranked category and ~°*
is the Zipf factor. We denote the popularity of the preferred
category by p; = Pr{R = 1}. Note that p; is the probability
of staying within the given preferred category, not the general
probability of picking the 1st-ranked category as in [13], which
is a different quantity. Here, we also consider the situation in
which the user can stop to request contents by itself with small
probability of e. Therefore, the probability of requesting any
content in the r-th ranked category after consuming the first
content becomes (1 —¢) - Pr{R = r}.

After choosing the category rank, the user requests the
specific content in the category having the chosen rank.
According to [13], the category-based conditional popularity
distribution of contents in C; follows the Mandelbrot-Zipf (M-
Zipf) distribution, i.e.,

N S
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m=1 (mcin) s

which represents the popularity of the n-th content in C; for
n € N;. 4" and ¢ are the Zipf factor and the plateau
factor of C;, respectively. Here, if v°" is sufficiently large,
p1 > 1—e—p; and the popularity of contents in the preferred
Cy, is much larger than that of any content in C; for all i # k.
Fig. 1 shows popularity distribution of 100 contents given
the preferred category, grouped into 5 categories consisting



of 20 contents. This figure is obtained by multiplying the
rank probability and the category-based individual content
popularity, when v*" = 5, 4" = 2.4 and ¢" = 69. Among
them, contents whose indices are from 1 to 20 belong to the
first-ranked category, and their popularity is relatively much
larger than others. Therefore, if v°" is sufficiently large, we
approximate the popularity of contents outside the preferred Cy,
as uniform distribution, i.e., af,, ~ forall i € K\ {k}
and n € N, irrespective of ranks of those categories. When
given Ci, the popularity of contents in Cy, is af , = aj,, for
n € N}, still. Thus, consideration of two exclusive sets of the
preferred category and all other contents is reasonable.

III. MAXIMIZATION OF CACHE HIT PROBABILITY

This section derives the cache hit probability and proposes a
cache allocation rule that maximizes the cache hit probability.

A. Cache hit probability

Suppose that the user request [ contents in sequence. Among
[ contents, let [, contents belong to the r-th ranked category
satisfying Zfil [l = . Then, when the preferred category Cy,
is given, the cache hit probability given [ content requests, i.e.,
the probability that all of [ requested contents can be delivered
from any caching node, can be expressed as

K
it =TT [Prir =it ()]

r=1

2

where i, € K is the index of the r-th ranked category and

Ni o0
hi(oi) =1-73 ai, > Pra{J =j}(1
n=1 =0

is the cache hit probability of a content request within C; given
a; when Cy, is the preferred category. In Eq. (3), Pre{J = j}
is the probability that there are j caching nodes storing the
requested content in the vicinity of the user. Also, b; ()
is the caching probability of the n-th content in C; given «;.
However, computations required for scanning all combinations
of [, values are exponentially increasing as | grows.

When 7% is large phn is simplified by using approxima-
tions of af,, ~ Vi € K\ {k} and n € N into

- bi,n(ai))j7 (3)

NN’

()bt 10 = = pya(a) ",

N%]Vk ;Prq){J = j}(]. - bi,n(ai))j

®)

which is the cache hit probability of a content request outside
Ck. Each term in Eq. (4) is the probability that among [
requested contents, m are in Cy and [ —m contents are outside
Cy, and all of [ contents can be found in caching nodes in the
vicinity of the user. For simplicity, we will use the notation
hi(cu) = h¥(ay) in the following sections.
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Fig. 1. Popularity of contents given the preferred category

The expected cache hit probability can be finally derived as

Phn—;kaPr{L 1} Z( >[P1hk a)]™

11 = e—p)ar(e)] ™, (6)

where Pr{L = [} is the probability that the user requests [
contents in sequence, which is given by

Pr{L =1} =e(1—¢).

Therefore, the cache hit probability is arranged into

)

Dhit = ka Z (1= &) (prhx(ar) + (1 — € = pr)ar(ex))’

k=1 =1
®)
K

Z

k=

6)6 prhx(ag) + (1 — € —p1)gr(a))
—€)(prhi(ag) + (1 — e — p1)gr(v))

In Eq. (9), any caching policy can be utilized within each
category given the preferred Cy, and c, and hy(ay;) and g ()
are determined depending on the caching policy. Then, we can
suppose that the caching policy that maximizes the cache hit
rate [4], [5] is used for caching of individual contents within
every category. Denote the maximum cache hit rates in and
outside C, by hj (as) and g (o), respectively. Then, the cache
hit probability of [ content requests becomes

fr(L = e)e(prhiar) + (1 — € = p1)gi(e))

€))

p * *
" Zl— (1= &) (prhi(on) + (1 =€ = p1)gi(ar))
(10)
K
= Z a, fi,€) (11)
B. Problem Formulation
The optimal cache allocations of a* = (a7, - ,aj) can
be obtained by maximizing (11) as follows:
a* = argmax ppy, (12)
(a2
K
s.t. Zai <M (13)
i=1
0 < a; < min{M, N;}, Vi € K. (14)



The constraint (13) is for the storage size of each caching
node and the constraint (14) is for the cache allocation for
each category. The following key lemmas are used to solve
the above problem of (12)-(14).

Lemma 1. pihg (o) +
Q.

(1 — e — p1)gqr(a) is increasing with

Proof: In this proof, we simply use the notation of
bin = bin(a;), Vi € K, ¥Yn € N;. Let o), = ap + 6
and & > 0. Then, hi(a}) > hi(al), where hy(a}) can be
the cache hit probability within Cj; of any caching policy
by, = (b1, b, n,)" satisfying Z F b, = . Let
by = (by, = bry + 6,0, = by, ka bZNk)T
Then since 0 < b,*C 1 <1 and by s generally much closer to
zero than one when the library size of N is large,

plh’é(ak) — pihi(ag) = prhg(ag) — pihi(af)

=p ZaanPm{J—J}{(l—bm) — (1= b))
- (15)

~prars > Prald =} (16)

j=0
is obtained by using the first-order Taylor approximation, i.e.,
(1- bzﬁn)f ~1—j-b;,

Since the storage size M is fixed, the cache size allocated
to all categories except for Cp is M — aj — §. With small
d, there exists any category u for uw # k such that o, > 4.
Then, let o;, = aj, — & and by, ; = b}, 1 — 11, b, o = b}, 5 — 12,

. YN, = b5 N, — 71N, where 0 < my,,, < b7, for all
n € N, and Zgll Nu,n = 0. In this case, cache allocations
for other categories can remain unchanged, i.e., a,’i = o and

v, =0;, foralliec [, i# k,u. Then, similar to before,
(1—e—p1)g(a) = (1 —€—p1)gi(a) >
1 ¢ p K N; oo
—€—D1
e PI) BONLIEEFID
z ln 15=0
{o-my-a-wp} o
l—e—p J
—€—D1 o
N Pr{J =3} -j5-0. 18
N, ; r{J =j}-j (18)
Since py > 1 —€e—py and ap1 > = ,P1h*(ak)—|—(1—
e —p1)gp () —prhi(a) — (1 —e—pl)qk( *) > 0 and the
above lemma is finally proved. ]
Lemma 2. The optimum vector a* = (af,--- ,a%)T satis-

fies Z

Proof: Assume that Zfil af < M, then 36 > 0 such that
Zfil af +6 < M and of + ¢ < min{M, N} for certain k.
Let o = (af, - ,af + 6, -+ ,a%)T. According to Lemma
1, gi(e, fi,€) is increasing with oy for all k& € K. Thus,
pii (@) > pi (a*) and it obviously leads to contradiction. M

05 =M.

Algorithm 1 Greedy cache allocation algorithm

o = 2% for all i € K and pf, =0

for V(u,v) € K x K and u # v do
ﬁuﬂv:M_O‘;;_ar;

Obtain b;,, Vi € K and @ # u,v, and Vn € N
according to [4], [5].
5: for Yo, € {max(

do
6: Qy Bu;u — Oy

: Obtain b, ,, and b,,, Yn € N, and Vm € N,
according to [4], [5S].
Find p;;, based on o
: if pi < e then pfy
10: end if
11: end for
12: end for

B2

Ovﬁu,v - Nv)v e »min(ﬂu,mNu)}

ok
= Phit

According to Lemma 2, an inequality constraint (13) can be
converted into the equality constraint. The problem of (12)—
(14) has K optimization parameters, and the subproblem for
finding the optimal o and aj is formulated as follows:

{a}, ay} = argmax My . (19)
Ot 0y
K
Sty +ay =Py =M — Z «; (20)
i=1,i#u,v
0 < a; <min{M, N;}, Vi € K, 21

where M,y = g (v, fu,€) + gy (@, fu,€). Since {a; }izu,v
are fixed, o, + «, also becomes a constant 3, ,.

A multivariable function pf; can be optimized by iteratively
optimizing the subset of variables if the convergence is guar-
anteed. To find a* = (af,--- ,ak ), the subproblem of (19)-
(21) can be iteratively applied for all combinations of u« and
v, for u,v € K and u # v. We find the maximum of the
dual-variable problem of (19)-(21) in each iteration, and the
sequence of the updated values of M, , is generated. Since
this sequence is non-decreasing and the cache hit probability
has a trivial upper bound of 1, i.e., pf, < 1, the convergence
of the iterative algorithm is guaranteed.

Since h () and gx () are obtained by using the bisection
method [4], [5], however, the objective function of M(uﬁv) is
not in closed-form and the problem of (19)—(21) should be
numerically handled. Therefore, we consider integer values for
cache allocations of a and the greedy algorithm can solve the
problem with M not very large. If caching of content partitions
is not considered, i.e., only caching of the whole content is
allowed, the assumption that «; is the integer number for all
1 € KC is reasonable. The details of the iterative algorithm to
solve the problem of (12)-(14) are described in Algorithm 1.

IV. MAXIMIZATION OF EXPECTED NUMBER OF
CONSECUTIVE CONTENT REQUESTS

From the service provider’s perspective, it is advantageous
for the user to consume as many contents as possible. As



explained in Section II, the user does not request the next
content with the probability of e. In addition, we assume that
the user stops to consume the next content when no caching
node in the vicinity of the user stores the desired content, even
though the user requests the next one.

The probability of stopping to consume more is given by

+ (I =e=p)(1 = gr(e)). (22)

In (22), the first term is the probability of not requesting the
next content, the second and third terms are probabilities that
no caching node stores the requested content when the content
belongs to Ci, and is not in Cy, respectively. Then, the expected
number of consecutive content consumption is computed as

:ZZPI{L l}—z,szl 1_pslop pftop
=1 k=1 =

(23)

pf&op =€ +p1(1 - hk(ak))

p t
—Zh =3 (24)
Then, the optimization problem of maximizing the expected
number of consecutive video consumption is as follows:

stop

a* = argmax E[L] (25)
K

S.t. Zai S M (26)
i=1

0 < a; < min{M, N;}, Vi € K. 27)

Similar to Lemmas 1 and 2, pfmp can be proved to be
increasing with oy, and the inequality constraint (26) can be
converted into the equality constraint, i.e., > ;" a; = M.
Again, the multivariable function E[L] can be maximized by
iteratively optimizing the following dual-variable subproblem:

{a},al} = argmax {u + —J:U (28)
Ay, Ay stop p stop
K
stay+ay=Pus=M=- > a (29
i=1,i#u,v
0 < o; <min{M, N;}, Vi e K. (30)

The sequence of the updated objective Values in (28) is
nondecreasing, and E[L] < 1 —1 because pliop > €. Thus, the
algorithm which solves the problem of (25)—(27) by iteratively
optimizing the dual-variable problem of (28)-(30) for all
combinations of w,v € K and u #* wv, is guaranteed to
converge. The whole algorithm is the same as Algorithm 1
except that pj;, should be changed into E[L] in lines 2, 9, 10.

V. NUMERICAL RESULTS

In the subsequent simulations, N = 100 contents and K =
5 categories are considered. The global category popularity
follows f; > f; for i < j. Caching nodes are distributed
according to a Poisson point process with intensity of A and
caching nodes with distances less than d = 10 from the user
are only considered. In addition, M = 30, vy = 1, vi" = 2.4,
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Cache allocations depending on the number of contents in each

and " = 69 are used for all i € K. We consider three different
category structures as follows:

o Case A: N1:N2:N3:N4:N5:20

o Case B: N1 = 35,N2 = 25,N3 = 20,N4 = 15,N5 =5

e Case C: Ny =5, Ny =15, N3 = 20, Ny = 25, N5 = 35.

In Figs. 2 and 3, plots of «y, for every category are shown
with A = 0.02 and € = 0.1. Case A is considered in Fig. 2. As
the skew factor v°"' grows, the probability of requesting the
content in the preferred category becomes much larger than
that of requesting the content in other categories. Therefore,
as v°" increases, more cache sizes are allocated to categories
having relatively large global category popularities in Fig 2.

In Fig. 3, all plots are obtained with v°* = 5. Since
all categories in Case A have the same number of contents,
cache allocations of Case A depend only on global category
popularity. In Case B, the category having a larger global
popularity consists of more contents, therefore more cache
sizes are allocated, i.e., oy in Case B becomes larger than
that in Case A. Interestingly, a5 in Case B is also larger than
that in Case A. The reason is that /N5 is the smallest in Case B,
i.e., the individual content popularity within Cs is the largest
among all categories. Thus, even though f5 is smaller than
other f; values, caching multiple contents of Cs is favorable
for consecutive content requests. On the other hand, in Case
C, ay is smaller than oo, a3 and a4 because N; = 5 and oy
should be smaller than V7. It does not mean that an importance
of caching contents in C; decreases. Rather, it becomes more
important because a portion of contents to be stored in caching
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Fig. 4. The expected cache hit probabilities

nodes, i.e., ]‘ff—ll, is larger than other cases. By saving the cache

size for C;, a larger cache size can be allocated to other
categories with low global popularities compared to Case A.
Thus, Figs. 2 and 3 show that the skew factor as well as the
number of contents in each category have a strong impact on
the proposed cache allocation rule.

Fig. 4 shows plots of cache hit probabilities obtained from
the problem of (12)-(14) versus A. In Fig. 5, the expected
numbers of consecutive content consumption obtained from
the problem of (25)—(27) are shown. We compared the pro-
posed scheme with the conventional caching method optimized
for one-shot content request based on popularity of individual
contents in [4], [S5]. The comparison scheme is named as
‘L1 in the figures. We can easily see in both figures that
the proposed scheme outperforms ‘L.1° with different valuess
of v°" and N; for each category. As A grows, i.e., as the
number of caching nodes in the vicinity of the user grows, the
performance improvement of the proposed scheme decreases,
because the user becomes more likely to find caching nodes
to deliver multiple requested contents even with ‘L1°. The
performance gain of the proposed scheme over ‘L1’ is guar-
anteed when v°" is large. Especially in Fig. 5, when ¢ = 0.1,
e dominates the term in (22) representing the probability of
stopping to consume contents; therefore, the advantage of the
proposed scheme is not remarkable. As e becomes smaller,
however, the proposed algorithm is more advantageous for
consecutive content consumption than ‘L1’°. Thus, the service
provider can create the opportunity for users to consume more
contents and to stay in the service longer by using the proposed
scheme.

VI. CONCLUDING REMARKS

This paper proposes two optimal cache allocation rules
when users request a random number of contents consecu-
tively. The key characteristic that users are likely to consume
content highly related to each other consecutively is well
captured in the proposed scheme by maximizing the cache
hit probability for multiple content requests from the same
category. Another cache allocation which maximizes the num-
ber of consecutive content consumption is also proposed as it
related to the benefits for the service providers. The impacts
of categorized contents and consecutive content requests on

30 -©-Proposed, Case A, 1°"'=5, ¢=0.01
-O-L1, Case A, 4°'=5, ¢=0.01

25 | =¥ Proposed, Case A, 1°"'=6, ¢=0.01

-%-L1, Case A, 7°'=6, ¢=0.01

-/~ Proposed, Case B, 1°"'=5, ¢=0.01

“V/-L1, Case B, 1°'=5, ¢=0.01

. Proposed, Case A, 1°"'=5, ¢=0.10

ﬁ 15|72 L1, Case A, 125, =0.10

20

0 .
0.005 0.01 0.015 0.02

Fig. 5. The expected number of consecutive content consumption

the cache allocation rule are shown by numerical results.
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