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Abstract—Cache-aided wireless device-to-device (D2D) net-
works allow significant throughput increase, depending on the
concentration of the popularity distribution of files. Many studies
assume that all users have the same preference distribution;
however, this may not be true in practice. This work investigates
whether and how the information about individual preferences
can benefit cache-aided D2D networks. We examine a clustered
network and derive a network utility that considers both the
user distribution and channel fading effects into the analysis.
We also formulate a utility maximization problem for designing
caching policies. This maximization problem can be applied
to optimize several important quantities, including throughput,
energy efficiency (EE), cost, and hit-rate, and to solve different
tradeoff problems. We provide a general approach that can
solve the proposed problem under the assumption that users
coordinate, then prove that the proposed approach can obtain
the stationary point under a mild assumption. Using simulations
of practical setups, we show that performance can improve
significantly with proper exploitation of individual preferences.
We also show that different types of tradeoffs exist between
different performance metrics and that they can be managed
through caching policy and cooperation distance designs.

I. INTRODUCTION

Over the years, wireless data traffic has rapidly increased,
consequently straining wireless networks. This trend in data
traffic is expected to continue over the next several years
[2]. Among all the wireless applications available today, on-
demand video accounts for the largest portion of this traffic.
Thus, finding an efficient approach to support this application
is a paramount issue for modern wireless communication
systems. Conventional approaches for increasing throughput,
such as cell densification, installing large-scale antenna sys-
tems, and adopting millimeter-wave communications [3], are
deemed insufficient, as such methods would entail high cost
when investing in physical resources. Different from those
approaches that tend to improve wireless networks without
regard to the type of data to be transmitted, video caching
at the wireless edge exploits the unique video accessing
behavior of typical consumers and cheap storage resources
to trade memory for bandwidth. In essence, different users
cache different popular video files on their devices; a file
request can then be satisfied either from a user’s own cache

This work was supported in part by the National Science Foundation (NSF)
under projects CCF-1423140 and CNS-1816699. Part of this work has been
presented at the 2017 IEEE Global Communications Conference [1].

or through D2D communication with a nearby user that has
stored the requested file. The potential of D2D-based video
caching has been widely discussed in recent years [4]–[11].
Accordingly, previously published papers have demonstrated,
either in theory or in practice, that using wireless video
caching with D2D communications can significantly improve
throughput [8]–[11].

A. Literature Review and Motivations

Cache-aided D2D has demonstrated the ability to sig-
nificantly improve network performance without the need
for newly installed infrastructure and complicated coding.1

Thus, numerous papers have been published on this topic.
To understand cache-aided D2D from a theoretical point of
view, [9]–[11] investigated the throughput-outage tradeoff. On
the other hand, different performance metrics, including hit-
rate (file outage) [9], [16], throughput [9], [17], [18], energy
efficiency (EE) [18], [19], and latency [7], [39] have also been
investigated in order to improve the network from different
aspects. Ref. [18] particularly studied the optimizations of
throughput, EE, and their tradeoff by jointly considering the
effect of the cooperation distance and caching policy of D2D
users. Furthermore, [19] particularly focused on battery life
when proposing an energy-efficient caching policy design.

Different mathematical techniques and deployment scenar-
ios were considered for cache-aided D2D. In [20] and [21],
stochastic geometry was exploited to analyze networks and to
propose caching policy designs. Considering MIMO systems,
scaling laws of throughput were discussed in [22] and [23]. In
[24], mobility was leveraged to enhance network performance.
In [25], a randomized caching policy with a special structure
for helping content delivery through D2D links is proposed
and analyzed in the systems that consider millimeter-wave
communications for D2D links. In [26], a cache replacement
approach was proposed to accommodate the environmental
dynamics. Cache-aided D2D has been a subject of great
interest to many researchers, and hundreds of related papers
have accordingly been published on this topic. Hence, the
above literature review, by necessity, cites only a sample of

1Concentrated popularity distribution of video files can also be exploited in
other ways, e.g., femtocaching [12]–[14] and coded multicasting [10], [15];
those approaches are outside the scope of this paper.
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papers and topics. To complement our literature review, we
refer to several recent survey papers [27]–[30].

Most of the existing papers for cache-aided D2D networks
consider a homogeneous preference model, which assumes all
users have the same file preference. In other words, each user
requests files independently and randomly according to the
same popularity distribution. However, this model is at best an
approximation, because different users indeed have different
tastes and preferences. Such heterogeneity in preferences of
users has been observed in [31] and has also been modeled in
recent works [32], [33], [37]. Furthermore, based on real-world
data, results in [31] have shown that leveraging individual
(user) preferences indeed can improve network performance.
Thus, these abovementioned observations clarify that cache-
aided D2D networks can be further improved by using a
heterogeneous model, instead of a homogeneous model, in the
network design. This is because designs that are based on the
latter model are restricted, as it does not consider individual
user preferences.

Researchers have recently begun to consider individual
preferences in their analysis, and studies have accordingly
shown that it is possible to use this information to improve
the performance of wireless caching networks [31], [34]–[40].2

In [31], individual preferences were studied, and a machine-
learning approach was used to learn the user’s preferences
and accordingly decide which video should be preloaded onto
a local device cache based on the preferences of that particular
user. While this kind of approach (also known as the “Netflix
challenge”) is very important for recommendation systems and
preloading on individual devices, it is not applicable to cache-
aided D2D networks. In [34], an individual preference-aware
weighted sum utility of users was formulated and optimized
when the files were being cached at the BSs. Meanwhile, [35]
designed a caching policy by assuming that users in different
groups have different file preferences; the goal then is to
maximize the successful file discovery probability of different
groups without taking possible interference into account. In
[36], a content push strategy was designed to maximize
the D2D offloading gain for a particular demand realization
by jointly considering the influences of user preference and
sharing willingness. In [37], user preferences were used to
maximize the offloading probability without accounting for
the details of the physical layer. Using individual preference
and user similarity, [38] proposed a caching content allocation
approach to maximize a specifically defined utility. While [39]
focused on estimating individual preferences using a learning-
based algorithm, the study provided a caching policy that
exploits the estimated preferences in order to minimize the
average delay of D2D networks. Lastly, [40] proposed a game
theoretical-cooperative caching design by assuming that users
know exactly what files they want to request.

Despite this progress, the understanding of how individual
preferences can be used to improve cache-aided D2D networks
is still far from complete. It is still unclear whether integrating
individual preferences into the design can improve network

2The conference version of this paper [1] is one of the earliest studies that
took individual preferences into consideration.

performance significantly. Moreover, the interplay between
and among the different performance metrics, e.g., throughput,
EE, and hit-rate, and the corresponding tradeoff that results
from these interactions are still subject to further studies.
Most importantly, the existing papers do not provide sufficient
evaluations based on real-world data. Accordingly, our paper
aims to address these issues.

B. Contributions

In this paper, we consider a BS-assisted cache-aided D2D
network, where users can obtain the desired files from the BS,
caches of neighboring users via D2D links, and their local
caches. We assume that users have different preferences and
caching policies; thus, our goal is to maximize network utility
by designing individual preference-aware caching policies for
users. We analyze the network based on the clustering and
random-push scheduling [18] and then propose a non-convex
utility maximization problem formulation. We then show that
our proposed utility maximization problem can be applied to
solve different practical problems, e.g., throughput, hit-rate,
and EE optimization problems, as well as several tradeoff
problems. Hence, it is sufficient to investigate a general solu-
tion approach for the proposed utility maximization problem.
In addition, we discuss how the proposed utility maximization
problem can be used in scenarios with different fading and user
distributions.

We assume that users perfectly know the individual prefer-
ences of all the other users in the network and that they are
allowed to coordinate with one another. With these consider-
ations, we solve the utility maximization problem and obtain
the users’ caching policies. The idea of the proposed approach
is to optimize individually and iteratively the users’ caching
policies until convergence. We show that this method is fairly
simple to use, improves at each iteration, and converges to a
stationary point under a mild assumption. We then evaluate the
proposed caching policies in networks under realistic setups;
in particular, we adopt the practical individual preference
generator proposed in [33] based on extensive real-world data.

Our results show that network performance can significantly
improve when the information on individual preferences is
properly exploited. We also compare the performances of those
networks that optimize throughput, EE, and hit-rate using the
proposed utility maximization framework and investigate the
influences of the cooperation range of the D2D network. The
results indicate that there are tradeoffs between these impor-
tant metrics, and we can manage the tradeoffs by properly
exploiting our proposed framework. Finally, we show how
the proposed designs can be used as good reference designs
for obtaining effective designs in networks with complicated
scheduling. We emphasize that, to the best of our knowledge,
this is the first work that validates from different perspectives
of the network the benefits of exploiting user preferences and
that gains insights through simulations based on real-world
data. To sum up, our paper makes the following contributions:
• We formulate a utility maximization problem by consid-

ering individual preferences in the analysis. Caching poli-
cies that optimize several practically important metrics,
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e.g., throughput, EE, and hit-rate, and their tradeoffs, can
be obtained by solving the problem. We then propose a
general low-complexity approach for solving the utility
maximization problem, and prove that the solution ap-
proach improves at each iteration and then converges to
a stationary point.

• Considering the realistic setup based on extensive real-
world data, we conduct comprehensive simulations to
show the benefits of exploiting individual preferences and
to demonstrate tradeoffs between different performance
metrics.

C. Organization of This Paper

The remainder of the paper is organized as follows. In
Sec. II, we present the network and individual preference
models. We then analyze the networks and formulate the utility
maximization problem in Sec. III. Also in this section, we
relate the proposed problem to different practical problems and
show the effects of fading and user distributions. The caching
policy design is proposed and studied in Sec. IV. Extensive
simulation results are provided in Sec. V. We conclude the
paper in Sec. VI. The proofs and detailed derivations are
relegated to the Appendices.

II. NETWORK AND INDIVIDUAL PREFERENCE MODELS

We consider a BS-assisted cache-aided wireless D2D net-
work, where the BS helps file delivery and makes scheduling
decisions. The users can obtain the desired files by retrieving
them from their own caches, D2D communications, or BS
links. The file library consists of M files, and for simplicity, we
assume that all files have the same size.3 Each user is able to
cache S files in its storage. Besides, to have a nontrivial case,
we require S < M . Furthermore, in most practical situations,
S << M will hold. Users can be either active or inactive.
An active user is a user that places a request that needs to be
satisfied and participates in the D2D cooperation, i.e., the user
sends files to other users that request them. On the other hand,
an inactive user is a user that does not place its own request
but still participates in the D2D cooperation.

We consider a widely used clustering network model [9],
[17], [18], [22], [23]. In the model, there is a square cell with
a BS at the center point, and the cell is divided into equal-
sized square clusters with side length D. The users are allowed
to cooperate via D2D communications only with users in the
same cluster. The “cooperation distance” or “cluster size” we
henceforth reference thus corresponds to the dimension D of
such a cluster, not the cell radius of the BS. We assume that
there is no interference between users of different clusters;
this can be achieved by letting different clusters use different
time/frequency resources with “spatial reuse.” We will in the
following focus on a single cluster. Nevertheless, our results

3This paper generally focuses on understanding the impact of individual
preferences on network performance and the tradeoffs among different per-
formance metrics. Thus, an investigation of how to deal with heterogeneous
file sizes is beyond our scope. However, based on our numerical investigations
(omitted for brevity), a performance evaluation using designs with equal
filesize assumption could be representative of an evaluation without equal
filesize assumption.

Fig. 1: This figure shows an example of the network model.
In the left-middle cluster, we have KA = 2, KI = 1, S = 2,
and M = 10.

can easily be extended to multi-cluster scenarios. We denote
the number of active users in a cluster as KA and the number
of inactive users in a cluster as KI. The total number of users
in a cluster is then K = KA + KI. The described model is
shown in Fig. 1.

We consider serving users via “random-push” scheduling
[18], which functions as follows. For a cluster, the BS first
randomly selects an active user without knowing whether its
request can be satisfied by the user’s own (local) cache. If
the selected user can obtain the desired file from the local
cache, i.e., the desired file is actually cached by the selected
user, then the user request is satisfied immediately. Otherwise,
the BS checks whether the other users in the D2D network
store the desired content and whether the channel quality
between the selected user and the other users storing the
desired file is larger than the minimum requirement (in terms
of capacity) for a D2D transmission. If yes, then a D2D link
is used to transmit the desired content; otherwise, the user
needs to use the BS link to access the content. We assume that
the BS has an unlimited bandwidth backhaul to repositories
that store all files in the library. This guarantees that any
request from a selected user can always be satisfied, albeit
at a potentially high cost. After scheduling for the selected
user, the remaining active users check whether the files in
their local caches can satisfy their requests. If yes, then their
requests are satisfied. Clearly, such scheduling can guarantee
that at least one user is served and all users are scheduled fairly
in the sense that every user is selected with equal probability
by the BS for service. We note that there exist scheduling
approaches with better overall throughput, e.g., priority-push
scheduling [18] and dynamic link scheduling [41]. However,
using them has other drawbacks, such as unfairness and high
complexity. Most importantly, it is very challenging to obtain
tractable formulations for these advanced scheduling schemes
[18], [41]. On the other hand, random-push scheduling leads
to tractable expressions for different critical metrics and is
easy to implement, thus serving as a good reference system.
It should be noted that the definitions of user distribution and
channel model can influence the scheduling behaviors. We will
discuss them later in Sec. III.D.

We represent individual preferences for requesting video
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files as probabilities. We denote the request probability of
user k for file m, i.e., the probability that user k wants file
m in the future, as akm, where 0 ≤ akm ≤ 1, ∀m, k and∑M
m=1 a

k
m = 1, ∀k. Note that the preferences of inactive users

are actually not used in the proposed problem formulation and
solution approach later; their modeling of preferences is for
the purpose of consistency. Different users can have different
caching policies. As such, we denote bkm as the probability that
user k would cache file m, whereas the caching policy of user
k is described by {bkm}M1 , where 0 ≤ bkm ≤ 1, ∀m, k, and∑M
m=1 b

k
m ≤ S, ∀k. An implementation of this probabilistic

caching policy can be found in [13]. Note that the caching
policy becomes deterministic when considering the limiting
case that bmk becomes 1 or 0. This is useful in the situation
where the central controller knows a priori which users are
going to be in a cluster, so that the caching policy can avoid
detrimental file overlap (compare [7]). Such a deterministic
predictability of user location occurs in a place where the
same people are in geographical proximity every day, e.g.,
in an office scenario.

We assume that users perfectly know the individual pref-
erences of the other users in the same cluster. In other
words, users know akm, ∀m, k. We also assume that users can
coordinate with one another to design their caching policies
for a common goal, e.g., maximizing network throughput.
The users then coordinate such that they cache files by fully
considering the caching policies and preferences of other
users.4 Accordingly, this approach suits scenarios where user
locations are deterministic, e.g., office scenarios. Note that the
information exchange and the coordination between users are
assumed to be handled centrally by the BS. Moreover, it will
be shown later that although users are assumed to coordinate,
the algorithm does not necessarily need to be operated in
a centralized manner. On the contrary, since users have a
common goal and know the individual preferences of other
users perfectly, each user can independently implement the
same caching policy design algorithm and accordingly obtain
the same coordinated design that gives the policies of all users.
Consequently, each user can extract its own caching policy and
then implement independently.

In this work, users can access the desired files from their
local caches, from the caches of other users, and from the
BS. We consider different utilities when different types of
approaches are used. The utility of accessing a file via a BS
link is then denoted as UB, the utility of accessing a file via
a D2D link as UD, and the utility of accessing a file via the
user’s own cache as US. Although we consider all users to
have the same utility, the extension to the case that different
users have different utilities is straightforward. Besides, the
utility can be set differently for different practical purposes,
such as throughput and EE maximization, etc. However, we

4A common approach used to incentivize users to coordinate is through
payment by the network operator. Alternatively, since each user generally
benefits from D2D communications, a token-based approach similar to the
traditional file-sharing networks can ensure that specific users do not exploit
the system without contributing to it. Generally, the topic of giving incentives
is an important one for D2D networks. However, this is already beyond the
scope of this paper, albeit it is still considered an important future direction
of this paper.

will generally assume that UB ≤ UD ≤ US, which implies that
using self-access is superior to using a D2D link, and using
a D2D link is superior to using a BS link. We will discuss
this more thoroughly in Sec. III.C. Table I summarizes the
notations frequently used in this paper.

III. CACHING POLICY DESIGN PROBLEM

Our goal here is to design caching policies that optimize
network utility by using information about individual prefer-
ences. In this section, we first derive the access probabilities of
different accessing approaches for a user. Based on the results,
we then formulate the caching policy design problem that we
aim for. To clarify the usefulness of the proposed network
utility maximization problem, we then show how it can be
used to solve various practical problems. Finally, we discuss
how the proposed network utility can accommodate different
scenarios with different fading and user distributions.

A. Fundamental Access Probability

Consider the system model in Sec. II. We denote UA as the
index set of active users and UI as the index set of inactive
users, and U = UA

⋃
UI . We denote the channel between user

k and user l as hk,l and the corresponding signal-to-noise
ratio (SNR) as SNRk,l. We let C be the minimal capacity
requirement for establishing a D2D link. When user k is
selected, the probability that user k accesses the desired file
through a BS link is expressed as

P kB =

M∑
m=1

akm

[∏
l∈U

(
1− blm1{hk,l,C}

)]
, (1)

where 1{hk,l,C} = 1 if log2(1 + SNRk,l) > C; otherwise
1{hk,l,C} = 0. Note that

∏
l∈U

(
1− blm1{hk,l,C}

)
is the prob-

ability that file m can be obtained only via a BS link, and
akm
∏
l∈U

(
1− blm1{hk,l,C}

)
is the probability that the user wants

file m but file m can be obtained only via a BS link. We define
the self-access probability, i.e., the probability that user k can
obtain the desired file from its own cache, as

P kS =
M∑
m=1

akmb
k
m. (2)

By using P kB and P kS , the probability that user k obtains the
desired file via a D2D link is

P kD = 1− P kS − P kB

= 1−
M∑
m=1

akm

[∏
l∈U

(
1− blm1{hk,l,C}

)]
−

M∑
m=1

akmb
k
m.

(3)

B. Utility Maximization Problem Formulation

Now, we derive the expected utility of the network. We
assume that for any user k, the channel gains of all possible
associated D2D links, i.e., 1{hk,l,C}, ∀l, are independent (see
use cases in Sec. III.D). Using the results in Sec. III.A, the
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TABLE I: Summary of Frequently Used Notations

Notations Descriptions
M ; S; D Number of files in the library; number of files that can be stored by a user; cluster size
Ka; Ki; K Number of active users; of inactive users; of total users in a cluster
UA; UI; U Index set of active users ; of inactive users; of all users
akm; bkm Request probability of user k for file m; caching probability of user k for file m
Lk,l; wk Probability of a successful D2D link between users k and l; weight of user k
UB; UD; US Utility of using BS link; of using D2D link; of using self-caching
TB; TD; TS Throughput of using BS link; of using D2D link; of using self-caching
CB; CD; CS Cost of using BS link; of using D2D link; of using self-caching

Unet; Tnet; Cnet; Hnet; EEnet Utility; throughput; cost; energy efficiency; hit-rate of the network
Pk

B ; Pk
D ; Pk

S Elementary access probabilities: refer to the clear definition of (1); of (3); of (2)

utility of the selected user k when user k is selected by the
BS is expressed as

Uk = UD · P kD + UB · P kB + US · P kS . (4)

We denote weights w1, w2, ..., wKA as the weighting on differ-
ent users, which indicates the relative priority of users. Since
users are randomly selected by the BS, the expected utility
contributed by the selected users is

U =
∑
k∈UA

wkE{UD · P kD + UB · P kB + US · P kS }

=
∑
k∈UA

wk
KA

[
UD · P kD + UB · P kB + US · P kS

] (5)

The users not selected by the BS can still check whether their
desired files are cached in their local caches. As such, we can
obtain additional utilities from the users’ ability to satisfy their
own requests. Thus, the expected utility of the network is

Unet = U + Ulocal

= U + US ·
1

KA
·
∑
k∈UA

∑
l∈UA,l 6=k

M∑
m=1

wla
l
mb

l
m

=
∑
k∈UA

wkUD

KA
+ (UB − UD)

M∑
m=1

Sm

+ (KAUS − UD)
M∑
m=1

∑
k∈UA

wka
k
mb

k
m

KA
,

(6)

where Sm =
∑
k∈UA

wkam,k
KA

∏
l∈U (1 − blmLk,l) and Lk,l =

Pr [log2(1 + SNRk,l) > C]. Note that the derivations for (6)
are shown in Appendix A. Moreover, the computation for Lk,l
will be discussed later in detail in Sec. III.D.

Using (6), the caching policy design problem that maxi-
mizes the network utility is:

max
bkm,∀k,m

Unet

subject to
∑M
m=1 b

k
m ≤ S, ∀k,

0 ≤ bkm ≤ 1, ∀k,m.
(7)

We then have the following proposition.
Proposition 1: The optimal solution of (7) must be tight at

the equality of the sum constraint, i.e., for the optimal solution
(bkm)∗, ∀k,m, we have

M∑
m=1

(bkm)∗ = S, ∀k. (8)

Proof. By (6), the first-order partial derivative of Unet is:

∂Unet

∂bjm
=− (UB − UD)

∑
k∈UA

wka
k
m

KA
Lk,j

∏
l∈U ,l 6=j

(1− blmLk,l)

+ 1{j∈UA}(KAUS − UD)
wja

j
m

KA
, ∀j,m,

(9)
where 1{j∈UA} = 1 when j ∈ UA; otherwise 1{j∈UA} = 0.
Since UB ≤ UD ≤ US, 0 ≤ Lk,l ≤ 1, ∀k, l, and 0 ≤ bkm ≤
1, ∀k,m, we then have ∂Unet

∂bkm
≥ 0, ∀k,m. Therefore, Unet is

non-decreasing with respect to bkm, ∀k,m, which indicates that
the optimal solution of (7) must be tight at the equality of the
sum constraint.

C. Interpretations of the Utility Maximization Problem and Its
Relationship to Practice

In this subsection, we show how the utility maximization
problem can be used in designing caching policies to solve
various practical and important problems. In the following,
we consider the equal-weight case, i.e., w1 = w2 = ... =
wKA = 1, for notation convenience. The extension to other
weights is straightforward.

1) Throughput Maximization Problem: Consider UB = TB,
UD = TD, US = TS, and TB ≤ TD ≤ TS, where TB
is the throughput of a BS link, TD is the throughput of
a D2D link, and TS is the throughput of self-access. The
utility maximization problem then becomes the throughput
maximization problem, in which the expected throughput is

Tnet = TD+(TB−TD)
M∑
m=1

Sm+(KATS−TD)
M∑
m=1

∑
k∈UA

akmb
k
m

KA
.

(10)
2) Cost/Power Minimization Problem: Let UB = −CB,

UD = −CD, US = −CS, and CB ≥ CD ≥ CS, where CB
is the cost of a BS link, CD is the cost of a D2D link, and CS
is the cost of self-access. The problem can then be cast as the
cost minimization problem, expressed as

min
bkm,∀k,m

Cnet

subject to
∑M
m=1 b

k
m ≤ S, ∀k, 0 ≤ bkm ≤ 1, ∀k,m,

(11)

where

Cnet = CD+(CB−CD)
M∑
m=1

Sm+(KACS−CD)
M∑
m=1

∑
k∈UA

akmb
k
m

KA
.

If the power consumption is considered as cost, the problem
is the power minimization problem.
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3) Hit-Rate Maximization Problem: Let UB = 0, UD = 1,
and US = 1

KA
. The problem then is to maximize

Hnet =
∑
k∈UA

E
[
P kD + P kS

]
= 1−

M∑
m=1

Sm, (12)

which maximizes the file hit-rate of the network.
4) Throughput–Cost Weighted Sum Problem: To attain the

desired tradeoff between the different metrics, a common
approach is to maximize the weighted sum/difference of the
different metrics [42]. For example, considering the tradeoff
between throughput and cost, we can maximize

wTTnet − wCCnet, (13)

where wT ≥ 0 and wC ≥ 0. Such a weighted sum/difference
problem is equivalent to the utility maximization problem, as
we let UB = wTTB − wCCB, UD = wTTD − wCCD, and US =
wTTS − wCCS. The same concept can also be used for the
throughput–hit-rate tradeoff. Also, the same concept can be
applied to tradeoff between more than two objectives.

5) Efficiency Problem: In some situations, we aim to maxi-
mize the efficiency, e.g., EE (bits/Joule). The following discus-
sions then show that the efficiency maximization problem can
be addressed by solving the weighted sum problem described
in Sec. III.C.4.

We consider the EE maximization problem as an example.
The same concept can be used for other problems. Suppose
we aim to maximize EE, which is given as

EEnet =
total number of bits transmitted

total amount of energy consumed

=
expected throughput of the network

expected power consumed by the network
=
Tnet

Cnet
.

Then, the EE maximization problem is:

max
bkm,∀k,m

EEnet = Tnet
Cnet

subject to
∑M
m=1 b

k
m ≤ S, ∀k, 0 ≤ bkm ≤ 1, ∀k,m.

(14)

This problem is then equivalent to

max
t,bkm,∀k,m

t

subject to Tnet
Cnet
≥ t,∑M

m=1 b
k
m ≤ S, ∀k, 0 ≤ bkm ≤ 1, ∀k,m,

(15)

Assuming that the optimal t∗ is known, then the problem in
(15) is equivalent to finding the optimal policy in

max
bkm,∀k,m

Tnet − t∗Cnet

subject to
∑M
m=1 b

k
m ≤ S, ∀k, 0 ≤ bkm ≤ 1, ∀k,m.

(16)

In observing (16), we see clearly that we have a weighted
difference problem similar to that described in Sec. III.C.4,
in which wT = 1 and wC = t∗. Thus, it can be cast into
the utility maximization framework. Also, the optimal policy
should result in Tnet − t∗Cnet = 0.

In general, we cannot know the optimal t∗ a priori; however,
the aforementioned idea can still be used to solve the EE
maximization problem. Suppose we have the same problem
as that in (16), but we now replace t∗ with t. Accordingly, we

have the following interpretations: (i) if the solution results in
a positive number, i.e., Tnet − tCnet > 0, then our solution
can provide an EE larger than t; (ii) if the solution gives
Tnet − tCnet < 0, then our solution provides an EE that is
less than t, and t is not achievable. As such, by adjusting
t based on the results and by solving the problem in (16)
using different t, we can keep optimizing t. Thus, we improve
the solution. Finally, by carefully adjusting t and by solving
(16) many times, we can maximize the EE. Since the utility
maximization problem is non-convex, we might not find the
best t∗ and the corresponding user caching policies. However,
we can still obtain an effective solution by using the above
approach. This technique is identical to that used for solving
a quasi-convex problem [43].

D. Effects of the Statistics of Wireless Channels and User
Distributions

In (6), the channel quality influences the expected utility via
Lk,l. Thus, understanding the general expression of Lk,l and
its relationship to channel physics is important. In this section,
we provide several useful expressions for Lk,l and then discuss
its relationship to the possible scenarios. Note that if k = l,
then Lk,l = Lk,k = 1. Therefore in the following, we consider
k 6= l.

Let dk,l be the distance between user k and user l. The
input–output relationship between users k and l then follows
the general expression:

yl =
√

PG(dk,l)sk,lhk,lxk + nl, (17)

where yl is the received signal at user l; xk is the transmit
signal from user k; PG(dk,l) is the path gain effect (channel
[power] gain averaged over small-scale and large-scale fading);
sk,l is the shadowing power gain; hk,l is the small-scale fading
amplitude; and nl is the Gaussian noise with power σ2

n. Let
ED be the transmission power of the D2D link. Using (17),
the received SNR for the D2D link between users k and l is
SNRk,l =

ED|hk,l|2sk,lPG(dk,l)
σ2
n

, and therefore

Lk,l = Pr
[
|hk,l|2sk,lPG(dk,l) >

σ2
n(2C − 1)

ED

]
. (18)

We will show later some practical examples and then demon-
strate how (18) is computed using user and fading distribu-
tions. The extensions to other models are feasible by leverag-
ing the existing results of fading [44] and distance distributions
[45].

1) Case 1: Systems with effective link quality control: In
modern wireless communication systems, approaches such as
adaptive power control and frequency-and-antenna-diversity
are used to combat fading effects in wireless channels. Thus,
in systems with effective link quality control, we can assume
that the D2D links between users in an area can be guaranteed,
leading to Lk,l = 1, ∀k, l. The exact distribution of users then
becomes irrelevant in this case.

2) Case 2: Systems with deterministic path-loss and shadow
fading: When users are less mobile or stationary, the joint
effect of pathloss and shadow fading between users is deter-
ministic. As a result, sk,l and PG(dk,l) are the given constants
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and are based on the exact locations of users. In this case, we
focus on characterizing the small-scale fading. Thus,

Lk,l = Pr
[
|hk,l|2 >

σ2
n(2C − 1)

EDsk,lPG(dk,l)

]
, (19)

where the closed-form expressions are attainable for com-
monly used fading distribution. For example, let us consider
a normalized Rayleigh fading whose average power is 1; we
have

Lk,l = exp

[
−σ2

n(2C − 1)

EDsk,lPG(dk,l)

]
. (20)

Note that in this case, the distribution of users can be arbitrary
but deterministic.

3) Case 3: K users uniformly distributed in a square
with side length D and with shadowing and small-scale
fading: Here, we use the lognormal shadowing and normalized
Rayleigh fading as an example. According to results in [46],
the distance d between two users independently and uniformly
distributed over a square area with unit side length is described
by the probability density function:

fsq(d) =
2d(π + d2 − 4d), 0 ≤ d ≤ 1,

2d(−2− d2 + 4
√
d2 − 1 + 2 sin−1

2− d2

d2
), 1 < d ≤

√
2.

(21)
Then, when fixing the shadowing sk,l, again using the property
of Rayleigh fading, we have

Lk,l(sk,l) =

∫ √2D

0

exp

[
− σ2

n(2C − 1)

EDsk,lPG(x)

]
f [d = x])dx

=

∫ √2

0

exp

[
− σ2

n(2C − 1)

EDsk,lPG(Dx)

]
fsq(x))dx.

(22)
Assume that the shadowing and small-scale fading effects of
different links between different users are independent. We can
then generalize (22) as

Lk,l =

∫ √2

0

[∫ ∞
0

exp

[
− σ2

n(2C − 1)

EDsPG(Dx)

]
fsk,l(s)ds

]
fsq(x))dx,

(23)
where fsk,l(s) is the pdf of the shadowing effect for the
channel link between user k and l. Let the mean and standard
deviation of the lognormal distribution be udB and σF , respec-
tively. We then obtain (24) on the top of next page. It should
be noted that the inner integral of (24) is the complement of
the channel outage when the joint effect of the fading is the
Suzuki distribution [44].

IV. PROPOSED CACHING POLICY DESIGN

From the discussions in Sec. III.C, we understand that
the proposed utility maximization can be used in solving
many practical and important problems. We thus propose
in this section a general solution approach for solving (7).
Specifically, we propose an approach that iteratively optimizes
the caching policies of users. Denote bk′ = [bk

′

1 , ..., b
k′

M ]T as
the policy vector of user k′. We iteratively solve the following

subproblem for different k′ by fixing other users’ caching
policies:

max
bk′

Uk
′

LP = Unet(b1, ...,bk′ , ...,bK) (25a)

subject to
∑M
m=1 b

k′

m = S, (25b)
0 ≤ bm ≤ 1, ∀m. (25c)

When k′ ∈ UA, we obtain the Uk
′

LP expressed in (26) on the
top of next page; when k′ ∈ UI , we obtain the Uk

′

LP expressed
in (27) on the top of next page. Note that (26) and (27) are
simply reformulations of (6), in which we isolate the terms that
contain the variables to be optimized. From (26) and (27), we
can see that (25) is a linear program.

General linear program solvers could be applied to solve
(25). However, we provide here a more insightful and efficient
approach via the analytical closed-form expressions in (26)
and (27). By considering (28) on the top of next page, we
notice that maximizing Uk

′

LP is equivalent to maximizing
M∑
m=1

bk
′

mU
k′,m
LP,S . (29)

Then, observe that the optimal solution of (29), subject to
constraints (25b) and (25c), can be obtained by allocating the
cache space to the terms offering larger payoffs. Thus, the
optimal solution of (25) is expressed as

(bk
′

m)∗ =

{
1, m ∈ Φk′ ,

0, otherwise,
(30)

where

Φk′ = {m : Uk
′,m

LP,S is among the S largest of all Uk
′,m

LP,S }.

By iteratively solving (25) via (30) for different k′ until
convergence, the caching policy design problem in (7) can be
effectively solved. Denote Bk = {(bk1 , ..., bkM )T :

∑M
m=1 b

k
m =

S; 0 ≤ bkm ≤ 1, ∀m}. The solution approach is summarized
in Alg. 1. Since (30) suggests that the probability for a user
to cache file m is either 1 or 0, we actually eliminate the
probabilistic interpretation and attain the deterministic policies
of users. To characterize the performance of the proposed
solution approach, we provide the following theorem:

Theorem 1: Alg. 1 is monotonically non-decreasing at each
iteration and can converge to a stationary point if each iteration
provides a unique maximizer.5

Proof. See Appendix B.

Algorithm 1 Iterative User-Based Caching Policy Design

At iteration r, choose a user k′ and update
br+1
k′ = arg max

bk′∈Bk′
U(br1, ...,b

r
k′−1,bk′ ,b

r
k′+1, ...,b

r
K)

br+1
k = brk, ∀k 6= k′

Finally, we note that although the proposed design needs
coordination between users, the users can independently run

5If the maximizer is not unique, then we will encounter a tie between dif-
ferent Uk′,m

LP,S , which is generally unlikely, as users have different preferences
on different files. Thus, such a unique maximizer assumption is mild.
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Lk,l =

∫ √2

0

[∫ ∞
0

exp

[
− σ2

n(2C − 1)

EDPG(Dx)s

]
10/ log(10)

sσF
√

2π
exp

(
−(10 log10(s)− udB)2

2σ2
F

)
ds

]
fsq(x)dx (24)

Uk
′

LP =
∑
k∈UA

wkUD

KA
+ (UB − UD)

M∑
m=1

∑
k∈UA

wkam,k
KA

 ∏
l∈U ,l 6=k′

(1− blmLk,l)

+ (KAUS − UD)

 M∑
m=1

∑
k∈UA,k 6=k′

wka
k
mb

k
m

KA


−

M∑
m=1

bk
′

m

(UB − UD)
∑
k∈UA

wkam,k
KA

Lk,k′

 ∏
l∈U ,l 6=k′

(1− blmLk,l)

+ (UD −KAUS)
wk′a

k′

m

KA

 .

(26)

Uk
′

LP =
∑
k∈UA

wkUD

KA
+ (UB − UD)

M∑
m=1

∑
k∈UA

wkam,k
KA

 ∏
l∈U ,l 6=k′

(1− blmLk,l)

+

(KAUS − UD)

[
M∑
m=1

∑
k∈UA

wka
k
mb

k
m

KA

]
−

M∑
m=1

bk
′

m

(UB − UD)
∑
k∈UA

wkam,k
KA

Lk,k′

 ∏
l∈U ,l 6=k′

(1− blmLk,l)

 .

(27)

Uk
′,m

LP,S :=



(UD − UB)
∑
k∈UA

wkam,k
KA

Lk,k′

 ∏
l∈U ,l 6=k′

(1− blmLk,l)

+ (KAUS − UD)
wk′a

k′

m

KA

 , k′ ∈ UA,(UD − UB)
∑
k∈UA

wkam,k
KA

Lk,k′

 ∏
l∈U ,l 6=k′

(1− blmLk,l)

 , k′ ∈ UI

(28)

the proposed Alg. 1 since they know the other users’ indi-
vidual preferences. In other words, Alg. 1 can actually be
implemented in a decentralized manner, given that the users
perfectly know the other users’ individual preferences.

A. Complexity Analysis of the Proposed Caching Policy De-
sign

From theorem 1, we can already understand the performance
and convergence of the proposed design. Now, we analyze
its complexity. Observe that the proposed design is based
on the iterative algorithm in Alg. 1. Thus, the complexity
comes from the computation at each iteration and the number
of iterations required for convergence. At each iteration, the
main computational complexity comes from computing for
Uk,mLP,S , ∀m and sorting Uk,mLP,S , ∀m. Then, we note that in terms
of the total number of additions and multiplications, the com-
plexity order when computing for Uk,mLP,S , ∀m is O

(
MK2

)
;

the complexity order of sorting is O(M logM). As a re-
sult, the overall complexity order at each iteration becomes
O
(
MK2 +M logM

)
.

Regarding the number of iterations for the convergence,
the general analytical expression is intractable; thus, we run
simulations to understand how many iterations we would need
in practice. For the simulations, we consider the same setup
as that shown in Fig. 4 and evaluate the proposed throughput-
based design (see Sec. V for the details of the simulation
setup). The convergence of a single user’s caching policy does
not necessarily imply convergence of all users. Hence, we test

the stopping criterion after updating the caching policies of all
users in order to guarantee the convergence of all users. This
is given as

M∑
m=1

K∑
k=1

|bkm|2 ≤ 10−4. (31)

Therefore, the number of iterations would be the multiple of
K, i.e., the number of iterations can only be K, 2K, 3K, ...,
etc. We consider three different numbers of users for the sim-
ulations: K = 10, 20, 30. The results show that the proposed
design can converge within 10K number of iterations for
more than 99% of the cases. In practice, this indicates fast
convergence.

V. NUMERICAL RESULTS

This section provides simulation results to validate the
analysis, evaluate the proposed designs, compare between
different designs, and provide insights.

A. Simulation Setup

We evaluate here the performance of a cluster that covers a
square area and has side length D. In the simulations, we
assume that the users are uniformly distributed within the
cluster. Unless otherwise indicated, we assume that the users
adopt random-push scheduling. Likewise, we assume that
users have equal weights, i.e., wk = 1, ∀k ∈ UA. We consider
a practical channel model for D2D links, which consists of
the pathloss, shadowing, Rayleigh fading, and Gaussian noise.
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The path-loss model of the D2D link between users k and l
is described as [8], [44]

20 log10

4πd0
λc

+ 10α log10

dk,l
d0

, (32)

where d0 = 10 m is the breakpoint distance, λc = 3×108
fc

m, where fc = 2 GHz is the carrier frequency, α = 3.68
is the path-loss exponent, and dk,l is the distance between
users k and l. The shadowing is modeled by a lognormal
distribution with mean µdB = 0 dB and standard deviation
σF = 8 dB, and the small-scale fading is Rayleigh dis-
tributed. We assume that the noise power spectral density is
N0 = −174 dBm/Hz. We denote ED as the transmission
power of the device and SNRmin = 5 dB as the minimum
SNR requirement for a successful transmission of a D2D link.
Thus, Rmin = log2(1+3.16) is the minimum transmission rate
of a D2D link. We then let TD = BDRmin be the throughput of
a D2D link, where BD = 20 MHz is the bandwidth of a D2D
link. We assume that a BS link will always exist whenever a
user is scheduled to use it. Since the BS must supply the users
in many clusters, we assume that a BS link can share only 1

100
of the BS resources. Hence, the transmission power of a BS
link is EB = 26 dBm, which is 1

100 of the total 46 dBm of the
BS power. Similarly, the bandwidth of a BS link is BB = 200
kHz, which is 1

100 of the total 20 MHz bandwidth. We thus
let TB = BBRmin. Note that a 200-kHz bandwidth is enough
to transmit a low-resolution video, e.g., 360p. We assume that
there is no cost when users obtain the desired file from their
local caches, and we let TS = 2TD to indicate the slightly
better quality of the video when self-caching is possible.6 For
simplicity, we assume that the energy cost is purely determined
by the radio frequency energy required for transmission; access
to storage and coding/decoding is assumed to be negligible
in comparison. Thus, based on the above setup, we obtain
CB = EB, CD = ED, and CS = 0. Therefore, the EE of the
network is EEnet = Tnet

Cnet
according to the definition in Sec.

III.C.5.
We consider M = 1000 for all simulations. To obtain the

individual preferences of users and the corresponding system
popularity for the simulations, we use the generator described
in [33] to generate individual preference probabilities of 20000
users to form a dataset. Then, for each realization of the sim-
ulations, we randomly select users in the generated dataset for
evaluation. As such, the system popularity of the simulations
is simply the average of individual preferences of all 20000
users in the dataset.

In the following, we show the benefits of exploiting the
individual preferences by comparing between designs with
and without using individual preferences. In other words,
we compare between the network performances where the
proposed design is implemented either by using the knowledge
of individual preference probabilities as in Sec. IV or simply
by using the system-wide popularity distribution. In the latter
case, the individual preference probabilities of all users in (14)

6Although we can immediately obtain the file when it is in the local cache,
the throughput is bounded by the rate at which the user watches the file. Also,
mathematically, we should not let TS go to infinity if we want meaningful
results.
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Fig. 2: Comparisons between analytical and simulated results
in terms of throughput and EE.

are replaced by the global (system) popularity distribution, i.e.,
all users assume the same preference probabilities described
by the global popularity distribution.

B. Effects of Individual Preferences

In this subsection, we validate the analytical results provided
in Sec. III and show the benefits of using information regarding
individual preferences. For all simulations in this subsection,
we adopt D = 80 m and ED = 20 dBm. In the figures, the
results of the proposed design that uses individual preferences
is labeled with “+ Individual”; the design that uses global
popularity distribution is labeled with “+ Global.”

We first verify our analytical formulations and show the
efficacy of using individual preferences. In Fig. 2, we consider
both S = 5 and S = 20 and no inactive users (KI = 0), and
we evaluate the proposed design in terms of the throughput
and EE. When evaluating the throughput in 2(a), the pro-
posed design is used for maximizing the throughput; when
evaluating the EE in 2(b), the proposed design is used for
maximizing the EE. The curves labeled with “Analytical” are
directly computed from expressions in Sec. III; the curves
with “Simulations” are results of Monte Carlo simulations. We
observe that the analytical results match the simulations very
well, thereby validating our derivations in Sec. III. Moreover,
we see that the design that exploits individual preferences
significantly outperforms the corresponding design that does
not use individual preferences.

We next show the impact of inactive users by observing
the throughput difference. In Fig. 3, we consider S = 5 and
compare the performances of two networks that have different
numbers of inactive users, i.e., KI = 0 and KI = 25. The
curves are generated by using the proposed design that aims
to maximize throughput. The results show that the benefits
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Fig. 3: Comparisons between networks with different numbers
of inactive users in terms of throughput.

of the inactive users are more significant when the number
of active users in a cluster is small. At KA = 3, the
throughput performance improves by 49% when KI = 25; at
KA = 53, it improves by only 1.5% when KI = 25. This
indicates that although inactive users can help to improve
performance, such improvement becomes insignificant when
too many users (in the same cluster) share a single D2D
band. This implies that when the number of inactive users
is large, we might want to have multiple D2D links [48] to
benefits more from the inactive users or adjust the number of
users in a cluster by reducing the cluster size. However, the
use of either approach should be subject to careful tradeoffs
between different aspects, such as interference management,
power control, reduction of hit-rate, etc.

C. Tradeoff Behaviors between Different Performance Metrics

In this subsection, we compare different designs and show
the tradeoffs between throughput, EE, and hit-rate. Specifi-
cally, in all the following figures, we compare between caching
policies obtained by using the proposed design framework in
pursuit of different goals, i.e., throughput, EE, hit-rate, and the
throughput–hit-rate tradeoff, in terms of throughput, EE, and
hit-rate. For the throughput–hit-rate tradeoff design, we design
the caching policies of users by maximizing Tnet+ζTDKAHnet,
i.e., by using UB = TB, UD = TD + ζKATD, and US =
TS + ζTD. Such a tradoff design is interpreted as a weighted
sum of throughput and hit-rate in which the throughput is
rendered the weight 1 and the hit-rate rendered the weight
ζKATD. Note that the term TD in the weight of the hit-rate
is basically to calibrate between different units. This tradeoff
design is then labeled with “TH-HIT Tradeoff - ζ” in the
figures, where ζ might be different to indicate different tradeoff
behaviors.

Considering S = 10, R = 80, ED = 13 dBm, and KI = 0,
we compare different designs in Fig. 4. Unsurprisingly, the
throughput-based, EE-based, and hit-rate-based designs pro-
vide the best throughput, EE, and hit-rate, respectively. The
hit-rate-based design provides poor throughput because it does
not consider the self-caching gains possibly brought by letting
users cache their desired files. In contrast, the throughput-
based design is not effective in terms of hit-rate because
the design overemphasizes self-caching gains. By striking
a balanced viewpoint between throughput and hit-rate, the
appropriate throughput–hit-rate tradeoff designs can efficiently
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Fig. 4: Comparisons between different designs in terms of
throughput, EE, and hit-rate.

trade throughput for hit-rate. This can then significantly im-
prove the hit-rate without degrading the throughput much.
Note that by adjusting ζ, we can effectively adjust the tradeoff
behavior. Finally, we observe that an energy-efficient caching
policy can be obtained by balancing the throughput and hit-
rate. In fact, when ζ = 1, the throughput–hit-rate tradeoff
design performs almost as well as our proposed EE-based
design. Also, it is worthwhile to note that when compared to
the use of ED = 20 dBm, as in Fig. 2, the adoption of ED = 13
dBm here indeed reduces the power consumption significantly,
resulting in much better EE. However, such a transmission
power reduction only slightly increases the channel outage.7

This implies the usefulness of a good power control policy of
the network.

We now consider the same setup as featured in Fig. 4
and compare the proposed design to some other reference
designs in Fig. 5. Specifically, we compare the proposed
design to the baseline selfish design, in which each user
selfishly caches the files according to its own preference
without considering other users. The selfish design can be
considered as an extreme as opposed to the maximum hit-rate

7The channel outage rate increases by only 0.012.
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(b) EE.
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Fig. 5: Comparisons between different designs in terms of
throughput, EE, and hit-rate.

design, which maximizes cooperation between users. We also
compare the proposed designs to the design that adopts the
global popularity distribution, similar to those in Figs. 2 and
3. Furthermore, we compare the proposed designs to Alg. 1
in [35], which is labeled as “Guo 2017.” To adapt the design
in [35] to our network model, we make some revisions to
it. First, we let each group defined in [35] stand for only a
single user. Additionally, we let the cooperation range defined
in [35] be the same as the cluster size defined in our paper.
Since the design proposed in [35] assumes that a user can make
caching decisions only for a single cache space, we implement
a naive extension for it by treating each caching space of a user
independently and repeatedly using the same policy designed
in [35] for every caching space of the user.

The results show that our proposed designs outperform
all the other designs in terms of throughput, EE, and hit-
rate. Moreover, the selfish design performs well in terms of
throughput, while it performs very poorly in terms of EE
and hit-rate. This is because the network throughput can be
effectively enhanced by having large local gains when all users
are active. However, this near-optimal selfish design cannot
hold if there are inactive users. We will see this later in
another figure. On the other hand, the selfish design inherently

provides very poor hit-rate, leading to poor EE, since the BS
links are frequently used.

D. Performance Evaluations with Respect to Cluster Size

Fig. 6 and Fig. 7 evaluate the proposed designs with respect
to the cluster size D. A change in the cluster size should be
accompanied by a suitable transmission power control of D2D
links. Hence, we adopt the power control policy proposed
in [18] to appropriately manage the average SNR of the
received signal and the interference between clusters. This
power control policy is:

ED =

[
(
√
K − 1)

d

d0

]α
· (4πd0

λc
)2 · ν, (33)

where K = 16 is the reuse factor and ν = 2
α
2 N0BD is the

maximum allowable interference between clusters.8 Such a
power control policy can adjust the transmission power of
devices such that the average SNR of the received signal
and the inter-cluster interference are almost invariant when
changing the cluster size. Since D2D links are expected to exist
only for short-distance transmissions, we consider D ≤ 90 m.
This results in ED ≤ 20 dBm when we use (33) to adjust
the power. We consider the Poisson point processes to model
the number of active and inactive users in the cluster, where
λA and λI represent the densities of active and inactive users,
respectively. Thus, the numbers of active and inactive users are
the random variables described by the Poisson distributions
with parameter λAD

2 and λID
2, respectively. Also, we need

to accommodate the fact that a cluster has different numbers of
users when D is different. Hence, instead of directly looking
at the throughput, we evaluate using the throughput per area
(Bits/s/m2).

Similar to Fig. 4, we compare between different caching
policies developed through the proposed design, with the aim
of maximizing different performance metrics. In addition, we
compare with two reference curves in Fig. 5. Furthermore,
we include an additional reference curve, which adopts the
coordinated design with homogeneous modeling (labeled “Ho-
mogo Model” in Figs. 6 and 7). This curve considers the
situation that the policy is designed using global popularity
distribution while the users indeed have the same preference,
following the global popularity distribution. It thus represents
the performance of systems that design and evaluate using the
homogeneous modeling employed in previous papers – we
want to see the influences on the performance evaluation of
cache-aided D2D networks when changing from a homoge-
neous modeling to a more practical heterogeneous modeling.

In Fig. 6, we consider S = 10, λA = 0.01, and λI = 0,
i.e., no inactive users. Since the area throughput and EE are
influenced by multiple factors, they are not convex/concave
functions in general. As such, we see that the area throughput
of the throughput-based design fluctuates when D is small;
it becomes somewhat flat when D is large. This is because
the contribution of the D2D transmission becomes minor

8The value of ν is at the level of noise power; hence, for brevity, we ignore
the inter-cluster interference in the simulations. Accordingly, we use ν here
to compute only for ED.
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Fig. 6: Comparisons between different designs in terms of
throughput, EE, and hit-rate with respect to cluster size with
λA = 0.01 and λI = 0.

as too many users share the same D2D band in a cluster.
We also see that the selfish design is relatively effective
again because all users are active. As expected, the hit-rate-
based design provides the best hit-rate. Meanwhile, the area
throughput of the hit-rate-based design continuously decreases
with respect to D, since it strives to improve the hit-rate
without considering the influence of the self-caching gain. In
contrast, the throughput-based design again provides the best
area throughput, but it is not effective for hit-rate. In terms
of EE, the EE-based design outperforms others significantly.
Moreover, the optimal point of the EE is at a large cooperation
distance because it is necessary to have high hit-rate in order
to have large EE; otherwise, the BS needs to serve the users
by using more BS links, leading to the smaller throughput and
larger power consumption, and thus poor EE.

Through observation, we see that the tradeoff between the
area throughput and EE can be attained not only through
different caching policies but also through different cluster
sizes. Thus, a network designer should consider both the
caching policy and cluster size when designing the network.
Finally, we argue that exploiting individual preferences is
expectedly beneficial. We can see that our proposed system,
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Fig. 7: Comparisons between different designs in terms of
throughput, EE, and hit-rate with respect to cluster size with
λA = 0.005 and λI = 0.005.

which considers individual preferences in the design, performs
better than the system that operates under the assumption
that users have the same preferences, i.e., the curve with the
“Homogo Model” label. Such a result implies that, rather than
being detrimental, the diverse preferences of users for files can
actually be used to further improve the network.

In Fig. 7, we conduct a similar evaluation as in Fig. 6.
Here, we adopt λA = 0.005 and λI = 0.005, i.e., there are
some inactive users. We can see that most of the phenomena
observed in Fig. 6 can be observed again here. Since we now
have inactive users, they should be cooperative such that we
can obtain the optimal throughput while the active users are
still fairly selfish. This then distinguishes the selfish design
from our proposed design and causes the throughput-based
design to perform well in terms of EE and hit-rate. We can
actually observe that the difference between the optimal values
of the throughput- and EE-based designs in terms of EE is
smaller as compared to that in Fig. 6. However, the tradeoff
between throughput and EE is still significant as we change the
cluster size. Finally, we see that the proposed system performs
better than the system with pure homogeneous modeling.
This again validates our point that having users with diverse
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preferences is beneficial.

E. Performance Evaluations with Different Schedulers

Finally, we evaluate the proposed design in clustering net-
works with two different schedulers. Through this, we can
show how the proposed design can help developers design
a caching policy for a network that has a very complicated
scheduler. Specifically, in addition to evaluating using the
random-push scheduler, we evaluate (under the same caching
policy) the “priority-push scheduler” [18], which functions as
follows: all users initially check whether the files in their local
caches can satisfy their requests. If yes, then the requests are
satisfied; otherwise, they send their requests to the BS. The
BS then checks whether there are users that can be satisfied
by using D2D links. If yes, then the BS randomly selects one
user to be served by the D2D link; otherwise, the BS randomly
selects one user from those sending the requests and then
serves the user via a BS link. Such a scheduler maximizes the
usage of D2D communications. Hence, we can expect that the
priority-push network will have higher throughput and better
EE than the random-push network. On the other hand, it might
be unfair to those users whose preferences are not similar to
the mainstream; they might be less likely to be selected and
accordingly be served. More importantly, such a complicated
scheduler results in an intractable expression for designing
caching policies. We demonstrate how to exploit the proposed
designs in this work along with some numerical results to
guide the designer in obtaining effective designs for it.

In Fig. 8, we consider the same setup as in Fig. 6 and
evaluate the proposed design in both networks using the
random-push and priority-push schedulers, labeled as “Ran-
dom” (dashed line) and “Priority” (solid line), respectively. We
observe that the priority-push network generally outperforms
the random-push network in terms of the area throughput
and EE.9 Additionally, we observe that in terms of the area
throughput, the results of the random-push network can be
fairly representative. The results for EE show more subtle ef-
fects. We see that the optimal cluster size for the priority-push
network is much smaller, which implies that it is unnecessary
in the priority-push network to have high hit-rate to obtain the
best EE. This is because the priority-push scheduler would
schedule a D2D link as long as there exists one, implying that
it would have a higher rate for scheduling D2D links than
simply the hit-rate – the probability for at least one user to
find the desired file in the D2D network is higher than that
of a particular user to find its desired file. Thus, to obtain
an energy-efficient design in the priority-push network, we
need to choose a design that has smaller cluster size and has
lower hit-rate than those that provide the optimal EE in the
random-push network. Overall, based on the above results,
we conclude that we need to reduce the cluster size and
consider various tradeoff designs proposed in this paper in
order to obtain an effective design in the priority-push network.
Since our proposed tradeoff designs can efficiently evaluate the

9Since the hit-rate considering the priority-push scheduling is the same as
the hit-rate considering the random-push scheduling, we omit the demonstra-
tion of the hit-rate for brevity.
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Fig. 8: Comparisons between different designs in terms of
throughput and EE with respect to cluster size with λA = 0.01
and λI = 0.

throughput and hit-rate, such a trial-and-error procedure might
not be challenging.

F. Summary of the Insights

Here we summarize the insights from our simulation results:
• It is necessary to consider the influence of users’ indi-

vidual preferences on system design because evaluations
done under the assumption that users have the same
preferences are not representative of evaluations done
while considering individual preferences. Therefore, by
considering the effects of individual preferences, the
proposed designs can significantly improve network per-
formance.

• A system optimized for throughput can have significant
loss in EE and vice versa. Similarly, a system optimized
for hit-rate can have significant loss in throughput and EE
and vice versa. However, allowing slight sub-optimality
in one performance can significantly improve another
performance.

• Instead of directly optimizing EE, which can be compli-
cated, one alternative approach is to use a throughput–hit-
rate tradeoff design, i.e., by balancing between throughput
and hit-rate, a design with high EE can be obtained.

• While directly finding the effective caching policy for
the network using priority-push scheduling is very
challenging due to mathematical intractability, various
throughput–hit-rate tradeoff designs obtained by con-
sidering tractable random-push scheduling can serve as
alternatives. This is because priority-push and random-
push scheduling have similar behaviors, except that the
former scheduling prioritizes the users that can use D2D
links.
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VI. CONCLUSIONS

In this work, we used the individual preferences of users
to improve cache-aided D2D networks. We used an individual
preference probability model to derive the network utility of a
clustering network and to propose a utility maximization prob-
lem accordingly. This problem can be applied to solve different
important and practical problems, e.g., throughput, EE, hit-
rate optimization, and different tradeoff problems. Assuming
users can coordinate, we proposed a general solution approach
for solving the utility maximization problem. Comprehensive
numerical evaluations were conducted with practical individual
preferences and network setups. Our results show that we
can appropriately exploit information about users’ individual
preferences to significantly increase the performance of cache-
aided D2D networks. Our results also show that throughput
and hit-rate are in conflict with each other; nevertheless, such
a conflict can be resolved through a suitable tradeoff design.
To obtain an effective EE design, in addition to directly
optimizing EE, we can solve a properly designed throughput–
hit-rate tradeoff design, offering another perspective for EE
optimization. Aside from optimizing the caching policy to
improve performance, we proposed changing the cooperation
distance of the D2D to achieve this goal; likewise, the tradeoff
exists in this regard. Finally, we demonstrated that the results
of our work can serve as a foundation for designing caching
policies in networks with a more involved scheduling policy.

APPENDIX A
DERIVATIONS OF THE EXPECTED UTILITY

We first derive the expression of U . Using (1), (2), and (3),
we obtain (34) on the top of next page. It follows that
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APPENDIX B
PROOF OF THEOREM 1

To prove the Theorem, we first note that the problem in (7)
satisfies the block separable structure as follows:

max
b1,...,bK

U(b1,b2, ...,bK)

s.t. bk ∈ Bk, ∀k.
(35)

Eq. (35) indicates that the constraints on different
blocks are separable. Denote u(bk′ ;B

r) =
U(br1, ...,b

r
k′−1,bk′ ,b

r
k′+1, ...,b

r
K) for brevity. From

Alg. 1, we notice that br+1
k′ = arg max

bk′∈Bi
u(bk′ ;B

r) at each

iteration. Hence, we have

u(br+1
k′ ;Br) ≥ u(brk′ ;B

r). (36)

Thus, we know that the algorithm is monotonically non-
decreasing. Then, since the optimal objective function of (7)
should not be infinity, the algorithm must converge.

To prove that Alg. 1 converges to a stationary point if every
iteration has an unique maximization, we use the analysis
framework for block coordinate descent methods in [47] as
follows.10 Suppose each iteration in Alg. 1 has a unique
maximizer. Then, Alg. 1 converges to a unique solution
B =

[
b̄1, ..., b̄K

]
as the number of iterations r → ∞.

According to Alg. 1, we know that

b̄k′ = arg max
bk′∈Bk′

u(bk′ ;B), ∀k′ = 1, 2, ...,K. (37)

As a result, due to concavity,(
∇k′U(b̄1, ..., b̄K)

)T (
bk′ − b̄k′

)
≤ 0, ∀bk′ ∈ Bk′ , (38)

where ∇k′ denotes the gradient of U with respect to compo-
nent bk′ . We denote b = vec(B) ∈ B is the vectorization of
B = [b1, ..,bK ] and b̄ = vec(B) ∈ B is the vectorization of
B, where B = vec(B1×B2× ...×BK). Then, notice that (38)
is true for all k′ = 1, 2, ...,K . It follows from the Cartesian
product structure of a set that(

∇U(b̄)
)T (

b− b̄
)
≤ 0, ∀b ∈ B, (39)

where ∇ is the gradient with respect to b̄. This proves that
Alg. 1 converges to a stationary point.
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