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Abstract—Recent investigations showed that cache-aided
device-to-device (D2D) networks can be improved by properly
exploiting the individual preferences of users. Since in practice it
might be difficult to make centralized decisions about the caching
distributions, this paper investigates the individual preference
aware caching policy that can be implemented distributedly by
users without coordination. The proposed policy is based on cate-
gorizing different users into different reference groups associated
with different caching policies according to their preferences. To
construct reference groups, learning-based approaches are used.
To design caching policies that maximize throughput and hit-rate,
optimization problems are formulated and solved. Numerical
results based on measured individual preferences show that
our design is effective and exploiting individual preferences is
beneficial.

I. INTRODUCTION

The rapidly increasing demand for videos presents a signifi-
cant challenge for next-generation wireless networks. Exploit-
ing the high concentration of video requests on popular files
and availability of cheap storage, caching of video files at the
wireless edge emerged as a promising solution, and has been
widely discussed in the past years [1], [2].

Among the most popular implementations of this princi-
ple, cache-aided device-to-device (D2D) networks combine
high-spectrum-efficiency D2D communications with on-device
caching in wireless networks [1]–[4]. Both analytical and
empirical results showed that the cache-aided D2D can ef-
fectively convert memory into bandwidth [4] and outperform
conventional unicasting from base stations (BSs) [3], [4].

Though various aspects of cache-aided D2D networks were
widely studied [4]–[8], most of the existing papers assume a
homogeneous preference model, in which users in the network
send requests following the same global popularity distribu-
tion. This modeling choice is mainly due to the better tractabil-
ity of this model and the lack of practical individual (user)
preference modeling. However, papers based on this model
might be restricted since both intuition and measurements
show that different users indeed have different preferences [9],
[10]. Therefore, cache-aided D2D networks considering the
more flexible heterogeneous preference modeling, in which
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users can have different requesting and caching behaviors,
recently start to draw attentions [9]–[14].

Several papers have shown that considering heterogeneous
preference modeling could help improving the network per-
formance [11]–[14]. By assuming users in different groups
have different preferences, [11] investigated the hit-rate opti-
mization without fully considering the individual preferences.
Exploiting knowledge of individual preferences, [12] proposed
a deterministic caching policy to maximize the offloading
probability. Based on the estimated user preferences, [13]
proposed a centralized approach to determine the cached files
for delay minimization. Most recently, under the assump-
tion that users perfectly know individual preferences of one
another, [14] proposed a caching policy design framework
that can optimize throughput, energy efficiency, and hit-rate,
and demonstrated based on simulations with a practical setup
that cache-aided D2D networks can be significantly improved
when the information of individual preferences is properly
used.

In spite of this recent progress, the development of the
caching policy design being aware of individual preferences is
still at an early stage. Especially, to our best knowledge, most
investigations consider a centralized caching policy and/or
assume users can coordinate when caching files. However,
since users, in general, are mobile and might not know at
the time at which they cache the files (typically during night)
who their neighbors will be at the time of file exchange (during
the day), a design approach assuming centralized/cooperative
caching between users might not always be feasible. In
contrast, a design approach where users can decide their
caching policies without knowing the individual preferences
and caching policies of other users can be easily implemented
in general situations. Therefore having such a noncoordinated
caching policy design is of great interest.

In this paper, we propose a noncoordinated individual pref-
erence aware caching policy for optimizing throughput and hit-
rate in BS-assisted wireless D2D caching networks adopting
clustering and random-push scheduling [7]. Such policy is
implemented based on a group-wise structure, in which there
are reference groups and each group is associated with a
unique probabilistic caching policy. Then as those reference



groups are designed in advance and users can be assigned to
different reference groups according to their preferences, users
can determine their caching policies without any coordination
among users.

To optimize the proposed caching policy, we first propose
a group assigning approach for users, and then optimize the
reference groups and their corresponding caching policies. The
optimization of the reference groups is conducted by combin-
ing the Kullback-Leibler (KL) divergence with the hierarchical
and K-mean clustering algorithms [15] with the aid of user
samples generated from the measurement based preference
model [9], [10]. Based on the grouping result, we analyze
the network and formulate the caching policy design problem
aiming for throughput and hit-rate optimizations. An iterative
algorithm is proposed to solve these two problems. Using
the practical individual preferences generating by models and
parameterizations in [9] and [10], respectively, we evaluate our
design and provide comparisons with reference designs. Our
results demonstrate the efficacy of the proposed design.

II. NETWORK MODEL

In this paper, we consider a BS-assisted wireless D2D
caching network, where each user can obtain the desired
files through their own caches, caches of neighboring users
via D2D links, or BS links. Each user device can cache S
files. Users can be active or inactive. An active user is a
user who has a request to be satisfied and participates in the
D2D cooperation, i.e., sends files to other users if requested;
an inactive user is a user who does not have a request but
still participates in the D2D cooperation. If a user neither
has a request nor participates in the D2D cooperation, such
user is independent to the D2D network, and is neglected
without loss of generality. We consider in the following only a
single BS; this is no restriction of generality as long as inter-
cell interference is limited by conventional means to allow
supplying all users in the cell with a fixed required data rate
(see below).

We consider the clustering network model [7]. A cell is
served by a BS, and is split into different equally-sized square
clusters with side length D. Users can cooperate via D2D
links only with users in the same cluster. To avoid intra- and
inter-cluster interference, we assume each cluster to have at
most one D2D link and let different clusters use different
time/frequency resources via “spatial reuse”. The side length
D is thereafter called “cluster size” or “cooperation distance”.
We assume a D2D communication in a cluster can always be
successful, and occurs at a fixed rate, if the link is established.
Such assumption is achievable by having appropriate system-
level power control and frequency diversity (see details in Sec.
II.A of [7]). Similarly, we assume that a BS communication
(using a fixed rate) can always be successful if a BS link
is scheduled. Users are distributed in the cell following the
homogeneous Poisson point process (HPPP) with density λ.
Following the basic property of HPPP, active and inactive
users are distributed following independent HPPPs with λA

and λI, respectively, where λ = λA+λI. Due to the symmetric

property of the clustering model and HPPPs, we thereafter
focus on a single cluster without loss of generality.

Users are served by the “random-push” scheduling [7],
which works as follows. Considering a cluster, the BS first
randomly selects an active user. Then the BS checks whether
the request of the selected user can be satisfied by files in
this user’s own cache. If yes, the request is satisfied by self-
caching. If not, the BS checks whether the request can be
satisfied by files in caches of other users in the same cluster.
If so, the user is served via a D2D link. Otherwise, the BS
provides a BS link for service. We assume that the BS is
connected to a repository that can access all required files
through a unlimited backhaul. Thus, the selected user shall be
served ultimately. After the scheduling of the selected user,
other users check whether their requests can be satisfied by
files in their own caches. If yes, their requests are satisfied. We
note that although such scheduling is sub-optimal in terms of
network throughput (compared to the “priority-push” in [7]),
it is more mathematically tractable in many aspects, provides
fairness to all users, and can serve as a reference for other
more complicated systems [14].

We consider users to have different throughput when access-
ing a desired file using different approaches. We thus denote
the throughput a user can obtain as TS, TD, and TB when the
desired file is obtained via self-caching, the D2D link, and the
BS link, respectively, and consider TS ≥ TD ≥ TB. We note
that this fixed-transmission-rate consideration is practical when
equipped a fixed modulation-and-coding scheme and system-
level power control. We refer the detailed arguments to Sec.
II.A of [7].

We consider users to request files from a library consisting
of M files. Since different users can have different preferences
on files, the probability that a user k requests file m is denoted
as akm, where 0 ≤ akm ≤ 1, ∀m, k, and

∑M
m=1 a

k
m = 1, ∀k.

We adopt the probabilistic description for the caching policy
[16]. The caching policy of a user k is then described as
{bkm}Mm=1, where 0 ≤ bkm ≤ 1 is the probability to cache file m
and

∑M
m=1 b

k
m ≤ S. In the remaining paper, by dropping the

subscript and superscript, we will let {akm} and {bkm} to be the
short-hand notations for describing the individual preference
and caching policy for user k, respectively.

III. NONCOORDINATED INDIVIDUAL PREFERENCE AWARE
CACHING POLICY

In the paper, we aim to design a noncoordinated individual
preference aware caching policy, in which users determine
their caching polices without knowing caching policies of
other users and without coordination. To realize this, we
propose using a group-wise caching framework. In this frame-
work, we consider G reference groups, where each reference
group Gi is associated with a caching policy {bGrp,i

m } and a
group preference {aGrp,i

m }.
When a user k appears in the D2D network, this user

first determines which reference group to be associated with.
Since a reference group has a caching policy, the user then



automatically adopts this caching policy. The condition for
user k to be associated with reference group Gi is:

k ∈ Gi if i = arg min
j=1,...,C

D
(
{akm}‖{aGrp,j

m }
)
, (1)

where

D
(
{akm}‖{aGrp,j

m }
)
=

M∑
m=1

akm log
akm

aGrp,j
m

is the KL divergence between the individual preference of
user k and group preference {aGrp,j

m }. Since different users can
obtain different caching policies using (1) according to their
individual preferences and information of reference groups,
users can determine their caching policies without knowing
caching policies of other users and without any coordination.
We note that the the information of the reference groups can
be broadcast to users before the time that users start to cache
files (e.g., at midnight). We will in the following discuss the
design of reference groups.

IV. LEARNING-AIDED CACHING POLICY DESIGN

In this section, we first propose a learning-based reference
group construction approach, and then design the caching
policies associated to the groups.

A. Reference Group Construction

Assume that we have N user samples along with their
individual preferences. We shall construct reference groups
based on these samples, using clustering algorithms adapted
from machine learning [15]. Suppose there are user samples
associated to the reference group Gi. We let the group prefer-
ence distribution of Gi be the distribution minimizing the sum
KL divergence:

{aGrp,i
m } =arg min

{aGrp,i
m }

∑
k∈Gi

D
(
{akm}‖{aGrp,i

m }
)
, (2)

Note that
∑M
m=1 a

Grp,i
m = 1 must be satisfied by definition.

Then by Karush-Kuhn-Tucker (KKT) conditions, we can prove
that the group preference for reference group Gi is the average
(mean) preferences of user samples in the group, i.e.,

aGrp,i
m =

∑
k∈Gi a

k
m∑M

n=1

∑
k∈Gi a

k
n

, ∀m. (3)

To obtain the group preference, we need to determine
which user sample belongs to which reference group. To do
this, by using the Jensen-Shannon Divergence (JSD) of two
distributions, we first define the similarity measurement for
individual preferences of two different users k and l as:

d
(
{akm}, {alm}

)
=
D
(
{akm}‖{aref

m}
)
+D

(
{alm}‖{aref

m}
)

2
(4)

where aref
m = 1

2 (a
k
m + alm). Then to construct the primitive

groups, the conventional agglomerative clustering [15], hi-
erarchically grouping users in a bottom-up fashion, is used.
Roughly speaking, starting with N groups, i.e., each group
has only a user. The agglomerative algorithm then, at each

iteration, merges two groups having the minimum group
distance, where the group distance between two groups Gi
and Gj is:

d (Gi,Gj) = max
k∈Gi,l∈Gj

d
(
{akm}, {alm}

)
. (5)

Thus, to construct G groups, N−G iterations would be taken.
Since agglomerative clustering is commonly used in machine
learning for unsupervised learning, we omit the details and
refer to Ch. 10 of [15] for brevity.

After obtaining the grouping result (with G groups) of
agglomerative clustering, we further refine the grouping by
using a K-means clustering [15], in which the aim is to mini-
mize the sum KL divergence between user samples and their
corresponding group preference distributions. Notice that, on
one hand, when given a clustering of users, results in (2) and
(3) indicate that the mean point of the individual preferences
of users in a group minimizes the sum KL divergences. On
the other hand, when given the group preferences, the group
assignment in (1) minimizes the KL divergences between user
samples and their associated group preference distributions. By
using these two properties, we propose a K-means clustering
that iteratively conducts the computations of group preferences
using (2) and re-assigns the user samples to different groups
by (1). Since each iteration improves the sum KL divergences
of users, this iterative algorithm can converge to the local
optimum minimizing the sum KL divergence of the sample
users. The final grouping result is then the input for designing
the caching policy of each group, which is discussed in the
subsequent subsection. We again refer the details of the K-
means clustering to Ch. 10 of [15].

B. Throughput and Hit-Rate Expressions

After the construction of reference groups. We then design
their corresponding caching policies that optimize particular
objective functions. As a first step we here derive the objective
functions for throughput and hit-rate optimizations.

We first derive some fundamental access probabilities that
will be used later in the derivations. Suppose the number of
users assigned to the reference group Gi in a cluster is ni, i =
1, 2, ..., G. Considering a user assigned to group Gi with the
individual preference approximated by the group preference,
the probability that the requests of such user can be satisfied by
self-caching is: PGrp,i

S =
∑M
m=1 a

Grp,i
m bGrp,i

m . The probability
that the user cannot find the desired files from caches of users
in the cluster and thus has to resort to a BS link is: PGrp,i

B =∑M
m=1 a

Grp,i
m

∏G
l=1

(
1− bGrp,l

m

)nl

. By using above results, the
probability that the user can find the desired files through a
D2D link is: PGrp,i

D = 1− PGrp,i
B − PGrp,i

S .
We start to derive the network throughput. We first estimate

the densities of users assigned to each group by:

λA
i =

λA|Gi|∑G
j=1 |Gj |

; λI
i =

λI|Gi|∑G
j=1 |Gj |

, (6)

where λI
i is the density of active users for group Gi, λI

i is the
density of inactive users for group Gi, and |Gi| is the number



of user samples belongs to reference group Gi. Then due to
HPPP model, the mean numbers of active and inactive users
in a cluster are κA

i = λA
i D

2 and κI
i = λI

iD
2, respectively. We

also let κi = κA
i + κI

i, ∀i, κA =
∑G
i=1 κ

A
i , κI =

∑G
i=1 κ

I
i, and

κ = κA+κI. Since we consider the random-push network, the
expected throughput of the network is

Tnet = Tsele + Tself, (7)

where Tsele is the expected throughput of the selected user,
and Tself is the expected throughput from the self-caching of
other users. Denote nA

i as the number of active users and nI
i

as the number of inactive users for group Gi in a cluster. Then

Tsele = E

[∑G
g=1 n

A
gTg∑G

g=1 n
A
g

]
= Pr(nA

1 + ...+ nA
G > 0)·

∑
nA
1,n

I
1,...,n

I
G

nA
1+...+n

A
G>0

[∑G
g=1 n

A
gTg∑G

g=1 n
A
g

Pr(nA
1 , n

I
1, ..., n

I
G)

Pr(nA
1 + ...+ nA

G > 0)

]

︸ ︷︷ ︸
(i)

. (8)

Since we consider HPPP, we obtain Pr(nA
1+, ...,+n

A
G > 0) =

1 − e−κ
A
. To compute (i) of (8), the approximation that

E
[
x
y

]
≈ E[x]

E[y] is used. We then obtain the result in (9) on
the top of next page, where (a) is due to Tg = 0 when
nA
1 = nA

2 = ... = nA
G = 0 and

Tg = TBP
Grp,i
B + TDP

Grp,i
D + TSP

Grp,i
S . (10)

We then turn to compute Tself. Since Tself comes from those
users that are not selected, by using PGrp,i

S and the similar
approximation in (9), we obtain the result in (11) on the top
of next page. Finally, by combining (7), (9), and (11), and after
some algebraic manipulations, we obtain the approximated Tnet

in (12) on the top of next page, where LA
i =

κA
i

κA .
The hit-rate of the network is defined as the probability that

a user can find the desired files in a cluster without using a
BS link. Thus, the hit-rate of the network is

Hnet = E

∑G
i=1 n

A
i

(
1− PGrp,i

B

)
∑G
i=1 n

A
i

 . (13)

By using the similar approach, we can obtain the approxima-
tion of the hit-rate of the network:

Hnet ≈ (1− e−κ
A
)·1−

M∑
m=1

G∑
i=1

LA
i a

Grp,i
m (1− bGrp,i

m )
G∏
j=1

e−κjb
Grp,j
m

 .
(14)

C. Caching Policy Design

Here we propose an algorithm that can be used to maximize
Tnet and Hnet. In the following, we consider maximizing Tnet
as an example, and the approach can be similarly applied to
maximizing Hnet. We observe that directly maximizing Tnet by
jointly optimizing caching policies of all groups is difficult,
due to the complicated production term in (12). In contrast,

when optimizing the caching policy of group Gi while fixing
policies of the other groups, the maximization problem can be
simplified as

max
bGrp,i
m ,∀m

T sub
i s.t.

M∑
m=1

bGrp,i
m ≤ S, 0 ≤ bGrp,i

m ≤ 1, ∀m, (15)

where T sub
i is provided in (16) on the top of next page.

Since the Hessian of T sub
i is negative semi-definite, (15) is

a concave optimization problem. Then by solving the sub-
problems iteratively for different groups until convergence, the
caching policies of different groups are obtained. Note that
the proposed iterative algorithm falls in the framework of the
block coordinate descent (BCD) approach; the convergence
analysis of the BCD approach can be found in [14].

V. NUMERICAL RESULTS

Numerical results are provided in this section to evaluate
the performance of the proposed design. Because it is more
practical that users do not have requests all the time, we
consider active and inactive users distributed with densities
λA = 0.002 m−2 and λI = 0.008 m−2, respectively. We
consider 20 MHz of bandwidth for each D2D link, which is
practically realizable when adopting mmWave systems with
reuse factor 16 or conventional systems with reuse factor one
using advanced MIMO approaches to mitigate inter-cluster
interference. A BS link with 20 kHz of bandwidth per user
always exists when it is needed. We assume that the 2.06
bits/s/Hz spectral efficiency, corresponding to 5 dB of signal-
to-noise ratio, is guaranteed for both D2D and BS links. Thus,
the throughput for a D2D link is TD = 41.2 Mbits/s; for a
BS link is TB = 41.2 kbits/s. We then consider TS = 2TD,
indicating the slightly better video quality a user can have if
the file is obtained directly from the local cache (note that
while the ”transmission rate” from the cache to the user is
very high for a self-cached file, it is the playback rate that
determines the effective throughput).

We consider S = 5 for all users, and G = 32 is used
by the proposed design. To evaluate with practical individual
preference probabilities, we use an individual preference gen-
erator parameterized by two different datasets: (1) GlobeCom
dataset in [9] with M = 467; and (2) ToN-June dataset in
[10] with M = 500. The main difference between them is that
the GlobeCom dataset only considers users with higher traffic
load. In all evaluations, for each dataset, we first generate
20000 user samples. Among them, 3000 samples are used
for designing the reference groups and their caching policies.
All 20000 samples are later used for obtaining simulation
results. The global popularity distribution of the users in those
evaluations is thus by definition the average of the individual
preferences of 20000 users.

The derived approximations in (12) and (14) are validated
by comparisons with simulation results in Fig. 1. Different
from the other figures, to focus on validating the expressions,
here we let user preferences to be identical to their associated
group preference when obtaining the simulating curves. This



∑
nA
1,n

I
1,...,n

I
G

nA
1+...+n

A
G>0

[∑G
g=1 n

A
gTg∑G

g=1 n
A
g

Pr(nA
1 , n

I
1, ..., n

I
G)

Pr(nA
1 + ...+ nA

G > 0)

]
≈



∑
nA
1,n

I
1,...,n

I
G

nA
1+...+n

A
G>0

G∑
g=1

nA
gTg

Pr(nA
1 , n

I
1, ..., n

I
G)

1− e−κA

∑
n
nA
1 ,nI

1,...,nI
G

1

nA
1+...+n

A
G>0

G∑
g=1

nA
g

Pr(nA
1 , n

I
1, ..., n

I
G)

1− e−κA



(a)
=


∑

nA
1,n

I
1,...,n

I
G

G∑
g=1

nA
gTgPr(nA

1 , n
I
1, ..., n

I
G)

∑
nA
1,n

I
1,...,n

I
G

G∑
g=1

nA
gPr(nA

1 , n
I
1, ..., n

I
G)

 =
E
[∑G

g=1 n
A
gTg

]
E
[∑G

g=1 n
A
g

] =

∑G
g=1 E

[
nA
gTg

]∑G
g=1 κ

A
g

.

(9)

TSelf = TSE

[
M∑
m=1

G∑
i=1

aGrp,i
m bGrp,i

m

(
ni − 1{i,sel}

)]
≈ TS

M∑
m=1

G∑
i=1

κA
i a

Grp,i
m bGrp,i

m − TS

∑M
m=1

∑G
i=1 κ

A
i a

Grp,i
m bGrp,i

m∑G
i=1 κ

A
i

(1− e−κ
A
).

(11)

Tnet ≈(1− e−κ
A
)

TD + (TB − TD)
M∑
m=1

G∑
i=1

LA
i a

Grp,i
m (1− bGrp,i

m )
G∏
j=1

e−κjb
Grp,j
m


+

M∑
m=1

G∑
i=1

(TSκ
A
i − LA

i TD + e−κ
A
LA
i TD)a

Grp,i
m bGrp,i

m

(12)

T sub
i = (1− e−κ

A
)(TB − TD)

M∑
m=1

[
Ci,1m + Ci,2m (1− bGrp,i

m )
]
e−κib

Grp,i
m + (TSκ

A
i − LA

i TD + e−κ
A
LA
i TD)

M∑
m=1

aGrp,i
m bGrp,i

m ;

Ci,1m =

 G∑
j=1,j 6=i

LA
j a

Grp,j
m (1− bGrp,j

m )

∏
j 6=i

e−κjb
Grp,j
m

;Ci,2m = LA
i a

Grp,i
m

∏
j 6=i

e−κjb
Grp,j
m

 .

(16)
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Fig. 1: Comparisons between analyses and simulations.

avoids the error caused by the deviations between the user
preferences and the group preferences. The curves in Fig. 1(a)
are generated using the proposed distributed design optimizing
throughput; the curves in Fig. 1(b) optimize hit-rate. We
observe that the simulation results are close to the analytical
results, which validates our approximations.

In the remaining figures, we evaluate the proposed de-
signs optimizing throughput and hit-rate, labeled with “Nco.
Throughput” and “Nco. Hit-Rate”, respectively. We compare
them with other reference designs: (i) coordinated individual
preference aware designs, aiming to optimize throughput or
hit-rate, proposed in [14] (labeled with “Co. Throughput/Hit-
Rate”); (ii) the “Selfish” policy in which each user caches

their most desired files without considering other users; and
(iii) the designs proposed in [7], aiming to optimize throughput
or hit-rate based merely on the global popularity distribution
(labeled with “Glo. Throughput/Hit-Rate”). Considering the
GlobeCom dataset, the performance evaluation in terms of area
throughput is provided in Fig. 2. We observe that the proposed
design with throughput optimization is better than the selfish
policy and designs using a global popularity distribution. In
Fig. 3, the same evaluation is provided for hit-rate. The results
again show that the proposed design outperforms the selfish
policy significantly and is slightly better than designs using
a global popularity distribution. This indicates that to have a
good hit-rate performance, knowing the average probability
for a file to be requested in the network is more important
than specific which files are more preferable to whom. From
Figs. 2 and 3, we observe that the distributed designs are worse
than the coordinated designs as expected. However, the benefit
of a distributed design is the ability to implement without
coordination between users.

In Figs. 4 and 5, we conduct the same evaluations as in Figs.
2 and 3 but with ToN-June dataset. The results are slightly
different from the GlobeCom dataset in that the selfish policy
this time is better than the proposed design. The reasons are: (i)
the hit-rate performance of selfish design in ToN-June dataset
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Fig. 2: Throughput evaluation for D2D caching networks with
GlobeCom dataset.
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Fig. 3: Hit-Rate evaluation for D2D caching networks with
GlobeCom dataset.

is inherently good; and (ii) the selfish policy actually has a
higher heterogeneity than the proposed distributed design, as
each user can have their own caching policies when the selfish
policy is adopted. Such result motivates us to investigate how
we can improve the heterogeneity of the proposed design
by combining the concept of the selfish policy with our
distributed design, as one of our future directions. In addition
to the above, other observations are similar to Figs. 2 and
3, i.e., the proposed design outperforms designs using the
global popularity distribution and is worse than the coordinated
designs. Overall, the simulation results indicate that our dis-
tributed design can benefit from the information of individual
preference without the need for centralized cooperation of
users. Besides, although not shown here, the performance of
the distributed design generally degrades when decreasing the
number of groups G, and ultimately becomes almost identical
to designs based on the global popularity distribution.

VI. CONCLUSIONS

In this paper, we proposed a noncoordinated individual
preference aware caching policy for cache-aided D2D net-
works. This caching policy is based on a group-wise structure
that allows users, according to their own preferences, to be
assigned to a reference group with the uniquely associated
caching policy without any coordination. Machine learning
approaches were exploited to construct reference groups, and
problems for optimizing network throughput and hit-rate were
formulated and solved. Numerical results based on practical
individual preferences showed that the proposed distributed
caching policy can benefit from the information of individual
preference without the need of coordination of users.
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